173
Recuperação de áreas degradadas pela mineração no Cerrado Manual para revegetação Rodrigo Studart Corrêa 2007

Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Embed Size (px)

Citation preview

Page 1: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Recuperação de áreas degradadas pela mineração no Cerrado

Manual para revegetação

Rodrigo Studart Corrêa

2007

Page 2: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Ilustrações Gilda Ferreira

Capa Jazida de cascalho à margem da BR 060,

Distrito Federal, recuperada com lodo de esgoto.

Foto: Rodrigo Studart Corrêa

Page 3: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Índice páginaCapítulo 1 - Conceitos básicos e noções de Ecologia 1.1 Aspectos ecológicos e sucessão em áreas mineradas 1.2 Degradação e perturbação 1.3 Algumas noções sobre solos 1.3.1 Noções de Pedologia 1.3.2 Noções de Edafologia 1.3.3 Solos de Cerrado Capítulo 2 – Legislação pertinente e base teórica Capítulo 3 - Planejamento e etapas da recuperação 3.1 Recuperação de áreas degradadas 3.2 Etapas da recuperação por meio da revegetação 3.3 Medidas pré-lavra 3.3.1 Planejamento da exploração 3.3.2 Armazenamento da camada superficial do solo Anexo 3.1 Capítulo 4 - Tratamento da paisagem 4.1 Tratamento da forma da paisagem 4.2 Controle da erosão 4.3 Planejamento do controle da erosão 4.3.1 Fator R - erosividade das chuvas 4.3.2 Fator K - erodibilidade do substrato 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

4.3.4 Fator C - cobertura do substrato 4.3.5 Fator P - medidas de controle da erosão 4.3.6 Exemplo de uso da EUPS/USLE para subsidiar a elaboração de um PRAD 4.5 Recomposição topográfica 4.5.1 Construção de terraços (terraceamento) 4.5.2 Exemplo de determinação da distância entre terraços e do número de terraços a serem construídos em uma área hipotética

Capítulo 5 - Tratamento do substrato 5.1 Material exposto 5.2 Subsolagem ou escarificação do material exposto 5.3 Amostragem do substrato exposto 5.4 Coveamento 5.5 Adubação do substrato 5.5.1 Matéria orgânica 5.5.1.1 Escolha da fonte de matéria orgânica 5.5.1.2 Uso de esgoto e lodo de esgoto em PRAD’s 5.5.1.3 Estabilização e higienização de lodos de esgotos 5.5.1.4 Aplicação de lodos de esgoto a substratos minerados 5.5.2 Correção do pH do substrato 5.5.3 Adubação com nitrogênio (N) 5.5.4 Adubação com fósforo (P) 5.5.5 Adubação com potássio (K) 5.5.6 Adubação com enxofre (S) e gessagem 5.5.7 Adubação com micronutrientes 5.5.8 Recomendações gerais de adubação

Page 4: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5.5.9 Adubação da camada rasteira Capítulo 6 - Escolha da comunidade vegetal 6.1 Estrato rasteiro 6.2 Estrato lenhoso (árvores e arbustos) 6.2.1 Exemplo de configuração de um estrato lenhoso de um projeto de restauração hipotético

Capítulo 7 - Sistemas de revegetação de áreas mineradas 7.1 Estrato herbáceo 7.2 Estrato arbóreo 7.3 Estrato arbóreo sobre herbáceo 7.4 Regeneração induzida Capítulo 8 - Custos, monitoramento e manutenção de projetos de revegetação de áreas mineradas

8.1 Custos de recuperação 8.2 Monitoramento e manutenção Anexo 8.1 Anexo 8.2 Glossário Referências Bibliográficas

Page 5: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabelas

página Tabela 2.1: Algumas normas legais pertinentes à exploração mineral Tabela 4.1: Classes de erodibilidade e valores de K para alguns solos de Cerrado Tabela 4.2: Valores do fator topográfico (LS) para algumas inclinações e comprimentos de rampa no terreno

Tabela 4.3: Valores de C em função da % de cobertura herbácea ou por resíduos de substratos

Tabela 4.4: Médias pluviométricas, EI30mensal das chuvas e R para o Distrito Federal

Tabela 4.5: Cenários para o uso da EUPS no planejamento da recuperação de uma área minerada hipotética

Tabela 4.6: Distância entre paliçadas, de acordo com a declividade do terreno Tabela 4.7: Operações e implementos agrícolas usados na recuperação de áreas degradadas

Tabela 4.8: Valores de α para a fórmula de Ev Tabela 4.9: Espaçamento horizontal recomendado entre terraços, conforme declividade do terreno, tipo de terraço e textura do substrato

Tabela 5.1: Classificação dos teores de matéria orgânica para solos de Cerrados Tabela 5.2: Alguns parâmetros de algumas fontes de matéria orgânica (% na matéria seca)

Tabela 5.3: Sobrevivência das mudas adubadas com composto de lixo e com lodo de esgoto, por espécie testada

Tabela 5.4: Desinfestação de alguns patógenos durante o processo de compostagem

Tabela 5.5: Composição média de alguns materiais orgânicos Tabela 5.6: Desinfestação de alguns parasitas por meio da caleação Tabela 5.7: Características agronômicas de cinco lodos de esgotos Tabela 5.8: Doses recomendadas de aplicação de lodos de esgoto a substratos minerados

Tabela 5.9: Sobrevivência de patógenos e parasitas em um solo arenoso Tabela 5.10: Interpretação do valor de pH encontrado em solos e substratos Tabela 5.11: Dose de fósforo em função do teor de argila Tabela 5.12: Adubação de covas de 100 litros, abertas em substrato minerado Tabela 5.13: Doses de fósforo para implantação da camada rasteira em substratos minerados

Tabela 5.14: Alguns fertilizantes disponíveis no mercado Tabela 6.1: Espécies de gramíneas nativas de Cerrado usadas sobre substratos minerados

Tabela 6.2: Percentagem de germinação de algumas espécies de gramíneas ativas do Cerrado

Tabela 6.3: Espécies utilizadas na composição do estrato herbáceo de projetos de revegetação

Tabela 6.4: Espécies lenhosas de Cerrado, usadas na recuperação de áreas mineradas

Tabela 6.5: Desempenho de algumas espécies plantadas em áreas mineradas no Cerrado após duas estações de crescimento (18 meses)

Tabela 7.1: Matéria orgânica (M.O.) e nutrientes em substratos e em sedimentos de duas áreas mineradas

Page 6: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 8.1: Cronograma de acompanhamento de locais em recuperação Tabela 8.2: Sintomas de deficiências nutricionais

Figuras

Página Figura 1.1a: Espécie arbórea de Cerrado Figura 1.1b: Raízes remanescentes a variadas profundidades de corte Figura 1.2: Principais horizontes encontrados em solos brasileiros Figura 1.3: Relação entre a profundidade do solo e o porte da vegetação Figura 1.4: Proporção volumétrica dos diferentes componentes de um solo hipotético ideal

Figura 4.1: Controle de erosão em voçoroca por meio de paliçadas Figura 4.2: Terraço de Mangum Figura 4.3: Terraço de Nichols Figura 5.1: Capacidade de infiltração de quatro substratos de Cerrado I Figura 5.2: Capacidade de infiltração de quatro substratos de Cerrado II Figura 5.3: Amostragem do substrato de uma área minerada Figura 5.4: Sobrevivência de mudas de acordo com a classe de altura e fonte de matéria orgânica utilizada, em 22 meses de crescimento

Figura 5.5: Conteúdo de água (θg) durante o processo de irradiação solar do lodo Figura 5.6: Incremento em altura de jatobá-do-cerrado em covas de 64 litros adubadas com quatro tipos de lodo de esgoto (18 litros/cova) + N.P.K. - 4:14:8 (100 g/cova)

Figura 5.7: Valores de Ca, K, matéria orgânica, Mn, pH e Mg em um solo de Cerrado e em um substrato minerado no Cerrado.

Figura 6.1: Evolução da diversidade de espécies em uma área minerada após o plantio de Inga marginata e Tibouchina stenocarpa

Figura 7.1a: Estrato arbóreo Figura 7.1b: Estrato arbóreo sobre herbáceo Figura 8.1: Crescimento de Inga marginata (n = 20) e Tibouchina stenocarpa (n = 30) em área minerada no Cerrado durante 90 meses

Page 7: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Fotos

Página Foto 1.1: Áreas mineradas no Parque Nacional de Brasília, após 25 anos de sucessão

Foto 4.1: Manilhamento e construção de canal de alvenaria para estabilização de voçoroca em área minerada

Foto 4.2: Terraço de retenção, tipo Nichols, construído em área minerada antes de sua revegetação

Foto 5.1: Subsolagem cruzada de substrato exposto em cascalheira explotada Foto 7.1: Área revegetada exclusivamente com estrato herbáceo Foto 7.2: Estrato arbóreo brotando sobre substrato revegetado exclusivamente com espécies herbáceas, três anos após o tratamento do substrato

Foto 7.3: Área revegetada com mudas de espécies arbóreas, tutoradas Foto 7.4: Estrato herbáceo brotando em área revegetada exclusivamente com espécies arbóreas

Foto 7.5: Revegetação espontânea após construção de terraços e de acúmulo de sedimentos sobre substrato minerado

Foto 7.6: Poleiros instalados em área de empréstimo no Parque Nacional de Brasília

Quadros

página Quadro 1.1: Principais solos que ocorrem no Cerrado Quadro 4.1: Conversão entre declividade (%) e inclinação (graus) Quadro 5.1: Processo de compostagem Quadro 5.2: Equivalência mg kg-1 kg ha-1 Quadro 5.3: Teoria do Fator Limitante Quadro 5.4: Algumas relações de densidade global e massa de substrato ha-1

Page 8: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Capítulo 1

Conceitos básicos e noções de Ecologia

1.1 Aspectos ecológicos e sucessão em áreas mineradas

A sucessão ecológica é um processo de modificação do ambiente pelas próprias comunidades

que o habitam. Ela se inicia com a colonização de uma área por uma comunidade simples e de

pouca biomassa e termina com uma comunidade clímax, cuja biomassa atinge o valor máximo

possível para as condições locais, e a diversidade é geralmente maior do que aquela existente na

comunidade que iniciou o processo de sucessão. As chamadas sucessões primárias

correspondem à colonização de um meio que nunca sofrera significativa influência biológica,

como ocorre nos horizontes expostos de áreas mineradas. Esse tipo de sucessão leva séculos para

atingir uma comunidade clímax (BEGON et al., 1990). Sucessões secundárias ocorrem em um

local anteriormente povoado, mas do qual foram eliminados os seres vivos por meio de

modificações climáticas (incêndios, glaciações), geológicas (terremotos, erosão), ou antrópicas

(desmatamento). Sucessões ecológicas resultam freqüentemente em uma comunidade clímax

diferente da que existia anteriormente no local.

“A maior ameaça à diversidade biológica é a perda de habitat” (PRIMACK & RODRIGUES,

2002) e planos conservacionistas recomendam a restauração de comunidades vegetais como

forma de inpulsionar a sucessão e aumentar a capacidade de suporte do ambiente. (ANAND &

DESROCHERS, 2004). Entretanto, um estudo do pesquisador turco Uzay Sezen, publicado na

revista Science em fevereiro de 2005, mostra que, mesmo sob condições ideais de sucessão, não é

possível que uma floresta ao se regenerar mantenha a diversidade que tinha antes de ser

derrubada. O pesquisador verificou que mais de a metade dos exemplares de palmeira-barriguda

(Iriartea deltoidea) que colonizavam uma área de pastagem abandonada descendia de apenas duas

árvores. Trata-se de uma redução brutal na diversidade genética da espécie. Portanto, ainda que se

tenha uma regeneração vigorosa de diferentes espécies em área em sucessão secundária,

remanesce no local um panorama genético pobre.

As perspectivas de regeneração natural em áreas mineradas são ainda menos promissoras. A

sucessão geralmente recupera a cobertura vegetal de solos desmatados, mas não a de substratos

minerados. Todavia, o estudo da sucessão em áreas mineradas no Cerrado pode indicar os

Page 9: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

caminhos da regeneração em locais escavados, as espécies vegetais aptas a iniciarem o processo, a

velocidade dessa sucessão, a estrutura da comunidade, as mudanças que essa comunidade

provoca no substrato minerado e, principalmente, explicar por que a regeneração natural nesses

locais é insuficiente para cobrir e estabilizar a jazida explotada. Nesse sentido, a Ecologia da

Restauração surge como um processo de alteração intencional um local para restabelecer algo

próximo a diversidade, estrutura e funcionamento do ecossistema que ocupava aquele local

originalmente (Primack & Rodrigues, 2002).

Estudos de Ecologia de áreas desmatadas no Cerrado indicam que a regeneração da vegetação

é resultado tanto na germinação de sementes quanto na brotação de partes aéreas e de raízes de

algumas espécies que, quando expostas à luz, desenvolvem-se como parte aérea. Em áreas

mineradas, a contribuição desses dois mecanismos é diferente, pois são raras as sementes que

conseguem germinar e desenvolver uma planta adulta sobre substratos minerados (CORRÊA,

1995). Corrêa et al. (1998) identificaram que em curto prazo as plantas regeneradas após a

explotação de uma lavra são originadas de raízes geminíferas. Dessa forma, a recolonização de

áreas mineradas no Cerrado depende inicialmente da germinação de raízes que permanecem

enterradas no substrato após a mineração. A importância do sistema radicular nesse bioma pode

ser entendida quando se diz que o Cerrado é uma floresta de cabeça para baixo, pois há mais

biomassa sob a forma de raiz do que sob a forma de parte aérea (Figura 1.1a).

A quantidade de raízes que permanece em substratos minerados diminui à medida que se

aprofunda uma lavra (Figura 1.1b). Conseqüentemente, o número de plantas regeneradas varia

em função da profundidade de corte. Corrêa et al. (1998) encontraram apenas 8% do número

original de espécies lenhosas revegetando uma cava explorada até 2,7 m de profundidade. Porém,

quando a profundidade de corte foi 0,2 m, 59% das espécies originalmente presentes em um

Cerrado stricto sensu regeneraram em até seis meses após a escavação. Como a maioria das áreas

explotadas pela mineração é mais profunda que 1,5 m, espera-se uma regeneração por meio de

raízes geminíferas incipiente nesses locais.

A riqueza e a diversidade de espécies (Índice de Shannon) também se mostram inversamente

proporcionais à profundidade de corte de cavas mineradas. Em seis meses de regeneração, locais

que perderam apenas 0,2 m de camada superficial recuperaram 79% diversidade original de

espécies (CORRÊA et al.,1998). Cavas entre 1,6 e 2,2 m de profundidade recuperaram entre 35 e

30% da diversidade original e assim sucessivamente, até que não se tenha qualquer espécie

Page 10: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

rebrotando em cavas mais profundas (Figura 1.1b). Todavia, mesmo quando há 80% de

recuperação da diversidade de espécies em jazidas, a cobertura vegetal do substrato permanece

insatisfatória, mesmo após décadas de sucessão.

Figura 1.1a: Espécie arbórea de Cerrado. Figura 1.1b : Raízes remanescentes a variadas profundidades de corte.

A regeneração natural não tem sido capaz de recuperar satisfatoriamente a cobertura vegetal e

a riqueza de espécies em áreas mineradas no Cerrado. Após 25 de regeneração, Corrêa (1995)

constatou 3,7% de cobertura vegetal de uma área escavada em 1,5 m de profundidade no Parque

Nacional de Brasília, que são insuficientes para proporcionar proteção a um substrato minerado

(Foto 1.1). Pelo enorme banco de sementes, trânsito de animais e ausência de ações antrópicas,

essa área minerada no Parque Nacional apresentaria grande potencial para se revegetar

naturalmente. A riqueza de espécies desse local situava-se entre 7 e 8% dos valores encontrados

em áreas desmatadas e em áreas naturais de Cerrado no Parque. O número de plantas situava-se

entre 9 e 15% do total encontrado em outras áreas não mineradas. Com base na cobertura vegetal

medida, a capacidade de regeneração (resiliência) dessa área escavada situou-se entre 4 e 5% da

resiliência das áreas desmatadas no Parque que tiveram seus horizontes superficiais do solo

preservados (Quadro 1.1). Há, dessa forma, perdas ecológicas e ambientais, inerentes à atividade

de mineração, que não são recuperadas em décadas de sucessão natural.

Page 11: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Estudos de longo prazo indicam que há maior similaridade vegetal entre uma área natural de

Cerrado e outra regenerada a partir de um desmatamento do que entre uma área natural e um

local regenerado a partir de uma escavação. De acordo com Corrêa (1995), a probabilidade de

dois indivíduos coletados aleatoriamente em um local minerado e em uma área natural de

Cerrado serem da mesma espécie é de apenas 14%. Caso os dois indivíduos fossem coletados em

uma área que sofreu desmatamento e em uma área natural de Cerrado, essa probabilidade subiria

para 27%. Mesmo na ausência de barreiras físicas, espécies que habitam locais vizinhos podem

ser alopátricas (excludentes), caso as condições do solo/substrato definam biótopos diferentes

(DAJOZ, 1973). Pode-se deduzir então que condições peculiares dos substratos minerados, dos

solos de áreas desmatadas e de solos sob condições naturais funcionam como definidores de

diferentes biótopos. Portanto, a regeneração natural de áreas desmatadas e mineradas no Cerrado

estaria criando fitofissionomias ecologicamente diferenciadas daquelas presentes em áreas

naturais.

Foto 1.1: Áreas mineradas no Parque Nacional de Brasília, após 25 anos de sucessão.

De acordo com Odum (1993), qualquer comunidade evolui para um clímax, por mais lenta

que seja essa evolução. A regeneração de áreas mineradas no Cerrado parece ser extremamente

lenta e, devido aos problemas ambientais que freqüentemente causam, jazidas explotadas devem

ser recuperadas. Há, ainda, a possibilidade de que o clímax de áreas mineradas no Cerrado seja

atingido em poucas décadas de sucessão. Teoricamente, as condições adversas dos substratos

Page 12: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

minerados assemelhariam áreas mineradas a ecossistemas extremamente áridos, cuja cobertura

vegetal e diversidade biológica são baixas (DAJOZ, 1973; ODUM, 1993). Dessa forma, a

intervenção humana seria então necessária para prover uma cobertura vegetal satisfatória nesses

locais.

Há vários fatores limitantes que potencialmente retardam, dificultam ou impedem o

estabelecimento e o desenvolvimento de plantas em áreas mineradas: a compactação da superfície

exposta, a topografia que favorece enxurradas, a baixa capacidade de retenção de água e a baixa

concentração de nutrientes no substrato que, juntos, tornam as áreas mineradas desfavoráveis ao

desenvolvimento de vegetais.

