55
UNIVERSIDADE FEDERAL DE UBERLÂNDIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO DE RECURSOS NATURAIS OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS EM UMA PAISAGEM HETEROGÊNEA NO CERRADO LUCAS ISSA 2017 Uberlândia, MG

OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E

CONSERVAÇÃO DE RECURSOS NATURAIS

OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE

SUAS PRESAS EM UMA PAISAGEM HETEROGÊNEA

NO CERRADO

LUCAS ISSA

2017

Uberlândia, MG

Page 2: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE

SUAS PRESAS EM UMA PAISAGEM HETEROGÊNEA

NO CERRADO

Dissertação apresentada à Universidade

Federal de Uberlândia, como parte das

exigências para obtenção do título de Mestre

em Ecologia e Conservação de Recursos

Naturais.

Orientadora: Prof.ª Dra. Natália Mundim

Tôrres

Uberlândia

Fevereiro de 2017

Lucas Issa

Page 3: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

Dedicado ao meu primo, Danilo (in memoriam). Espero que você ainda esteja vendo a

vida através dos meus olhos. Dedico também a todos os animais do IOP!

Page 4: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

AGRADECIMENTOS

Dissertações e teses, apesar de levarem o nome de apenas uma pessoa na capa,

são na verdade o fruto de um imenso trabalho em equipe. Trabalho que envolve conhecer

não apenas um objeto de estudo, mas conhecer um ao outro e aprender a ser forte junto,

e não sozinho.

Não poderia começar essa seção sem agradecer aos meus amigos de campo, com

quem tanto aprendi e cresci como biólogo e como pessoa. Ananda, Gi, Thomas (Curau)

e Maysa, vocês são parte deste fundamental desse trabalho, e eu não teria chegado aqui

sem vocês. Vocês são as melhores companhias que eu poderia ter no meio do mato. Muito

obrigado!

Agradeço imensamente a todo o apoio oferecido pelo Instituto Onça-Pintada e

pelas pessoas do Leandro e da Anah. Obrigado por compartilharem tanto do

conhecimento e da experiência de vocês! Obrigado também ao Tiago, que me

proporcionou tantas risadas!

Agradeço à Natália, por ter aceitado me orientar nessa difícil jornada e por suas

considerações ao meu trabalho.

Agradeço aos membros da banca, Prof. Paulo De Marco, Prof.ª Kátia Facure e

Prof.ª Natália Leiner, por terem aceitado participar da minha banca e pelas contribuições

que farão ao meu trabalho.

Agradeço à Poliana, por tudo o que me ensinou e pela paciência enorme com as

minhas dúvidas e desesperos.

Ao Paulinho e ao André, do MetaLand, por suas boas ideias ao meu trabalho e por

estarem sempre dispostos a ajudar, obrigado!

Meu reconhecimento também ao Programa de Pós-Graduação da Universidade

Federal (em especial aos professores, por todo o aprendizado), e à CAPES pelo apoio

financeiro.

Agradeço ao Rafa (Ceará), por suas incríveis contribuições e revisões no meu

texto. Muito obrigado por sua ajuda enorme!

Page 5: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

Ao pessoal da pós: Meu muito obrigado à Claire, por seu carinho e ajuda sinceros;

ao Pitilin, pela boa convivência e amizade nesses dois anos no ap 102 (ainda sem nome

oficial), valeu, cara!; à Karen Neves (que dispensa comentários); às migas Bia (apoio

logístico toda hora) e Liégy (suas loucas!!); aos melhores vizinhos, Lino e Adilson; à

Teté, sempre querida; ao Carioca, Vitão, Ingrid, Gudryan, Drielly, Vinícius, Kaká, Luana,

Regiane, Marcela, Helen, Jonas, Uiara, Dimas, Tito, e tooodos os outros por todos os

bons momentos.

Aos meus companheiros de laboratório: Mardiany, Marcela, Lucas xará, Letícia e

Aline, que tanto ajudaram nas tarefas esgotantes. Aproveito e agradeço também a todos

os estagiários e estudantes que passaram pelo IOP: Shannon, Saul, Danilo, Ennio, André,

Ana Rita... são tantos! Desejo um futuro brilhante a todos vocês.

Agradeço com muito amor aos meus pais, Mírian e Marco Antônio, por todo o

amor de vocês, por apostarem e acreditarem em mim e por me apoiarem tanto, sempre.

Cada sonho realizado é por vocês! E aos meus irmãos, Maria Clara e Matheus, meus

companheiros de vida de quem eu sinto tanto orgulho!

Aos amigos/irmãos de longa data: Cyrce, Max, Fernando, Paulista, Marco Túlio,

e também todo o pessoal da antiga Rep. Integração (e agregados). Vocês são parte de

mim.

Ao Leonel, por expandir meus horizontes. Tenho certeza de que você estará

sempre aí!

E por último – e sim, mais importante, talvez – ao Bené, que foi quem me mostrou

o mundo lá fora tantas vezes que já nem sei mais... Foi ruim? Foi ótimo!!!!!

Page 6: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

ÍNDICE

Resumo..........................................................................................................................ii

Abstract.........................................................................................................................iii

Introdução Geral............................................................................................................1

Referências Bibliográficas..........................................................................................4

Manuscript Folder .........................................................................................................5

Introduction..................................................................................................................10

Methods........................................................................................................................13

Study Area and Land Use Classification...................................................................13

Camera Trapping......................................................................................................15

Species Selection.......................................................................................................16

Occupancy Modeling................................................................................................17

Results..........................................................................................................................18

Discussion....................................................................................................................19

Conclusions..................................................................................................................24

References....................................................................................................................25

Supplementary Material...............................................................................................41

Tables.........................................................................................................................41

Figures.......................................................................................................................46

Page 7: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

ii

RESUMO

Issa, L. 2017. Ocupação de predadores topo de cadeia e de suas presas em uma paisagem

heterogênea no Cerrado. Dissertação de Mestrado em Ecologia e Conservação de

Recursos Naturais. UFU. Uberlândia-MG. 55p.

As espécies respondem de diferentes formas às variações no ambiente. Algumas são

generalistas e podem ocorrer em diferentes tipos de vegetação, enquanto especialistas

possuem distribuição limitada. O Cerrado brasileiro apresenta uma alta diversidade de

ambientes que permitem a ampla distribuição espacial da fauna de médio e grande porte.

A conversão da vegetação natural em agropecuária, no entanto, reduziu

consideravelmente a disponibilidade de ambientes naturais para as espécies nativas.

Algumas espécies generalistas são capazes de utilizar os recursos oferecidos por

paisagens agrícolas e persistir nesses locais. Conflitos entre fauna silvestre e

agroprodutores são comuns devido aos prejuízos econômicos ocasionados pela presença

de grandes herbívoros em lavouras. Predadores topo de cadeia são elementos

fundamentais na manutenção da biodiversidade nessas paisagens, pois controlam as

populações de herbívoros e mantém a estrutura dos ecossistemas. Contudo, grandes

carnívoros estão mais vulneráveis à extinção. Consequentemente, compreender como

esses animais se distribuem em paisagens agrícolas é fundamental para o estabelecimento

de estratégias para a conservação da biodiversidade. Os objetivos deste trabalho foram

entender como os diferentes tipos de vegetação nativa e a agricultura influenciam na

presença local de predadores topo de cadeia (onça-pintada e onça-parda) e de suas presas

(tamanduá-bandeira, cateto, queixada, veado-campeiro, anta e ema) em uma paisagem

heterogênea no Cerrado. O estudo foi feito no Parque Nacional das Emas, uma das

principais áreas protegidas do bioma, e na região do seu entorno. Foram utilizados dados

de presença e ausência das espécies obtidos a partir de armadilhamento fotográfico

realizado na região entre julho e dezembro de 2013. Os efeitos dos diferentes tipos de

vegetação sobre esses dados foram testados utilizando modelos de ocupação, levando em

consideração as diferenças de detectabilidade entre os locais amostrados. Não foram

observados efeitos dos diferentes tipos de vegetação sobre a presença dos predadores.

Veados-campeiros e emas estiveram restritos a áreas de campo nativo e de agricultura.

Antas e queixadas apresentaram distribuição generalista, enquanto catetos estão

associados a áreas de agricultura anual, possivelmente como resultado de exclusão

competitiva por queixadas. A diversidade de ambientes na região do Parque Nacional das

Emas aumenta a diversidade de microhabitats disponíveis, e permite que várias espécies

se estabeleçam na paisagem. Especialistas de áreas campestres estão limitados a área do

Parque, e a conectividade com as lavouras do entorno é importante para evitar o

isolamento de suas populações. Generalistas se beneficiam da heterogeneidade ambiental

e são mortos em retaliação aos danos causados às lavouras. A fraca relação de onças-

pintadas e pardas com os tipos de vegetação podem ser explicados pela ampla

disponibilidade de presas na paisagem heterogênea. Assim, a diversidade de ambientes

pode ser benéfica para a persistência de predadores topo de cadeia em áreas não-

protegidas. Por fim, tamanduás-bandeira também apresentaram fraca associação aos tipos

de vegetação, e sua ocorrência na região pode estar sendo restrita por outros fatores, como

a incidência de queimadas no Parque, os atropelamentos em rodovias do entorno, e a

presença de predadores.

Palavras-chave: espécies generalistas; predadores topo de cadeia; paisagens agrícolas;

heterogeneidade ambiental; modelo de ocupação

Page 8: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

iii

ABSTRACT

Issa, L. 2017. Apex predators and prey occupancy in a heterogeneous landscape in

Cerrado. MSc Thesis. UFU. Uberlândia-MG. 55p.

Species can respond to environment variation in several ways. Generalist species can

occur in different vegetation types, while specialists present limited distribution patterns.

The Cerrado Biome presents a wide set of environments, allowing for broad distribution

of its medium and large-sized fauna. However, the conversion of natural vegetation into

cropland and pastures has considerably reduced natural environments availability for

native species. Some generalist species are capable of utilizing cropland resources and

persist in such places. Conflicts between wildlife and farmers rise in these landscapes due

to the economical injure caused by large herbivores. Apex predators are keystone species

in keeping biodiversity in non-protected areas, as they control herbivores’ populations

and maintain ecosystems structure. Despite of this, large carnivore species are more

vulnerable to extinction. Consequently, to comprehend how these animals are distributed

in agricultural landscapes is fundamental to the establishment of effective conservation

strategies. In this study we aimed to observe how different native vegetation types and

crops affect the local presence of apex predators (jaguar and cougar) and their prey (giant

anteater, collared peccary, white-lipped peccary, pampas deer, tapir and rhea) in a

heterogeneous landscape in Cerrado. The study took place in Emas National Park, one of

Cerrado’s largest and most important protected areas, and its surrounding region. We used

presence/absence data obtained from a camera trap sampling that occurred from July to

December 2013. The effect of the different vegetation types on this dataset through

occupancy modeling, a method that takes detectability differences between sampling sites

into account. We did not detect a relation between predator species’ presence and

vegetation types. Pampas deer and rhea were restricted to open fields and cropland areas.

