20
Universidad Nacional Experimental “Rafael María Baralt” Programa de Ingeniería y Tecnología Proyecto de Ingeniería de Mantenimiento - Mención Mecánica Asignatura: Ciencia de los Materiales Solidificación Las propiedades mecánicas de los materiales pueden controlarse por la adición de defectos puntuales como átomos sustitucionales e intersticiales. Particularmente en el caso de los metales, los defectos puntuales distorsionan el arreglo atómico en la red, interfiriendo con el movimiento o deslizamiento de las dislocaciones. Por tanto, los defectos puntuales hacen que el material se endurezca por solución sólida. Además, la introducción de defectos puntuales modifica la composición del material, influyendo sobre el comportamiento durante la solidificación. Este efecto se analiza mediante el diagrama de fases al equilibrio, a partir del cual se podrá predecir cómo se solidificará un material tanto en condiciones de equilibrio como fuera de éste. Fases y el diagrama de fases de sustancias puras: Fase: Es un material que tiene las características siguientes: 1. Tiene una misma estructura o arreglo atómico en todo el material 2. Tiene aproximadamente una misma composición y propiedades; y 3. Hay una interfase definida entre una fase y cualquier otra que la rodea o que sea su vecina. 1

Introducción - INGENIERÍA CICLO BÁSICO · Web viewAdemás, la introducción de defectos puntuales modifica la composición del material, influyendo sobre el comportamiento durante

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

Las propiedades mecánicas de los materiales pueden controlarse por la adición de

defectos puntuales como átomos sustitucionales e intersticiales. Particularmente en el caso

de los metales, los defectos puntuales distorsionan el arreglo atómico en la red, interfiriendo

con el movimiento o deslizamiento de las dislocaciones. Por tanto, los defectos puntuales

hacen que el material se endurezca por solución sólida.

Además, la introducción de defectos puntuales modifica la composición del material,

influyendo sobre el comportamiento durante la solidificación. Este efecto se analiza mediante

el diagrama de fases al equilibrio, a partir del cual se podrá predecir cómo se solidificará un

material tanto en condiciones de equilibrio como fuera de éste.

Fases y el diagrama de fases de sustancias puras:

Fase: Es un material que tiene las características siguientes:

1. Tiene una misma estructura o arreglo atómico en todo el material

2. Tiene aproximadamente una misma composición y propiedades; y

3. Hay una interfase definida entre una fase y cualquier otra que la rodea o que sea su

vecina.

Por ejemplo, si se encierra un bloque de hielo en una cámara de vacío, el hielo

empezará a fundirse y, además, parte del agua se vaporizará. En estas condiciones, se

tendrán en coexistencia tres fases: H20 sólida, H20 líquida y H20 gaseosa. Cada una de estas

formas del H20 es una fase diferente; cada una tiene un arreglo atómico único, con

propiedades únicas y con un borde o límite bien definido entre ellas. En este caso específico

las fases tienen composiciones idénticas, pero este hecho no es suficiente para llamar a todo

el sistema como una sola fase.

Sistema Químico: Consiste en cualquier combinación de componentes químicos bajo

observación, donde dichos componentes pueden presentarse en su fase sólida, líquida o

gaseosa.

1

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

Regla de Fases: Enunciado que describe el número de variables (grados de libertad) que

deberán ser fijadas para especificar la temperatura y la composición de una fase.

F= C-P+2

En esta regla de fases, C es el número de componentes, por lo general elementos o

compuestos en el sistema; F es el número de grados de libertad, es decir, el número de

variables por ejemplo temperatura, presión o composición, que pueden modificarse de

manera independiente, sin cambiar el número de fases en equilibrio; y P es el número de

fases presentes. El valor constante 2 en la ecuación implica que tanto la temperatura como

la presión tienen posibilidades de cambiar.

** Punto triple: Presión y temperatura a las cuales las tres fases de un solo material están en

equilibrio.

Soluciones y Solubilidad: Cuando se empieza a combinar materiales distintos, como al

agregar elementos de aleación a un metal, se producen soluciones. El interés es determinar

la cantidad de cada material que se puede producir sin producir una fase adicional. En otras

palabras, la atención se enfocará en la “Solubilidad” de un material en otro.

