28
Ongoing Research at USP Supramolecular Chemistry & Nanotechnology Molecular Devices – Dye Solar Cells, Sensors, Logic Gates Nano-Processes (Biocatalysis, Petroleum and Hydrometallurgy) Henrique E. Toma Supramolecular Nanotech Lab Univ.S.Paulo - USP 26,27/Novembro/2015 CETEM - RJ

NANOHIDROMETALURGIA MAGNÉTICA

Embed Size (px)

Citation preview

Page 1: NANOHIDROMETALURGIA MAGNÉTICA

• Ongoing Research at USP Supramolecular Chemistry & Nanotechnology Molecular Devices – Dye Solar Cells, Sensors, Logic Gates Nano-Processes (Biocatalysis, Petroleum and Hydrometallurgy)

Henrique E. TomaSupramolecular Nanotech Lab

Univ.S.Paulo - USP

26,27/Novembro/2015CETEM - RJ

Page 2: NANOHIDROMETALURGIA MAGNÉTICA
Page 3: NANOHIDROMETALURGIA MAGNÉTICA
Page 4: NANOHIDROMETALURGIA MAGNÉTICA
Page 5: NANOHIDROMETALURGIA MAGNÉTICA
Page 6: NANOHIDROMETALURGIA MAGNÉTICA

Ionic Resin processing

Page 7: NANOHIDROMETALURGIA MAGNÉTICA
Page 8: NANOHIDROMETALURGIA MAGNÉTICA

Superparamagnetic Nanoparticles

Magnet

Page 9: NANOHIDROMETALURGIA MAGNÉTICA
Page 10: NANOHIDROMETALURGIA MAGNÉTICA

MAGNETIC FLUIDS

HEAT EXCHANGE

ENVIROMENTAL USES

MICROCHANNELS FLOW

LUBRICATING PROPERTIES

MECHANICAL/ELECTRICALFLUIDS

Page 11: NANOHIDROMETALURGIA MAGNÉTICA
Page 12: NANOHIDROMETALURGIA MAGNÉTICA

Our main goal in the Rare Earths Proposal:

Applying magnetic nanohydrometallurgy (MNHM) for performing the capture, concentration and separation of the lanthanide elements from the concentrated (lixiviate) solutions

Strategy:

Developing engineered nanoparticles exbiting

strong superparamagnetic behavior,

great stability,

high concentration of selective complexing agents immobilized at the surface,

great performance in capturing and processing metal elements under green/economial conditions.

good recyclability, compatibility with the environment with a positive action in terms of sustainability

possibility of application in the recovery of elements from urban and industrial wastes

Page 13: NANOHIDROMETALURGIA MAGNÉTICA

Element config.

M3+

(MB)

log KDTPA Monazite Bastnaesite Xenotime

Lanthanum, La 4f0 0 19.48 23 32 -

Cerium, Ce 4f1 2.51 20.50 46 50 -Praseodimium, Pr 4f2 2.56 21.07 5 4 -

Neodymium, Nd 4f3 3.4 21.7 19 13 -

Promecium, Pm 4f4 - - - - -

Samarium, Sm 4f5 1.74 22.34 3 0.5 1,2

Europium, Eu 4f6 8.48 22.39 0.1 0.1 0.01

Gadolinium, Gd 4f7 7.98 22.46 1,7 0.15 3.6

Terbium, Tb 4f8 9.77 22.71 0.16 - 1.0

Disprosium, Dy 4f9 10.83 22.82 0.5 0.12 7.5

Holmium, Ho 4f10 11.2 22.78 0.009 - 2.0

Erbium, Er 4f11 9.9 22.74 0.13 - 6.2

Tulium, Tm 4f12 7.61 22.72 0.01 - 1.27

Yterbium, Yb 4f13   22.62 0.06 0.015 6.0

Lutecium, Lu 4f14 0 22.44 0.006 - 0.63

Ytrium, Y     22.05 2 0.1 60

Scandium, Sc     - - - -

Thorium, Th     28.78 9 0.1 0.5

Page 14: NANOHIDROMETALURGIA MAGNÉTICA

Nanoparticles protection and functionalization

Page 15: NANOHIDROMETALURGIA MAGNÉTICA
Page 16: NANOHIDROMETALURGIA MAGNÉTICA

MagNP

SiO2

sequestering agent

lanthanide ion

Engineered magnetic nanoparticle forcapturing lanthanide ions

rapid, selective, stable high sequestering efficiency large density of sequestering groups recyclable acid/base process

Page 17: NANOHIDROMETALURGIA MAGNÉTICA
Page 18: NANOHIDROMETALURGIA MAGNÉTICA
Page 19: NANOHIDROMETALURGIA MAGNÉTICA

Fe3O4@SiO2(EAPS)

Fe3O4@SiO2(EAPS)DTPA

Page 20: NANOHIDROMETALURGIA MAGNÉTICA
Page 21: NANOHIDROMETALURGIA MAGNÉTICA
Page 22: NANOHIDROMETALURGIA MAGNÉTICA

Monitoring thecapture of lanthanidesby EDX-RF

Page 23: NANOHIDROMETALURGIA MAGNÉTICA

Releasing the lanthanides withdiluted acids

Recovering thenanoparticles sequesteringagents

Page 24: NANOHIDROMETALURGIA MAGNÉTICA
Page 25: NANOHIDROMETALURGIA MAGNÉTICA

Laboratory scale, computer controlledautomatic process

MAGNETIC HYDROMETALLURGY/ELECTROWINNING

http://revistapesquisa.fapesp.br/2015/06/03/quimica-verde-2/

Page 26: NANOHIDROMETALURGIA MAGNÉTICA
Page 27: NANOHIDROMETALURGIA MAGNÉTICA

U.Condomitti, A.T.Silveira, G. W. Condomitti, S. H. Toma, K. Araki, H. E. Toma, Silver recovery using electrochemcally active magnetite coated carbon particles, Hydrometallurgy, 2014, 147-148, 241-25.

H. E. Toma, Magnetic nanohydrometallurgy: a nanotechnologial approach to elemental sustainability, Green Chem., 2015, 17, 2027-2041

References

H. E. Toma, Developing nanotechnological strategies for Green industrial processes, Pure Appl. Chem., 2013, 85, 1655-1669.

U. Condomitti, A. Zuin, A. T. Silveira, S. H. Toma, K. Araki, H. E. Toma, Superparamagneticcarbon electrodes: a versatile approch for performing magnetic couplec electrochemical analytis of Mercury ions. Electroanalysis, 2011, 23, 2569-2573.

U. Condomitti, A. Zuin, M. A. Novak, K. Araki, H. E. Toma, Magnetic coupled electrochemistry:Exploring superparamagnetic nanoparticles for capturing, transporting and concentrating trace amounts of analytes. U. Condomitti, A. Zuin, M. A. Novak, K. Araki, H. E. Toma, Electrochemistry Communications, 2011, 13, 72-74.

U. Comdomitti, A. Zuin. A. T. Silveira, K. Araki, H. E. Toma, Direct use of superparamagneticnanoparticles as elecctrode modifiers for the analysis of Mercury ions from aqueous solution and crude petroleum samples, J. Electroanal. Chem., 2011, 661, 72-76.

S.N.Almeida, H. E. Toma, Neodymium(III) and lanthanum(III) separation by magnetic nanohydrometallurgy using DTPA functionalized magnetite nanoparticles, Hydrometallurgy, 2015, in press.

Page 28: NANOHIDROMETALURGIA MAGNÉTICA