Tapirs and white-lipped peccaries presented generalist distribution, while collared-

peccaries were associated to annual croplands, possibly as a result of competition

displacement by white-lipped peccaries. The different environments in Emas National

Park region enhances microhabitats availability and allows a rich community to be

established within the landscape. Grassland specialists are restricted to the Park area, and

the permeable croplands in the surrounding region are important to avoid their population

isolation. Generalists benefit from environmental heterogeneity and are killed in

retaliation for the cropland damage. The weak relation between jaguars and cougars to

the vegetation types may be therefore explained by the landscape-wide prey availability.

Thus, environmental diversity may be beneficial for apex predators’ persistence in non-

protected areas. Lastly, giant anteaters also presented weak relationship to the vegetation

types, and their occurrence in the region may be constrained by other factors, such as the

constant wildfires in Emas National Park, the intense road traffic in the surrounding

region, and the predators presence.

Keywords: generalist species; apex predators; agricultural landscapes; environmental

heterogeneity; occupancy modeling

Page 9: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

1

INTRODUÇÃO GERAL

Dois diferentes conceitos básicos podem ser compreendidos a partir da teoria de

nicho ecológico. O primeiro, chamado nicho fundamental, se refere às condições

ambientais que permitem que uma espécie sobreviva em um determinado local, enquanto

o outro, o nicho realizado, prediz o espectro de condições nas quais essa espécie pode de

fato estar presente considerando todas as restrições à sua ocorrência, incluindo a

disponibilidade de recursos e suas interações ecológicas (Hutchinson, 1957). Baseado

nesses conceitos, as espécies podem ser compreendidas a partir do quanto toleram as

alterações na disponibilidade de recursos e nas condições ambientais ao longo do espaço

(Levins, 1968; Colwell e Futuyma, 1971). Assim, as espécies podem responder

diferentemente à heterogeneidade nas paisagens, onde generalistas se beneficiam de

ambientes altamente diversos, enquanto especialistas concentram sua distribuição em

ambientes homogêneos (Futuyma e Moreno, 1988; Kassen, 2002).

Alguns Biomas apresentam alta diversidade ambiental em sua extensão e são bons

sistemas para compreender a distribuição espacial de especialistas e generalistas. O

Cerrado, um Bioma savânico neotropical, é constituído por uma variedade de tipos de

vegetação (i.e., fitofisionomias), incluindo campos de gramíneas, savanas arbustivas e

matas densas (Oliveira-Filho e Ratter, 2002; Ribeiro e Walter, 2008). Esses diferentes

ambientes permitem que uma ampla gama de recursos esteja disponível na paisagem,

resultando em complexos mosaicos capazes de abrigar maior biodiversidade (Johnson et

al., 1999; Oliveira-Filho e Ratter, 2002). Como previsto em ecossistemas heterogêneos,

a fauna de médio e grande porte do Cerrado é composta em sua maioria por espécies

generalistas, capazes de ocupar as diferentes fitofisionomias do Bioma, embora

Page 10: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

2

especialistas também ocorram em ambientes específicos (da Fonseca and Robinson,

1999; Marinho-Filho et al., 2002).

O Cerrado, contudo, é um dos Biomas mais ameaçados do Brasil devido à sua

importância agropecuária, e estima-se que 38,9% de sua área natural já tenha sido perdida

para atividades antrópicas (Cavalcanti e Joly, 2002; Klink e Moreira, 2002; Sano et al.,

2010). Como resultado dessa intensa fragmentação, manchas de vegetação nativa se

isolam e a disponibilidade de recursos nas paisagens é alterada, modificando assim os

padrões de distribuição das espécies (Franklink e Lindenmayer, 2009; Barreto et al.,

2012). Espera-se que espécies generalistas se beneficiem desses processos devido às suas

capacidades de utilizar os recursos oferecidos pela matriz (Reyna-Hurtado e Tanner,

2007; Lyra-Jorge et al., 2010). No entanto, alterações na distribuição dos recursos e das

espécies nas paisagens podem ser prejudiciais aos ecossistemas, e consequências

associadas a esses processos incluem a extinção local de espécies e a perda de serviços e

processos ecológicos (McKinney e Lockwood, 1999; Valiente-Banuet et al., 2014; Galetti

et al., 2015). Conflitos entre fauna selvagem e produtores rurais também podem surgir

neste contexto, onde herbívoros e carnívoros são mortos em retaliação aos danos causados

às lavouras e rebanhos (Jácomo, 2004; Silveira et al., 2008; Marchini e Crawshaw, 2015).

Compreender como as espécies animais respondem aos processos e dinâmicas dos

agrossistemas é fundamental para evitar esse cenário de perda de espécies e de conflito

entre conservação e produção agropecuária. Adicionalmente, é necessário entender o

papel de predadores topo de cadeia nesses sistemas devido à importância do grupo no

controle das populações de presas e, consequentemente, na estrutura das paisagens

(Ripple et al., 2001; Terborgh et al., 2001; Estes et al., 2011). Predadores topo de cadeia

são também mais vulneráveis à extinção por atividades humanas (Morato et al., 2013;

Ripple et al., 2014). Desta forma, é necessário considerar a importância de agrossistemas

Page 11: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

3

em propriedades privadas para a persistência desses animais em áreas não-protegidas.

Matrizes agrícolas permeáveis à fauna permitem a conectividade entre áreas protegidas e

amortecem as mesmas de efeitos de borda, mantendo alta biodiversidade local e regional

(Ricketts, 2001; Hansen and DeFries, 2007; Perfecto and Vandemeer, 2010; Boron et al.,

2016). Logo, a implementação de matrizes capazes de oferecer recursos e refúgio à vida

silvestre e que permitam o fluxo de espécies entre manchas de vegetação nativa é uma

ação de manejo fundamental para a conservação da biodiversidade (Perfecto and

Vandemeer, 2010).

Modelos de ocupação são ferramentas úteis para compreender como a presença de

predadores e presas se relaciona a diferentes variáveis ambientais, incluindo aos

diferentes tipos de vegetação e matrizes (MacKenzie et al., 2002). Estes modelos

pressupõem que existem diferenças nas probabilidades de detecção das espécies entre os

locais amostrados, e fornecem, então, estimativas mais precisas dos valores de ocupação

das espécies (MacKenzie et al., 2002). Adicionalmente, tais modelos utilizam valores de

detecção/ não-detecção das espécies e não necessitam da individualização dos animais

registrados, garantindo menores custos e maior flexibilidade dos métodos usados na

obtenção dos dados (MacKenzie et al., 2002; MackKenzie e Nichols, 2004; O’Connell e

Bailey, 2011). Portanto, modelos de ocupação são frequentemente a única opção viável

para estudos de distribuição de espécies raras, como onças-pintadas.

No presente estudo, foram utilizados modelos de ocupação com o objetivo de

entender como os diferentes tipos de vegetação nativa e agricultura em uma área protegida

no Cerrado e na região do seu entorno afetam a presença local de predadores topo de

cadeia e de suas presas.

Page 12: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

4

REFERÊNCIAS BIBLIOGRÁFICAS

Barreto, L., Van Eupen, M., Kok, K., Jongman, R.H., Ribeiro, M.C., Veldkamp, A., ... &

Oliveira, T.G. (2012). The impact of soybean expansion on mammal and bird, in the

Balsas region, north Brasilian Cerrado. Journal for Nature Conservation, 20(6), 374-

383.

Boron, V., Tzanopoulos, J., Gallo, J., Barragan, J., Jaimes-Rodriguez, L., Schaller, G., &

Payán, E. (2016). Jaguar densities across human-dominated landscapes in Colombia:

the contribution of unprotected areas to long term conservation. PloS one, 11(5),

e0153973.

Cavalcanti, R. B., & Joly, C. A. (2002). Biodiversity and conservation priorities in the

Cerrado region. The Cerrados of Brazil. Ecology and Natural History of a

Neotropical Savanna, 351-367.

Colwell, R. K., & Futuyma, D. J. (1971). On the measurement of niche breadth and

overlap. Ecology, 52(4), 567-576.

da Fonseca, G. A., & Robinson, J. G. (1990). Forest size and structure: competitive and

predatory effects on small mammal communities. Biological conservation, 53(4),

265-294.

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., ... &

Marquis, R. J. (2011). Trophic downgrading of planet Earth. science, 333(6040),

301-306.

Franklin, J. F., & Lindenmayer, D. B. (2009). Importance of matrix habitats in

maintaining biological diversity. Proceedings of the National Academy of

Sciences, 106(2), 349-350.

Page 13: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

5

Futuyma, D. J., & Moreno, G. (1988). The evolution of ecological specialization. Annual

Review of Ecology and Systematics, 19(1), 207-233.

Galetti, M., Guevara, R., Neves, C. L., Rodarte, R. R., Bovendorp, R. S., Moreira, M., ...

& Yeakel, J. D. (2015). Defaunation affects the populations and diets of rodents in

Neotropical rainforests. Biological Conservation, 190, 2-7.

Hansen, A. J., & DeFries, R. (2007). Ecological mechanisms linking protected areas to

surrounding lands. Ecological Applications, 17(4), 974-988.

Hutchinson, G. E. 1957 b. Concluding remarks- Cold Spring Harbor Symposia on

Quantitative Biology. 22:415-427. Reprinted in: Classics in Theoretical Biology.

Bull. of Math. Biol. 53:193-213.

Jácomo, A.T.A. (2004). Ecologia, manejo e conservação do queixada Tayassu pecari no

Parque Nacional das Emas e em propriedades rurais de seu entorno. (Doctoral

dissertation, Universidade de Brasília). 120p.

Johnson, M. A., Saraiva, P. M., & Coelho, D. (1999). The role of gallery forests in the

distribution of Cerrado mammals. Revista Brasileira de Biologia, 59(3), 421-427.

Kassen, R. (2002). The experimental evolution of specialists, generalists, and the

maintenance of diversity. Journal of evolutionary biology, 15(2), 173-190.

Klink, C. A., & Moreira, A. G. (2002). Past and current human occupation, and land

use. The cerrados of Brazil: ecology and natural history of a neotropical savanna,

69-88.

Levins, R. (1968). Evolution in changing environments: some theoretical

explorations (No. 2). Princeton University Press.

Lyra-Jorge, M. C., Ribeiro, M. C., Ciocheti, G., Tambosi, L. R., & Pivello, V. R. (2010).

Influence of multi-scale landscape structure on the occurrence of carnivorous

Page 14: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

6

mammals in a human-modified savanna, Brazil. European Journal of Wildlife

Research, 56(3), 359-368.

MacKenzie, D. I., & Nichols, J. D. (2004). Occupancy as a surrogate for abundance

estimation. Animal biodiversity and conservation, 27(1), 461-467.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., &

Langtimm, C. A. (2002). Estimating site occupancy rates when detection

probabilities are less than one. Ecology, 83(8), 2248-2255.

Marchini, S., & Crawshaw Jr, P. G. (2015). Human–Wildlife Conflicts in Brazil: A Fast-

Growing Issue. Human Dimensions of Wildlife, 20(4), 323-328.

Marinho-Filho, J., Rodrigues, F. H., & Juarez, K. M. (2002). The Cerrado mammals:

diversity, ecology, and natural history. The Cerrados of Brazil: Ecology and natural

history of a neotropical savanna, 266-284.

McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: a few winners

replacing many losers in the next mass extinction. Trends in ecology &

evolution, 14(11), 450-453.