Segundo Dajoz (1973), os ecologistas não devem contentar-se com uma longa lista de

possíveis fatores ecológicos que limitam ou retardam uma sucessão ecológica. Devem, ao

contrário, descobrir um reduzido número de fatores limitantes que atuam diretamente sobre os

indivíduos, as populações e as comunidades, para entender como eles operam. A identificação de

fatores limitantes tem grande importância prática na Ecologia Aplicada e na solução de

problemas relacionados ao estabelecimento e desenvolvimento de plantas em substratos

minerados. No Cerrado, a topografia é certamente um fator que diferencia as poucas áreas

mineradas que apresentam satisfatória regeneração daquelas em que os substratos são

inapropriados às plantas.

O número de plantas espontaneamente desenvolvidas em áreas mineradas é insignificante,

mesmo quando propágulos e sementes estão disponíveis no local. De acordo com Rodrigues &

Gandolfi (1998), há três fatores que garantem a sustentabilidade de uma comunidade vegetal:

1) a disponibilidade de sementes e propágulos aptos a se desenvolverem;

2) o estabelecimento de espécies de categorias sucessionais diferentes;

3) a disponibilidade de um local adequado para dar suporte à germinação dessas sementes e

ao desenvolvimento das plantas.

Dessa forma, os elaboradores de Planos de Recuperação de Áreas Degradadas - PRAD’s

devem visar, primeiramente, à criação de paisagens estáveis nas jazidas explotadas. Depois,

devem tornar substratos minerados aptos ao recebimento de plantas e, finalmente, devem

identificar as espécies vegetais que são capazes de iniciarem um processo de sucessão

Page 13: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

ecológica. Atualmente são reconhecidas treze medidas que visam à recuperação de áreas

degradadas, que vão desde o isolamento do local, para favorecer a regeneração natural, até a

restauração do ecossistema. Isolamento do local, supressão da causa de degradação,

aproveitamento de camada superficial de solos, indução da regeneração natural por meio da

reconstrução topográfica, do plantio de espécies-chave, de introdução de estuturas atrativas de

fauna e, finalmente, a revegetação são as práticas mais comuns para a recuperação de áreas

degradadas pela mineração. Segundo Durigan et al. (2004), em alguns casos os processos naturais

de regeneração têm-se mostrado mais eficazes em reconstruir ecossistemas do que interferências

de recuperação executadas pelo homem.

1.2 Degradação e perturbação

Os ecossistemas terrestres dependem do solo, a tênue e frágil camada de material pulverizado

que recobre parte da biosfera. Entretanto, o conceito de solo varia conforme a ciência que o

estuda e a função que lhe é dada. Para a Engenharia Civil, solo é o meio físico necessário à

sustentação de estruturas e o material usado no leito de estradas. Para a Geologia, a camada que

recobre o material a ser minerado e que deve ser removida. Para a Pedologia, um corpo natural

sintetizado pela natureza. Para ambientalistas, solo é uma parte da paisagem. Para a Edafologia, o

meio de crescimento de vegetais e de outros organismos. Para a Ecologia, solo é o local em que

se processam parte dos ciclos naturais, como o da matéria orgânica, o de nutrientes, o ciclo

hidrológico e outros. Nas Savanas, o maior estoque de nutrientes disponíveis não se encontra nos

solos, mas na biomassa aérea e subterrânea (POGGIANI & SCHUMACHER, 2004). Portanto,

desmatamento e mineração retiram nutrientes do ecossistema, que são essenciais para o seu

funcionamento e equilíbrio ecológico. Finalmente, para aqueles que se ocupam da revegetação de

áreas mineradas, solo será o produto final da intervenção humana sobre um substrato que

apresenta baixo potencial biológico.

A condição árida e inapropriada à vida das áreas mineradas é resultado da perda da estrutura

física, química e biológica que existem em solos não degradados. Há três áreas de enfoque que

visam à recuperação de áreas degradadas: revegetação, remediação e geotecnia. As

estabilidades ecológica e ambiental, a estabilidade química e a estabilidade física são,

respectivamente, os objetivos dessas três áreas de atuação. A interação entre essas áreas é intensa,

pois não há que se pensar em revegetação sem antes se remediarem processos químicos e se

estabilizarem fisicamente locais minerados.

Page 14: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Substratos minerados são geralmente incapazes de cumprir a parte terrestre do ciclo

hidrológico, que é permitir a infiltração das precipitações para que a água seja lentamente liberada

para rios, lagos, mares e aqüíferos. Se não infiltra, a água escorre, empobrece ainda mais os

substratos e causa erosão. Sob a óptica edafo-ecológica, sem armazenamento de água no

substrato, não há vida terrestre. A degradação então pode ser vista como a quebra de ciclos

naturais em sua porção terrestre. A recuperação de um local, portanto, tem que ser entendida

como a restituição da função ecológica desse local nos ciclos naturais. Projetos de revegetação

que não consideram os ciclos da natureza têm a sua sustentabilidade ecológica comprometida.

Incorporar as visões da Edafologia, da Ecologia e dos ambientalistas é de suma importância para

o sucesso de PRAD’s.

A conceituação de área degradada é ampla e diversa na literatura especializada.

Genericamente, qualquer alteração do meio natural pode ser considerada uma forma de

degradação. Dessa forma, pode ser área degradada aquela que diminuiu sua produtividade, por

causa manejos agrícolas inadequados, aquela que teve a cobertura vegetal removida, aquela que

recebeu excesso de fertilizantes e agrotóxicos, a que teve seu solo poluído ou que, finalmente,

aquela área que perdeu seus horizontes superficiais do solo por causa da erosão ou da mineração.

O tema se fortaleceu no Brasil na década de 1980, mas conceituações genéricas trouxeram alguma

confusão em torno dos termos degradação e recuperação. Ao se nomear qualquer intensidade

de dano ambiental de área degradada, dificulta-se um pré-diagnóstico sobre o estado real de

deterioração de um ambiente e da necessidade de intervenção humana nele.

A Organização das Nações Unidas para a Agricultura e a Alimentação define degradação de

terras como a deterioração ou perda total da capacidade dos solos para uso presente e futuro

(FAO, 1980 apud ARAUJO et al., 2005). Sendo assim, para os que se ocupam da recuperação de

terras e ecossistemas, diferentes intensidades de danos requerem diferentes conceitos e

tratamentos. Desmatar uma área ou deteriorar as propriedades de um solo podem ser

degradações ou perturbações, a depender da intensidade do dano. Caso o ambiente não se

recupere sozinho em um tempo razoável, diz-se que ele está degradado, e a intervenção humana

é necesária. Se o ambiente mantém sua capacidade de regeneração ou depuração (resiliência),

diz-se que ele está perturbado, e a intervenção humana apenas acelera o processo de

recuperação. A degradação intensa, com perda de resiliência, resulta notadamente em áreas

degradadas. Há outros locais, porém, que a simples mitigação dos impactos ambientais

causadores da alteração é suficiente para que processos de regeneração natural recuperem o

Page 15: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

ecossistema terrestre. São as chamadas áreas perturbadas, que resguardam considerável grau de

resiliência. Reconhecer os mecanismos de resiliência de um ecossistema e distinguir áreas

perturbadas de áreas degradadas são aspectos importantes para e eficiência técnica e

econômica de um PRAD.

Page 16: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

1.3 Algumas noções sobre solos

1.3.1 Noções de Pedologia

A Pedologia estuda a formação as caracterísiticas dos solos por meio da descrição de perfis.

Dizem os pedólogos que o estudo de solos é o estudo de perfis de solos. Ao se cavar uma

trincheira ou se observar um corte de estrada, percebe-se que o solo, ou o perfil do solo, é

formado por camadas ou horizontes sobrepostos. Cada horizonte ou camada possui

características específicas, atributos e limitações de ordem física, química, biológica, hidrológica e

estrutural (Figura 1.2). Não se encontram todos os horizontes abaixo citados em todos os tipos

de solos. Cada tipo de solo possui uma seqüência própria de horizontes. Nos Cambissolos, por

exemplo, há horizontes A e B, pouco espessos, sobre um horizonte C mais profundo. Nos solos

orgânicos, podem-se encontrar os horizontes O ou H. Solos mais profundos, com maior

profundidade efetiva, geralmente suportam uma vegetação de maior porte (Figura 1.3). Para o

minerador, é importante localizar a(s) camada (s) que interessa explorar e definir a sua espessura.

Para os que irão recuperar uma área minerada, é essencial saber qual o horizonte que

permanecerá exposto ao final da lavra, pois é sobre ele que o novo ecossistema será implantado.

O Camada orgânica, formada sob condições aeróbicas, sem água estagnada (húmus)

H Camada orgânica, superficial ou não, formada sob condições de água estagnada (turfa)

A Horizonte superficial mineral, usado para classificar solos. Concentra a maior parte da

matéria orgânica e da vida em solos minerais

E Horizonte mineral de perda de matéria orgânica, argila e óxidos de ferro

B Horizonte subsuperficial usado para classificar solos

F Horizonte ou camada mineral de acúmulo de ferro e alumínio

C Horizonte mineral parcialmente intemperizado e ainda apresentando características da

rocha-mãe

R Rocha matriz ou rocha-mãe

Figura 1.2: Principais horizontes encontrados em solos brasileiros. Observação: fora de escala.

Page 17: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Figura 1.3: Relação entre a profundidade do solo e o porte da vegetação.

Page 18: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

1.3.2 Noções de Edafologia

A Edafologia vê o solo como um grande reservatório de nutrientes, água, ar e matéria

orgânica. Para essa ciência, um solo mineral ideal teria cerca de 45% de seu volume ocupado

pela fração mineral (areia, silte e argila), 5% pela matéria orgânica e a outra metade dividida em

proporções similares de água e ar, necessários para plantas e organismos (Figura 1.4). Essa visão

utilitarista sobre quais substâncias que o solo pode oferecer às plantas permanece. Mas sob uma

óptica mais moderna, a Edafologia considera atualmente o solo um sistema dinâmico, pois há

constantes transformações químicas, físicas e biológicas ocorrendo nele. A uréia (fertilizante) ao

ser aplicada aos solos, por exemplo, não permanece estática. Ela pode rapidamente volatilizar ou

ser transformada em nitrato, que é geralmente lixiviado para camadas mais profundas através da

infiltração de água (chuva ou irrigação). O conteúdo da água aplicada ao solo também muda

constantemente. Drenagem e evapotranspiração alteram rapidamente as proporções de ar e água

no solo. Substratos minerados apresentam diminutas quantidades de matéria orgânica, ar e

capacidade de reter água.

Ecossistemas naturais pertubados respondem a alterações edáficas pela mudança na

composição de espécies. (GONÇALVES et al., 2004b). Em ambientes degradados, sob o enfoque

da Edafologia, deve-se aumentar a matéria orgânica, a aeração e a capacidade de armazenamento

de água de substratos minerados. Só assim o substrato estará apto ao crescimento de plantas e

outros organismos.

Page 19: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5%

25%

25%

45%Matéria orgânica ArÁguaFração mineral

Figura 1.4: Proporção volumétrica dos diferentes componentes de um solo hipotético ideal.

1.3.3 Solos de Cerrado

Os elaboradores e executores de PRAD’s no Cerrado necessitam de conhecimentos básicos

sobre esse bioma e sobre seus solos (Quadro 1.1). O Cerrado ocupa 25% da extensão territorial

brasileira (220 milhões de hectares), em sua maior parte localizado no Planalto Central brasileiro

(MACEDO, 1994). Porém, há também manchas de Cerrado nas Regiões Sul, Sudeste, Norte e

Nordeste do Brasil.

A precipitação anual no Cerrado varia entre 750 e 2.000 mm e as temperaturas médias anuais

são propícias ao crescimento vegetal durante todo o ano (18 a 26oC). Todavia, a má distribuição

das chuvas é um sério problema para o cultivo de plantas e para o controle da erosão em solos

descobertos. O deficit hídrico nos solos de Cerrado pode superar os 790 mm na época seca

(LOPES, 1984), que representa forte impedimento à sobrevivência e ao crescimento de mudas

arbóreas em fases iniciais de desenvolvimento. Apesar disso, Ferri (1944 apud MALAVOLTA &

KLIEMANN, 1985) demonstrou que a vegetação de Cerrado transpira durante o ano todo. Isso

significa que falta d´água não é fator limitante para o desenvolvimento da vegetação nativa em

áreas não mineradas. Na verdade, a característica escleromórfica da vegetação de Cerrado é

reputada à deficiência de nutrientes e à toxidez pelo alumínio e não à falta d’ água. Porém,

Page 20: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

estudos mais recentes mostram que as espécies nativas fecham parcialmente seus estômatos

durante as horas mais quentes do dia, como estratégia de sobrevivência ao clima seco (DA

SILVA, 2001).

Os solos de Cerrado são muito intemperizados, mediamente ácidos (DE OLIVEIRA et al.,

2000) e apresentam baixa disponibilidade de nutrientes para os vegetais. De acordo com Eiten

(1994), o efeito do clima sobre a vegetação de Cerrado é indireto, através de sua ação sobre o

solo: a baixa fertilidade dos solos estaria limitando o desenvolvimento de uma vegetação de maior

porte e biomassa. A vegetação nativa de Cerrado cresce sobre solos pobres em bases trocáveis,

principalmente o cálcio (MALAVOLTA & KIELMANN, 1985). Profundidade efetiva do solo,

presença de concreções no perfil, proximidade à superfície do lençol freático, drenagem e

fertilidade são fatores determinantes das diversas fitofisionomias que compõem o Cerrado lato

sensu: Mata Mesofítica, Cerradão, Cerrado stricto sensu, Campo Sujo, Campo Limpo, Veredas e

Brejos (HARIDASAN, 2000). Quando a comunidade clímax é limitada pela capacidade de

suporte do solo, diz-se que o clímax é edáfico. Isso ocorre naturalmente no Cerrado (EITEN,

1994), onde a pluviosidade, a temperatura e a luminosidade poderiam originar comunidades

climácicas de maior biomassa, caso os solos fossem mais férteis. Em substratos minerados, o

“clímax edáfico” deve fazer-se ainda mais intenso e limitante ao crescimento de plantas.

De acordo com Malavolta & Kliemann (1985), os solos de Cerrado seguem a seguinte ordem

decrescente de limitações: acidez > falta de fósforo > falta de enxofre ou potássio > falta de

zinco > falta de boro > falta de cobre > falta de nitrogênio e de manganês. Portanto, deve-se

iniciar a correção química dos substratos minerados com a aplicação de calcário e seguir com a

adubação fosfatada, potássica e assim sucessivamente.

Segundo Da Silva (2001), a fertilização e irrigação para posterior avaliação do

desenvolvimento de espécies nativas de Cerrado é uma boa maneira de se caracterizar a escassez

de nutrientes no Cerrado. De acordo com mesmo autor, as espécies vegetais associadas

naturalmente a solos pouco férteis respondem menos à adição de fertilizantes do que plantas

nativas de solos mais férteis. Dessa forma, ao serem utilizadas em PRAD’s, as espécies de Mata

Mesofítica e Cerradão responderiam melhor à adubação do que as espécies de Cerrado stricto sensu

ou de Campo Cerrado. Entretanto, segundo Ratter et al., (1977 e 1978 apud HARIDASAN, 2000),

há espécies de Cerrado que são indiferentes à fertilidade do solo, enquanto outras só ocorrem em

solos ácidos e poucos férteis. Um terceiro grupo de espécies somente cresce em solos férteis.

Page 21: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

O percentual de cobertura dos solos por copas de árvores varia de quase zero, nos Campos,

atingido quase 100% nos Cerradões e Matas. Sob condições de cobertura vegetal natural, a erosão

não é um problema sério. Entretanto, os solos tornam-se muito susceptíveis à erosão após o

desmatamento. O regolito é geralmente o material exposto após a mineração. Ele é altamente

erodível e permite um rápido aprofundamento de sulcos, ravinas, voçorocas e o

desmoronamento de taludes (HARIDASAN, 1994).

Cerca de 46% da área do Cerrado é coberta por Latossolos (Quadro 1.1). Os Podzólicos

(Nitossolos) e as Areias Quartzozas (Neossolos Quartzarênicos) aparecem em segundo lugar,

cobrindo cada um 15% da área. Em seguida aparecem os Plintossolos (9%), os Litossolos

(Neossolos Litólicos), com 7%, os Cambissolos (3%), os solos Hidromórficos (2,5%), a Terra

Rocha Estruturada (2%) e outras classes de solos, que cobrem menos de 0,5% da área total de

Cerrado (CORREIA, et al., 2002). No Distrito Federal, os Latossolos aparecem em 55% da área,

seguidos pelos Cambissolos com 31%. Os demais tipos de solos somam 14% da área restante.

Áreas de Latossolos são mineradas para se retirar material argiloso para aterros e cascalho

para pavimentação. As Areias Quartzosas (Neossolos Quartzarênicos) fornecem areia para a

construção civil. A terra preta para jardins é retirada dos Solos Hidromórficos. Os Cambissolos

fornecem cascalho para pavimentação. Litossolos fornecem pedras para construção e

paisagismo. Há ainda couraças lateríticas, que ocorrem nas bordas das chapadas e em situações

de relevo suavemente ondulado. Elas são encontradas principalmente sobre as ardósias do

Grupo Paranoá, uma vez que esse tipo de substrato é mais rico em ferro. A vegetação associada

é o Campo Sujo e Campo-cerrado, cujo estrato arbustivo fica pouco evidente. Esse material tem

sido intensamente explorado como fonte de material para pavimentação de estradas, sendo tal

situação responsável por grande parte dos locais degradados pela mineração.

Page 22: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Quadro 1.1: Principais solos que ocorrem no Cerrado.