Solubilidad: Cantidad de un material que se disolverá completamente en un segundo

material, sin crear una segunda fase. Se pueden presentar dos tipos de solubilidad:

a) Solubilidad Ilimitada: Condición que se presenta cuando la cantidad de un

material que se disolverá en otro es ilimitada, sin crear una segunda fase.

b) Solubilidad Limitada: Condición referente a que sólo se puede disolver una

cantidad máxima de un material soluto en un material solvente

Condiciones para una Solubilidad Sólida Ilimitada:

Para que una aleación tenga solubilidad sólida ilimitada, deberá satisfacer ciertas

condiciones. Éstas, conocidas como las reglas de Hume-Rothery, son las siguientes:

2

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

1. Factor de tamaño: Los átomos deben ser de tamaño similar, con no más del 15 por ciento

de diferencia en su radio atómico, a fin de minimizar deformaciones en la red.

2. Estructura cristalina: Los materiales deberán tener una misma estructura cristalina; de lo

contrario, existirá algún punto en el cual ocurrirá la transición de una fase a otra con

estructura distinta.

3. Valencia: Los átomos deberán tener la misma valencia; de lo contrarío, la diferencia de

electrones de valencia alentará la formación de compuestos, en vez de la formación de

soluciones.

4. Electronegatividad: los átomos deben tener aproximadamente la misma electronegatidad.

Si las electronegatividades difieren de manera significativa, de nuevo se forman

compuestos, como cuando se combina sodio y cloro para formar cloruro de sodio.

Las condiciones de Hume-Rothery deben cumplirse, pero no son necesariamente

suficientes para que dos metales tengan solubilidad sólida ilimitada. Un comportamiento

similar se observa entre ciertos compuestos, incluyendo materiales cerámicos.

La figura, muestra de manera esquemática la estructura del MgQ y del NiO. Pero los

iones de Mg y de Ni son similares en tamaño y valencia y, en consecuencia, pueden rem-

plazar uno al otro en una red similar a la del cloruro de sodio, formando una serie completa

de soluciones sólidas de la forma (Mg, Ni)O.

3

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

La solubilidad de los átomos intersticiales siempre es limitada. Los átomos intersticiales

son mucho más pequeños que los átomos del elemento huésped, violando por lo tanto la

primera de las condiciones de Hume-Rothery.

Endurecimiento por solución sólida: Es el aumento de la resistencia de una material

introduciendo defectos puntuales en su estructura, de una forma deliberada y controlada. Por

ejemplo, en el sistema cobre-níquel, si se introduce intencionalmente un átomo sustitucional

(níquel) en la red original (cobre), la aleación cobre-níquel resultante tiene una resistencia

más elevada que la del cobre puro. De manera similar, si se agrega al cobre menos de 30

por ciento de Zn, éste se comporta como átomo sustitucional, endureciendo la aleación

cobre-zinc, en comparación con el cobre puro.

Grado de endurecimiento por solución sólida

El grado de endurecimiento por solución sólida se incrementa cuando:

a) Aumenta la cantidad de elementos aleantes

b) Aumenta la diferencia del tamaño atómico entre el material huésped (solvente) y

el elemento aleante (soluto). Una diferencia mayor en tamaño produce una mayor distorsión

de la red inicial, haciendo aún más difícil el deslizamiento.

La cantidad de elemento aleante que se puede agregar para producir un endurecimiento

por solución sólida está limitada por la solubilidad de ese elemento en el material huésped.

Efecto del endurecimiento por solución sólida en las propiedades: Los efectos del

endurecimiento por solución sólida en las propiedades de un material son los siguientes:

1. El esfuerzo de cedencia, la resistencia a la tensión y la dureza de la aleación son

mayores que en los materiales puros.

2. Generalmente la ductilidad y la conductividad eléctrica de la aleación serán menor que la

del material puro. (Sólo en casos raros, como en aleaciones cobre-zinc, el

4

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

endurecimiento por solución sólida incrementa tanto resistencia como ductilidad, además

no se recomienda el endurecimiento por solución sólida de alambres de aluminio o de

cobre utilizados para la transmisión de la energía eléctrica)

3. Proporciona a la aleación buenas propiedades a altas temperaturas.

Nota: la adición de elementos aleantes para proporcionar endurecimiento por solución sólida

cambia las propiedades físicas, incluyendo la temperatura de fusión. El diagrama de fases

ayuda a explicar estos cambios.

Diagrama de Fases

Es un esquema que muestra las fases y sus composiciones en cada combinación de

temperatura y composición de la aleación. Cuando en la aleación sólo están presentes dos

elementos o componentes, el diagrama fases recibe el nombre de “Diagrama de fases binario”.