Morato, R. G., de Mello Beisiegel, B., Ramalho, E. E., de Campos, C. B., & Boulhosa,

R. L. P. (2013). Avaliacao do risco de extincao da Onca-pintada Panthera onca

(Linnaeus, 1758) no Brasil. Biodiversidade Brasileira, (1), 122-132.

O’Connell, A. F., & Bailey, L. L. (2011). Inference for occupancy and occupancy

dynamics. In Camera traps in animal ecology (pp. 191-204). Springer Japan.

Oliveira-Filho, A. T., & Ratter, J. A. (2002). Vegetation physiognomies and woody flora

of the cerrado biome. The cerrados of Brazil: ecology and natural history of a

neotropical savanna, 91-120.

Page 15: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

7

Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the

land-sparing/agriculture intensification model. Proceedings of the National Academy

of Sciences, 107(13), 5786-5791.

Reyna-Hurtado, R., & Tanner, G. W. (2007). Ungulate relative abundance in hunted and

non-hunted sites in Calakmul Forest (Southern Mexico). Biodiversity and

Conservation, 16(3), 743-756.

Ribeiro, J. F., & Walter, B. M. T. (2008). As principais fitofisionomias do bioma

Cerrado. Cerrado Ecologia e Fauna. Brasília: Embrapa Informação Tecnológica, 1,

153-221.

Ricketts, T. H. (2001). The matrix matters: effective isolation in fragmented

landscapes. The American Naturalist, 158(1), 87-99.

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite,

M., ... & Schmitz, O. J. (2014). Status and ecological effects of the world’s largest

carnivores. Science, 343(6167), 1241484.

Ripple, W. J., Larsen, E. J., Renkin, R. A., & Smith, D. W. (2001). Trophic cascades

among wolves, elk and aspen on Yellowstone National Park’s northern

range. Biological conservation, 102(3), 227-234.

Sano, E. E., Rosa, R., Brito, J. L., & Ferreira, L. G. (2010). Land cover mapping of the

tropical savanna region in Brazil. Environmental monitoring and assessment, 166(1),

113-124.

Silveira, L., Boulhosa, R., Astete, S., & Jácomo, A. A. (2008). Management of domestic

livestock predation by jaguars in Brazil. Cat News, 4, 26-30.

Terborgh, J., Lopez, L., Nunez, P., Rao, M., Shahabuddin, G., Orihuela, G., ... & Balbas,

L. (2001). Ecological meltdown in predator-free forest

fragments. Science, 294(5548), 1923-1926.

Page 16: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

8

Valiente‐Banuet, A., Aizen, M. A., Alcántara, J. M., Arroyo, J., Cocucci, A., Galetti, M.,

... & Medel, R. (2015). Beyond species loss: the extinction of ecological interactions

in a changing world. Functional Ecology, 29(3), 299-307.

Page 17: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

9

APEX PREDATOR AND PREY OCCUPANCY IN A

HETEROGENEOUS LANDSCAPE IN CERRADO

Authors: Lucas Issa, Giselle Bastos Alves, Ananda Barban, Thomas Giozza,

Poliana Mendes, Rafael Rios Moura, Natália Mundim Tôrres, Anah Tereza

de Almeida Jácomo and Leandro Silveira

Texto formatado segundo as normas da revista Landscape Ecology.

Page 18: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

10

INTRODUCTION

Ecological niche theory is a central topic in ecology. Hutchinson (1957) has

stablished the concept of fundamental niche as the range of environmental conditions that

allows a species to survive in a given area, while the realized niche is the range of

environmental conditions in which it actually survives considering all the constraints to

its occurrence. This theory is the basis for understanding how species respond to the

ecological variations along their range, including the differences in how much they

tolerate environmental and resource availability alterations over space (Levins, 1968;

Colwell and Futuyma, 1971). Based on their ‘niche breadth’ species are therefore

classified as specialists if they depend on specific conditions or resources, and as

generalists if they tolerate wide environmental variation (Colwell and Futuyma, 1971;

Futuyma and Moreno, 1988).

Niche breadth may provide predictions about the consequences of habitat

heterogeneity on species distribution (Gehring and Swihart, 2003; Slatyer et al., 2013).

Specialists are expected to benefit from homogenous environments, whereas generalists

should benefit from high environmental heterogeneity (Futuyma and Moreno, 1988;

Kassen, 2002). Thus, the distribution of generalists and specialists in a landscape may

depend on how diverse it is. A landscape, in fact, is defined as a heterogeneous mosaic

with a wide range of different habitats, and each of them has a unique structure with a

different set of accessible resources (Metzger, 2001). Some Biomes may actually present

a wide range of environmental variation and microhabitats along their landscapes, such

as the Brazilian Savanna (hereafter the Cerrado) (Oliveira-Filho and Ratter, 2002; Ribeiro

and Walter, 2008). The Cerrado is constituted by a great diversity of vegetation types,

which greatly contrast in their structure, conditions and resource availability. These

Page 19: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

11

habitats can vary from forestry, to savanic and grassland structure (e.g. grassland fields,

scrublands, gallery forests and palm tree savanna wetlands) and also differ in several other

aspects, like elevation, terrain roughness and watercourse dependency and proximity

(Ribeiro and Walter, 2008). Therefore, Cerrado’s complex landscapes with great niche

availability house high species diversity (Johnson et al., 1999; Oliveira-Filho and Ratter,

2002). This mosaic provides a good framework to evaluate the effects of highly diverse

landscapes on the distribution of specialist and generalist species.

The medium and large-sized fauna of Cerrado (i.e. over one kilogram, according to

Chiarello, 2000) is composed of a rich species community with distinct resource use

strategies. Most of these species are habitat generalists, but specialists are also present to

a lesser degree, especially in forests (da Fonseca and Robinson, 1999; Marinho-Filho et

al., 2002; Comparatore and Yagueddú, 2016). As an example, Alves et al. (2014)

investigated the mammalian fauna within a Cerrado fragment and found that most species

presented generalist habitat use, occupying both forests and savannas, while a minority

of species were limited to either habitat type. Therefore, the medium and large-sized fauna

can be distributed in Cerrado landscapes according to the different habitats availability

and settings.

Nonetheless, Cerrado landscapes have been highly fragmented since Brazilian

government started investing in agricultural production in the late 1960s (Cavalcanti and

Joly, 2002; Klink and Moreira, 2002). The farming sector plays a pivotal role in the

country’s economy and, consequently, 38.9% of the Biome’s range has already been lost

to human activities (Sano et al., 2010). The land conversion is responsible for altering

spatial resource availability through the reduction of natural vegetation and increase of

patches isolation, change in the physical and chemical properties of the soil and the

presence of exotic species (Franklin and Lindenmayer, 2009; Bennett and Saunders,

Page 20: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

12

2010; Lira et al., 2012). Such habitat alteration may differently affect species distribution

and have negative effects on specialist species (Thuiller et al., 2005; Devictor et al., 2008;

Barreto et al., 2012; Slatyer et al., 2013). Otherwise, some generalist species may thrive

in human-altered environments due to their capacity of using the matrix resources and

persisting in highly altered habitats, like collared peccaries (Dotta and Verdade, 2007;

Reyna-Hurtado and Tanner, 2007; Lyra-Jorge et al., 2010). In addition, some generalists

may also benefit from anthropic disturbance due to reduction of competition and

predation in those areas (da Fonseca and Robinson, 1999). This ecological release may

result in biotic homogenization and the loss of biodiversity and ecological interactions,

services and processes (McKinney and Lockwood, 1999; Marvier et al., 2004; Valiente-

Banuet et al., 2014; Bello et al., 2015; Galetti et al., 2015). Moreover, conflicts between

wildlife and farmers may arise in lands where croplands are intensively consumed by

herbivores (Jácomo, 2004; Nyhus and Tilson, 2004; Marchini and Crawshaw, 2015).

Apex predators, which may be the source of conflict to livestock farming, may play

the opposite role in agricultural lands, where they control herbivores’ populations

(Newsome, 1990; Jácomo, 2004; Lindsey et al., 2005; Skonhoft, 2006; Silveira et al.,

2008; Wallach et al., 2010). Predators are keystone species, and their local extinction may

have top-down effects on food web (Ripple et al., 2001; Terborgh et al., 2001; Estes et

al., 2011). Therefore, their conservation is a relevant approach for keeping Neotropical

ecosystems function and dynamics (Jorge et al., 2013; Ripple et al., 2014). Despite their

importance, apex predators are also more vulnerable to extinction by human activities,

especially habitat loss for anthropization (Azevedo et al., 2013; Morato et al., 2013;

Ripple et al., 2014). The jaguar (Panthera onca), for example, is classified as Vulnerable

in the Brazil Red Book of Threatened Species of Fauna (MMA, 2016), and as Near

Threatened according to IUCN Red List (Caso et al., 2008; IUCN, 2010). It is then

Page 21: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

13

necessary to consider agroecosystems in private lands as critical habitats for both prey

and predators, because high-quality matrixes allow connectivity and dispersal among core

protected areas and buffer them from edge effects (Ricketts, 2001; DeFries et al., 2005;

Hansen and DeFries, 2007; Perfecto and Vandemeer, 2010; Ripple et al., 2014; Boron et

al., 2016). Habitable and permeable agroecosystems present an opportunity to allow

human resource use and economic development, while species conservation is still

promoted (Tscharntke et al., 2005; Perfecto and Vandermeer, 2010; Shackelford et al.,

2015).

The spatial distribution of prey and their predators may provide important

information for the development of effective conservation strategies and for choosing

priority conservation areas. They may also estimate the relevance of buffer zones on the

species habitat use. Here, we investigated how different vegetation types in a Cerrado

protected area and its surroundings affect the local presence of apex predator species and

their prey. We used a hierarchical occupancy modeling to test the hypothesis that

predators’ occurrence is related to dense vegetation, that generalist prey species occupy

cropland areas and that specialist prey species are limited to natural vegetation types.

METHODS

Study Area and Land Use Classification

The study area comprises Emas National Park (ENP) and its northern surrounding

region (18º19’S; 52º45’W), in southwestern Goiás state (Figure 1). The region is under

the influence of three different drainage basins and contains the headwaters of Araguaia

and Taquari rivers, which respectively connects ENP to the Amazon and Pantanal

Biomes. This hydrological network plays an important role for Cerrado species

Page 22: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

14

conservation, as it works as an ecological corridor between these biomes (Silveira et al.,

2014). The region is characterized by Tropical Savanna Climate (Aw/As) under Köppen

climate classification (Köopen, 1884; Álvares et al., 2013). There are two dominant

seasons throughout the year: a hot wet season from October to March, and a dry cold one,

from April to September (Álvares et al., 2013).

ENP is one of the Brazilian Cerrado’s largest Conservation Units, covering an

area of approximately 132,000 hectares. It is mainly composed of open grassland plains,

maintaining one of the biggest continuous grasslands in the biome, while patches of

scrublands and riparian forests compose the remaining extent of the Park (IBAMA, 2004).

ENP northern surrounding region is a heterogeneous fragmented landscape, with a highly

productive agricultural land where historical corn, soybean, cotton and, more recently,

sugar cane crops are grown large-scale. The remnant vegetation is mostly riparian forest,

with few patches of scrubland and grassland (Silveira, 2004).