Latossolos são solos profundos (2 a 14 m de profundidade), bem drenados, com teores de argila variando entre 15% e 90%. São ricos em caulinita, quartzo e óxidos de alumínio e ferro. A vegetação predominante sobre Lotossolos é o Cerrado stricto sensu. São solos de cor vermelha, alaranjada ou amarela. Podzólicos (Nitossolos) são solos com 1,5 a 2,0 m de profundidade, em que há diferenciação marcante entre os horizontes. O teor de argila aumenta à medida que se aprofunda o perfil, mas são solos bem drenados. Podzólicos apresentam um horizonte B vermelho a vermelho-amarelado, que evidencia a acumulação de argila translocada do horizonte A pela ação da água. A vegetação sobre esses solos pode ser de Cerrado ou floresta subcaducifólia. O Podzólico Vermelho-Amarelo é o mais comum no Brasil e freqüentemente aparece associado a Latossolos. Aparecem em situação de relevo mais acidentado que o Latossolo. São solos derivados de gnaisses e granitos. Areias Quartzosas (Neossolos Quartzarênicos) são solos muito profundos, desenvolvidos a partir de arenitos ou sedimentos areno-quatzosos que contêm menos de 15% de argila. São solos muito pobres em nutrientes, muito permeáveis, mal estruturados, de capacidade de retenção de água muito baixa e alta susceptibilidae à erosão. Apresentam a seqüência de horizontes A - C, sendo em geral ácidos, com baixo potencial agrícola. São de difícil recuperação quando degradados. As vegetações associadas são os Campos ou Cerrado stricto sensu. Solos Hidromórficos são solos que se desenvolvem sob a influência de lençol freático alto, permanecendo a maior parte do tempo saturados por água. São também classificados como Glei Húmico, Laterita Hidromórfica ou Solo Orgânico (MACEDO, 1994). Ocorrem comumente ao longo de córregos, rios, lagoas, lagos, várzeas ou depressões fechadas. Em caso extremo de excesso de umidade, há um grande acúmulo de restos vegetais. Quando os solos são minerais, com o ferro reduzido e removido do perfil, possuem coloração acinzentada. É comum também o aparecimento do horizonte B contendo manchas de coloração vermelha, onde há concentração e oxidação do ferro, denominadas de mosqueado, que indica a ocorrência de oscilações do nível do lençol freático. As fitofisionomias associadas são as Matas de Galeria, Campos de várzeas ou Veredas de Buritis. Litossolos (Neossolos Litólicos) são solos rasos, pedregosos, com horizonte A ou O (orgânico) de menos de 40 cm de espessura, assentados diretamente sobre a rocha ou horizonte C. São solos associados a terrenos bastante acidentados. Cerrado stricto sensu, floresta subcaducifólia, campos rupestres e outras fisionomias de campos aparecem sobre litossolos. Cambissolos são solos intermediários entre os poucos e os bem desenvolvidos, com 1,0 a 1,5 m de profundidade. Apresentam horizonte B incipiente ou câmbico, sem evidências de iluviações de argila e sem cimentação. A textura é média (16 a 34% de argila) ou argilosa (35 a 60% de argila), com grande teor de silte. Cambissolos contêm grande proporção de cascalho (material > 2 mm de diâmetro). Estão associados a relevos acidentados e a Campos, em suas várias fisionomias.

Page 23: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Capítulo 2

Legislação pertinente e base teórica

A Constituição Federal diz em seu artigo 225 que “todos têm direito ao meio ambiente

ecologicamente equilibrado, bem de uso comum do povo e essencial à sadia qualidade de vida,

impondo-se ao Poder Público e à coletividade o dever de defendê-lo e preservá-lo para as

presentes e futuras gerações”. Em seu § 2o está estabelecido que “aquele que explorar recursos

minerais fica obrigado a recuperar o meio ambiente degradado, de acordo com a solução técnica

exigida pelo órgão público competente, na forma da lei”.

A recuperação de áreas degradadas, qualquer que seja o estado de degradação, encontra

suporte também em normas infraconstitucionais e há duas décadas o tema constitui um dos

pilares da Política Nacional do Meio Ambiente. A Lei no 6.938, de 31/08/1981, que dispõe sobre

a Política Nacional do Meio Ambiente determina que:

artigo 2o - “A Política Nacional do Meio Ambiente tem por objetivo a preservação, melhoria

e recuperação da qualidade ambiental propícia à vida, visando assegurar, no País, condições

ao desenvolvimento sócio-econômico, aos interesses da segurança nacional e à proteção da

dignidade da vida humana, atendidos os seguintes princípios:

VIII - Recuperação de áreas degradadas”.

Entretanto, a falta de conceitos precisos sobre o que é degradar e recuperar levou à edição do

Decreto no 97.632, de 10/04/89, que regulamenta o artigo 2o, Inciso VIII da Lei no 6.938/81. Em

seu artigo 1º, o Decreto no 97.632 prevê que “os empreendimentos que se destinam à exploração

de recursos minerais deverão, quando da apresentação do Estudo de Impacto Ambiental – EIA e

do Relatório de Impacto Ambiental - RIMA, submeter à aprovação do órgão ambiental

competente o Plano de Recuperação de Área Degradada - PRAD.

Decreto no 97.632, artigo 2o - “Para efeito deste Decreto são considerados como degradação

os processos resultantes dos danos ao meio ambiente, pelos quais se perdem ou se reduzem

Page 24: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

algumas de suas propriedades, tais como a qualidade ou capacidade produtiva dos recursos

ambientais”.

Decreto no 97.632, artigo 3o - “A recuperação deverá ter por objetivo o retorno do sítio

degradado a uma forma de utilização, de acordo com um plano preestabelecido para uso do solo,

visando à obtenção de uma estabilidade do meio ambiente”.

Porém, o Decreto no 12.379, de 16/05/90, restringiu o número de soluções possíveis no

Distrito Federal, ao determinar a recondução de áreas degradadas ao status quo ante. Muitas vezes

o status quo ante é inoportuno, pela urbanização da vizinhança, por mudança de uso do solo ou até

mesmo pela impossibilidade de se reconstituir um fragmento de ecossistema com estrutura

ecológica igual à natural. Países em que o tema encontrava-se mais desenvolvido à época, já

haviam tomado posições mais realistas. A Academia Nacional de Ciências dos Estados Unidos

aproximou, em 1974, a conceituação teórica da factabilidade prática. Ela definiu três termos que

expressam processos, dificuldades e objetivos a serem atingidos ao se recuperar uma área

degradada:

• Restauração: reposição das exatas condições ecológicas da área degradada, ou ao status

quo ante, como definido no Decreto no 12.379. A restauração de um ecossistema é

extremamente difícil e onerosa, só justificável para ambientes raros. Os profissionais que

trabalham com Ecologia da Restauração atuam no ramo da reconstrução de ecossistemas

perturbados ou degradados. A restauração é improvável quando o ambiente foi

agudamente degradado, como em áreas mineradas. Além disso, as restaurações

geralmente produzem apenas comunidades simplificadas, em relação às originais, ou

comunidades que não se podem manter (PRIMACK & RODRIGUES, 2002).

• Reabilitação: retorno da função produtiva da terra, não do ecossistema, por meio da

revegetação. Retorno de uma área a um estado biológico apropriado. De acordo com

Primack & Rodrigues (2002), é a recuperação de pelo menos algumas das funções do

ecossistema e de algumas espécies originais. A escarificação do substrato de uma área

minerada, por exemplo, é capaz de devolver-lhe a função hidrológica de permitir a

infiltração de águas pluviais.

Page 25: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

• Recuperação: estabilização de uma área degradada sem o estreito compromisso

ecológico. Recuperação é um processo genérico que abrange todos os aspectos de

qualquer projeto que vise à obtenção de uma nova utilização para um sítio degradado. É

um processo que objetiva, sobretudo, alcançar a estabilidade do ambiente.

Áreas degradadas são comumente revegetadas no Brasil e por isso recuperação e

reabilitação são termos considerados afins no País (IBAMA, 1990). Quando se opta pela

revegetação de uma área minerada, deve-se reconhecer que a recuperação não é um evento que

ocorre em uma época determinada, mas é um processo que se inicia com o planejamento, antes

da mineração, e termina muito após a explotação da lavra, com a manutenção do plantio

(BARTH, 1989). Ao término da manutenção do plantio, a área deve encontrar-se em um

processo autônomo de sucessão ecológica, quando a intervenção humana não se faz mais

necessária.

Na prática, o termo recuperação prevê atividades que permitem o desenvolvimento de

vegetação, nativa ou exótica, na lavra explotada ou a reutilização do local que foi degradado para

diversos outros fins. O resultado desses processos dependerá do objetivo pretendido e da

capacidade do local de suportá-lo. Essa posição é compartilhada pelo órgão federal de meio

ambiente brasileiro (IBAMA) desde 1990. O IBAMA define recuperação como o retorno de

áreas degradadas a uma forma de utilização tecnicamente compatível, em conformidade com os

valores ambientais, culturais e sociais locais (IBAMA, 1990). Dessa forma, o termo recuperação

encontra base conceitual e técnica para que se adotem diversas medidas no tratamento de áreas

degradadas. O fato é que áreas degradadas são ambientes criados pelo homem e a ecologia que

rege seus processos, inclusive os de recuperação, ainda é pouco conhecida.

Majer (1989) define ainda a reposição e a opção negligente como outras formas de manejo

de áreas degradadas. A reposição consiste em se criar um ecossistema diferente do originalmente

presente. A estabilização de cavas mineradas por meio da implantação de pastagens é um

exemplo de reposição, em que o ecossistema natural pré-lavra é substituído por uma camada de

forrageiras após a mineração. Nesse caso, o ambiente criado pelo homem na área minerada tende

a ser rico em nutrientes minerais, por causa da adubação, apresentar grande biomassa vegetal, mas

possuir baixa diversidade de espécies e pouca complexidade estrutural. Além disso, áreas

degradadas pela mineração que são revegetadas são menos produtivas do que as áreas não

mineradas (BARTH, 1989). Primack & Rodrigues (2002) chamam a reposição de substituição.

Page 26: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

A opção negligente (MAJER, 1989), ou nenhuma ação (PRIMACK & RODRIGUES,

2002), refere-se a deixar a recuperação da área minerada a cabo da sucessão. A depender da forma

da cava, do material exposto e da presença ou ausência de estruturas que disciplinem as águas

pluviais, mais degradação, por causa da erosão, pode ocorrer na lavra explotada. Mesmo assim, a

opção negligente é sem dúvida a que domina no Cerrado e, provavelmente, em todo o Brasil.

A política ambiental brasileira objetiva permitir a exploração mineral sem permitir, contudo,

que o passivo ambiental seja transferido para a sociedade e para os cofres públicos. Atualmente

há diversos instrumentos normativos que visam promover a recuperação e o monitoramento de

ambientes que foram degradados pelo homem. Essas normas buscam inserir ou ocultar espaços

degradados específicos em unidades maiores, como bacias hidrográficas, ecossistemas e biomas.

Buscam também, invariavelmente, formas de responsabilizar o agente degradador pelo ônus da

recuperação, pois a falta ou o atraso em se iniciarem os trabalhos de recuperação no presente

significa que as gerações futuras terão um trabalho de recuperação mais difícil e oneroso que a

geração responsável pela degradação (BARTH, 1989).

A política e a legislação ambiental brasileiras estabelecem como estratégico o

desenvolvimento de técnicas que incrementem e facilitem a reabilitação de terras degradadas,

para o posterior uso preservacionista, econômico ou social delas. O reflorestamento com espécies

ecologicamente adequadas e o manejo da regeneração natural são as ações indicadas para

transformar ambientes degradados em locais estáveis e/ou produtivos (MMA/PNUD, 2002). A

importância de se utilizarem processos naturais de regeneração na recuperação de áreas

degradadas é atualmente reconhecida não só pelos formuladores da política ambiental brasileira

(MMA/PNUD, 2002), mas também pela legislação. O artigo 48 da Lei de Crimes Ambientais -

Lei no 9.605, de 12/02/98 - considera crime passível de detenção impedir ou dificultar a

regeneração natural de florestas e demais formas de vegetação.

A legislação sobre áreas degradadas evolui também em outros aspectos. Após duas décadas

de pesquisa e trabalhos de recuperação, definições mais realistas são adotas pela legislação

brasileira mais recente. A Lei no 9.985, de 18/07/00, que institui o Sistema Nacional de Unidades

de Conservação da Natureza - SNUC, objetiva, entre outros, recuperar e restaurar ecossistemas

degradados (Artigo 4o, Inciso IX). Em seu artigo 2o, o SNUC entende que:

Page 27: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

XIII - recuperação: restituição de um ecossistema ou de uma população silvestre degradada

a uma condição não degradada, que pode ser diferente de sua condição original.

XIV - restauração: restituição de um ecossistema ou de uma população silvestre degradada o

mais próximo da sua condição original.

Dessa forma, não somente pelo cumprimento da lei, mas principalmente porque são as leis

naturais que regem os processos ecológicos, os conceitos atuais de degradação, resiliência,

recuperação e restauração são mais realistas e devem ser os adotados em PRAD’s. Os

processos de regeneração natural, sempre que possível, devem ser preferidos à intervenção direta,

pois custos são reduzidos, evita-se a interferência direta sobre ciclos naturais e anulam-se riscos

de impactos que a execução de um PRAD pode causar em porções frágeis de ecossistemas,

sobretudo aquáticos.

Finalmente, cabe lembrar que o Código Florestal brasileiro (Lei nº 4.771, de 15/09/65, art. 2º,

alterado pela Lei nº 7.803, de 18/07/89) utiliza a vegetação para garantir a proteção das águas e

de terrenos demasiadamente susceptíveis à erosão e ao desmoronamento. De acordo com essa lei,

é proibida a exploração de recursos naturais e, portanto, é proibida a exploração mineral nas

Áreas de Preservação Permanente.

A Lei no 9.985, de 18/07/2000, também proíbe atividades que degradam o meio ambiente em

Unidades de Conservação de Proteção Integral e, conseqüentemente, é proibida a exploração

mineral em:

• Estações Ecológicas.

• Reservas Biológicas.

• Parques Nacionais e similares nos Estados, Municípios e no Distrito Federal.

• Monumentos Naturais.

• Refúgios de Vida Silvestre.

Existem outras normas legais que regulam a exploração mineral no Brasil, como mostrado na

Tabela 2.1.

Page 28: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 2.1: Algumas normas legais pertinentes à exploração mineral

Norma Função

Decreto-Lei nº 227/1967 estabelece o Código de Mineração

Lei nº 6.567/1978 dispõe sobre o regime especial para exploração e

aproveitamento das substâncias minerais da Classe II

Lei nº 6.938/1981 estabelece a Política Nacional de Meio Ambiente

Lei nº 7.347/1985 disciplina as Ações Civis Públicas por danos ao meio

ambiente

Lei nº 7.805/1989 altera o Decreto nº 227/67, criando o regime de permissão

de lavra e garimpagem, a obrigatoriedade do licenciamento

ambiental e extingue o regime de matricula

Lei nº 7.990/1989 estabelece a compensação financeira da mineração

Lei nº 8.001/1990 define os percentuais da distribuição da compensação

financeira de que trata a Lei nº 7.990, de 28/12/1989

Decreto no 97.632/1989 regulamenta o artigo 2o, Inciso VIII da Lei no 6.938/1991

Decreto nº 99.274/1990 regulamenta as Leis nº 6.902/81 e 6.938/1981

Decreto nº 98.812/1990 regulamenta a Lei nº 7.805/1989

Decreto nº 99.556/1990 dispõe sobre a proteção das cavidades subterrâneas

naturais

Decreto Distrital no 22.139/2001

regulamenta a Lei Distrital no 1.393/1997 e estabelece

garantias fiduciárias para a recuperação de áreas mineradas

Resolução CONAMA nº 01/1986 estabelece a obrigatoriedade dos estudos de impacto

ambiental para as atividades potencialmente poluidoras

Resolução CONAMA nº 09/1990 determina que a realização da pesquisa mineral, quando

envolver o emprego de guia de utilização, fica sujeita ao

licenciamento ambiental de órgão competente e da outras

providências

Resolução CONAMA nº 010/1990 determina que a explotação de bens minerais da Classe II

(bens minerais de uso direto na construção civil) deverá

Page 29: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

ser precedida de licenciamento ambiental do órgão

estadual de meio ambiental ou do IBAMA, quando

couber, nos termos da legislação vigente e desta resolução

Resolução CONAMA nº 237/1997 dispõe sobre o licenciamento ambiental para as atividades

consideradas poluidoras/impactantes, estando previsto em

seu texto a obrigatoriedade da realização de estudos

ambientais e a apresentação de um plano detalhado de

reparação dos danos causados ao meio ambiente

Page 30: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Capítulo 3

Planejamento e etapas da recuperação

3.1 Recuperação de áreas degradadas

Especialistas preconizam que a recuperação de uma área degradada pela mineração começa

antes de se iniciar a abertura da lavra (BARTH, 1989; IBAMA, 1990). A definição prévia do uso

futuro do local degradado, o planejamento para a retirada da cobertura vegetal e da camada

superficial do solo, o gerenciamento da forma da paisagem da lavra e a recuperação

concomitantemente à exploração são medidas que reduzem os custos de controle ambiental,

tornando a atividade minerária menos nociva e mais rentável.

A maioria dos órgãos ambientais exige a adoção dessas práticas, que são cobradas nos termos

de referência para a elaboração e execução de PRAD’s (Anexo 3.1). Permitir a geração de

riquezas sem transferir os passivos ambientais da atividade minerária para a sociedade e para as

futuras gerações é a diretriz que resultou na exigência de elaboração e de execução de PRAD’s. A

exploração minerária no Brasil necessita atualmente da aprovação prévia da atividade pelo setor

ambiental governamental, que se utiliza de PRAD’s para sistematizar e operacionalizar os

princípios do desenvolvimento sustentável. O PRAD deve ser apresentado ao órgão ambiental

competente após a emissão da Licença Prévia - LP da lavra. Ele será então analisado e a

Licença de Instalação - LI somente será emitida após a aprovação dele pelos técnicos do

governo.

Alguns estudos indicam que mineração com controle ambiental é atividade economicamente

viável para pequenos, médios e grandes mineradores (CORRÊA, 1998a). O Responsável Técnico

- RT de uma lavra deverá estar habilitado para interpretar e cumprir as exigências legais e as

demandas dos órgãos ambientais de forma econômica e tecnicamente eficiente. Seguir o termo de

referência do órgão ambiental responsável pelo empreendimento é o melhor caminho. O termo

de referência deve fornecer diretrizes que resultem em um PRAD que, ao ser executado, acabe

por estabilizar a paisagem em curto, médio e longo prazos. A estabilização da paisagem pode

ser entendida como o objetivo geral de qualquer PRAD e de qualquer forma de recuperação de

uma área degradada pela mineração.

Page 31: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Os objetivos específicos de uma recuperação variam em função do minerador, do órgão

ambiental, da especificidade do local, entre outros. Os objetivos mais freqüentes são:

• restituir a forma da área (paisagem florestal, de campo e outras);

• restituir a função da área (suporte de fauna, recarga de aquíferos, proteção de rios e

outras);

• cumprir a legislação;

• executar um projeto de recuperação que esteja em conformidade com a destinação da

área e com a vizinhança (urbanização, paisagismo, agricultura, reflorestamento,

preservação);

• executar um projeto sustentável que demande o mínimo de manutenção em curto, médio

e longo prazos.

3.2 Etapas da recuperação por meio da revegetação

Etapa 1 - Medidas pré-lavra

Conforme item 3.3 Etapa 2 - Caracterização do empreendimento e do sítio degradado

Conforme Anexo 3.1.

Etapa 3 - Planejamento

1) Definição do produto a ser obtido e das ações necessárias para se obtê-lo (ex: parque de

lazer, campo agrícola, reflorestamento comercial).

2) Avaliação da capacidade de suporte do local minerado para receber o projeto proposto.

O tratamento da paisagem, do substrato e a escolha da comunidade vegetal são três

etapas imprescindíveis caso a revegetação seja o meio escolhido para se estabilizar a paisagem.

Portanto, o sucesso de um projeto de revegetação reside em grande parte no planejamento

correto e detalhado dessas três etapas.