Si el diagrama de fases binario muestra una única fase sólida y los componentes del

sistema presentan solubilidad ilimitada, el diagrama recibe el nombre de “Diagrama de fases binario Isomorfo”.

Por otra parte, en todos los diagramas de fases se presentan las siguientes

características:

1. Sirven para conocer en todo momento el estado de la aleación partiendo de

la temperatura y composición.

2. Se construyen a partir de las curvas de enfriamiento.

3. Suministran información acerca:

Las fases presentes a una determinada temperatura.

Composición de cada fase.

5

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

Cantidad relativa de fases existentes en el campo bifásico.

Información que se puede obtener del diagrama de fases isomorfo

1. Temperatura de Liquidus: Es la temperatura a la cual se empieza a formar

el primer sólido durante el proceso de solidificación.

2. Temperatura de Solidus: Es la temperatura por debajo de la cual todo el

líquido se ha solidificado totalmente.

3. Rango de Solidificación: Es cuando se funden y se solidifican los

componentes de una aleación dentro de un rango de temperatura. Dentro de este rango

coexistirán dos fases.

4. Fases presentes

5. Composición de cada fase: Cada fase tiene una composición expresada en

porcentaje en peso (% en peso). Cuando en la aleación esta presente una sola fase, su

composición es igual a la de la aleación, y si se modifica la composición original de la

aleación se modifica entonces la composición de la fase.

Sin embargo, cuando coexisten dos fases como liquido y sólido, sus composiciones

diferirán entre si como de la composición general original. Si esta cambia ligeramente, la

composición de las dos fases no se afectará, siempre que la temperatura se conserve

constante. Esta diferencia queda explicada por la regla de fases de Gibbs.

6. Cantidad de cada fase

SOLUCIÓN SÓLIDA

Es una aleación de dos o más metales o un metal (es) y un no metal (es) que se

encuentran en mezcla atómica de una sola fase.

6

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

Solidificación: Proceso físico mediante el cual un material líquido pasa al estado

sólido.

Este proceso puede dividirse en las siguientes etapas:

Formación de núcleos estables en el fundido (nucleación)

Crecimiento del núcleo hasta dar origen a los cristales y la formación de una

estructura granular.

NUCLEACIÓN Y CRECIMIENTO

Nucleación: Es el proceso físico mediante el cual se produce una nueva fase. En el

caso de la solidificación, significa la formación de un sólido minúsculo y estable

dentro del líquido.

Núcleos: Son pequeñas partículas de una nueva fase formada por un cambio de fase (por

ejemplo solidificación) que pueden crecer hasta que se complete el cambio de fase.

FORMACIÓN DE NÚCLEOS ESTABLES EN METALES LÍQUIDOS

Los dos mecanismos principales por los que acontece la nucleación de partículas

sólidas en un metal líquido son: Nucleación Homogénea y Nucleación Heterogénea

7

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

Nucleación Homogénea: Se presenta cuando se produce la formación de regiones muy

pequeñas de una nueva fase sólida (núcleos) en un metal puro que pueden crecer hasta

que la solidificación se completa. El propio metal puro homogéneo proporciona los átomos

que constituyen los núcleos.

Por otra parte es necesario destacar, que cuando se enfría un metal líquido, este lo

realiza por debajo de la temperatura de solidificación al equilibrio, antes que ocurra la

Nucleación (temperatura de subenfriamiento) creando numerosos núcleos homogéneos,

debido al movimiento lento de los átomos que se mantienen juntos.

Además para que un núcleo estable pueda transformarse en un cristal debe alcanzar

un tamaño crítico.

Embriones: Pequeñas partículas de una nueva fase formada por un cambio de fase (por

ejemplo, solidificación) que no presentan tamaño crítico y pueden redisolverse.

Sin embargo, debido a la inestabilidad; los embriones se están formando y

redisolviendo constantemente en el metal fundido debido a la agitación de los átomos.

Nucleación Heterogénea: Es la formación de regiones muy pequeñas de una nueva fase

sólida (núcleos) en la interfase de impurezas sólidas. Estas impurezas disminuyen el

tamaño crítico de los núcleos sólidos estables a una temperatura dada.

Crecimiento: Es el proceso físico mediante el cual una nueva fase incrementa su

tamaño. En el caso de la solidificación, significa la formación de un sólido estable

conforme se solidifica el sólido.

Dendrita

Estructura arboriforme del sólido que crece cuando se nuclea un líquido subenfriado.

8

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

Solidificación fuera de equilibrio y Segregación

1. Segregación: Es la composición no uniforme producida por la solidificación fuera de

equilibrio.