The vegetation types present in the landscape were classified in Quantum GIS

software v 2.16.2 (Quantum GIS Development Team, 2009). The habitat type map

(Figure 1) was generated using two Landsat 8 satellite images (from June 06, 2013 and

June 18, 2013) obtained from Brazilian Ministry of Environment. The mapping was made

under the Quantum GIS complement Semi-Automatic Classification Plugin from

Congedo (2016). We manually checked the habitat types by visual inspection on a scale

of 1:15,000, and then identified and classified four main habitat types relevant for the

studied species ecology: (1) open Cerrado vegetation, including grassland fields and

‘campo sujo’ vegetation; (2) closed vegetation, including all dense structure natural

formations, such as dense scrubland and forests; (3) perennial agriculture, for sugarcane

crops; and (4) annual agriculture, comprising corn, soybean and cotton crops. Species

with high mobility, such as the ones in this study, tend to respond to environmental

Page 23: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

15

variations at coarser scales (Lyra-Jorge et al., 2010). For this reason, we created 2km radii

buffers around the camera trapping points to account for the proportion of each habitat

type in the sampling sites.

Camera Trapping

To model species’ occupancy, I used detection/ non-detection data from a camera

trap dataset provided by Jaguar Conservation Fund (JCF), a Brazilian NGO that has been

studying jaguars’ ecology and conservation in this region for over two decades (Silveira,

2004). JCF had deployed 34 camera trap stations in ENP and 7 stations in the Park’s

surroundings between July and December 2013, on a range-wide 3 x 3 km grid designed

for jaguar population density studies (Silver, 2004; Sollmann et al., 2011). The cameras

arrangement across the landscape is depicted in Figure 1.

All the cameras used were Bushnell, NatureView Essential HD model, in the sole

video or picture format or the hybrid video and picture format. All the cameras were

located along roads and game trails, with the cameras strapped on trees or stakes at

approximately 50 cm above ground. They were all programmed to work 24h/day during

the sampling period and were checked every month for Memory Card and battery

replacement. Some of the cameras installed were arranged in pairs in order to allow jaguar

individuals’ identification. This difference in the detectability between camera stations

should not affect the results as occupancy modelling already accounts for imperfect

detections (MacKenzie et al., 2002). Five periods of 20 sampling days were selected as

the survey periods for occupancy analysis. The camera sites and their respective

functioning periods and number of cameras per site are listed in Table 1.

Page 24: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

16

Species Selection

The two largest felid species within the Americas are also Cerrado’s top predators:

the jaguar (Panthera onca) and the cougar (Puma concolor). Both species are able to

survive in a wide range of habitats, although jaguars are known to depend mostly on

dense-vegetation habitats close to watercourses and to avoid human-dominated

landscapes (Azevedo and Murray, 2007; Zeller, 2007; Colchero et al., 2011; Sollmann et

al., 2012; Arroyo-Arce et al., 2014). Cougars, however, are largely habitat generalists,

being able to occupy drier areas and agricultural patches and to tolerate human presence

(Culver, 2010; Sollmann et al., 2012; Zarco-González et al., 2012; Magioli et al., 2014).

Both species act as opportunistic predators, preying upon the locally available

medium and large-sized species in general (Logan & Sweanor, 2001; Astete et al., 2008;

Cavalcanti and Gese, 2010). Thus, we selected for analysis the entire prey community

registered in the study area, excluding only those species whose registration from camera

trapping method was limited (e.g. arboreal and semi-arboreal species) and those species

occurring in less than 20% or more than 80% of the sampling units, as required by

occupancy modelling premises (Mackenzie et al., 2006). The six prey species present in

the area selected for the analyses are the giant anteater (Myrmecophaga tridactyla), the

collared peccary (Pecari tajacu), the white-lipped peccary (Tayassu pecari), the pampas

deer (Ozotoceros bezoarticus), the lowland tapir (Tapirus terrestris) and the greater rhea

(Rhea americana). The selection of species was made based on previous studies of

jaguars and cougars feeding ecology in ENP region (Silveira, 2004; Sollmann et al.;

2013). The national and global conservation status of these species are listed in Table 2.

The pampas deer and the greater rhea are open areas specialists (Codenotti and

Alvarez, 2000; Silveira et al., 2008; Duarte et al., 2012). Giant anteaters are insectivorous

mammals and similarly forage in open habitats, although they are also known for

Page 25: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

17

occupying gallery forests to a lesser extent, usually for shelter, cooling or to search for

water (Emmons et al., 2004; Medri and Mourão, 2005). Both peccary species and the

lowland tapir are considered habitat generalists and can also use agricultural resources to

some degree (Peres, 1996; Reyna-Hurtado and Tanner, 2007; Zeller et al., 2011; Cordeiro

et al., 2016).

Occupancy Modeling

Occupancy models main function is to determine the probability of a certain

location being occupied by a certain species under imperfect detectability conditions in

order to avoid ‘false absences’ (i.e. when a species occurs in the site but goes undetected)

(MacKenzie et al., 2002; MacKenzie et al., 2003). It depends on detection/ non-detection

data only, which can be obtained from methods with greater flexibility, less costly and/or

with less sampling effort than abundance surveys (MacKenzie and Nichols, 2004;

O’Connell and Bailey, 2011). Hence, occupancy modeling is frequently the only viable

option for rare species, and has been globally used to provide species distribution

estimations (e.g. for apex predators Hines et al., 2010; Khorozyan et al., 2010; Thorn et

al., 2011; Zeller et al., 2011; Alexander et al., 2015). This method applies maximum

likelihood statistics on species detection histories obtained from repeated surveys across

several sites to estimate the species naïve occupancy, occupancy (Ψ) and detectability (p)

parameters. The naïve occupancy indicates the proportion of surveyed sites effectively

occupied by species, occupancy is the probability that a site is occupied, and the

detectability is the probability of detecting the species on a certain survey, given the

species is present at the site. This information can also be related to landscape variables

and provide valuable information about endangered animal species habitat use and

Page 26: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

18

therefore effective management actions regarding their conservation (Burton et al., 2012;

Farris et al., 2014; Santos et al., 2016).

In order to perform the model in the study area, a set of 16 candidate models was

built using the variables that were thought to influence species occurrence (i.e., closed

and open vegetation, annual crops, and perennial crops). These models included one null

hypothesis model with constant occupancy and detection, and the remaining 15 models

included occupancy as a function of the covariates either individually or combined (Table

3). The models were fit in the PRESENCE software version 11.8 (Hines, 2006) to perform

occupancy modeling statistics. The software supplied Akaike’s Information Criterion

(AIC) values and the differences in AIC (ΔAIC) among the models was used to evaluate

which models provide the biggest empirical support for species occupancy. Models with

ΔAIC < 2 have substantial empirical support, while those between 4 and 7 have less

support and those with values > 10 have no support (Burnham and Anderson, 2004).

RESULTS

The camera trap sampling resulted in approximately 151.200 recording hours of 44

native species of medium and large-sized vertebrates (two reptiles, seven birds, and 35

mammals) in Emas National Park and in its northern surroundings (Figure 2). Twelve of

these species are listed to some degree of global threat (IUCN, 2010), and 11 of them are

listed in Brazil Red List of Fauna (MMA, 2016). Six domestic species were registered in

the region, including a horse, cats and dogs inside the Park. Table 2 contains a detailed

list of the registered species, their respective conservation status and whether they were

registered inside or outside ENP.

Page 27: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

19

The naïve occupancy values varied between the focal species (Table 4). The

lowland tapir and the pampas deer had the highest naïve occupancy values (77% both).

The greater rhea and white lipped peccaries also occupied a great area (72 and 70%,

respectively), while cougars, jaguars and anteaters were rarely registered (57, 42 and

37%, respectively). Collared peccaries had the lowest naïve occupancy values of all focal

species (20%) and is therefore the rarest of the focal species.

Table 4 lists the three best fitted models for each species and their respective AIC,

ΔAIC and naïve occupancy values. There was no general model explaining the focal

species presence. Rather, distinct species responded uniquely to the different vegetation

types. Jaguars, cougars, giant anteaters and tapirs’ presences weren’t mainly affected by

any of the vegetation types. However, cougars positively responded to perennial crops in

the second concurrent model. Likewise, tapirs also presented positive responses to native

vegetation in general and to annual croplands. White-lipped peccaries presented

generalist behavior and were positively related to all vegetation types, while collared

peccaries were negatively affected by native vegetation and were more common in annual

croplands. Pampas deer were present in open vegetation and annual cropland areas, and

were constrained by closed vegetation and sugarcane crops. Rheas, like white-lipped

peccaries, were associated to all vegetation types, although closed vegetation had

negative effects in concurrent models.

DISCUSSION

The medium and large-sized fauna of Cerrado have distinct strategies to explore

resources in natural vegetation types (da Fonseca and Robinson, 1999; Marinho-Filho et

al., 2002). However, the high fragmentation of Cerrado vegetation since the 1960s

Page 28: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

20

(Cavalcanti and Joly, 2002; Klink and Moreira, 2002), has negatively affected fauna

distribution (Thuiller et al., 2005; Devictor et al., 2008; Barreto et al., 2012; Slatyer et al.,

2013). Otherwise, some species have benefited from high resource availability in

agricultural areas (Dotta and Verdade, 2007; Reyna-Hurtado and Tanner, 2007; Lyra-

Jorge et al., 2010). In this study, we evaluated how different vegetation types of a Cerrado

protected area and its surroundings influence medium and large-sized fauna distribution.

We observed distinct species responses to the habitat types instead of a general pattern

for the community. Distinct responses of species were expected, because Cerrado’s

medium and large-sized fauna is composed of both ecological generalists and specialists

(Marinho-Filho et al., 2002; Comparatore and Yagueddú, 2016). Conserving different

vegetation types within the landscape may increase the diversity of microhabitats

available and, consequently, maintain high community richness, benefitting especially

the generalists, but also specialists (Kassen, 2002).

As expected, the grassland specialists (pampas deer and rhea) were positively

associated to the open vegetation type. The populations of both species inside the park

are, in fact, among the greatest populations within their distribution range (Redford, 1985;

Rodrigues & Monteiro-Filho, 2000) because the park holds one of Cerrado’s largest

continuous grassland areas (IBAMA, 2004). Nevertheless, this vegetation is highly

limited to the park area, while its surroundings are mainly composed of forests, thus

limiting grassland specialists’ occurrence. Connectivity to other protected areas is

consequently necessary to avoid the isolation and genetic bottleneck of these populations

(Carlson, 2000; Öckinger et al., 2010; Furlan et al., 2012). Hence, the positive responses

of pampas deer and rheas to croplands (especially annual croplands) may allow these

species to persist in the region as crops may play the connectivity role in farmlands

(Ricketts, 2001; Perfecto and Vandemeer, 2010; Ripple et al., 2014; Boron et al., 2016).

