8
1 Objetos del Universo Andrea Sánchez & Gonzalo Tancredi Hace 15000 millones de años… El BIG BANG ¿Qué pasa cuando oímos la sirena de una ambulancia : efecto Fissau Con la luz: efecto Doppler. Corrimiento al rojo. Hubble: los objetos se alejan TODOS de nosotros. Pasas de uva en el Pan Dulce. Alguna vez estuvieron más cerca unos de otros. Todo el Universo en un punto. Galaxias: los grandes bloques...

Objetos del Universo - Ciencias de la Tierra y el Espacio del Universo.pdf · de Supernovas Anillo (Lira) Hélice (Acuario) Cangrejo (Tauro) Remanente de supernova ... diferente a

  • Upload
    lynga

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

1

Objetos del UniversoAndrea Sánchez & Gonzalo Tancredi

Hace 15000 millones de años…El BIG BANG

• ¿Qué pasa cuando oímos la sirena de una ambulancia : efecto Fissau

• Con la luz: efecto Doppler. Corrimiento al rojo.

• Hubble: los objetos se alejan TODOS de nosotros. Pasas de uva en el Pan Dulce.

• Alguna vez estuvieron más cerca unos de otros.

• Todo el Universo en un punto.

Galaxias: los grandes bloques...

2

100000 millones de solesMedio Interestelar

Región del centro de nuestra Galaxia donde se observanRegiones brillantes de diferentes colores y regiones oscuras

Composición

• Gas y Partículas de Polvo• Gas

– Átomos (10-10m) Transparentes a radiación– Moléculas (10-9m) (excepto en líneas de absorción)

• Polvo– Partículas estudiadas por análogos terrestres (10-7m)

Tipos de nebulosasOscuras

Saco de Carbón (Cruz del Sur)

Cabeza de Caballo (Orión)

ReflexiónPleiades (Tauro)

3

Tipos de nebulosas

Nebulosa de Orión Eta Carinae (Carina)

Emisión

Emisión y Reflexión Trífida (Sagitario)

Tipos de nebulosasNebulosas Planetarias

Remanentes de Supernovas

Anillo (Lira) Hélice (Acuario)

Cangrejo (Tauro)Remanente de supernova vista el 4 de Julio de 1054

Polvo Interestelar

Radiación¿que información recibimos del cielo?

Radiación: información que llega desde el cielo.

– Los objetos de estudio de la Astronomía son objetos lejanos (por ej. viajando a c):

• Luna: 1 segundo• Sol: 8 minutos• Próxima Centauri: 4.3 años

– Debemos analizar los portadores de información, aplicar las leyes de la física (como las conocemos en la Tierra) para interpretar la radiación electromagnética que nos llega de nuestros objetos de interés.

– Radiación: cualquier forma en que la energía se trasmite de un punto a otro del espacio, sin necesidad de conexión física.

– Electromagnética: la energía se transporta en forma de campos eléctricos y magnético fluctuantes.

4

• Luz visible: tipo particular de radiación para la cual el ojo humano es sensible (tenemos detectores para la luz).

• Vemos distintos colores porque nuestros ojos reaccionan de manera diferente a distintas longitudes de onda. Al pasar por un prisma los rayos de luz de diferentes longitudes de onda se refractan diferente. (fig 3.10)

• Ejemplo: – luz roja: λ = 7 . 10E –7 m– luz violeta: λ = 4. 10 E –4 m

• Nuestros ojos tienen mayor sensibilidad para λ = 5500 A (verde-amarillo) que coincide con el máximo de la emisión solar.

• Radiación electromagnética invisible: rayos gamma, rayos X, UV, IR, Ondas de Radio.

• Todas viajan a la velocidad de luz.• Conforman el espectro electromagnético (fig. 3.11)

Fig. 3.10: difracción de la luz

Fig 3.11 : visible (sólo una fracción)Longitudes de onda involucradasVentanas atmosféricas

Opacidad atmosférica• Ya vimos que tenemos detectores sólo para una pequeña fracción del

EEM.• Además: sólo una fracción de la radiación llega a nosotros debido a la

opacidad selectiva de la atmósfera terrestre.• Mayor opacidad implica que menor radiación atraviesa la atmósfera.

(fig. 3.11).• Causas de la opacidad:

– Vapor de agua y oxígeno: ondas de radio con λ < 1 cm.– Vapor de agua y CO2 : absorben radiación IR (recordar)– Ozono: UV, rayos gamma, rayos X– Visible (imprevisto y cotidiano) : nubes– Interacción UV solar con alta atmósfera: ionósfera (capa conductora a 100 km)

Refleja λ > 10 m análogo a un espejo (transmisiones AM).

• Ventanas atmosféricas: Visible, Ondas de radio (parte), IR (poca humedad).

Distribución de la radiación: la hipótesis de cuerpo negro.

• Intensidad: cantidad de radiación en cualquier punto del espacio.• Si grafico I vs λ (o frecuencia) : curvas de Planck. (fig 3.12).