Etapa 4 - Tratamento da paisagem

1) Controle da erosão.

2) Recomposição topográfica e obras de engenharia, se necessárias.

Page 32: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Etapa 5 - Tratamento do substrato

Tratamentos físicos (escarificação, subsolagem, gradeação, aração, terraceamento,

coveamento, incorporação de matéria orgânica e outros), tratamentos químicos (calagem,

gessagem, aplicação de matéria orgânica e de fertilizantes) e tratamentos biológicos (incorporação

de matéria orgânica, inoculação de microorganismos e minhocas).

Etapa 6 - Escolha da comunidade vegetal inicial

1) Escolha das espécies herbáceas e/ou arbustivas e/ou arbóreas.

2) Definição da densidade de plantio (ex: mudas/hectare).

3) Definição da quantidade de cada espécie a ser plantada

4) Definição da época de plantio.

5) Definição da necessidade de irrigação.

Etapa 7 - Manutenção e monitoramento (24 meses)

• Adubações de cobertura.

• Avaliação da sobrevivência das plantas.

• Reposição de mudas mortas.

• Substituição de espécies pouco adaptadas.

• Capinas.

• Coroamento de mudas.

• Aceiramento para controle de incêndios.

• Controle de pragas e patógenos.

• Identificação de toxidez e/ou deficiências nutricionais.

• Reconstrução de terraços.

• Elaboração periódica de relatórios de acompanhamento.

3.3 Medidas pré-lavra

3.3.1 Planejamento da exploração

Seguindo as recomendações de IBAMA (1990), deve-se planejar e conduzir a exploração

mineral sempre visando ao produto final que será obtido com a execução do PRAD. Existem

medidas mitigadoras que são de fácil execução e que tornam a recuperação mais simples, eficiente

Page 33: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

e menos onerosa. A experiência acumulada recomenda as medidas abaixo listadas, principalmente

para pequenos mineradores:

• cercamento e vigilância da jazida, para coibir a exploração clandestina de terceiros.

• piqueteamento da jazida, para facilitar a visualização espacial e otimizar a exploração e a

recuperação.

• presença de um responsável na lavra que indique aos operadores de máquinas os locais

e profundidades a serem explorados, em conformidade com o estipulado na Licença

Ambiental e no PRAD.

O Departamento de Estradas de Rodagem do Distrito Federal adota a exploração de cascalho

laterítico em tiras, conforme descrito em Cardoso & Carvalho (1998). Essa técnica foi

desenvolvida para as condições geomorfológicas do Distrito Federal e para tornar a revegetação

das áreas explotadas mais eficiente e menos onerosa. Ela pode ser testada em outros locais do

Cerrado, como descrito nos itens abaixo:

1) inicialmente a jazida é dividida paralelamente às curvas de nível, em faixas de 30 a 40 m de

largura;

2) o avanço da exploração faz-se em tiras de exploração, das cotas inferiores para as

superiores;

3) remove-se a cobertura vegetal e a camada superficial de 20 cm de solo apenas da faixa de

30-40 m de largura a ser imediatamente explorada. A camada superficial de 20 cm de solo

é estocada em leiras, contornando toda a porção topograficamente inferior e lateral da tira

de exploração, a uma distância mínima de 5 m da escavação. Essa distância visa facilitar as

manobras de máquinas no abatimento do talude, que deve ter uma inclinação final de

25% (1 vertical : 4 horizontal);

4) não se deve aprofundar a lavra até atingir a rocha, saprolito ou surgências d’água. Deve-se

manter uma camada mínima de 30 cm de cascalho sobre o saprolito. Idealmente, essa

camada de cascalho deve ter 50 cm de profundidade ou mais. Essa camada será

posteriormente tratada para se tornar o “solo” que irá dar suporte à nova comunidade

vegetal;

Page 34: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5) caso uma segunda tira de exploração precise ser aberta antes da revegetação da anterior, a

camada de solo superficial da segunda tira deve ser armazenada a 5 m de distância da sua

borda superior. Deve-se manter uma faixa não escavada entre as tiras exploradas, para

formar terraços naturais que separam cavas adjacentes. Essa medida é fundamental para o

controle do escorrimento d’água;

6) a camada de solo superficial estocada será colocada sobre a superfície a ser revegetada,

após a recomposição topográfica da lavra explotada e da escarificação ou subsolagem do

substrato exposto;

7) os depósitos de cascalho situam-se geralmente nos limites da quebra do relevo, nas

bordas das chapadas, onde a declividade é acentuada (MARTINS et al., 2004). Manter

lavras a uma distância de 100 m das bordas de chapada é mais seguro e evita infrações ao

Código Florestal Brasileiro (Lei nº 4.771, de 15/09/65).

3.3.2 Armazenamento da camada superficial do solo

O grande valor ecológico e monetário da camada superficial dos solos foi descoberto assim

que PRAD’s começaram a ser executados. A camada superficial dos solos concentra matéria

orgânica, sementes, nutrientes e organismos, que diferenciam porções destruídas do Cerrado que

se regeneram espontaneamente daquelas que têm que ser revegetadas pelo homem. Portanto,

pode-se considerar que a resiliência do Cerrado encontra-se, ainda que parcialmente, na camada

superficial de seus solos.

Os horizontes superficiais de solos minerais de Cerrado possuem cerca de 2% de matéria

orgânica, que apresenta valor econômico. Ao se considerar uma densidade aparente do solo de 1

Mg m-3 (1 t m-3), têm-se 2.000 toneladas de solo na camada de 20 cm de cada hectare. São,

portanto, 40 toneladas de matéria orgânica armazenadas nesses 20 cm de solo de cada hectare.

Composto de lixo, por exemplo, contém 50% de umidade e 35% de matéria orgânica. Então,

seria necessário incorporar 228 toneladas de lixo compostado em cada hectare para se atingir 2%

de matéria orgânica na camada superficial de 20 cm de substrato. Esse material é comercializado

por R$ 8,00 a tonelada. Dessa forma, o custo para se elevar o teor de matéria orgânica do

substrato minerado até 2% passaria de R$ 1.820,00 por hectare, sem considerar transporte e

custos de incorporação.

Page 35: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Alternativamente, pode-se adquirir lodo de esgoto ao custo do transporte. O lodo de esgoto

contém 88% de umidade e 61% de matéria orgânica em sua parte seca. Seria necessário

incorporar 546 toneladas de lodo a cada hectare de substrato minerado. O custo do frete

dependeria da distância entre a estação de tratamento e a jazida explotada. Considerando um

custo hipotético e subestimado de R$ 5,00 por tonelada transportada, haveria um gasto de R$

2.730,00 com frete. Parte desse valor seria compensado pela economia com fertilizantes, haja

vista a alta concentração de nutrientes existente em lodos de esgoto. Entretanto, torna-se menos

oneroso e mais eficiente separar e armazenar a camada superficial do solo, para utilizá-la como

substrato para o desenvolvimento da vegetação a ser implantada.

Sementes e organismos não têm sido mensurados economicamente, mas são outros

benefícios existentes na camada superficial do solo armazenada. Ao se depositar a camada de 20

cm sobre a superfície escarificada ou subsolada da lavra, aumenta-se a profundidade efetiva do

substrato, que é a camada explorada pelas raízes das plantas. As operações para espalhar a camada

superficial de solo sobre o substrato minerado são mais simples que as necessárias para

distribuição e incorporação de fonte exógena de matéria orgânica. Como resultado, há também

economia no uso de máquinas.

Page 36: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Anexo 3.1

Modelo de Termo de Referência para elaboração de Plano de Recuperação

de Área Degradada - PRAD para o Distrito Federal

1 - Informações gerais

1.1 Nome ou razão social do empreendedor.

1.2 Endereço do empreendedor para correspondência e contato.

1.3 Tipo de atividade.

1.4 Localização geográfica da obra, devendo ser apresentada em mapa ou croqui, em que

deverão ser marcadas as vias de acesso principais e secundárias.

1.5 Mapa, informando a posição do empreendimento na bacia hidrográfica, mapa geológico e

de solos.

1.6 Declividade do terreno.

1.7 Número do processo em trâmite no órgão ambiental.

1.8 Características específicas dos equipamentos que serão utilizados nos trabalhos de

recuperação.

2 - Introdução

A introdução deverá discorrer sobre a necessidade de se recuperar a área. Devem-se

contemplar os métodos utilizados para sua elaboração e os órgãos governamentais e empresas

privadas envolvidas no trabalho.

3 - Mapa da área

Os limites e as dimensões das áreas a serem recuperadas deverão constar em mapas

georreferênciados, na escala determinada pelo órgão ambiental.

4 - Legislação pertinente

Relacionar as legislações concernentes à atividade minerária, à proteção ambiental e ao local a

ser explorado.

Page 37: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5 - Diagnóstico ambiental

A partir do diagnóstico ambiental, contendo o levantamento geral dos componentes

abióticos, bióticos e sócio-econômicos, serão identificadas e determinadas áreas que serão

influenciadas, direta e indiretamente, pela mineração. A área de influência indireta deve abranger,

no mínimo, a sub-bacia hidrográfica em que a área de influência direta se localiza. Essas

informações servirão de base para o projeto de recuperação da área.

5.1 Meio Físico

5.1.1 Clima: pluviometria, temperatura, umidade relativa, radiação solar, velocidade e direção

predominante dos ventos.

5.1.2 Geomorfologia: levantamento topográfico da área, mapa de declividade, determinar os

locais com maior susceptibilidade à erosão e trechos de instabilidade geomorfológica.

5.1.3 Solo: caracterizar, analisar e mapear o(s) tipo(s) de solo(s) existente(s) na área a ser

recuperada, o horizonte exposto e o manto rochoso.

5.1.4 Recursos hídricos: caracterização e comportamento da drenagem superficial e

subterrânea, do lençol freático, das vazões e drenagens principais, dos regimes fluviais,

dos carreamentos de sedimentos para os cursos d’água, da qualidade da água, dos

poluentes líquidos e sólidos e as suas fontes, da influência dos lançamentos de águas

pluviais.

5.2 Meio biótico - levantamento e análise da flora e fauna do local e da circunvizinhança e

suas interações com o meio físico e antrópico

5.3 Meio antrópico - devem-se caracterizar os possíveis interesses conflitantes (interferência

em outras atividades econômicas, culturais e sociais, poluição, ruído, trânsito de veículos

pesados e outros), o histórico de ocupação, a situação fundiária da área, a influência

antrópica, o uso e o aproveitamento atual da área.

6 - Impactos ambientais

Consiste no levantamento dos principais impactos ambientais gerados pela atividade

minerária e pela execução do PRAD nas áreas de influência direta e indireta, considerando os

meios físico, biótico e antrópico.

Page 38: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

7 - Destinação futura da área

Descrever a utilização futura da área com base na legislação e valores locais, características

físicas da área, região circunvizinha, necessidades e aspirações locais e demais fatores que sejam

relevantes.

8 - Plano de recuperação da área degradada

Os métodos de trabalhos propostos para o Plano de Recuperação da Área Degradada -

PRAD deverão ser devidamente especificados, tais como:

8.1 Medidas mitigadoras dos impactos.

8.2 Método a ser utilizado para a recuperação da(s) fitofisionomia(s) em questão.

8.3 Técnicas de conservação do solo.

8.4 Técnicas de preparo do substrato para cobertura vegetal.

8.5 Recursos hídricos próximos.

8.6 Seleção de espécies adaptadas às condições do local, levando-se em consideração o Índice

de Valor de Importância (IVI) das espécies da área de influência indireta. Para a seleção

adequada da(s) espécie(s), devem-se considerar as espécies existentes no local e/ou o

histórico vegetacional da área.

8.7 Plano de monitoramento, tratos culturais de manutenção da área recuperada.

8.8 Técnicas de proteção e conservação da fauna, flora e recursos hídricos.

8.9 Outras medidas a serem adotadas que visam ao sucesso da recuperação.

Caso haja outras atividades correlatas, necessárias à recuperação e que venham a acarretar

danos ambientais, elas devem ser citadas.

9 - Cronograma executivo

Elaborar cronograma de atividades, juntamente com os custos e o produto final.

10 - Discussão e conclusão

Nesse item o empreendedor deverá apontar as condições positivas e negativas para o

empreendimento e citar as metas a serem atingidas.

Page 39: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

11 - Representação gráfica

Este item tem por objetivo a visualização da área degradada e sua configuração após serem

realizados os trabalhos de recuperação propostos no PRAD. Deverão ser apresentadas pelo

menos duas plantas planialtimétricas, em escala definida pelo órgão ambiental.

11.1 Planta da área degradada, devendo conter as poligonais da área degradada, indicar as

características físicas, enfatizando os aspectos da cobertura vegetal outrora existente,

topografia e processos erosivos no local.

11.2 Planta da área recuperada (projeção), com a previsão de configuração da área após a

realização dos trabalhos de recuperação, constituindo assim o modelo a ser alcançado

pelo PRAD.

12 - Qualificação da equipe

A elaboração e a execução do PRAD deverão ser realizadas por profissional(s) habilitado(s) -

graduado(s) e devidamente registrado(s) no órgão profissional competente (CREA, CRB e outros).

Os trabalhos deverão ser acompanhados de Anotação de Responsabilidade Técnica (ART). A

última folha do PRAD deverá conter a assinatura do(s) Responsável(s) Técnico(s) - RT(s).

13 - Forma de apresentação do produto

O PRAD deverá ser apresentado em forma de texto impresso e em meio digital. No caso de

desenhos e/ou gráficos, eles deverão ser apresentados impressos e em disquetes (em formato

compatível com Excel 7.0 ou superior e formato DXF para arquivos vetoriais e TIFF para

arquivos rasteirados, versão Windows).

Os mapas e detalhes deverão ser entregues em papel e na forma digital, no formato compatível

com o programa Arcinfo ou Arcview. A mídia de armazenamento dos mapas digitais deverá ser

do tipo CDROM ou DVD.

Page 40: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

14 - Recebimento, avaliação e acompanhamento do PRAD

O PRAD deverá ser protocolado no órgão ambiental, que designará uma equipe de técnicos

para avaliar e acompanhar o Plano.

Relatórios semestrais devem ser elaborados pelo(s) RT(s), abordando:

• medidas de conservação e proteção da área recuperada;

• sucesso da revegetação, com proposta de replantio se necessário;

• controle do processo erosivo;

• outros.

Os relatórios deverão ser apresentados até que a recuperação esteja consolidada, ou seja, que

todos os problemas ambientais pertinentes estejam sanados.

15 - Referências bibliográficas

16 – Anexos do PRAD

• Mapas.

• Desenhos e/ou croquis.

• Fotografias.

• Planilhas de custo.

• Outros.

Page 41: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Capítulo 4

Tratamento da paisagem

4.1 Tratamento da forma da paisagem

O horizonte C de Latossolos e Neossolos Quartzerênicos (Areias Quartzosas) ou o saprolito

de Cambissolos são materiais freqüentemente encontrados na superfície de lavras explotadas na

região do Cerrado. Os solos de Cerrado, que naturalmente impõem restrições químicas ao

desenvolvimento de plantas, tornam-se mais limitantes para os processos de sucessão natural

quando desprovidos de seus horizontes superficiais. As limitações de substratos minerados

referem-se à falta de uma estrutura similar a de um solo, à compactação, a deficiências

nutricionais e aos baixos teores de matéria orgânica existente. Valores extremos de pH e/ou

compostos tóxicos que dificultem o desenvolvimento de uma vegetação são geralmente

inexistentes em substratos minerados nas regiões de Cerrado.

Além dos problemas acima citados, a forma da paisagem (topografia) e a grande compactação

das superfícies mineradas freqüentemente impedem o estabelecimento de vegetação em áreas

degradadas pela mineração. Dessa forma, restabelecer a vegetação em uma área minerada não é

possível sem o manejo adequado de sua topografia e de seu substrato. Somente após a

recomposição topográfica há que se pensar em melhorar as condições químicas e biológicas de

substratos minerados.

A macroforma final da paisagem será determinada pela configuração da lavra explotada. Por

esse motivo, deve-se controlar a evolução da escavação com base no futuro uso da área, que deve

estar previsto no plano de recuperação da área a ser degradada (PRAD). Entretanto, a regra geral

é explorar seguindo os depósitos minerais e, portanto, a macroforma da paisagem é geralmente

determinada por critérios minerários e não por determinações ambientais. Resta, então, tratar a

paisagem deixada pela lavra, modificando alguns de seus elementos. Retaludamento, desmonte de

testemunhos, construção de terraços e disciplinamento de águas surgentes são algumas medidas

que visam a uma melhor estética paisagística, a uma maior estabilidade da área e ao controle da

erosão.

Page 42: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

As operações de preparação da área minerada são capazes de manter e elevar a fertilidade e

produtividade de uma área, quando bem operadas. Essas operações devem ser capazes de reduzir

a erosão e melhorar a relação custo/benefício dos recursos disponíveis, tais como máquinas,

mão-de-obra, combustível, mudas, sementes e insumos (GONÇALVES et al., 2004b). Se operada

inadequadamente, a preparação de substratos minerados é ineficaz para promover a recuperação

da área.

4.2 Controle da erosão

A erosão é o processo de desprendimento e transporte de partículas do solo, que em regiões

tropicais pode ser causado pela água (hídrica) ou pelo vento (eólica), mesmo sob condições

naturais. Porém, a erosão tem sido acelerada pelo homem e a sua forma hídrica representa um

dos principais problemas em áreas mineradas e agrícolas no Cerrado brasileiro. Após a retirada da

cobertura vegetal nativa, os solos das regiões de Cerrado são muito susceptíveis à erosão causada

pelas chuvas. Em lavras explotadas, quando há a canalização das águas pluviais, o substrato

exposto é altamente erodível e permite um rápido aprofundamento de ravinas e voçorocas

(HARIDASAN, 1994).

Solos de regiões tropicais que recebem de média a alta pluviosidade são muito susceptíveis à

erosão, quando a cobertura vegetal é removida. O problema se agrava quando há duas estações

definidas, uma seca e a outra de chuvas, como ocorre no Cerrado. Há reconhecidamente quatro

formas de erosão hídrica: laminar, em sulcos, ravinas e voçorocas. Geralmente a erosão laminar

precede a erosão em sulcos que, por sua vez, pode originar ravinas. Quando a água subsuperficial

e subterrânea contribuem para erodir as ravinas, criam-se as voçorocas.

O carreamento da parte superficial de substratos sob a forma de sedimentos, por meio da

erosão laminar e em sulcos, afeta a qualidade e a quantidade de água armazenada em

reservatórios, barragens, lagos, rios e outros. As ravinas e voçorocas, freqüentemente presentes

em áreas mineradas, destroem obras civis e ecossistemas, além de provocarem também o

assoreamento de reservatórios. Além disso, o impacto das chuvas sobre substratos desnudos, a

desagregação de partículas e o carreamento de sedimentos em áreas mineradas acarreta no

aumento da compactação e na diminuição da capacidade de armazenamento de água dos

substratos. A perda de partículas é acompanhada pela perda de nutrientes, que reduz as chances

de revegetação natural dessas áreas.