Page 29: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

21

Oppositely, white-lipped peccaries presented generalist distribution, as described in

literature (Reyna-Hurtado and Tanner, 2007), occupying both native vegetation and

croplands, especially perennial crops. Herbivore species may use sugarcane crops as food

and shelter, due to sugarcane plantations’ dense structure (Dotta & Verdade, 2007;

Silveira, pers. comm.). On the other hand, collared peccaries, which are weaker

competitors to white-lipped peccaries, were mostly related to annual croplands. Collared-

peccaries were, in fact, the rarest of all focal species, as they occurred in only 20% of the

surveyed sites. Collared-peccaries tend to be abundant species wherever they occur, and

their distribution pattern in ENP region could be limited by competition for restricted

resources, especially in natural vegetation patches (DeBach, 1966; Reyna-Hurtado and

Tanner, 2007). Tapirs, in turn, were the commonest species along with the pampas deer,

and occupancy models suggested weak relations between tapirs’ presence and habitat

types, and other factors could be shaping its spatial distribution. However, alternative

models with substantial support to explain tapirs’ occurrence included both open and

closed natural vegetation types and annual croplands, which is an expected distribution

pattern for a generalist species like the lowland tapir (Cordeiro et al., 2016). Based on

this, we can infer that the high habitat diversity in ENP region may cause tapirs’

populations to thrive. Lowland tapirs are Vulnerable species in both national and global

scales (Naveda et al., 2008; MMA, 2016), and our results may indicate the importance of

ENP region for the species’ conservation in the regional scale.

In megadiverse countries with farming-based economies, like Brazil, it is essential

to comprehend how species respond to the matrix in order to provide information for

appropriate landscape management and selection of priority areas for conservation. Thus,

maintaining suitable and permeable matrixes can allow species to persist in human-

altered areas and to disperse through natural remnants (Daily et al., 2003; Prugh et al.,

Page 30: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

22

2008; Franklin and Lindenmayer, 2009; Shackelford et al., 2015). Well-managed

matrixes may also contribute to community conservation. However, careful interpretation

to this issue is needed. Crops and agroecosystems may provide additional resources for

some species, but natural vegetation areas, like the ones required by Brazilian Forest

Code, have essential resources for their survival and development (Daily et al., 2003;

Casatti, 2010; Develey and Pongiluppi, 2010; Imperatriz-Fonseca and Nunes-Silva, 2010;

Boron et al., 2016). Moreover, large continuous croplands may house herbivores,

although this interaction causes conflicts between farmers and wildlife (Hill, 2000; Nyhus

and Tilson, 2004; Marchini and Crawshaw, 2015). In Emas National Park region, white-

lipped peccaries are known to farmers as great crop consumers and are often killed in

retaliation (Jácomo, 2004). This mammal species is listed as Vulnerable to extinction in

both national and global scales (Keuroghlian et al., 2013; MMA, 2016). Therefore,

protecting natural vegetation fragments should reduce the impact of the white-lipped

peccaries on cropland production and avoid its local extinction. Thus, protected areas

benefit farmers and species conservation.

Natural fragments and green areas in ENP surroundings are also important to

connect populations of the Cerrado to those of other biomes, because the Park is located

in a watershed connecting the Amazon and Pantanal Biomes (Silveira et al., 2014). These

corridors are especially important for jaguars, as both Biomes house the two largest jaguar

populations along the species distribution (Sanderson et al., 2002; Silveira et al., 2014).

In fact, the conservation of highly mobile species, such as jaguars and cougars, also

depends on unprotected areas, because Conservation Units often can’t protect large

populations of these species (Sollmann et al., 2008; Petracca et al., 2014; Boron et al.,

2016). Thus, properly managed agricultural lands may play a major role in predator

species conservation if predator-related habitat types are available.

Page 31: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

23

This study, however, failed to show apex predators relation to the different habitat

types in the study area. As the null hypothesis model was the best model for both jaguars

and cougars, it is likely that their presence could be related to other variables rather than

vegetation type. Apex predator distribution depend on prey species presence, and prey

species were differently distributed across the mosaic (Fuller and Sievert, 2001; Bled et

al., 2015). This distribution pattern could drive both predators to widely occur in the

landscape, using habitats according to their prey availability instead of their structure.

Jaguars and cougars are opportunistic hunters, so prey presence in different habitats might

help predators’ populations to persist in the unprotected lands (Logan & Sweanor, 2001;

Novack et al., 2005; Weckel et al., 2006; Cavalcanti and Gese, 2010; Foster et al., 2010;

Gómez-Ortiz et al., 2015). In fact, although cougars had weak relationship to habitat

types, perennial crops were shown to influence its presence. Several studies in São Paulo

state found that cougar populations are able to persist in sugarcane croplands (Lyra-Jorge

et al., 2008; Miotto et al., 2011), possibly due to the prey availability in these areas (Dotta

& Verdade, 2007; Culver, 2010). As aforementioned, keeping well-managed permeable

matrixes should benefit the species and could also help reduce herbivores-farmers

conflicts through natural control of herbivores’ populations. Consequently, apex

predators have a pivotal role in ecosystems becoming priority species for biodiversity

conservation purposes, and their local extinction could have negative results for both

community structure and agriculture production (Zavaleta et al., 2001; Estes et al., 2011).

Further studies including prey as predictor of predators’ presence should help elucidate

this issue and allow for proper landscape management in the region.

Other prey types are also available in the area, including insectivores and smaller

carnivores. Silveira (2004) and Sollmann et al. (2013) identified giant anteaters as one of

jaguars’ main prey species in ENP region, accounting for more than 75% of biomass to

Page 32: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

24

its diet. In this study, giant anteater’s distribution was also not directly affected by

vegetation structure. Although it is known to forage in open habitats, it usually depends

on scrublands and forests for shelter and is also related to water habitats (Emmons et al.,

2004; Medri and Mourão, 2005). Thus, it is expected that anteaters would benefit from

ENP’s suitable forage areas. However, they are highly affected by the park’s constant

wildfires (Silveira et al., 1999), and intense road traffic in the Park surroundings also

affects the species local persistence (Diniz and Brito, 2013). These threats, along with

high predation pressure could be constraining giant anteaters’ occurrence. The species is

Vulnerable to extinction in both national and global scales (Miranda et al., 2014; MMA,

2016), and further information about the species distribution and population status in ENP

region is important to promote its local conservation.

CONCLUSIONS

The present study focus on Cerrado’s medium and large-sized fauna’s responses to

the habitat types within a Protected Area and its surroundings. We found that different

vegetation types influence species distribution. Therefore, high habitat diversity in a

landscape may be a good approach for large animals’ conservation, especially because

Cerrado’ medium and large-sized fauna varies in habitat use strategies. Additionally,

green areas around protected areas may also be useful for conservation strategies if

matrixes are habitable and permeable to species. Moreover, the rich animal community

in Emas National Park’s region and the Park’s strategical location play an important

regional role for species and ecosystems conservation.

Page 33: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

25

REFERENCES

Alexander, J. S., Shi, K., Tallents, L. A., & Riordan, P. (2016). On the high trail:

examining determinants of site use by the Endangered snow leopard Panthera uncia

in Qilianshan, China. Oryx, 50(02), 231-238.

Álvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek,

G. (2013). Köppen's climate classification map for Brazil. Meteorologische

Zeitschrift, 22(6), 711-728.

Alves, G. B., Marçal Junior, O., Brites, V. L. C. (2014). Medium and large-sized

mammals of a fragment of Cerrado in the Triângulo Mineiro region, southeastern

Brazil. Bioscience Journal, 30(3), 863-873.

Arroyo-Arce, S., Guilder, J., & Salom-Pérez, R. (2014). Habitat features influencing

jaguar Panthera onca (Carnivora: Felidae) occupancy in Tortuguero National Park,

Costa Rica. Revista de Biología Tropical, 62(4), 1449-1458.

Astete, S., Sollmann, R., & Silveira, L. (2008). Comparative ecology of jaguars in

Brazil. Cat News Special, (4), 9-14.

Azevedo, F. C., Lemos, F. G., de Almeida, L. B., de Campos, C. B., de Mello Beisiegel,

B., de Paula, R. C., ... & de Oliveira, T. G. (2013). Avaliação do risco de extinção da

onça-parda Puma concolor (Linnaeus, 1771) no Brasil. Biodiversidade Brasileira,

(1), 107-121.

Azevedo, F. C. C. D., & Murray, D. L. (2007). Evaluation of potential factors

predisposing livestock to predation by jaguars. Journal of Wildlife

Management, 71(7), 2379-2386.

Barreto, L., Van Eupen, M., Kok, K., Jongman, R.H., Ribeiro, M.C., Veldkamp, A., ... &

Oliveira, T.G. (2012). The impact of soybean expansion on mammal and bird, in the

Page 34: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

26

Balsas region, north Brasilian Cerrado. Journal for Nature Conservation, 20(6), 374-

383.

Bello, C., Galetti, M., Pizo, M. A., Magnago, L. F. S., Rocha, M. F., Lima, R. A., ... &

Jordano, P. (2015). Defaunation affects carbon storage in tropical forests. Science

advances, 1(11), e1501105.

Bennett, A. F., & Saunders, D. A. (2010). Habitat fragmentation and landscape

change. Conservation biology for all, 93, 1544-1550.

Bled, F., Summers, S., Martell, D., Petroelje, T. R., Beyer Jr, D. E., & Belant, J. L. (2015).

Effects of Prey Presence and Scale on Bobcat Resource Selection during

Winter. PloS one, 10(11), e0143347.

Boron, V., Tzanopoulos, J., Gallo, J., Barragan, J., Jaimes-Rodriguez, L., Schaller, G., &

Payán, E. (2016). Jaguar densities across human-dominated landscapes in Colombia:

the contribution of unprotected areas to long term conservation. PloS one, 11(5),

e0153973.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC and

BIC in model selection. Sociological methods & research, 33(2), 261-304.

Burton, A. C., Sam, M. K., Balangtaa, C., & Brashares, J. S. (2012). Hierarchical multi-

species modeling of carnivore responses to hunting, habitat and prey in a West

African protected area. PloS one, 7(5), e38007.

Carlson, A. (2000). The effect of habitat loss on a deciduous forest specialist species: the

White-backed Woodpecker (Dendrocopos leucotos). Forest Ecology and

Management, 131(1), 215-221.

Casatti, L. (2010). Alterações no Código Florestal Brasileiro: impactos potenciais sobre

a ictiofauna/Changes in the Brazilian Forest Code: potential impacts on the

ichthyofauna. Biota Neotropica, 10(4), 31.

Page 35: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

27

Caso, A., Lopez-Gonzalez, C., Payan, E., Eizirik, E., de Oliveira, T., Leite-Pitman, R.,

Kelly, M. & Valderrama, C. 2008. Panthera onca. The IUCN Red List of Threatened

Species 2008:

eT15953A5327466. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T15953A532

7466.en. Downloaded on 08 January 2017.

Cavalcanti, R. B., & Joly, C. A. (2002). Biodiversity and conservation priorities in the

Cerrado region. The Cerrados of Brazil. Ecology and Natural History of a

Neotropical Savanna, 351-367.

Cavalcanti, S. M., & Gese, E. M. (2010). Kill rates and predation patterns of jaguars

(Panthera onca) in the southern Pantanal, Brazil. Journal of Mammalogy, 91(3), 722-

736.

Chiarello, A. G. (2000). Density and population size of mammals in remnants of Brazilian

Atlantic forest. Conservation Biology, 14(6), 1649-1657.

Codenotti, T. L., & Alvarez, F. (2000). Habitat use by Greater Rheas Rhea americana in

an agricultural area of southern Brazil. Revista de Etologia, 2, 77-84.

Colchero, F., Conde, D. A., Manterola, C., Chávez, C., Rivera, A., & Ceballos, G. (2011).