1.1 Microsegregación: Es la presencia de diferencias de concentración en un material en

distancias cortas debido a la solidificación fuera de equilibrio. Es conocida también como

segregación interdendrítica o segregación central, debido a que ocurre a menudo entre

los brazos dendríticos, pues los centros de las dendritas, que representan el primer

sólido, son ricos en el elemento con el mayor punto de fusión dentro de la aleación. Las

regiones interdendríticas son ricas en el elemento con el menor punto de fusión, ya que

estas regiones representan el último líquido que se solidifica. Como consecuencia la

composición y las propiedades de α son distintas de una región a la siguiente y, dando

como resultado que la fundición tenga propiedades más pobres

1.1.1 Fusión de Microsegregación: Derretimiento del material fuera de equilibrio y de menor

punto de fusión que se forma debido a la microsegregación, aunque la temperatura

esté por debajo de la temperatura de sólidus en equilibrio.

1.1.2 Macrosegregación: Es la presencia de diferencias de composición en un material a lo

largo de distancias grandes debido a solidificación fuera de equilibrio.

Endurecimiento por dispersión durante la Solidificación

1. Endurecimiento por Dispersión: Es el incremento de la resistencia del material al

mezclar más de una fase. Mediante el control apropiado del tamaño, forma, cantidad y

propiedades individuales de las fases, se puede obtener una excelente combinación de

propiedades.

1.1 Principio de Endurecimiento por Dispersión:

9

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

Matriz: Es una fase continua, que por lo general se encuentra en mayor cantidad y se

precipita en una segunda fase a partir de ella. Típicamente, el primer material sólido que

se forma durante el enfriamiento de una aleación.

Precipitado: Fase sólida presente por lo general en menor cantidad, que se forma a

partir de la matriz original cuando se excede el límite de solubilidad. En la mayoría de los

casos, se pretende controlar la formación del precipitado para producir un endurecimiento

óptimo por dispersión.

En algunos casos se forman dos fases simultáneamente. Estas estructuras se definen de

manera distinta, a la mezcla íntima de las fases se le denomina microconstituyente.

Existen ciertas consideraciones de tipo general para determinar la forma en que las

características de matriz y precipitado afectan las propiedades generales de una aleación

metálica.

1. La matriz deberá ser blanda y dúctil y el precipitado debe ser duro y resistente. El precipi-

tado interfiere con el deslizamiento de las dislocaciones, en tanto que la matriz proporcio-

na por lo menos cierta ductilidad a la aleación.

2. El precipitado duro debe ser discontinuo, en tanto que la matriz, blanda y dúctil debe ser

continua. Si el precipitado fuera continuo, se propagarían grietas a lo largo de toda la

estructura. Sin embargo, las grietas en el precipitado discontinuo y frágil son retenidas en

la interfase precipitado-matriz.

3. Las partículas de precipitado deben ser pequeñas y numerosas, incrementando la

posibilidad de que interfieran en el proceso de deslizamiento.

4. Las partículas de precipitado deben ser redondas en vez de forma puntiaguda o de aguja

ya que la forma redonda es menos propensa a iniciar grietas o actuar como muesca.

5. Grandes cantidades de precipitado incrementan la resistencia de la aleación.

10

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

También se producen materiales de dos fases por razones distintas al endurecimiento;

estos casos pudieran no ser aplicables los criterios arriba citados. Por ejemplo, la tenacidad

a la fractura de los materiales puede mejorarse al introducir una fase dispersa. Si se

incorpora una fase dúctil a una matriz cerámica, o una fase de caucho a un polímero

termoestable, se mejora la tenacidad; la formación de una densa red de precipitados en

forma de aguja en al aleaciones de titanio ayuda a impedir el crecimiento de grietas. La

producción de glóbulos plomo muy blandos dentro del cobre mejora su maquinabilidad.

El precipitado deberá ser duro y discontinuo

Las partículas de precipitado deberán ser pequeñas y numerosas

Las partículas del precipitado deberán ser redondas en vez de forma puntiagudas o en forma de aguja

11

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

A mayor cantidad de precipitado mayor endurecimiento

Compuestos Intermetálicos

1. Compuesto Intermetálico: Es una clase de compuesto constituido por dos o más

metales, produciendo una nueva fase con composición, estructura y propiedades únicas.

Los compuestos intermetálicos son usualmente duros pero frágiles, y se introducen como

precipitado. La estructura con matriz con base en compuestos intermetálicos se han

introducido para aprovechar sus propiedades a altas temperaturas.