Page 43: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

A avaliação das perdas de solo em locais minerados e abandonados no Distrito Federal

mostrou que elas são cerca de duas vezes superiores às perdas de sedimentos em áreas de

monoculturas sazonais mecanizadas, ou três mil vezes maiores que as perdas de sedimentos de

solos sob matas nativas. Locais minerados no Distrito Federal há décadas liberam entre quatro e

doze toneladas de sedimentos por hectare a cada ano (CORRÊA, 1998b). A revegetação é a

medida mais eficiente para o controle de erosão. A presença de vegetação sobre Latossolos no

Cerrado é suficiente para reduzir em até 90% as perdas de solo. Até a simples deposição de

cobertura morta sobre superfícies desnudas pode diminuir em até 75% a perda de sedimentos.

O controle da erosão laminar e em sulcos demanda medidas físicas ou mecânicas

(reconstrução de elementos da paisagem, retaludamento), edáficas (escarificação, tratamento do

substrato, incorporação de matéria orgânica) e/ou biológicas ou vegetativas (incorporação de

matéria orgânica, revegetação). Toda e qualquer ação que diminua a desagregação das partículas

do substrato e seu carreamento pelas águas ou vento constitui prática de controle da erosão.

Implantar e otimizar a cobertura vegetal sobre substratos, aumentar a capacidade de

infiltração de água do substrato e controlar o escorrimento superficial da água que não

infiltra constituem as três estratégias mais importantes para se controlar a erosão em áreas

mineradas. As medidas mais usadas para a consecução dessas estratégias estão listadas a seguir:

• recomposição da paisagem;

• escarificação e subsolagem do substrato;

• recomposição da topografia;

• terraceamento;

• drenagem;

• aumento da capacidade de infiltração e de armazenamento de água de substratos;

• proteção do substrato com cobertura morta (palha, capim, casca);

• incorporação de matéria orgânica ao substrato;

• estabelecimento de uma camada herbácea de rápido crescimento;

• plantio de espécies perenes acompanhando curvas de nível;

• reflorestamento total ou parcial da área.

Page 44: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

4.3 Planejamento do controle da erosão

Equações e modelos têm sido mundialmente utilizados nos últimos sessenta anos para a

mensuração de perdas de solos e sedimentos nos mais diversos tipos de áreas, inclusive nas

degradadas pela mineração (CORRÊA, 1991). O planejamento de práticas conservacionistas de

solo e água em atividades agrícolas, florestais, minerárias e urbanas representa a principal

aplicação de modelos que estimam a perda de sedimentos pela erosão (Wischmeier et al., 1971).

Uma das equações mais usadas para a mensuração da erosão e de maior sucesso em todo o

Mundo é a Equação Universal de Perdas de Solo (EUPS ou USLE em inglês), que permite

estimar as perdas médias anuais de partículas de solo/substrato por erosão laminar de uma área

sob determinado manejo. Dessa forma, a taxa de erosão é determinada pela combinação da

intensidade de vários fatores que atuam em uma área (USDA, 1978). Como todo modelo

empírico, a EUPS é uma aproximação da realidade. Essa equação foi criada para permitir a

avaliação da erosão laminar onde ela não fora medida com métodos diretos de campo USDA,

1978). Portanto, os usuários da EUPS devem estar cientes de suas limitações, existentes em

qualquer modelo.

Outro fator não considerado pela EUPS é o tempo de abandono de uma área e o nível de

compactação de sua superfície exposta. Perdas de 220 t (ha ano)-1 medidas em campo para um

solo exposto no primeiro ano reduziram-se para 182 t (ha ano)-1, ou 18% a menos, no segundo

ano de exposição (SEGANFREDO et al., 1997). Portanto, espera-se que áreas recém-mineradas,

com material pulverizado sobre a superfície, percam mais sedimentos que áreas abandonadas há

mais tempo, apesar de a EUPS não detectar diferenças ao longo do tempo.

A EUPS representa adequadamente os efeitos de primeira ordem dos fatores que causam

erosão. Ela é utilizada para avaliar a erosão laminar, mas não se aplica a sulcos, ravinas e

voçorocas. A grande utilidade da EUPS em avaliações pontuais e descontínuas é a possibilidade

de se trabalhar teoricamente alguns de seus termos, para se decidir sobre a efetividade de

determinadas medidas de controle de erosão em determinado local ou situação. A EUPS é

também uma boa ferramenta no auxílio de ajustes topográficos, visando à redução de futuros

escorrimentos d’água que possam carrear sedimentos, romper terraços e provocar erosão. O

termo R da equação representa um fator natural que não pode ser controlado ou modificado pelo

homem. O valor do fator K é passível de ser modificado pelo homem, sobretudo por meio da

incorporação de matéria orgânica a solos e substratos que apresentem teores menores que 4%

(Wischmeier et al., 1971). As variáveis L, S, C e P representam fatores que podem ser trabalhados,

Page 45: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

visando ao controle da erosão de um determinado local. A EUPS encontra-se representada pela

Equação 4.1 abaixo:

PCSLKRA ×××××= (Equação 4.1)

em que:

• A perdas de substrato por erosão, em t (ha.ano)-1 ou Mg (ha.ano)-1;

• R erosividade das chuvas, em MJ.mm (ha.h.ano)-1;

• K índice de erodibilidade, t.h.ha (MJ.ha.mm)-1 ou Mg.h.ha (MJ.ha.mm)-1.

• L comprimento da rampa existente na área, em metro (m). Quando conjugado

com o fator S da EUPS, torna-se adimensional;

• S razão de inclinação da rampa. Quando conjugado com o fator L da EUPS,

torna-se adimensional;

• C fator de cobertura do solo, em porcentagem. Quando conjugado com o

fator P da EUPS, torna-se adimensional;

• P medidas conservacionistas e de controle da erosão (adimensional).

4.3.1 Fator R - erosividade das chuvas

O fator R representa a erosividade do clima, especialmente das chuvas. A erosividade das

chuvas não é distribuída uniformemente ao longo do ano. Uma chuva erosiva é aquela cuja

intensidade e duração são capazes de provocar erosão. Geralmente, considera-se erosiva uma

precipitação de 10 mm ou mais, independentemente de sua duração. Para regiões de clima

temperado, espera-se que apenas 5% das precipitações sejam erosivas. Para regiões tropicais,

porém, cerca de 40% das chuvas são erosivas (ROOSE, 1977). Entretanto, a erosividade das

chuvas não é homogênea durante o ano. Dias & Silva (2003) estimaram que 70% das chuvas

erosivas na região de Fortaleza (CE) ocorrem entre fevereiro e março. Ao expandirem a avaliação

para janeiro-junho, verificaram que 97% das chuvas erosivas encontravam-se nesse período.

O valor numérico de R expressa o efeito erosivo do impacto das chuvas sobre a superfície do

terreno e a quantidade de escorrimento superficial esperado. Valores de R são obtidos pela

multiplicação da energia cinética de chuvas erosivas (E) pela intensidade máxima em 30 minutos

(I30). Consegue-se assim o EI30 de uma chuva. A soma dos EI30 de cada chuva erosiva em um mês

Page 46: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

resulta no EI30 mensal. A soma dos EI30 mensais resulta no EI30 anual. A média de EI30 anuais

para uma série de 20 a 30 anos determina o valor de R da área em questão.

Entretanto, dados pluviométricos sistematizados de longo prazo (pluviogramas) são escassos

na maioria das localidades brasileiras. Por esse motivo Lombardi Neto (1977 apud SILVA &

DIAS, 2003) estabeleceu uma equação que relaciona a precipitação média mensal e o valor de

EI30 de cada mês (Equação 4.2). De posse de cada EI30 mensal, estima-se R pela soma dos doze

EI30 mensais (Equação 4.3).

85,02

30 7,68 ⎟⎟⎠

⎞⎜⎜⎝

⎛=

PrEI mensal (Equação 4

.2)

em que:

recipitação média mensal, em mm

Para uma série de 12 meses (janeiro - dezembro),

R =

• r é a p

• P é a precipitação média anual, em mm

∑12

1

EI30mensal (Equação 4.3)

.3.2 Fator K - erodibilidade do substrato

a sua resistência ou susceptibilidade de ser

ero

4

A erodibilidade de um susbtrato relaciona-se

dido pelos fatores do intemperismo. Wischmeier et al. (1971) consideram que a distribuição do

tamanho de partículas (textura) de solos e substratos é o fator mais importante na determinação

da susceptibilidade à erosão. A textura define a maior parte da susceptibilidade ou resistência de

partículas se desprenderem e serem arrastadas pelas águas. Todavia, outras características, além da

textura, contribuem para a erodibilidade (fator K) de cada material, tais como estrutura,

permeabilidade e conteúdo de matéria orgânica. Nesse sentido, a elevação do teor de matéria

orgânica de solos e substratos para até 4% (massa/massa) reduz consideravelmente a

Page 47: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

erodibilidade de solos e substratos. A partir de 4%, a influência relativa da matéria orgânica sobre

valores de K diminui (Wischmeier et al., 1971).

Valores de erodibilidade de solos e substratos (fator K) podem ser obtidos por meio de

coletores de sedimentos, dados climatológicos, de relevo, morfológicos ou analíticos, desde que

conhecidos os teores de silte, areia muito fina, matéria orgânica, estrutura e permeabilidade do

material em questão. Quando o valor de K é obtido por meio do Nomograma de Wischmeier et

al. (1971), ele deve ser multiplicados por 0,1317 (Baptista, 2003), para conversão das unidades

inglesas para o Sistema Internacional de Unidades - t.h (MJ.mm)-1 ou Mg.h (MJ.mm)-1.

Os valores de K para solos variam de menos de 0,10 (solos pouco erodíveis), a mais de 0,50

(solos altamente erodíveis) (Tabela 4.1). Solos muito argilosos ou muito arenosos apresentam

valores reduzidos de K, restando os maiores valores para materiais de textura média. Areia

permite uma rápida e boa infiltração da água, que reduz o potencial erosivo. Argila apresenta

estrutura coesa, que também oferece maior resistência à erosão. Wischmeier et al. (1971) relatam

que a erodibilidade de solos aumenta conforme aumenta o teor de silte.

Os valores de K são fixos para cada material e não refletem variações sazonais, que, de fato,

existem na natureza. Wischmeier et al. (1971) defendem que valores de K para substratos

expostos podem ser também determinados com precisão. Mafra (2007) encontrou valores de K

entre duas e quatro vezes maiores nos horizontes expostos por mineração de Cambissolos e

Latossolos Vermelho-Escuros do que nas respectivas camadas superficiais desses solos. Baixa

permeabilidade e pouca de matéria orgânica foram consideradas as principais causas dos elevados

valores de K dos horizontes expostos pela mineração.

Os valores expressos na Tabela 4.1 retratam situações de solos que não perderam os

horizontes superficiais e, portanto, trata-se apenas de uma aproximação para substratos expostos

de áreas mineradas.

Page 48: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 4.1: Classes de erodibilidade e valores de K para alguns solos de Cerrado

Classe de

erodibilidade *Valor de K

t.h (MJ.mm)-1

Tipo de solo

Muita alta > 0,50 30% dos Al e 50% das Aq

Alta 0,35 - 0,50 7% dos PVA, 30% dos Pl, 30 dos GPH, 20% das LH

Média 0,25 - 0,35 17% dos PVA, 50% dos Cd, 70% dos Pl, 50% dos GPH,

80% das LH

Baixa 0,10 - 0,25 12% dos LA, 20% dos CL, 34% dos LE, 48% dos PVA,

50% dos Cd, 50% das Aq, 70% dos Al

Muito baixa < 0,10 88% dos LA, 66% dos LE, 28% dos PVA, 100% dos CL,

100% dos PH

Al - Alúvios; Aq - Areia Quartzosa; Cd - Cambissolo; CL - Concrecionário Laterítico; GPH

- Glei Pouco Húmico; LA - Latossolo Amarelo; LH - Laterita Hidromófica; LE - Latossolo

Vermelho-Escuro; PH - Podzol Hidromórfico; Pl - Planossolo; PVA - Podzólico Vermelho-

Amarelo. Fonte: Ranzani (1980).

*Valores tabulados devem ser multiplicados por 0,1317 para conversão das unidades inglesas de

K (ton.acre.h/acre.ft-ton..inch) para o Sistema Internacional de Unidades - t.h.ha (MJ.ha.mm)-1

(Baptista, 2003).

4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados

no Fator LS - fator topográfico

Os efeitos do comprimento de rampa (L) e da declividade do terreno (S) podem ser

estimados separadamente (BAPTISTA, 2003). Na prática, entretanto, é mais conveniente

considerar as duas varáveis como um fator topográfico único - LS (USDA, 1978). Dessa forma,

tabelas que fornecem valores comjugados de L x S têm sido elaboradas (Tabela 4.2). Valores de S

entre 0,2 e 20% de inclinação e de L entre 7,6 e 304 m que não constem na Tabela 4.2 devem ser

obtidos por meio da interpolação. Um dos problemas apresentados na combinação de LS é

escolher um valor que represente a inclinação e o comprimento médio de toda uma área. Os

maiores erros associados a escolhas de valores de LS referem-se ao fator S. Como agravante, a

erosão é mais sensível a variações de declividade do terreno do que de seu comprimento. Um

erro de 1% na avaliação da declividade pode dobrar o valor das perdas de sedimentos aferido por

meio da EUPS.

Page 49: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 4.2: Valores do fator topográfico (LS) para algumas inclinações e comprimentos de

rampa no terreno

Comprimento da rampa (m) Declividade

(%) 7,6 15,2 22,8 30,4 45,6 60,8 91,2 122 152 182 243 304

0,2 0,06 0,07 0,08 0,08 0,09 0,09 0,10 0,11 0,11 0,11 0,12 0,13

0,5 0,07 0,08 0,09 0,10 0,10 0,11 0,12 0,13 0,13 0,14 0,15 0,15

0,8 0,09 0,10 0,11 0,11 0,12 0,13 0,14 0,15 0,16 0,16 0,17 0,18

2,0 0,13 0,16 0,19 0,20 0,23 0,25 0,28 0,31 0,33 0,34 0,38 0,40

3,0 0,19 0,23 0,26 0,29 0,33 0,35 0,40 0,44 0,47 0,50 0,54 0,57

4,0 0,23 0,30 0,36 0,40 0,47 0,53 0,62 0,70 0,76 0,82 0,92 1,01

5,0 0,27 0,38 0,46 0,54 0,66 0,76 0,93 1,07 1,20 1,31 1,52 1,69

6,0 0,34 0,48 0,58 0,67 0,82 0,95 1,17 1,35 1,50 1,65 1,90 2,13

8,0 0,48 0,70 0,86 0,99 1,21 1,41 1,72 1,98 2,22 2,43 2,81 3,14

10 0,69 0,97 1,19 1,37 1,68 1,94 2,37 2,74 3,06 2,36 3,87 4,33

12 0,90 1,28 1,56 1,80 2,21 2,55 3,13 3,61 4,04 4,42 5,11 5,71

14 1,15 1,62 1,99 2,30 2,81 3,25 3,98 4,59 5,13 5,62 6,49 7,26

16 1,42 2,01 2,46 2,84 3,48 4,01 4,92 5,68 6,35 6,95 8,03 8,98

18 1,72 2,43 2,92 3,43 4,21 3,86 5,95 6,87 7,68 8,41 9,71 10,9

20 2,04 2,88 3,53 4,03 5,00 5,77 7,07 8,16 9,12 10,0 11,5 12,9

Adaptado de USDA (1978); Wischmeier & Smith (1978 apud LYLE Jr., 1987).

4.3.4 Fator C - cobertura do substrato

A cobertura de solos e substratos é considerada a medida mais importante para o controle da

erosão. Os valores de C variam de quase zero, para solos bem protegidos por cobertura vegetal

rasteira ou resíduos (palha, serrapilheira e outros), a um, para locais cuja cobertura vegetal foi

completamente retirada (Tabela 4.3). Quanto maior a distância entre a cobertura vegetal (copas de

árvores, por exemplo) e a superfície do solo/substrato, menos eficiente essa cobertura será para

evitar a erosão pluvial (USDA, 1978) Valores de 1,5 para C podem ser encontrados na literatura

(FOSTER, 1991) para locais recém-arados e em bordas de chapadas de grande inclinação.

Manter resíduos (palha, serrapilheira e outros) sobre a superfície de uma área é uma das

medidas mais eficientes para o controle de erosão. As gotas de chuva não batem diretamente

sobre o solo/substrato e não destroem os agregados. Os resíduos servem também como barreira

Page 50: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

ao escorrimento superficial livre (GONÇALVES et al., 2004b, USDA, 1978). A magnitude da

importância da cobertura vegetal na redução do transporte de partículas pode ser visualizada ao

se analisar os dados de Foster (1991): uma cobertura de 30% do solo reduziu a perda de

partículas em 75% e uma cobertura de 50% reduziu 95% dessas perdas.

No Distrito Federal, os meses com maior potencial de erosão pelas chuvas são aqueles de

maiores índices pluviométricos (dezembro, janeiro e março). Porém, são nos meses em que os

solos agrícolas estão descobertos (outubro e novembro) que mais ocorre erosão e transporte de

partículas de solos no Distrito Federal (RESCK, 1981). Isso demonstra a importância de se cobrir

superfícies desnudas, seja qual for o motivo do desmatamento (reflorestamento, agricultura,

urbanização, mineração).

Tabela 4.3: Valores de C em função da % de cobertura herbácea ou por resíduos de

substratos

Cobertura do substrato

(%)

Valor de C Cobertura do substrato

(%)

Valor de C

0 1 55 0,25

5 0,90 60 0,22

10 0,78 65 0,20

15 0,70 70 0,15

20 0,60 75 0,15

25 0,55 80 0,10

30 0,50 85 0,08

35 0,45 90 0,06

40 0,40 95 0,05

45 0,35 100 0,03

50 0,30

Fonte: Adaptado de Lyle Jr.(1987).

Page 51: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

4.3.5 Fator P - medidas de controle da erosão

De todas as variáveis da EUPS, o fator P é o menos preciso na avaliação das perdas de

solos/substratos. Tabelas que tentam relacionar o fator P com a declividade (S) e comprimento

do terreno (S), cobertura da superfície (C) e práticas conservacionistas de solo têm sido

elaboradas e utilizadas. Entretanto, terraceamento, aração em nível, gradeação, escarificação e

subsologaem são as práticas que mais afetam os valores de P (USDA, 1978), apesar de ser difícil

relacionar as mudanças provocadas por essas práticas a um valor específico de P. Por essa razão,

valores de P representam efeitos gerais de medidas que melhoram as condições gerais da área e

do substrato exposto. O terraceamento de uma área, por exemplo, reduz o comprimento de

rampa e, conseqüentemente, o valor do fator topográfico LS (Tabela 4.2).