Jaguars on the move: modeling movement to mitigate fragmentation from road

expansion in the Mayan Forest. Animal Conservation, 14(2), 158-166.

Colwell, R. K., & Futuyma, D. J. (1971). On the measurement of niche breadth and

overlap. Ecology, 52(4), 567-576.

Comparatore, V. M., & Yagueddú, C. (2016). Diet preference and density of the Greater

Rhea (Rhea americana) in grasslands of the Flooding Pampa, Argentina. Revista

Brasileira de Ornitologia-Brazilian Journal of Ornithology, 24(1), 13-20.

Congedo, L. (2016). Semi-Automatic Classification Plugin

Documentation. Release, 4(0.1), 29.

Page 36: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

28

Cordeiro, J. L. P., Fragoso, J. M., Crawshaw, D., & Oliveira, L. F. B. (2016). Lowland

tapir distribution and habitat loss in South America. PeerJ, 4, e2456.

Culver, M. (2009). Lessons and insights from evolution, taxonomy, and conservation

genetics. Cougar: ecology and conservation, 27-40.

Culver, M., Johnson, W. E., Pecon-Slattery, J., & O'Brien, S. J. (2000). Genomic ancestry

of the American puma (Puma concolor). Journal of Heredity, 91(3), 186-197.

da Fonseca, G. A., & Robinson, J. G. (1990). Forest size and structure: competitive and

predatory effects on small mammal communities. Biological conservation, 53(4),

265-294.

Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G., & SÁNCHEZ‐AZOFEIFA, A. R. T.

U. R. O. (2003). Countryside biogeography of neotropical mammals: conservation

opportunities in agricultural landscapes of Costa Rica. Conservation biology, 17(6),

1814-1826.

DeBach, P. (1966). The competitive displacement and coexistence principles. Annual

review of entomology, 11(1), 183-212.

DeFries, R., Hansen, A., Newton, A. C., & Hansen, M. C. (2005). Increasing isolation of

protected areas in tropical forests over the past twenty years. Ecological

Applications, 15(1), 19-26.

Develey, P. F., & Pongiluppi, T. (2010). Impactos potenciais na avifauna decorrentes das

alterações propostas para o Código Florestal Brasileiro/Potential impacts of the

changes proposed in the Brazilian Forest Code on birds. Biota Neotropica, 10(4), 43.

Devictor, V., Julliard, R., & Jiguet, F. (2008). Distribution of specialist and generalist

species along spatial gradients of habitat disturbance and

fragmentation. Oikos, 117(4), 507-514.

Page 37: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

29

Diniz, M. F., & Brito, D. (2013). Threats to and viability of the giant anteater,

Myrmecophaga tridactyla (Pilosa: Myrmecophagidae), in a protected Cerrado

remnant encroached by urban expansion in central Brazil. Zoologia

(Curitiba), 30(2), 151-156.

Dotta, G., & Verdade, L. M. (2007). Trophic categories in a mammal assemblage:

diversity in an agricultural landscape. Biota Neotropica, 7(2), 287-292.

Duarte, J. M. B., Vogliotti, A., dos Santos Zanetti, E., de Oliveira, M. L., Tiepolo, L. M.,

Rodrigues, L. F., ... & Braga, F. G. (2012). Avaliação do risco de extinção do veado-

campeiro Ozotoceros bezoarticus Linnaeus, 1758, no Brasil. Biodiversidade

Brasileira, (1), 20-32.

Emmons, L. H., Flores, R. P., Alpirre, S. A., & Swarner, M. J. (2004). Bathing behavior

of giant anteaters (Myrmecophaga tridactyla). Edentata, 41-43.

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., ... &

Marquis, R. J. (2011). Trophic downgrading of planet Earth. science, 333(6040),

301-306.

Farris, Z. J., Karpanty, S. M., Ratelolahy, F., & Kelly, M. J. (2014). Predator–primate

distribution, activity, and co-occurrence in relation to habitat and human activity

across fragmented and contiguous forests in northeastern Madagascar. International

Journal of Primatology, 35(5), 859-880.

Franklin, J. F., & Lindenmayer, D. B. (2009). Importance of matrix habitats in

maintaining biological diversity. Proceedings of the National Academy of

Sciences, 106(2), 349-350.

Foster, R. J., Harmsen, B. J., Valdes, B., Pomilla, C., & Doncaster, C. P. (2010). Food

habits of sympatric jaguars and pumas across a gradient of human

disturbance. Journal of Zoology, 280(3), 309-318.

Page 38: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

30

Fuller, T. K., & Sievert, P. R. (2001). Carnivore demography and the consequences of

changes in prey availability. CONSERVATION BIOLOGY SERIES-CAMBRIDGE-,

163-178.

Furlan, E., Stoklosa, J., Griffiths, J., Gust, N., Ellis, R., Huggins, R. M., & Weeks, A. R.

(2012). Small population size and extremely low levels of genetic diversity in island

populations of the platypus, Ornithorhynchus anatinus. Ecology and evolution, 2(4),

844-857.

Futuyma, D. J., & Moreno, G. (1988). The evolution of ecological specialization. Annual

Review of Ecology and Systematics, 19(1), 207-233.

Galetti, M., Guevara, R., Neves, C. L., Rodarte, R. R., Bovendorp, R. S., Moreira, M., ...

& Yeakel, J. D. (2015). Defaunation affects the populations and diets of rodents in

Neotropical rainforests. Biological Conservation, 190, 2-7.

Gehring, T. M., & Swihart, R. K. (2003). Body size, niche breadth, and ecologically

scaled responses to habitat fragmentation: mammalian predators in an agricultural

landscape. Biological conservation, 109(2), 283-295.

Gómez-Ortiz, Y., Monroy-Vilchis, O., & Mendoza-Martínez, G. D. (2015). Feeding

interactions in an assemblage of terrestrial carnivores in central Mexico. Zoological

Studies, 54(1), 16.

Hansen, A. J., & DeFries, R. (2007). Ecological mechanisms linking protected areas to

surrounding lands. Ecological Applications, 17(4), 974-988.

Hill, C. M. (2000). Conflict of interest between people and baboons: crop raiding in

Uganda. International Journal of Primatology, 21(2), 299-315.

Hines, J. E. 2006. PRESENCE2 - Software to estimate patch occupancy and related 615

parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html.

Page 39: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

31

Hines, J. E., Nichols, J. D., Royle, J. A., MacKenzie, D. I., Gopalaswamy, A. M., Kumar,

N., & Karanth, K. U. (2010). Tigers on trails: occupancy modeling for cluster

sampling. Ecological Applications, 20(5), 1456-1466.

Hutchinson, G. E. 1957 b. Concluding remarks- Cold Spring Harbor Symposia on

Quantitative Biology. 22:415-427. Reprinted in: Classics in Theoretical Biology.

Bull. of Math. Biol. 53:193-213.

IBAMA, 2004. Plano de manejo do Parque Nacional das Emas (PNE). Instituto brasileiro

do Meio Ambiente e Recursos Naturais Renováveis, Brasília, Brasil.

Imperatriz-Fonseca, V. L., & Nunes-Silva, P. (2010). As abelhas, os serviços

ecossistêmicos e o Código Florestal Brasileiro/Bees, ecosystem services and the

Brazilian Forest Code. Biota Neotropica, 10(4), 59.

IUCN, 2010. IUCN Red List of threatened species. Version 2010.1. www.iucnredlist.org.

(accessed 8 Jan 2017).

Jácomo, A.T.A. (2004). Ecologia, manejo e conservação do queixada Tayassu pecari no

Parque Nacional das Emas e em propriedades rurais de seu entorno. (Doctoral

dissertation, Universidade de Brasília). 120p.

Johnson, M. A., Saraiva, P. M., & Coelho, D. (1999). The role of gallery forests in the

distribution of Cerrado mammals. Revista Brasileira de Biologia, 59(3), 421-427.

Jorge, M. L. S., Galetti, M., Ribeiro, M. C., & Ferraz, K. M. P. (2013). Mammal

defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biological

Conservation, 163, 49-57.

Kassen, R. (2002). The experimental evolution of specialists, generalists, and the

maintenance of diversity. Journal of evolutionary biology, 15(2), 173-190.

Keuroghlian, A., Desbiez, A., Reyna-Hurtado, R., Altrichter, M., Beck, H., Taber, A. &

Fragoso, J.M.V. 2013. Tayassu pecari. The IUCN Red List of Threatened Species

Page 40: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

32

2013:e.T41778A44051115. http://dx.doi.org/10.2305/IUCN.UK.2013-

RLTS.T41778A44051115.en. Downloaded on 08 January 2017.

Khorozyan, I. G., Malkhasyan, A. G., Asmaryan, S. G., & Abramov, A. V. (2010). Using

geographical mapping and occupancy modeling to study the distribution of the

critically endangered leopard (Panthera pardus) population in Armenia. In Spatial

Complexity, Informatics, and Wildlife Conservation (pp. 331-347). Springer Japan.

Klink, C. A., & Moreira, A. G. (2002). Past and current human occupation, and land

use. The cerrados of Brazil: ecology and natural history of a neotropical savanna,

69-88.

Köppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gema¨ssigten

und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt

betrachtet. (The thermal zones of the earth according to the duration of hot,

moderate and cold periods and to the impact of heat on the organic world). –

Meteorol. Z. 1, 215–226. (translated and edited by Volken E. and S. Brönnimann.

– Meteorol. Z. 20 (2011), 351–360).

Levins, R. (1968). Evolution in changing environments: some theoretical

explorations (No. 2). Princeton University Press.

Lindsey, P. A., Du Toit, J. T., & Mills, M. G. L. (2005). Attitudes of ranchers towards

African wild dogs Lycaon pictus: conservation implications on private

land. Biological Conservation, 125(1), 113-121.

Lira, P. K., Tambosi, L. R., Ewers, R. M., & Metzger, J. P. (2012). Land-use and land-

cover change in Atlantic Forest landscapes. Forest Ecology and Management, 278,

80-89.

Logan, K. A., & Sweanor, L. L. (2001). Desert puma: evolutionary ecology and

conservation of an enduring carnivore. Island Press.

Page 41: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

33

Lyra-Jorge, M. C., Ciocheti, G., & Pivello, V. R. (2008). Carnivore mammals in a

fragmented landscape in northeast of São Paulo State, Brazil. Biodiversity and

Conservation, 17(7), 1573.

Lyra-Jorge, M. C., Ribeiro, M. C., Ciocheti, G., Tambosi, L. R., & Pivello, V. R. (2010).

Influence of multi-scale landscape structure on the occurrence of carnivorous

mammals in a human-modified savanna, Brazil. European Journal of Wildlife

Research, 56(3), 359-368.

MacKenzie, D. I. (2006). Occupancy estimation and modeling: inferring patterns and

dynamics of species occurrence. Academic Press.

MacKenzie, D. I., & Nichols, J. D. (2004). Occupancy as a surrogate for abundance

estimation. Animal biodiversity and conservation, 27(1), 461-467.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003).

Estimating site occupancy, colonization, and local extinction when a species is

detected imperfectly. Ecology, 84(8), 2200-2207.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., &

Langtimm, C. A. (2002). Estimating site occupancy rates when detection

probabilities are less than one. Ecology, 83(8), 2248-2255.