• Esta gráfica está asociada a la radiación de cuerpo negro: absorbe toda la energía recibida y reemite lo mismo que absorbió.

• La curva de Planck no cambia de forma, sí de ‘posición’) (fig. 3.13)• Ejemplo de metal caliente.

• Leyes de radiación:– Ley de Wien: λΜ = 0.29 cm / T (T en K)

– Ley de Stefan-Boltzman: F = σ T4

– Para la ley de Stefan se considera el flujo de energía (energía /m2 . s) y σ = 5.67.10(− 8) W/m2 K4

Aplicaciones astronómicas

El Sol en distintas λ: a) visible b)UV c) rayos X d) ondas de radio

Fig 3.15Las curvas de Plank y el máximo de emisión para:a) Nube de gasb) Estrella jovenc) Sold) Cúmulo estelar (omega Centauro)T = 60,600,6000 y 60000 K respectivamente

El Sol en diferentes longitudes de onda

5

Líneas espectrales

• Espectro: descomposición de la radiación en sus longitudes de onda constitutivas.

• Continuo: por ejemplo una bombita emite mayormente en el visible, con un espectroscopio se ve el arco iris.

• Líneas de emisión: tengo una recipiente transparente con hidrógeno gaseoso y hago una descarga: algunas líneas brillantes características de cada elemento. (fig 4.3)

• Líneas de absorción: para un elemento dado están en el mismo lugar (igual λ) que las de emisión. (fig 4.4, 4.6)

• Leyes de Kirchoff:– Sólidos o líquidos a alta densidad : contínuo– Gas caliente a baja densidad : emisión– Gas a menor T: absorción

Fig. 4.3 Líneas de emisión de algunos elementos Fig. 4.4 El espectro solar

Fig. 4.5 Emisión – absorción del doblete del Na.

El origen de las líneas espectrales

• Supongamos la situación de una fuente de contínuo a la que se interpone gas a menor T (ej: interior y capas exteriores de una estrella).

• El coninuo tiene fotones (cuantos de luz) de todas las energías, pero la mayoría no van a interactuar con los átomos de gas, solamente se absorberá energía de aquellos que provoquen transiciones en los orbitales atómicos desde un estado a otro (fig 4.10)

• Los fotones de energía adecuada excitarán al gas y generarán las líneas de absorción (que indican los niveles de orbitales entre los átomos del gas).

• Los átomos excitados rápidamente vuelven a su estado base, pero:– La emisión de fotones correspondiente es en cualquier dirección– En cascadas hasta el estado base

• Un segundo detector podría registrar esto como re-emisión del gas

Fig. 4.10 : El origen de las líneas espectrales

Pasaje de la radiación por el Medio Interestelar

Extinción de la Radiación =Absorción +Dispersión(scattering)

Espectro de una estrella observada a través de nubes de gas en movimiento.

Aparición de líneas espectrales finas y desplazadas.

6

Radio Cont.408 MHz

Hidrógeno Atómico – 21cm

Radio Cont.2.7GHz

HidrógenoMolecular (a partir de CO)

Infrarrojo Lejano (12-100 μ)

Infrarrojo Medio(7 – 11 μ)

Ιnfrarrojo Cercano (1-4 μ)

Óptico(0.4 – 0.6 μ)

Rayos X(0.25 – 1.5 keV)

Rayos Gamma(> 300 MeV)

La Vía Lácteaen diferentes longitudes de onda

Radio Cont.408 MHz

Hidrógeno Atómico – 21cm

Radio Cont.2.7GHz

HidrógenoMolecular (a partir de CO)

Infrarrojo Lejano (12-100 μ)

Infrarrojo Medio(7 – 11 μ)

Ιnfrarrojo Cercano (1-4 μ)

Óptico(0.4 – 0.6 μ)

Rayos X(0.25 – 1.5 keV)

Rayos Gamma(> 300 MeV)

El centro de la Vía Lácteaen diferentes longitudes de onda

Estrellas con compañía¿Quién integra el Sistema Solar?• Sol: 99.85 % de la masa• Planetas: 0.14 % (Júpiter 0.1%)

Planetas: terrestresgigantes o jovianos

• Satélites de los planetas: regularesirregulares

• Pequeños cuerpos: asteroidescometas

• Polvo interplanetario• Gas interplanetario o viento solar

El Sistema Solar en la Galaxia

M31 - Galaxia de Andrómeda2.3 millones de años luz

La Vía Láctea desde la posicióndel Sol

Los límites del Sistema Solar

7

Asteroide “descubierto” en el OALM

Asteroid Itokawa visto por HayabusaSecuencia de imágenes del Cometa P/Enckecuando se acerca al Sol

8

Imágenes del impacto con Tempel 1 Cometa West(1975)

Andrés CuencaCabo Polonio, RochaPrimer Premio Categoria Artística

Cometa Mc. NaughtC/2006P1

Giovanni PesentiPaysandúPrimer Premio Categoria Científica