A importância de tratamentos dados a superfícies mineradas (subsolagem, terraceamento e

outros) aumenta proporcionalmente com a declividade (S) e com o comprimento da rampa (L)

do terreno. Para terrenos sem terraços, escarificação ou qualquer outra medida de controle de

erosão, adota-se P = 1. Quando medida(s) de controle de erosão é (são) adotada(s),

principalmente subsolagem ou terraceamento, pode-se considerar P = 0,5 (ROOSE, 1977). A

subsolagem de um substrato deve ser seguida de incorporação de matéria orgânica ou de

recobrimento da superfície da área com cobertura morta. Caso contrário, o substrato voltará a ser

compactado pelas chuvas e P reassumirá o valor 1.

4.3.6 Exemplo de uso da EUPS/USLE para subsidiar a elaboração de um PRAD

Considere uma área hipotética, localizada no Distrito Federal e que foi minerada para a

extração de aterro em Latossolo Vermelho-Escuro. O minerador deixou o local com uma

declividade de 10% (1 m vertical : 10 m horizontais) e uma rampa de 122 m de comprimento.

Inicialmente, deve-se calcular o R para a área em questão. O Instituto Nacional de

Metereologia disponibiliza em sua página (www.inmet.gov.br), ícone “climatologia”, séries

históricas de precipitação. Os valores de precipitação apresentados na Tabela 4.4 se referem às

médias de uma série de trinta anos para o Distrito Federal. De posse dos valores mensais de

precipitação, calculam-se os EI30 mensais por meio da Equação 4.2. A soma dos EI30 mensais

(Equação 4.3) dará o valor de R a ser usado na Equação 4.1.

Page 52: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 4.4: Médias pluviométricas, EI30mensal das chuvas e R para o Distrito Federal

Jan. Fev. Mar. Abr. Maio Junho Julho Agosto Set. Out. Nov. Dez. Annual

_________________________________________________mm_______________________________________________________

240 210 180 125 30 5 10 15 50 160 230 250 1.505

____________________________________________*EI30 mensal ___________________________________________ *R

1.522 1.213 933 502 45 2 7 14 106 764 1.416 1.632 8.154

* MJ.mm (ha.h.ano)-1.

De posse do valor de erosividade das chuvas locais (R), obtem-se na Tabela 4.1 o valor de K

= 0,10 x 01317 para um Latossolo Vermelho-Escuro. Entretanto, deve-se ter em mente que esse

valor de K não é real para a situação hipotética em tela, pois a Tabela 4.1 mostra valores de K

para horizontes superficiais dos solos citados nela. Para 10% de declividade e 122 metros de

rampa, a Tabela 4.2 traz um valor de LS = 2,74. Uma área recém-minerada é totalmente

desprovida de cobertura vegetal e, portanto, C = 1 (Tabela 4.3). Sem tratamento do substrato,

pois a recuperação ainda não se iniciou, P = 1. Substituindo os valores das variáveis na Equação

4.1, e adotando-se o estima-se uma perda de 294 toneladas (ha.ano)-1, conforme expresso no

Cenário 1 da Tabela 4.5 abaixo.

Após a escarificação do substrato exposto, P passa a assumir o valor de 0,5 e as perdas de

sedimentos são reduzidas pela metade (Tabela 4.5, Cenário 2). O passo seguindo na execução de

um PRAD que vise à revegetação seria a reconstrução topográfica, especificamente o

terraceamento. A Tabela 4.10 recomenda 16 m de espaçamento horizontal entre terraços de

retenção em terrenos com 10% de inclinação e substrato argiloso. Com a construção de terraços

a cada 16 m, há que considerar um novo valor para LS. Para 10% de inclinação, há valores de LS

para rampas de 15,2 m e 22,8 m (Tabela 4.2). Para 16 m de rampa, interpola-se, para se obter LS

= 0,99. A construção de terraços a cada 16 m reduzirá as perdas de sedimentos para 18%

(Cenário 3) do total inicialmente perdido (Cenário 1). O recobrimento do substrato com

vegetação alterará o valor de C. Considerando uma cobertura inicial do substrato de 30%, no

primeiro mês após o plantio de uma camada rasteira, tem-se C = 0,5 (Tabela 4.3). Reduzem-se as

perdas de sedimentos para 9% (Cenário 4) do total inicialmente perdido (Cenário 1). Porém, os

sedimentos perdidos estariam confinados entre terraços, desde que não houvesse o rompimento

deles. Ao se atingir 80% de cobertura, valor próximo ao de áreas nativas de Cerrado, as perdas de

Page 53: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

sedimentos reduzem-se para 5,3 t (ha.ano)-1 (Cenário 5), ou menos de 2% do valor inicialmente

perdido.

Pode-se ainda verificar se a cobertura vegetal do substrato, sem terraceamento, seria

suficiente para controlar a erosão (Cenário 6). Dessa forma, volta-se a ter LS = 2,74 e espera-se

uma perda de sedimentos de 14,7 t (ha.ano)-1 (Tabela 4.5), quando a camada herbácea estiver

cobrindo 80% do substrato minerado. Pode-se ainda recompor a topografia, incorporar matéria

orgânica e esperar que a natureza se encarregue de revegetar a área minerada. Nesse caso, haveria

uma perda inicial de sedimentos de 53,2 t (ha.ano)-1 confinada entre terraços (Cenário 3). À

medida que a sucessão operasse sobre o substrato, recobrindo-o, as perdas de sedimentos seriam

progressivamente reduzidas. Outros cenários que manipulem os fatores expressos por L, S, C e P

podem ser testados e comparados aos custos de cada medida. Dessa forma, obtem-se a relação

entre o custo financeiro e a efetividade técnica de cada medida de controle de erosão.

Tabela 4.5: Cenários para o uso da EUPS no planejamento da recuperação de uma área

minerada hipotética

Cenário R

MJ.mm/ha.h.ano

K

t.h/MJ.mm

LS C P A

t/ha.ano

1 8.154 0,10 x 0,1317 2,74 1 1 294

2 8.154 0,10 x 0,1317 2,74 1 0,5 147

3 8.154 0,10 x 0,1317 0,99 1 0,5 53,2

4 8.154 0,10 x 0,1317 0,99 0,5 0,5 26,6

5 8.154 0,10 x 0,1317 0,99 0,1 0,5 5,3

6 8.154 0,10 x 0,1317 2,74 0,1 0,5 14,7

O caso extremo de erosão em áreas mineradas é o envoçorocamento do material exposto. As

ravinas são conseqüência da passagem de grande quantidade d´água pelo mesmo sulco, que se vai

alargando e se aprofundando. Ao atingirem o lençol freático, tornam-se voçorocas, que são de

difícil e onerosa recuperação, pois demandam grandes obras civis. Aparte as questões químicas e

biológicas dos substratos, a instabilidade de uma voçoroca impede o estabelecimento de uma

comunidade vegetal no local degradado. A estabilização de voçorocas é comumente obtida por

meio do disciplinamento das águas, seguido da construção de barreiras ou paliçadas,

Page 54: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

retaludamento das bordas, aplicação de aterros de sustentação com ou sem geotêxtil,

enrocamento, construção de gabiões ou muro em pedra argamassada, impermeabilização

asfáltica, aplicação de telas metálicas ou outras técnicas de bioengenharia.

Para se recuperar ravinas e voçorocas, deve-se inicialmente desviar a água que converge para a

cabeceira delas. Isso pode ser feito por meio da construção de um canal, revestido ou não, com

inclinação de 0,5% a, no máximo, 1%. Esse canal deve desaguar em local apto a receber

enxurradas, para que outra ravina ou voçoroca não seja formada por causa desse desvio. Procede-

se à suavização dos taludes, para se evitar novos desmoronamentos de barrancos, e à construção

de paliçadas (Figura 4.1), cuja distância depende da declividade do terreno (Tabela 4.6). Após a

estabilização física, pode-se preencher a ravina e a voçoroca com terra, com material vegetal

morto ou introduzir plantas diretamente sobre o material exposto do fundo. A revegetação dos

taludes, bordas e fundo segue as técnicas usadas em áreas sujeitas à erosão laminar e à erosão em

sulcos. O plantio de gramíneas ou outras plantas nas bordas da ravina e da voçoroca é

indispensável, seja qual for o tratamento físico dado a elas.

Outra maneira de deter a frente de erosão de uma voçoroca é manilhar a água que chega de

montante à cabeceira dela e construir um canal de alvenaria ou pedras para escoar para jusante da

voçoroca a água colhida nos bueiros manillhados (Foto 4.1). Dessa forma, a água passa pelo local

sem entrar em contato direto com o substrato erodível. O dimensionamento correto do(s)

bueiro(s), manilhas e canal (s) é de fundamental importância para o sucesso de sua estabilização

da voçoroca.

Page 55: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Figura 4.1: Controle de erosão em voçoroca por meio de paliçada. Adaptado de Galeti (1973).

Tabela 4.6: Distância entre paliçadas, de acordo com

a declividade do terreno

Declividade (%) Distância entre paliçadas

até 2,9 17 m

3 - 5,9 8,5 m

6 - 8,9 5,5 m

9 - 11,9 4 m

12 - 14,9 3 m

15 - 17,9 2,5 m

mais de 18 2 m

Fonte: Galeti (1973).

Page 56: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Foto 4.1: Manilhamento e construção de canal de alvenaria para estabilização de voçoroca em área minerada.

4.5 Recomposição topográfica

A recomposição topográfica é uma etapa crítica para a estabilização da paisagem, pois é sobre

a superfície da área que as etapas seguintes do processo de recuperação ocorrerão e que a

comunidade vegetal estabelecida deverá permanecer. A nova configuração topográfica da área

deve ser suave, por questões de estabilidade, ondulada, para evitar grandes concentrações de água

em uma mesma superfície, e irregular em seu interior, para se evitar uma paisagem monótona e

também para se aumentar o número de possíveis abrigos para a fauna e nichos ecológicos no

local. Paisagens côncavas são mais estáveis que convexas e, portanto, devem ser preferidas

sempre que possível. Uma topografia estável e que se assemelhe à natural estará menos sujeita aos

processos naturais que operam sobre a paisagem, como, por exemplo, a erosão. Uma topografia

suave também se encaixa melhor na paisagem natural que circunda a área degradada. A nova

topografia da área deve manter em seus limites toda a água que precipite sobre ela, evitando-se,

dessa forma, escorrimento superficial, enxurradas, erosão laminar e em sulcos. Em lavras extensas

e inclinadas, terraços, barreiras e valas são necessários para a contenção das águas.

As práticas mecânicas de controle da erosão são realizadas em contorno. “Em contorno” se

refere a operações que sigam as curvas de nível, sempre cruzando perpendicularmente a direção

Page 57: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

de declividade do terreno. Operações em contorno visam aumentar o armazenamento de água no

solo ou substrato em regiões secas. Em regiões úmidas, operações em contorno reduzem a perda

de sedimentos, solos e água por escorrimento. Sulcos deixados no solo pelo plantio em nível, por

exemplo, servem de valas de infiltração de água, o que reduz o escorrimento superficial e a

erosão.

4.5.1 Construção de terraços (terraceamento)

A construção de terraços é o método mais usado há milênios para disciplinar as águas em

terras agrícolas, florestais e, atualmente, em áreas degradadas pela mineração. O terraceamento é

uma prática mecânica que se baseia no parcelamento de uma rampa declivosa de um terreno.

Terraços são dispostos transversalmente ao declive para que possam interceptar o escorrimento

superficial de água. Sendo assim, um terraço protegerá a faixa de terra que lhe fica imediatamente

abaixo. A construção de um sistema de terraços deve começar pela parte mais alta do terreno.

Isso garantirá o controle das enxurradas em sua origem, impedindo que águas pluviais adquiram

volume e velocidade à medida que escorram para porções mais baixas.

O terraceamento de uma área minerada no Cerrado passa a ser necessário quando a

associação da declividade (fator S) com o comprimento da rampa (L) resulte em um valor de LS

≥ 0,5 (Tabela 4.2). Outro critério é terracear áreas desprovidas de vegetação em que a declividade

≥ 6%, independentemente do comprimento da rampa. A partir de 24% de declividade, deve-se

evitar a utilização de máquinas na construção de terraços, pois há perigo de capotamento do

trator. Entretanto, áreas com até 40% de inclinação têm sido terraceadas no Brasil, apesar da fala

de segurança que isso representa para o tratorista.

Um terraço é constituído por um canal e por um camalhão ou dique (Figura 4.2). O canal é

uma valeta de onde a terra foi retirada para o levantamento do camalhão, que é o cordão de

proteção acima do nível do solo/substrato. Canal e camalhão retêm ou desviam as águas que

escorrem das partes mais elevadas da área para as mais baixas. Há terraços que são construídos

para reter a água em seu canal, até que ela infiltre. Há terraços que direcionam a água para

determinado local, visando à drenagem superficial do terreno. Os terraços de retenção

(infiltração) são construídos em curvas de nível e têm as sua duas extremidades locadas na mesma

cota altimétrica. Acreditam alguns que o comprimento de terraços de retenção é ilimitado. Porém,

o risco de rompimento do camalhão aumenta com o comprimento do terraço e, por isso,

recomenda-se limitar o comprimento de um terraço à extensão de mil metros.

Page 58: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Os terraços de escoamento (escorrimento, condução), são mais apropriados para substratos

de textura média ou argilosa e devem possuir um leve desnível, nunca superior a 2% (2 vertical :

100 horizontal), para permitir o escoamento da água. Deve-se também limitar o comprimento de

terraços de escoamento a 600 m, para evitar que a água adquira grande volume e velocidade

excessiva.

Os terraços de retenção são preferíveis para áreas degradadas pela mineração, pois eles

mantêm a água das chuvas na área minerada, favorecendo a revegetação. Eles são também de

mais fácil manutenção. Há, porém, maior risco de rompimento do camalhão caso a água se

acumule em quantidade excessiva ou escorra com velocidade. Por essa razão, camadas

impermeáveis do substrato podem impedir a adoção de terraços de retenção. Caso terraços de

escoamento sejam adotados, deve-se identificar local propício ao recebimento da água drenada:

deve ser um local em que o descarte da água não inicie um processo de ravinamento e

envoçorocamento.

Terraços são construídos jogando-se a terra retirada do canal sempre para a cota inferior,

como feito no Terraço de Nichols (Figura 4.3), ou pode-se optar pela construção do camalhão

retirando-se terra tanto de sua porção a montante quanto à jusante (Terraço de Mangum).

O Terraço de Mangum (Figura 4.2) é o mais usado porque pode ser construído com diversos

implementos, tais como enxada mecânica, manual, arado terraceador, de aiveca e de disco, draga

em “V”, motoniveladoras, lâminas e outros (Tabela 4.7). Ele é mais apropriado para terrenos de

pouca declividade e para solos e substratos permeáveis. Porém, o terraço de Nichols é mais

resistente e indicado para terrenos com declividades entre 8 e 20%. Todavia, há a necessidade de

se utilizar equipamento reversível na construção de terraços de Nichols.

Page 59: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Figura 4.2: Terraço de Mangum.

Figura 4.3: Terraço de Nichols.

Page 60: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 4.7: Operações e implementos agrícolas usados na recuperação de áreas degradadas

Operação Implemento

Escarificação Escarificador. Para superfícies pouco compactadas, podem ser

usados, ainda, enxada rotativa e arado de aivecas

Subsolagem Subsolador

Gradeação/Gradagem Grade de discos, de mola, de dentes, enxada rotativa

Terraceamento Arado de disco ou de aivecas, motoniveladora, plaina terraceadeira,

enxada ou enxadão, lâmina do trator, draga em “V”

Aração Arado de discos e de aivecas, grade aradora pesada e de discos leve,

arado gradeador, enxada rotativa

Distribuição de insumos Espalhadeira de calcário e adubos, espalhadeira de esterco,

carretinha, adubação manual a lanço

Incorporação de insumos

e sementes

Grade de discos leve, arado

A resistência e a durabilidade de um terraço são influenciadas por suas dimensões. Quanto

mais largo e raso for o canal, mais resistente ele será, e maior será a sua superfície de infiltração.

Porém, canais mais estreitos e profundos são de manutenção mais fácil. O implemento disponível

geralmente determina a largura e profundidade dos canais. Há certas proporções que devem ser

consideradas na construção de canais. A largura e a profundidade do canal devem resguardar a

proporção dada pela Equação 4.4:

( 27,0arg21 mdeprofundidaxural =) (Equação 4.4)

De acordo com a largura da faixa de movimentação de terra (canal + camalhão), os terraços

são classificados como de base estreita (até 3 m) - para declives superiores a 15% - base média

(3 a 6 m) - para declives entre 10 e 12% - e base larga (mais de 6 m), para declives de até 8%.

Dessa forma, terraços de base larga são apropriados para terrenos pouco inclinados, pois, em

Page 61: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

declives acentuados, há o risco de a água extravasar por cima do camalhão. Tamanho, distância e

quantidade de terraços construídos em uma área dependem da pluviosidade local, da textura do

substrato, da cobertura a ser implantada e, principalmente, da declividade do terreno. Em

terrenos a partir de 100% de inclinação (45o), cordões de vegetação permanente são mais

apropriados do que terraços.

Existem dois tipos de espaçamento entre terraços a serem considerados: espaçamento

vertical, que se refere à diferença de altura entre terraços locados em cotas diferentes, e

espaçamento horizonte, que é a distância horizontal entre terraços. O espaçamento vertical

(Ev) e o espaçamento horizontal (Eh) entre dois terraços podem ser calculados por meio da

Equação 4.5 (Fórmula de Bentley) e da Equação 4.6, abaixo:

( ) ( ) 305,0%2×⎥⎦

⎤⎢⎣⎡ +

edeclividadmEv (Equação

4.5)

( ) ( )%100

edeclividadEvmEh ×

= (Equação 4

.6)

s valores de α dependem da textura do substrato e encontram-se na Tabela 4.8 abaixo:

Tabela 4.8: Valores de α para a fórmula de Ev

[(argila + silte) < 15%]

tura média Substrato argiloso

O

Substrato arenoso Substrato de tex

(15 a 35% de argila) (> 35% de argila)

1,5 2,0 2,5

Page 62: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 4.9: Espaçamento horizontal recomendado entre terraços, conforme declividade do terreno, tipo de terraço e textura do substrato

Declividade Terraço de retenção Terraço de escoamento

(%) *Su to *S bstrato Substra

arenoso argiloso

ubstrato Substrato

arenoso argiloso

1 67 m 70 m 70 m 75 m

2 37,5 m 39,5 m 39,5 m 45 m

3 27 m 30 m 30 m 35 m

4 22,5 m 25 m 25 m 30 m

5 20,0 m 21,8 m 21,8 m 27 m

6 17,5 m 20,0 m 20,0 m 25 m

7 16,0 m 18,4 m 18,4 m 23,6 m

8 15,0 m 17,5 m 17,5 m 22,5 m

9 14,0 m 16,7 m 16,7 m 21,7 m

10 13,5 m 16,0 m 16,0 m 21,0 m

11 13 m 15,4 m 15,4 m 20,4 m

12 12,5 m 15,0 m 15,0 m 20,0 m

13 12,0 m 14,7 m 14,7 m 19,6 m

14 11,7 m 14,3 m 14,3 m 19,3 m

15 11,5 m 14,0 m 14,0 m 19,0 m

16 11,3 m 13,8 m 13,8 m 18,7 m

17 11,0 m 13,6 n 13,6 m 18,5 m

18 10,8 m 13,4 m 13,4 m 18,3 m

*Substrato arenoso é aq possui m silte) em s osição uele que enos de 15% de (argila + ua comptextural. Fonte: Galeti (1973).