Magioli, M., Moreira, M. Z., Ferraz, K. M. B., Miotto, R. A., Camargo, P. B., Rodrigues,

M. G., ... & Setz, E. F. (2014). Stable isotope evidence of Puma concolor (Felidae)

feeding patterns in agricultural landscapes in southeastern Brazil. Biotropica, 46(4),

451-460.

Marchini, S., & Crawshaw Jr, P. G. (2015). Human–Wildlife Conflicts in Brazil: A Fast-

Growing Issue. Human Dimensions of Wildlife, 20(4), 323-328.

Page 42: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

34

Marinho-Filho, J., Rodrigues, F. H., & Juarez, K. M. (2002). The Cerrado mammals:

diversity, ecology, and natural history. The Cerrados of Brazil: Ecology and natural

history of a neotropical savanna, 266-284.

Marvier, M., Kareiva, P., & Neubert, M. G. (2004). Habitat destruction, fragmentation,

and disturbance promote invasion by habitat generalists in a multispecies

metapopulation. Risk analysis, 24(4), 869-878.

McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: a few winners

replacing many losers in the next mass extinction. Trends in ecology &

evolution, 14(11), 450-453.

Medri, Í. M., & Mourão, G. (2005). A brief note on the sleeping habits of the giant

anteater-Myrmecophaga tridactyla Linnaeus (Xenarthra,

Myrmecophagidae). Revista Brasileira de Zoologia, 22(4), 1213-1215.

Metzger, J. P. (2001). Effects of deforestation pattern and private nature reserves on the

forest conservation in settlement areas of the Brazilian Amazon. Biota

neotropica, 1(1-2), 1-14.

Ministério do Meio Ambiente. 2016. Livro Vermelho da Fauna Brasileira Ameaçada de

Extinção. MMA, Fundação Biodiversitas.

Miotto, R. A., Cervini, M., Begotti, R. A., & Galetti Jr, P. M. (2012). Monitoring a puma

(Puma concolor) population in a fragmented landscape in southeast

Brazil. Biotropica, 44(1), 98-104.

Miranda, F., Bertassoni, A. & Abba, A.M. 2014. Myrmecophaga tridactyla. The IUCN

Red List of Threatened Species 2014: eT14224A47441961.

http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T14224A47441961.en.

Downloaded on 08 January 2017.

Page 43: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

35

Morato, R. G., de Mello Beisiegel, B., Ramalho, E. E., de Campos, C. B., & Boulhosa,

R. L. P. (2013). Avaliacao do risco de extincao da Onca-pintada Panthera onca

(Linnaeus, 1758) no Brasil. Biodiversidade Brasileira, (1), 122-132.

Naveda, A., de Thoisy, B., Richard-Hansen, C., Torres, D.A., Salas, L., Wallance, R.,

Chalukian, S. & de Bustos, S. 2008. Tapirus terrestris. The IUCN Red List of

Threatened Species 2008:

eT21474A9285933. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T21474A928

5933.en. Downloaded on 08 January 2017.

Newsome, A. (1990). The control of vertebrate pests by vertebrate predators. Trends in

ecology & evolution, 5(6), 187-191.

Novack, A. J., Main, M. B., Sunquist, M. E., & Labisky, R. F. (2005). Foraging ecology

of jaguar (Panthera onca) and puma (Puma concolor) in hunted and non‐hunted sites

within the Maya Biosphere Reserve, Guatemala. Journal of Zoology, 267(2), 167-

178.

Nyhus, P., & Tilson, R. (2004). Agroforestry, elephants, and tigers: balancing

conservation theory and practice in human-dominated landscapes of Southeast

Asia. Agriculture, ecosystems & environment, 104(1), 87-97.

O’Connell, A. F., & Bailey, L. L. (2011). Inference for occupancy and occupancy

dynamics. In Camera traps in animal ecology (pp. 191-204). Springer Japan.

Öckinger, E., Schweiger, O., Crist, T. O., Debinski, D. M., Krauss, J., Kuussaari, M., ...

& Bommarco, R. (2010). Life‐history traits predict species responses to habitat area

and isolation: a cross‐continental synthesis. Ecology letters, 13(8), 969-979.

Oliveira-Filho, A. T., & Ratter, J. A. (2002). Vegetation physiognomies and woody flora

of the cerrado biome. The cerrados of Brazil: ecology and natural history of a

neotropical savanna, 91-120.

Page 44: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

36

Peres, C. A. (1996). Population status of white-lipped Tayassu pecari and collared

peccaries T. tajacu in hunted and unhunted Amazonian forests. Biological

Conservation, 77(2-3), 115-123.

Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the

land-sparing/agriculture intensification model. Proceedings of the National Academy

of Sciences, 107(13), 5786-5791.

Petracca, L. S., Hernández-Potosme, S., Obando-Sampson, L., Salom-Pérez, R., Quigley,

H., & Robinson, H. S. (2014). Agricultural encroachment and lack of enforcement

threaten connectivity of range-wide jaguar (Panthera onca) corridor. Journal for

Nature Conservation, 22(5), 436-444.

Prugh, L. R., Hodges, K. E., Sinclair, A. R., & Brashares, J. S. (2008). Effect of habitat

area and isolation on fragmented animal populations. Proceedings of the National

Academy of Sciences, 105(52), 20770-20775.

Quantum GIS Development Team, 2009. QGIS Geographic Information System. Open

Source Geospatial Foundation. URL http://qgis.osgeo.org

Redford, K. H. (1985). Emas National Park and the plight of the Brazilian

cerrados. Oryx, 19(04), 210-214.

Reyna-Hurtado, R., & Tanner, G. W. (2007). Ungulate relative abundance in hunted and

non-hunted sites in Calakmul Forest (Southern Mexico). Biodiversity and

Conservation, 16(3), 743-756.

Ribeiro, J. F., & Walter, B. M. T. (2008). As principais fitofisionomias do bioma

Cerrado. Cerrado Ecologia e Fauna. Brasília: Embrapa Informação Tecnológica, 1,

153-221.

Ricketts, T. H. (2001). The matrix matters: effective isolation in fragmented

landscapes. The American Naturalist, 158(1), 87-99.

Page 45: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

37

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite,

M., ... & Schmitz, O. J. (2014). Status and ecological effects of the world’s largest

carnivores. Science, 343(6167), 1241484.

Ripple, W. J., Larsen, E. J., Renkin, R. A., & Smith, D. W. (2001). Trophic cascades

among wolves, elk and aspen on Yellowstone National Park’s northern

range. Biological conservation, 102(3), 227-234.

Rodrigues, F. H., & Monteiro-Filho, E. L. (2000). Home range and activity patterns of

pampas deer in Emas National Park, Brazil. Journal of Mammalogy, 81(4), 1136-

1142.

Sanderson, E. W., Redford, K. H., Chetkiewicz, C. L. B., Medellin, R. A., Rabinowitz,

A. R., Robinson, J. G., & Taber, A. B. (2002). Planning to save a species: the jaguar

as a model. Conservation Biology, 16(1), 58-72.

Sano, E. E., Rosa, R., Brito, J. L., & Ferreira, L. G. (2010). Land cover mapping of the

tropical savanna region in Brazil. Environmental monitoring and assessment, 166(1),

113-124.

Santos, P. M., Chiarello, A. G., Ribeiro, M. C., Ribeiro, J. W., & Paglia, A. P. (2016).

Local and landscape influences on the habitat occupancy of the endangered maned

sloth Bradypus torquatus within fragmented landscapes. Mammalian Biology-

Zeitschrift für Säugetierkunde, 81(5), 447-454.

Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M., & Benton, T. G. (2015).

Conservation planning in agricultural landscapes: hotspots of conflict between

agriculture and nature. Diversity and Distributions, 21(3), 357-367.

Silveira, L. (2004). Ecologia comparada e conservação da onça-pintada (Panthera onca)

e onça-parda (Puma concolor), no Cerrado e Pantanal. (Doctoral dissertation,

Universidade de Brasília). 240p.

Page 46: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

38

Silveira, L., Boulhosa, R., Astete, S., & Jácomo, A. A. (2008). Management of domestic

livestock predation by jaguars in Brazil. Cat News, 4, 26-30.

Silveira, L., Jácomo, A. T., Diniz Filho, J. A. F., & Rodrigues, F. H. G. (1999). Impact of

wildfires on the megafauna of Emas National Park, central Brazil. Oryx, 33(2), 108-

114.

Silveira, L., Sollmann, R., Jácomo, A. T., Diniz Filho, J. A., & Tôrres, N. M. (2014). The

potential for large-scale wildlife corridors between protected areas in Brazil using the

jaguar as a model species. Landscape ecology, 29(7), 1213-1223.

Silver, S. (2004). Assessing jaguar abundance using remotely triggered cameras. Wildlife

Conservation Society, 1-27.

Skonhoft, A. (2006). The costs and benefits of animal predation: an analysis of

Scandinavian wolf re-colonization. Ecological economics, 58(4), 830-841.

Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical

range size: a general ecological pattern. Ecology letters, 16(8), 1104-1114.

Sollmann, R., Betsch, J., Furtado, M. M., Hofer, H., Jácomo, A. T., Palomares, F., ... &

Silveira, L. (2013). Note on the diet of the jaguar in central Brazil. European journal

of wildlife research, 59(3), 445-448.

Sollmann, R., Furtado, M. M., Gardner, B., Hofer, H., Jácomo, A. T., Tôrres, N. M., &

Silveira, L. (2011). Improving density estimates for elusive carnivores: accounting

for sex-specific detection and movements using spatial capture–recapture models for

jaguars in central Brazil. Biological Conservation, 144(3), 1017-1024.

Sollmann, R., Furtado, M. M., Hofer, H., Jacomo, A. T., Tôrres, N. M., & Silveira, L.

(2012). Using occupancy models to investigate space partitioning between two

sympatric large predators, the jaguar and puma in central Brazil. Mammalian

Biology-Zeitschrift für Säugetierkunde, 77(1), 41-46.

Page 47: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

39

Sollmann, R., Torres, N. M., & Silveira, L. (2008). Jaguar conservation in Brazil: the role

of protected areas. Cat News, 4, 15-20.

Terborgh, J., Lopez, L., Nunez, P., Rao, M., Shahabuddin, G., Orihuela, G., ... & Balbas,

L. (2001). Ecological meltdown in predator-free forest

fragments. Science, 294(5548), 1923-1926.

Thorn, M., Green, M., Bateman, P. W., Waite, S., & Scott, D. M. (2011). Brown hyaenas

on roads: estimating carnivore occupancy and abundance using spatially auto-

correlated sign survey replicates. Biological Conservation, 144(6), 1799-1807.

Thuiller, W., Lavorel, S., & Araújo, M. B. (2005). Niche properties and geographical

extent as predictors of species sensitivity to climate change. Global Ecology and

Biogeography, 14(4), 347-357.

Tscharntke, T., Klein, A. M., Kruess, A., Steffan‐Dewenter, I., & Thies, C. (2005).

Landscape perspectives on agricultural intensification and biodiversity–ecosystem

service management. Ecology letters, 8(8), 857-874.

Valiente‐Banuet, A., Aizen, M. A., Alcántara, J. M., Arroyo, J., Cocucci, A., Galetti, M.,

... & Medel, R. (2015). Beyond species loss: the extinction of ecological interactions

in a changing world. Functional Ecology, 29(3), 299-307.