1.1 Compuesto Intermetálico Estequiométrico: Fase formada por la combinación de dos

constituyentes en un compuesto, con una estructura y propiedades distintas a cualquiera

de ellos. El compuesto intermetálico estequiométrico tiene una proporción fija de

constituyentes. También se conoce como una solución sólida intermedia.

Un ejemplo de estos compuestos, se presenta en los aceros que se endurecen debido a

un compuesto estequiométrico, Fe3C, que tiene una relación fija de 3 átomos de hierro a un

átomo de carbono.

1.2 Compuesto Intermetálico no Estequiométrico: Fase formada por la combinación de

dos constituyentes en un compuesto con estructura y propiedades distintas de

cualquiera de ellos. El compuesto intermetálico no estequiométrico tiene una proporción

variable de constituyentes.

Los compuestos intermetálicos se utilizan con ventaja al dispersarlos en una matriz

más blanda y dúctil. Sin embargo, existe un interés considerable en el uso de intermetálicos

por sí mismos, aprovechando su alto punto de fusión, su rigidez, y su resistencia a la

12

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

oxidación y a la termofluencia. Estos nuevos materiales, que incluyen el Ti3Al y el Ni3A1,

mantienen su resistencia e incluso desarrollan una ductilidad que es aprovechable a

temperaturas elevadas.

Los aluminuros de titanio, TiAl, también conocida como aleación gama (γ), y el Ti 3Al

llamado aleación α2, son compuestos intermetálicos no estequiométricos, que sirven para

una diversidad de aplicaciones, como motores de turbinas a gas o el avión aeroespacial.

Ambas sustancias tienen estructuras cristalinas ordenadas, las cuales dificultan el

movimiento de las dislocaciones, dando como resultado baja ductilidad a bajas temperaturas;

pero también ocasiona una alta energía de activación para la difusión, dando una buena

resistencia a la termofluencia a altas temperaturas.

Diagramas de fases con reacciones de tres fases

Muchas combinaciones de dos elementos producen diagramas de fases más

complicados que los sistemas isomorfos. Estos sistemas contienen reacciones que implican

tres fases independientes. En la Tabla que se muestra, aparecen definidos cinco de ellos.

Eutéctica

Peritéctica

Monoeutéctica

Eutetoide

Peritectoide

Cada una de las reacciones puede ser identificada en un diagrama de fases complejo

mediante el procedimiento siguiente:

13

Universidad Nacional Experimental “Rafael María Baralt”

Programa de Ingeniería y Tecnología

Proyecto de Ingeniería de Mantenimiento - Mención Mecánica

Asignatura: Ciencia de los Materiales

Solidificación

1. Localice una línea horizontal en el diagrama de fases. La línea horizontal que indica la

presencia de una reacción de tres fases representa la temperatura a la cual ocurre la

reacción en condiciones de equilibrio.

2. Localice tres puntos distintos en la línea horizontal: los dos extremos, más un tercer

punto, a menudo cerca del centro de la línea horizontal. El punto central representa la

composición a la cual ocurre la reacción de tres fases.

3. Busque directamente por encima del punto central e identifique la fase o fases presentes,

busque inmediatamente por debajo del punto central e identifique la fase o fases

presentes.

A continuación escriba, en forma de reacción, la fase o fases por encima del punto

central que se transforman en la fase o fases por debajo del punto. Compare esta reacción

con las de la tabla anterior para identificarla.

Las reacciones eutéctica, peritéctica y monotéctica forman parte del proceso de

solidificación. Las aleaciones que se utilizan para fundición o soldadura a menudo

aprovechan el bajo punto de fusión de la reacción eutéctica. El diagrama de fases de las

aleaciones monotécticas tiene un domo o zona de miscibilidad, en donde coexisten dos

fases líquidas. En el sistema cobre-plomo, la reacción monotéctica produce minúsculos

glóbulos de plomo disperso, que mejoran la capacidad de maquinado de la aleación de

cobre. Las reacciones peritécticas conducen a la solidificación fuera de equilibrio y a la

segregación.

Las reacciones eutectoide y peritectoide son reacciones exclusivas al estado sólido. La

reacción eutectoide forma la base del tratamiento térmico de varios sistemas de aleaciones

incluyendo el acero. La reacción peritectoide es extremadamente lenta, produciendo en las

aleaciones estructuras fuera de equilibrio no deseables.

14