Page 63: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

( ) ( )⎥⎦⎤

⎢⎣⎡≅ −

100%1 edeclividadtaggrausInclinação

Exemplo: 10% de declividade

⎟⎠⎞

⎜⎝⎛−

100101tag = 5,7º de inclinação com a horizontal

45º com a horizontal tag 45 = 1 1 x 100 = 100% de declividade

Quadro 4.1: Conversão entre declividade (%) inclinação (graus).

4.5.2 Exemplo de determinação da distância entre terraços e do número de terraços a

ser

Latossolo Vermelho-Escuro para a extração de

ater

Distância vertical entre terraços (Equação 4.5)

em construídos em uma área hipotética

Considere uma área que foi minerada em

ro. O minerador deixou o local com uma declividade de 10% (fator S) e uma rampa de 22 m

de comprimento (fator L). A distância entre terraços deve ser calculada como segue:

( ) 305,05,2102

×⎟⎠

⎞⎜⎝

⎛∗

+=mEv = 1,5 m

Distância horizontal entre terraços (Equação 4.6) ( )10

1005,1 ×=mEh = 15 m

*Latossolo Vermelho-Escuro possui mais de 35% de argila. Portanto, valor de α = 2,5, conforme

lternativamente, podem ser utilizados os valores de espaçamento horizontal entre terraços

de

Considerando 122 m de rampa:

Tabela 4.8.

A

retenção expressos na Tabela 4.9. A Tabela 4.9 recomenda a distância de 16 m entre terraços

de retenção a serem construídos em uma área de substrato argiloso e com 10% de declividade.

Page 64: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

=mm122 8,1 terraços

15 de acordo com as Equações 4.5 e 4.6.

=mm

16122

7,6 terraços de acordo com a Tabela 4.9.

Não é possível construir 7,6 ou 8,1 terraços.

terraços na rampa de 122 m. Dessa forma, as Equações 4.5 e 4.6 e a Tabela 4.9 chegarão a valores

sem

Arredondando-se, serão construídos oito

elhantes entre distâncias entre terraços de retenção (Foto 4.2).

Foto 4.2: Terraço de retenção, tipo Nichols, construído em área minerada antes de sua revegetação.

Page 65: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Capítulo 5

Tratamento do substrato

5.1 Material exposto

Ao se caracterizar um substrato onde uma comunidade vegetal será estabelecida, devem-se

identificar o(s) horizonte(s) remanescente(s), a resistência que o material exposto oferecerá ao

desenvolvimento de raízes, sua capacidade de infiltrar e reter água (na estação chuvosa e na

estação seca) e o estado nutricional desse material. As medidas físicas (subsolagem, escarificação,

terraceamento e outros) e as correções químicas (adubação e incorporação de matéria orgânica)

serão baseadas nas características do substrato exposto, nas características do relevo e do clima

locais e nas necessidades das espécies a serem estabelecidas na área. Após a exploração de uma

lavra, há comumente duas situações encontradas:

• a exploração mineral atingiu o horizonte C, mas parte dele (30 - 40 cm de espessura) foi

mantida. Essa camada de material pulverizado servirá de substrato mineral para receber

insumos (matéria orgânica e fertilizantes) necessários à fixação de uma nova comunidade

vegetal e de outros organismos. O substrato exposto pode requerer subsolagem ou

escarificação.

• a exploração mineral atingiu a rocha, o saprolito ou regolito, que deverão servir de

substrato para a vegetação a ser implantada. Este segundo caso é mais oneroso, as

soluções técnicas são mais difíceis e os resultados da revegetação serão piores do que na

situação anteriormente mencionada. Neste segundo caso, o tratamento do substrato

visando à revegetação se inicia com a subsolagem ou a escarificação do substrato exposto.

Alguns aspectos devem ser criteriosamente avaliados ainda na fase de caracterização da lavra

explotada, antes que se elabore um PRAD:

Page 66: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

• verificar se há afloramento d`água na lavra. Se possível, verificar a profundidade do lençol

freático;

• verificar se o substrato escarificado será suficientemente profundo para suportar as

espécies vegetais a serem plantadas;

• avaliar a capacidade de retenção das águas precipitadas sobre o substrato;

• verificar se não há impedimento para o escorrimento e/ou infiltração da água precipitada;

• verificar se há impedimentos químicos e/ou físicos à penetração e ao desenvolvimento de

raízes;

• verificar se não há valores extremos de pH e salinidade no substrato.

5.2 Subsolagem ou escarificação do material exposto

A execução dos trabalhos de recuperação de uma área minerada deve começar pela

subsolagem ou escarificação do substrato exposto à superfície. A camada exposta (horizonte C,

rocha, saprolito ou regolito) tem que ser quebrada, pois os tratamentos subseqüentes demandam

material pulverizado. A profundidade da subsolagem ou da escarificação é limitada pelo

implemento agrícola usado (escarificador, subsolador), pela potência do trator e pelo nível de

compactação da superfície exposta. A escarificação geralmente limita-se a 20 - 30 cm de

profundidade, enquanto subsoladores atingem 50 cm de profundidade (Foto 5.1). A camada

superficial rompida será usada na composição de elementos da paisagem, tais como terraços, e

servirá de substrato mineral a ser adubado com insumos necessários para o desenvolvimento das

plantas. Aumentar a capacidade de infiltração e de armazenamento de água do substrato é outro

objetivo de uma operação de escarificação. A subsolagem e a escarificação cruzadas, que

consistem em romper o substrato em duas direções perpendiculares, são mais eficientes para o

enraizamento das plantas e para aumentar a infiltração de água.

Sob condições naturais, os solos de Cerrado são capazes de absorver as chuvas, sem que haja

significativo escorrimento superficial de água. Ao se minerar uma área, a capacidade de infiltração

de água dos horizontes expostos cai para cerca de 10% dos valores originalmente existentes no

solo coberto por vegetação nativa. A escarificação triplica a capacidade de infiltração de

substratos minerados e compactados. Porém, essa capacidade não ultrapassa 35% do valor

originalmente presente no solo não degradado (Figura 5.1). A camada escarificada de 20 - 30 cm,

com apenas 35% da capacidade de infiltração original, geralmente não é capaz de absorver as

chuvas, e erosão pode ser um problema nessas áreas. Entretando, a subsolagem cruzada é capaz

Page 67: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

de aumentar a capacidade de infiltração do substrato minerado para valores similares aos de solos

sob Cerrado nativo e superiores ao de solos sob agricultura convencional (Figura 5.2). Esse

aumento da capacidade de infiltração é capaz de reduzir substancialmente a erosão pluvial em

uma área minerada.

A gradeação, para fracionar torrões e pulverizar o material grosseiro, é necessária após a

subsolagem ou escarificação. O rompimento da superfície compactada reduz a resistência à

penetração de raízes, que facilita a exploração de ar, água e nutrientes pelas plantas. Porém,

mesmo após a subsolagem ou a escarificação, a densidade aparente de substratos minerados

continua a ser maior do que a de solos.

oto 5.1: Subsolagem cruzada de substrato exposto em cascalheira explotada.

F

Page 68: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

0102030405060708090

CerradoCampo-sujo

Cascalheira

Cascalheira-escarificada

Águ

a in

filtr

ada

em 2

,5 h

oras

(cm

)

Figura 5.1: Capacidade de infiltração de quatro substratos de Cerrado I. Fonte: Leite et al. (1994).

0

20

40

60

80

100

120

140

Cerrado Agricultura Cascalheira Cascalheirasubsolada

Águ

a in

filtra

da e

m 2

,5 h

(cm

)

Figura 5.2: Capacidade de infiltração de quatro substratos de Cerrado II.

Page 69: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5.3 Amostragem do substrato exposto

Após a subsolagem/escarificação de uma superfície compactada e a recomposição

topográfica de uma área, amostras da camada a ser adubada devem ser coletadas e enviadas para

análise granulométrica (textura), de matéria orgânica e química (pH, macro e micronutrientes,

saturação por bases, CTC e outros). A representatividade dos dados gerados no laboratório

depende da qualidade da amostragem feita na área a ser revegetada. Para uma maior efetividade

da amostragem, parcelas de áreas similares quanto à topografia, condição de drenagem, cor do

substrato, profundidade, manchas, erosão e quaisquer outros atributos suspeitados como

relevantes devem primeiramente identificados. Após dividir a área com base nas semelhanças e

nas diferenças visualmente encontradas, deve-se coletar de cada parcela uma amostra composta

para cada hectare (100 m x 100 m) a ser adubado (Figura 5.3).

A amostra composta pode ser formada pela mistura de dez amostras simples. Deve-se

caminhar em zigue-zague por cada hectare de cada parcela previamente delimitada e retirar cerca

de 500 g de substrato de cada ponto de amostragem (Figura 5.3). As dez amostras simples devem

ser misturadas em um vasilhame (balde) limpo e uma porção de aproximadamente 1 kg de

substrato deve ser dele retirada. Essa porção de substrato formada pela mistura das dez amostras

simples é chamada de amostra composta. A amostra composta deve ser ensacada e enviada para

análise. Parcelas diferentes devem possuir amostras compostas diferentes, pois provavelmente

seus substratos necessitem de tratamentos diferenciados.

Em 20 cm de profundidade existem cerca de duas mil toneladas de substrato em um hectare

de área. Uma amostra de 1 kg representa uma fração de cinco bilionésimos de cada hectare a ser

adubado. Analogamente, seria como representar um ano inteiro por meio de apenas quinze

segundos. Nota-se que uma excelente amostragem é fundamental para se identificar o estado

médio do substrato minerado que deve ser adequadamente tratado.

Page 70: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Figura 5.3: Amostragem do substrato de uma área minerada.

5.4 Coveamento

A cova é o local de suporte físico de árvores e arbustos. De seu substrato, as raízes das

plantas irão explorar água, ar e nutrientes. A forma e o desenvolvimento da raiz de uma planta

são fortemente controlados pela genética, apesar de as condições edáficas, principalmente a

compactação, influenciarem essas caracterísicas (GONÇALVES & MELLO, 2004). As raízes

exploram volume de substrato e concentração de nutrientes. Covas de maior volume e com

maiores concentrações de nutrientes proporcionam um ambiente edáfico mais apropriado para o

desenvolvimento de espécies perenes. Haverá nessas covas um maior desenvolvimento radicular

e, conseqüentemente, maior crescimento da parte aérea da planta.

Covas pequenas restringem fisicamente o desenvolvimento das raízes. Substratos com baixas

concentrações de nutrientes limitam quimicamente o desenvolvimento da planta. A quantidade de

insumos aplicada a uma cova deve, portanto, aumentar na mesma proporção do aumento de

volume dela. Uma cova de dimensão adequada, com substrato propriamente adubado, é a

garantia de uma planta bem fixada, bem desenvolvida e sadia. Costuma-se dizer que plantar

mudas de boa qualidade em covas pequenas e mal adubadas é desperdício de recursos. Mudas de

qualidade exigem covas de qualidade.

Entretanto, PRAD’s executados em áreas mineradas no Cerrado têm adotado covas que

variam de 64 L (0,4 x 0,4 x 0.4 m) a, idealmente, 512 L (0,8 x 0,8 x 0,8 m). Aumentam-se as

chances de sobrevivência e o desenvolvimento de plantas fixadas em covas maiores, mas

aumentam-se também os custos do projeto: a duplicação das dimensões lineares de uma cova

acarreta e um volume oito vezes maior (0,4 x 0,4 x 0,4 m = 64 L 0,8 x 0,8 x 0,8m = 512 L).

Page 71: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Covas de 512 L demandam oito vezes mais insumos e custam oito vezes mais para serem

manualmente escavadas do que covas de 64 L.

A abertura manual de covas implica o pagamento da hora de trabalho ou, sob outra óptica, de

volume de substrato escavado. O emprego de retroescavadeira pode reduzir o custo de cada cova

aberta, mas não de insumos a serem aplicados. O trado agrícola é capaz de reduzir ainda mais o

custo de uma cova, devido à grande produtividade desse implemento. Entretanto, há a

necessidade de se escarificar manualmente as paredes das covas, por causa da vitrificação que esse

implemento causa. Há ainda locais de difícil acesso a máquinas em que o coveamento tem que ser

manual. A partir de 64 litros, a decisão sobre o tamanho das covas é freqüentemente tomada após

se analisar a composição de custos de uma muda plantada. O preço total de cada árvore é

composto pela mão-de-obra, muda, insumos e manutenção.

5.5 Adubação do substrato

Os vegetais precisam de água, ar, luz, calor, fixação e nutrientes para que possam se

desenvolver, cobrir substratos e restituir a parte terrestre de ciclos naturais. Entre 95 e 99,5% da

massa de matéria seca das plantas é composta por carbono, oxigênio e hidrogênio. As plantas

absorvem carbono do ar e hidrogênio e oxigênio da água. Os demais nutrientes (cerca de

dezoito), que somam entre 0,5 e 5% da matéria seca, devem existir nos solos e substratos em

concentrações adequadas para que possam ser absorvidos pelas raízes das plantas.

Para se recomendar aplicação de nutrientes a solos e a substratos minerados devem-se

conhecer a demanda da planta por cada nutriente, a quantidade de nutrientes que o

solo/substrato pode suprir, a capacidade de o solo/substrato adsorver os nutrientes aplicados e a

época correta de aplicação (DE BARROS et al., 2004). A capacidade que solos/substratos têm

para suprir nutrientes é verificada por meio da análise das amostras coletadas e enviadas ao

laboratório (seção 5.3). A demanda das plantas por nutrientes varia de acordo com a espécie,

estação do ano e fase de crescimento. Ela é mais intensa nos estágios iniciais de desenvolvimento

(NETO et al., 2004) e após a planta atingir a idade adulta, incrementos como resposta a

fertilizantes é improvável (GONÇALVES et al., 2004b). A fertilização deve ser entendida como

um mecanismo de aceleração do crescimento de vegetais. Após essa fase de aceleração, as plantas

crescerão de acordo com as limitações impostas pelas condições locais (GONÇALVES et al.,

2004b).

Page 72: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Grande parte dos nutrientes que sustentam comunidades estáveis vem da serrapilheira e da

translocação interna dos elementos nos vegetais. Portanto, plantas bem adubadas nos estágios

iniciais de desenvolvimento possuirão maiores quantidades de nutrientes na biomassa e,

conseqüentemente, haverá uma maior quantidade de nutrientes nas diversas fases dos ciclos

biogeoquímicos na área recuperada (GONÇALVES et al., 2004b). Além disso, corretivos e

fertilizantes geralmente apresentam longo efeito residual em solos e substratos de baixa fertilidade

(NETO et al., 2004).

Espécies pioneiras e secundárias iniciais constumam absorver mais nutrientes aplicados a

substratos e apresentar maior eficiência no uso deles do que espécies climácicas (clímaxes) e

secundárias tardias (POGGIANI & SCHUMACHER, 2004). A capacidade de absorção de

nutrientes é uma característica relacionada com potencial de crescimento e de síntese de biomassa

de uma espécie. Espécies de crescimento rápido apresentam maior quantidade de raízes finas

(GONÇALVES et al., 2004a), que acabam por definir a área de superfície de absorção das raízes.

A superfície de absorção das raízes é a característica mais importante de uma planta na

determinação da quantidade de nutrientes que ela absorve (DE BARROS et al., 2004). Dessa

forma, a raiz apresenta grande influência na dominância de uma espécie em uma determinada

comunidade (GONÇALVES & MELLO, 2004). Outra característica que pode aumentar as

chances de sobrevivência e o desenvolvimento de uma espécie é a sua capacidade de associar-se a

fungos específicos para formar micorrizas.

A maioria das espécies florestais brasileiras forma micorrizas, que exercem forte influência na

nutrição das plantas e na tolerância à seca. Mais uma vez, mudas de espécies pioneiras e

secundárias iniciais são mais facilmente micorrizadas do que espécies climácicas e secundárias

tardias (GONÇALVES et al., 2004a). Incremento na assimilação de nitrogênio e fósforo é o efeito

mais consistente da micorrização, principalmente por causa do aumento da superfície de absorção

da raiz (NETO et al., 2004). Os efeitos não nutricionais da micorrização envolvem a melhoria da

relação água-planta, redução de ataques de patógenos, maior tolerância ao estresse hídrico, a

susbtâncias fitotóxicas e melhoria na agregação do solo. Estudos com espécies arbóreas

brasileiras mostram que poucas não apresentam micorrização (NETO et al., 2004).

Page 73: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5.5.1 Matéria orgânica

A escolha da adubação correta é fator de grande importância em PRAD’s que visam à

revegetação. A matéria orgânica possui todos os nutrientes que são absorvidos pelas plantas, mas

os baixos teores dela em substratos minerados obrigam o emprego de grande quantidade de

estercos, produtos compostados e similares. A escolha da melhor fonte de matéria orgânica não

depende apenas dos nutrientes que ela carrega. Na prática, o que define a fonte de matéria

orgânica é a quantidade disponível e o seu custo, que inclui o preço de aquisição, de transporte e

de incorporação ao substrato.

Solos tropicais minerais e bem drenados possuem de 2 a 6% de sua massa entre 0 e 20 cm de

profundidade constituída de matéria orgânica. Todavia, a influência da matéria orgânica sobre as

propriedades físicas, químicas e biológicas dos solos vai muito além desse montante (BRADY,

1989). As condições áridas das áreas mineradas podem ser atenuadas por meio da adição de

resíduos orgânicos à camada superficial e a covas. Substratos minerados apresentam teores de

matéria orgânica abaixo de 1% e aumentar esse valor para cerca de 2%, no mínimo, é essencial

para o sucesso de uma revegetação. Acrescentar 1% de matéria orgânica a um substrato significa

adicionar aos seus 20 cm de camada superficial 80 toneladas por hectare de algum insumo

orgânico contendo 50% de umidade e 50% de matéria orgânica.