Wallach, A. D., Johnson, C. N., Ritchie, E. G., & O’Neill, A. J. (2010). Predator control

promotes invasive dominated ecological states. Ecology letters, 13(8), 1008-1018.

Weckel, M., Giuliano, W., & Silver, S. (2006). Jaguar (Panthera onca) feeding ecology:

distribution of predator and prey through time and space. Journal of zoology, 270(1),

25-30.

Zarco-González, M. M., Monroy-Vilchis, O., Rodríguez-Soto, C., & Urios, V. (2012).

Spatial factors and management associated with livestock predations by Puma

concolor in Central Mexico. Human ecology, 40(4), 631-638.

Page 48: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

40

Zavaleta, E. S., Hobbs, R. J., & Mooney, H. A. (2001). Viewing invasive species removal

in a whole-ecosystem context. Trends in Ecology & Evolution, 16(8), 454-459.

Zeller, K. (2007). Jaguars in the new millennium data set update: the state of the jaguar

in 2006. Wildlife Conservation Society, New York, 77.

Zeller, K. A., Nijhawan, S., Salom-Pérez, R., Potosme, S. H., & Hines, J. E. (2011).

Integrating occupancy modeling and interview data for corridor identification: A case

study for jaguars in Nicaragua. Biological Conservation, 144(2), 892-901.

Page 49: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

41

SUPPLEMENTARY MATERIAL

TABLES

Table 1. Camera-trap sites and their respective sampling time periods and number of

cameras per site (1 or 2). Missing values (-) account for periods that cameras did not work,

and therefore sampling did not occur.

CAM Jul. 12 - Jul. 31 Aug. 11 - Aug. 30 Sept. 7 - Sept. 26 Oct. 10 - Oct. 29 Nov. 10 - Nov. 29

CAMAR7 - 1 1 1 1

CAMBL1 2 2 2 2 2

CAMDM3 - 1 1 1 -

CAMDM6 - 2 2 - 2

CAMMF5 - 2 - 2 2

CAMRJ7 - 2 2 2 2

CAMV15 - - - 2 2

CAM BJ - 1 1 1 -

CAM CK - - - 2 1

CAM DC2 2 1 - 1 -

CAM FE2 - 1 - 1 -

CAM GF 1 1 1 1 -

CAM J - 1 - 1 -

CAM JG 1 - - 1 -

CAM KA1 - 1 - - 1

CAM MN1 2 2 1 1 -

CAM MN2 2 1 1 - -

CAM MN3 2 2 - 2 -

CAM OM2 1 1 - - -

CAM OM3 2 2 - - -

CAM OM5 1 1 1 - -

CAM OM6 1 2 1 2 -

CAM P2V - 1 - - 1

CAM PO1 2 - - 1 1

CAM PO2 2 - - 1 2

CAM PO3 2 - - 1 1

CAM RQ - - 1 1 -

CAM TU3 1 1 1 1 -

CAM TU6 2 2 - - -

CAM TU8 - 1 1 - -

CAM UO4 1 2 - 1 1

CAM VU1 2 2 - 2 1

CAM VY2 - 1 1 - -

Page 50: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

42

CAM VY3 1 1 1 - -

CAM VY5 2 2 - - -

CAM WP1 1 - 1 - 1

CAM XW2 - - - 1 1

CAM YW1 1 2 1 1 1

CAM YZ1 2 - - 1 1

CAM YZ3 2 - - 1 -

CAM ZX1 1 - - 1 -

Table 2. Candidate set of 16 occupancy models for predator and prey species for

survey data from Emas National Park and its northern surrounding region, Brazil. Models

were estimated with occupancy (Ψ) as a function of open vegetation; closed vegetation;

annual croplands; and perennial croplands. Detectability (p) varied as a function of each

survey period and number of cameras per trapping site.

Candidate Models

Ψ(.),p(.)

Ψ(openhabitats),p(survey+cam)

Ψ(closedhabitats),p(survey+cam)

Ψ(annualcrops),p(survey+cam)

Ψ(perennialcrops),p(survey+cam)

Ψ(openhabitats+closedhabitats),p(survey+cam)

Ψ(openhabitats+annualcrops),p(survey+cam)

Ψ(openhabitats+perennialcrops),p(survey+cam)

Ψ(closedhabitats+annualcrops),p(survey+cam)

Ψ(closedhabitats+perennialcrops),p(survey+cam)

Ψ(annualcrops+perennialcrops),p(survey+cam)

Ψ(openhabitats+closedhabitats+annualcrops),p(survey+cam)

Ψ(openhabitats+closedhabitats+perennialcrops),p(survey+cam)

Ψ(openhabitats+annualcrops+perennialcrops),p(survey+cam)

Ψ(closedhabitats+annualcrops+perennialcrops),p(survey+cam)

Ψ(openhabitats+closedhabitats+annualcrops+perennialcrops),p(survey+cam)

Page 51: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

43

Table 3. List of medium and large-sized vertebrate species registered in Emas National

Park (ENP) and its northern surrounding region between July and December 2013.

Asterisk sign (*) indicates species analyzed in this study. Brazil Red List Status and IUCN

Status indicate species national and global conservation status, respectively. (LC = Least

Concern; NT = Near Threatened; VU = Vulnerable; DD = Data Deficient).

Species Name Common Name Inside

ENP

Outside

ENP

Brazil Red

List Status

IUCN

Status

REPTILES

Salvator duseni yellow tegu lizard x x - -

Salvator merianae black-and-white tegu lizard x x - LC

BIRDS

Cariama cristata red-legged seriema x x - LC

*Rhea americana greater rhea x x - NT

Crypturellus parvirostris small-billed tinamou x x - LC

Rhynchotus rufescens red-winged tinamou x x - LC

Crax fasciolata bare-faced curassow x x - VU

Penelope superciliaris rusty-margined guan x x - LC

Aramides cajanea grey-necked wood rail x - LC

MAMMALS

Chironectes minimus water opossum x - LC

Didelphis albiventris white-eared opossum x x - LC

Cabassous unicinctus naked-tailed armadillo x x - LC

Dasypus novemcinctus nine-banded armadillo x x - LC

Euphractus sexcinctus hairy armadillo x x - LC

Priodontes maximus giant armadillo x x VU VU

*Myrmecophaga tridactyla giant anteater x x VU VU

Tamandua tetradactyla lesser anteater x x - LC

Alouatta caraya black howler monkey x - LC

Sapajus libidinosus bearded capuchin monkey x - LC

Coendou prehensilis brazilian porcupine x - LC

Cuniculus paca spotted paca x - LC

Dasyprocta azarae Azara's agouti x x - DD

Page 52: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

44

Hydrochoerus hydrochaeris capybara x x - LC

*Pecari tajacu collared peccary x x - LC

*Tayassu pecari white-lipped peccary x x VU VU

Blastocerus dichotomus marsh deer x x VU VU

*Ozotoceros bezoarticus pampas deer x x VU NT

Mazama americana red brocket deer x x - LC

Mazama gouazoubira gray brocket deer x x - LC

*Tapirus terrestris lowland tapir x x VU VU

Eira barbara tayra x x - LC

Galictis cuja lesser grison x x - LC

Lontra longicaudis neotropical otter x - NT

Conepatus semistriatus striped hog-nosed skunk x x - LC

Nasua nasua ring-tailed coati x x - LC

Procyon cancrivorus crab-eating raccoon x x - LC

Cerdocyon thous crab-eating fox x x - LC

Lycalopex vetulus hoary fox x VU LC

Chrysocyon brachyurus maned wolf x x VU NT

Leopardus colocolo pampas cat x x VU NT

Leopardus pardalis ocelot x x - LC

*Puma concolor cougar x x VU LC

Puma yagouaroundi jaguarundi x - LC

*Panthera onca jaguar x x VU NT

DOMESTIC

Gallus gallus domesticus domestic chicken x

Sus scrofa domesticus feral pig x

Bos indicus domestic cattle x

Equus ferus caballus domestic horse x

Canis lupus familiaris domestic dog x x

Felis catus domestic cat x

Page 53: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

45

Table 4. The three best fitted models for each studied species and their respective AIC,

ΔAIC and naïve occupancy values. Values in red indicate models with less strength of

inference. Models were estimated with occupancy (Ψ) as a function of open vegetation;

closed vegetation; annual croplands; and perennial croplands. Detectability (p) varied as

a function of each survey period and number of cameras per trapping site.

Species Name

Common Name

Model AIC ΔAIC naïve Ψ

P. onca jaguar

psi(.),p(.) 108,28 0,00

0,4250 psi(open),p(survey+cam) 115,56 7,28

psi(perennial),p(survey+cam) 115,88 7,60

Pu. Concolor cougar

psi(.),p(.) 133,54 0,00

0,5750 psi(perennial),p(survey+cam) 134,66 1,12

psi(annual),p(survey+cam) 136,57 3,03

M. tridactyla

giant anteater

psi(.),p(.) 112,41 0,00

0,3750 psi(annual),p(survey+cam) 115,99 3,58

psi(closed+annual),p(survey+cam) 117,27 4,86

Pe. Tajacu collared peccary

psi(open+annual),p(survey+cam) 69,19 0,00

0,2000 psi(open+closed),p(survey+cam) 69,55 0,36

psi(open+closed+annual+perennial),p(survey+cam) 70,50 1,31

T. pecari white-lipped

peccary

psi(open+closed+annual+perennial),p(survey+cam) 140,83 0,00

0,7000 psi(annual),p(survey+cam) 151,50 10,67

psi(open),p(survey+cam) 151,68 10,85

Ta. Terrestris

lowland tapir

psi(.),p(.) 154,50 0,00

0,7750 psi(open+closed),p(survey+cam) 155,70 1,20

psi(annual),p(survey+cam) 156,26 1,76

O. bezoarticus

pampas deer

psi(open+annual+perennial),p(survey+cam) 128,13 0,00

0,7750 psi(closed+annual+perennial),p(survey+cam) 128,13 0,00

psi(open+closed+anual),p(survey+cam) 128,30 0,17

R. americana

greater rhea

psi(open+closed+annual+perennial),p(survey+cam) 139,31 0,00

0,7250 psi(closed),p(survey+cam) 140,97 1,66

psi(open+closed),p(survey+cam) 141,23 1,92

Page 54: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

46

FIGURES

Figure 1. Emas National Park location in Goiás state and Brazil, and the vegetation types

and camera-trapping sites in Emas National Park and its surrounding region.

Page 55: OCUPAÇÃO DE PREDADORES TOPO DE CADEIA E DE SUAS PRESAS …jaguar.org.br/wp-content/uploads/publicacoes/Issa_2017.pdf · presença local de predadores topo de cadeia (onça-pintada

47

Figure 2. Focal species considered in this study. A: jaguar (Panthera onca); B: cougar (Puma concolor); C: giant anteater (Myrmecophaga

tridactyla); D: lowland tapir (Tapirus terrestris); E: white-lipped peccary (Tayassu pecari); F: collared-peccary (Pecari tajacu); G: pampas

deer (Ozotoceros bezoarticus); H: greater rhea (Rhea americana). All pictures were taken by Jaguar Conservation Fund’s automatic camera

traps in Emas National Park region, southwestern Goiás state, Brazil, between July and December, 2013.