Adubos orgânicos e fertilizantes químicos têm funções específicas e sinérgicas, que se

complementam. Fertilizantes visam exclusivamente a prover nutrientes que não existem em

quantidades suficientes em materiais orgânicos. A matéria orgânica exerce funções químicas,

físicas e biológicas nos solos e substratos e também fornece nutrientes necessários para a

vegetação. A combinação de fertilizantes e materiais orgânicos tem mostrado ser a melhor prática

para a recuperação de solos e substratos degradados. De acordo com Leite et al. (1992), a

revegetação de locais minerados no Cerrado não é possível sem a adição de grandes quantidades

de matéria orgânica aos seus substratos. Pouca matéria orgânica resulta freqüentemente em

grande número de plantas mortas em PRAD’s. Por outro lado, os efeitos benéficos da matéria

orgânica estendem-se por longo tempo (FARIA et al., 1994). Ao se elevar os teores de matéria

orgânica dos substratos minerados a níveis adequados (Tabela 5.1), haverá melhorias químicas,

físicas e biológicas que tornarão a área degradada mais propensa à revegetação. São vários os

efeitos benéficos da matéria orgânica sobre solos e substratos degradados:

Page 74: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

• elevação da capacidade de troca catiônica (CTC ou T), que potencializa a adubação

química;

• liberação lenta de nutrientes, que é essencial para espécies perenes;

• redução da lixiviação de nutrientes aplicados por meio de fertilizantes;

• formação de quelatos, que favorecem a absorção de micronutrientes pelas plantas;

• melhoria da agregação e da estruturação do substrato, que aumentam a porosidade, a

infiltração e a quantidade de água disponível para plantas;

• aumento da capacidade tampão para pH;

• maior sanidade vegetal, proporcionada pelos organismos e microorganismos de solos que

habitam a rizosfera.

Tabela 5.1: Classificação dos teores de matéria orgânica para solos de Cerrados

Textura Matéria orgânica (% de massa)

Baixa Média Adequada Alta

Arenosa < 0,8 0,8 a 1,0 1,1 a 1,5 > 1,5

Média < 1,6 1,6 a 2,0 2,1 a 3,0 > 3,0

Argilosa < 2,4 2,4 a 3,0 3,1 a 4,5 > 4,5

Muito argilosa < 2,8 2,8 a 3,5 3,6 a 5,2 > 5,2

Fonte: De Souza & Lobato (2002a).

5.5.1.1 Escolha da fonte de matéria orgânica

Há uma série de materiais orgânicos disponíveis para os trabalhos de revegetação de áreas

degradadas, cada um com vantagens e desvantagens inerentes (Tabela 5.2), sazonais e locais.

Esterco de gado, de cavalo, de galinha, humus de minhoca, composto de lixo e lodo de esgoto

são os materiais mais utilizados em trabalhos de revegetação de áreas degradadas. Os estercos e o

humus são caros, pois são muito usados na produção agrícola de alto valor. Além disso, a

sazonalidade da demanda pode representar um problema para aqueles que os querem adquiri-los

em grande quantidade.

Composto de lixo e lodo de esgoto são duas fontes de matéria orgânica economicamente

vantajosas para a execução de PRAD’s. A grande disponiblidade desses materiais para projetos de

Page 75: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

revegetação deve-se não apenas à quantidade gerada, mas também às fortes restrições sanitárias

para utilizá-los em outras atividades, tais como agricultura, jardinagem e paisagismo. Lodos de

esgotos são produzidos em larga escala e geralmente entregues pelas estações de tratamento de

esgotos sem ônus, salvo o valor do frete. Questões sanitárias, que limitam o uso de lodos de

esgoto na agricultura, não são impedimentos incondicionais para o uso deles na recuperação de

áreas degradadas pela mineração. Composto de lixo e lodo de esgoto, por exemplo, são utilizados

em projetos de revegetação de áreas degradadas no Distrito Federal desde 1992.

A reciclagem e a reutilização de resíduos não é apenas uma questão filosófica, mas sobretudo

prática. A aplicação de resíduos em solos e substratos é considerada uma alternativa que, não

apenas resolve o problema de disposição, mas também recupera nutrientes e matéria orgânica

onde eles são necessários. Cox & Whelan (2000) relatam que as dificuldades de restabelecimento

de vegetação em locais minerados podem ser superadas com a adição de esgoto e outros resíduos

domésticos. Tomer et al. (1998) defendem que fontes de matéria orgânica originadas de resíduos

devem ser preferencialmente utilizadas em projetos de reflorestamento, para se evitar riscos de

transmissão de doenças e bioacumulação de metais pesados em humanos pela via agrícola.

Tabela 5.2: Alguns parâmetros de algumas fontes de matéria orgânica (% na matéria seca)

Material *MO pH H2O N P K Ca Mg

Lodo de esgoto 61% 6,5 4,5% 2% 0,9% 1,7% 3%

Composto de lixo 35% 5,8 0,7% 1,9% 0,2% ? ?

Esterco bovino 57% ? 1,7% 0,9% 0,4% 3,8% 0,6%

Vermicomposto 80% ? 1,5% 2% 0,2% ? ?

Esterco de ave 65% 6,0 5% 2% 2% ? ?

* Matéria orgânica, base seca.

O desempenho do composto de lixo em culturas agrícolas e como agregante de partículas

minerais é limitado. Outro problema do composto de lixo é a grande quantidade de sementes que

nele existe. Corrêa & Melo Filho (2004a) avaliaram o desempenho do composto de lixo e do lodo

de esgoto no plantio de árvores de Cerrado em áreas mineradas. Eles identificaram variadas

interações entre as diferentes espécies usadas e as duas fontes de matéria orgânica, com aparente

vantagem de três espécies sobrevivendo mais em covas adubadas com composto de lixo contra

Page 76: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

duas espécies com desempenho superior em covas adubadas com lodo de esgoto (Tabela 5.3).

Todavia, o percentual de sobrevivência para todas as oito espécies testadas ficou em torno de

70%, independentemente da fonte de matéria orgânica. Cerca de 63% das mortes ocorreu na

primeira estação seca e 6% na segunda. Apenas 21% de todas as mortes ocorreram nas estações

chuvosas, perdidas para predadores, parasitas ou outras causas. Como 69% das mortes ocorreram

nas estações secas, o estresse hídrico parece ser fator determinante para a perda de mudas em

substratos minerados no Cerrado.

Tabela 5.3: Sobrevivência das mudas adubadas com composto de lixo e com lodo de esgoto, por espécie testada

Espécie Sobrevivência (%)

Nome científico Nome comum Lixo Lodo

Dipterix alata baru 62,1a 68,4a

Jacaranda mimosaefolia jacarandá-mimoso 51,2b 65,6c

Myracodruon urundeuva aroeira 72,0d 61,5e

Piptadenia peregrina angico 73,3f 79,0f

Plathymenia reticulata vinhático 89,9g 90,9g

Stryphnodendrum adstringens barbatimão 83,0h 55,0i

Tibouchina sp. quaresmeira 37,1j 52,9k

Zantoxylum rhoifolium maminha-de-porca 86,3l 47,0m

Médias 69,4n 65,0n Valores com mesma não diferem estatísticamente pelo Teste-t, P < 0,05. Fonte: Corrêa & Melo Filho (2004a).

Entretanto, Corrêa & Melo Filho (2004a) encontraram interação entre as duas fontes de

matéria orgânica - lodo de esgoto e composto de lixo - e o estágio de desenvolvimento das mudas

ao serem plantadas no campo (Figura 5.4). Existe no Distrito Federal a prática de não se plantar

em campo aberto mudas com menos de 30 cm de altura. As perdas de mudas menores que 10,5

cm passaram dos 50% para o composto de lixo e chegaram a 50% para o lodo de esgoto,

independentemente da espécie. Na classe de altura seguinte, 10,5 - 20,5 cm, a sobrevivência passa

dos 60% para as mudas cultivadas com lodo de esgoto, mas continuam em 50% de sobreviventes

Page 77: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

para aquelas cultivadas com composto de lixo. A diferença entre os índices de sobreviventes

aumenta ainda mais na classe 20,5 - 30,5 cm: 87% das mudas plantadas nessa classe de altura

sobreviveram nas covas adubadas com lodo de esgoto, enquanto as plantadas com composto de

lixo permaneceram em 52% de sobreviventes (Figura 5.4). Os 87% de sobreviventes para o

tratamento com lodo de esgoto, na classe 20,5 - 30,5 cm, é um excelente resultado para áreas

mineradas.

A morte de plantas, que se reduziu nas classes 30,5 - 50,0 cm (Figura 5.4), volta a aumentar

para as mudas maiores que 50,0 cm. O tamanho das mudas com mais de 50 cm de altura pode ter

sido inapropriado para covas de apenas 64 L. Volume e tratamento dado a covas são cruciais para

o desenvolvimento e sobrevivência de plantas sob condições adversas. O volume de 64 L é

modesto, mas é o mais utilizado em PRAD’s.

Dessa forma, o lodo de esgoto e o composto de lixo mostraram desempenhos diferentes

somente ao interagirem com mudas de variados estágios de desenvolvimento (Figura 5.4). Pascual

et al. (1997) encontram fortes indícios de que a adição de lodo de esgoto em solos acarreta

melhores resultados de crescimento do que a incorporação de outros resíduos domésticos, devido

à grande concentração de nitrogênio e fósforo que lodos de esgoto contêm. Nesse sentido, Cox

& Whelan (2000) advogam que o crescimento rápido de plantas em estágios iniciais de

desenvolvimento aumenta suas chances de sobreviver a fatores adversos.

Lodo de esgoto possui nove vezes mais nitrogênio e quatorze vezes mais fósforo que

composto de lixo, nutrientes essenciais para o crescimento de plantas. Apenas a concentração de

potássio no lodo é aproximadamente a metade da existente no composto de lixo. As vantagens

nutricionais do lodo de esgoto estimulam significativamente o crescimento de plantas em estágios

iniciais de desenvolvimento, que pode ser traduzido em maior acumulo de reservas para

atravessar períodos de estiagem (KREBS, 1985). Outro provável mecanismo envolvido que

favorece o lodo de esgoto é o grande aumento da capacidade de água disponível dos substratos

adubados com ele.

O transporte de nutrientes do solo para as plantas se dá por difusão e fluxo de massa, que

dependem da quantidade de água existente no solo. Uma diminuição de 10% na umidade do solo

resulta na redução pela metade da difusão de nutrientes (GONÇALVES et al., 2004b). A

interceptação das raízes é outra forma de absorção de nutrientes pelas plantas e, mesmo em

Page 78: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

solos com concentrações adequadas de nutrientes, a falta de umidade pode também limitar a

absorção de nutrientes pelas raízes. Dessa forma, o estado nutricional das plantas não depende

somente das concentrações de nutrientes no solo, mas também da capacidade de ele armazenar e

dispor água para as plantas (DE BARROS et at., 2004).

46,8g

48,2eg

52,1e

56,5b

69,1a

67,1ac

50,0eg

62,4f

86,7d

66,1ac

70,0a

64,6cf

0 50 100

0-10,5

10,5-20,5

20,5-30,5

30,5-40,5

40,5-50

>50

Cla

sse

de a

ltura

(cm

)

Sobreviventes (%)

Lodo Lixo

Figura 5.4: Sobrevivência de mudas de acordo com a classe de altura e fonte de matéria orgânica

utilizada, em 22 meses de crescimento. Médias com mesma letra não diferem estatísticamente

pelo teste de Tukey, P < 0,05. Fonte: Corrêa & Melo Filho (2004a).

5.5.1.2 Uso de esgoto e lodo de esgoto em PRAD’s

O Brasil possui ótimas condições para o desenvolvimento de técnicas de aproveitamento e

depuração alternativa de esgotos. Algumas dessas técnicas utilizam a infiltração de esgotos em

solos e substratos como forma de tratamento. Nesse processo, solos e substratos retêm

patógenos, matéria orgânica e nutrientes, que são essenciais para a recuperação de substratos

degradados. Esse sistema tem a dupla vantagem de evitar o lançamento direto de esgotos em

corpos d’água e de recuperar solos e substratos agudamente degradados (CORAUCCI FILHO et

al., 1996). Corrêa et al. (2000) construíram um sistema de infiltração de esgoto em uma jazida de

cascalho explotada no Cerrado de Brasília e acompanharam o rápido processo de revegetação

espontânea no local. Além disso, constataram que o elemento químico mais retido pelo substrato

Page 79: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

da área foi o fósforo, nutriente que era anteriormente despejado em um corpo d´água, colocando-

o sob risco de eutrofização.

Todavia, apesar de viáveis, poucos são os sistemas de tratamento de esgotos no Brasil que se

valem de solos e substratos como meio de depuração de esgotos. Os sistemas convencionais de

tratamento de esgotos, mais utilizados no país, retiram dos esgotos matéria orgânica, nutrientes e

os concentram sob a forma de lodo de esgoto. Uma população urbana de cem mil habitantes gera

diariamente cerca de treze milhões de litros de esgoto, que acarretam a produção de sessenta

toneladas de lodo de esgoto. Alternativamente, cada metro cúbico de esgoto tratado produz entre

três e cinco quilos de lodo de esgoto.

Destinar lodo de esgoto de forma econômica, higiênica, ambientalmente aceitável e não

poluente é premissa básica em centros urbanos que gozam de coleta e de tratamento de esgotos.

A grande quantidade de lodo produzido diariamente e a nova ética de reduzir, reutilizar e

reciclar culminou com a idéia de se dar um uso agronômico a esse material. Porém, o manejo

adequado de lodos de esgoto é atualmente um dos problemas ambientais urbanos de mais difícil

solução devido à grande soma de benefícios e problemas contidos em um único produto.

Lodos de esgoto contêm os poluentes oriundos da atividade humana e, portanto, há riscos

ambientais e de saúde pública que devem ser gerenciados quando se decide pela utilização deles.

A presença de organismos patogênicos é constante nesses materiais e metais representam um

problema adicional quando o lodo é originado de esgotos de áreas industrializadas. Dessa forma,

o uso de lodo de esgoto deve ser precedido de uma análise acerca dos riscos envolvidos ao se

aplicar esse material em determinado local. Patógenos, por exemplo, não representam problema

para a recuperação de áreas degradadas pela mineração, caso não existam ambientes aquáticos no

local e desde que a recuperação não vise à implantação de culturas agrícolas. Até lodos com

elevadas concentrações de metais, que são inadequados para agricultura, têm sido utilizados na

revegetação de áreas degradadas pela mineração. Dessa forma, as jazidas mineradas são

atualmente os ambientes mais aptos a receberem lodo de esgoto, desde que, nos primeiros meses

após a aplicação, elas sejam fechadas à visitação pública e nelas não se produzam alimentos.

Incidências altas de organismos patogênicos de vários tipos e espécies são comuns em lodos

de esgotos, mesmos naqueles digeridos. Existem mais de cem vírus que podem ser transmitidos

pelos esgotos e derivados. O gênero Salmonella é o mais problemático entre as bactérias. Porém,

Page 80: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

protozoários e vermes são os organismos mais resistentes encontrados em lodos de esgotos. Para

o Distrito Federal e a maioria dos municípios brasileiros, Ascaris spp. e suas formas de resistência

representam um grande problema para a utilização de lodos de esgotos e derivados (biossólidos).

Em locais com lençol d’água aflorante e em beira de corpos d’água, o lodo não deve ser

empregado, por questões sanitárias e ambientais. Cuidados com a saúde ocupacional dos

trabalhadores que manuseiam lodo de esgoto devem ser redobrados. Uma análise prévia da

relação custo/benefício que uma área terá ao receber lodo de esgoto é necessária antes de se

decidir pela aplicação desse material em solos e substratos degradados.

A elevação do teor de matéria orgânica de substratos minerados em cerca de 2% demandaria

a incorporação de aproximadamente 230 toneladas de lodo de esgoto por hectare. Apesar do

enorme potencial que áreas mineradas têm para receber lodo de esgoto, menos de 5% da

produção no Distrito Federal, por exemplo, é destinada à recuperação de áreas degradadas pela

mineração (PINTO et al., 1993).

As maiores dificuldades encontradas ao se utilizar lodos em PRAD’s relacionam-se a seu

transporte, manuseio e aplicação, por causa do elevado teor de umidade que lodos de esgotos

contêm (85 - 88%). O excesso de água encarece o transporte e o estado gel dificulta o manuseio,

a aplicação e a incorporação desses materiais a solos e substratos. O custo de transporte e de

aplicação de lodos em solos e substratos pode variar entre 20 e 125 dólares norte-americanos por

tonelada (SANEPAR, 1994). A vantagem econômica do lodo de esgoto deve-se a sua aquisição

gratuita nas estações de tratamento.

Visando tornar lodos de esgotos mais estáveis, economicamente mais atrativos e menos

perigosos e ofensivos ao homem e ao meio ambiente, processos de estabilização e higienização

desse material têm sido empregados - compostagem, secagem a calor, aplicação de cal, radiação

solar e outros. Lodos de esgotos variam quanto à origem, estado físico e umidade, mas todos

contêm significativas concentrações de matéria orgânica (40 - 68%), nitrogênio (< 0,1 - 17,6%) e

fósforo (< 0,1 - 14,6%) em sua matéria seca. Lodos de esgotos, a exemplo de outras fontes de

matéria orgânica, são reputados por melhorarem a estrutura de substratos e aumentarem a

disponibilidade de nutrientes, a sobrevivência de mudas arbóreas e a produtividade agrícola.

Page 81: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5.5.1.3 Estabilização e higienização de lodos de esgotos

O lodo de esgoto recém produzido pelas estações de tratamento é muito usado em PRAD’s,

apesar de existirem vários processos de estabilização e higienização desses materiais. Entre os

processos existentes, entretanto, apenas a compostagem, a caleação e a irradiação solar são

factíveis para aqueles que desejam processar lodos de esgotos esporadicamente em escala

reduzida. A estabilização prévia de lodos frescos, antes de sua utilização como fonte de matéria

orgânica em um PRAD, pode representar uma vantagem econômica, sanitária ou ambiental. Isso

dependerá da distância entre a estação de tratamento de esgoto e a lavra a ser recuperada, do

tamanho da área a ser revegetada, do nível de mecanização empregado no PRAD e de

características de fragilidade ambiental do local e do ecossistema em questão.

A compostagem, que é especialmente eficiente para a remoção de ovos de helmintos, é

comumente usada para a produção de material estável e de constituição predominantemente

húmica. Ela é um processo aeróbico que acelera a decomposição da matéria orgânica sob

condições controladas. A compostagem foi presumivelmente criada há quatro mil anos por povos

asiáticos e trazida para o ocidente há pouco mais de um século. Praticamente qualquer matéria

orgânica é compostável pelos microorganismos da compostagem, desde que água, ar e nutrientes

existam em proporções adequadas (Quadro 5.1). O produto final (composto) é uma mistura de

ácido fúlvico (± 20%) e ácido húmico (± 80%). Esse método é considerado eficiente pela

Engenharia Sanitária para a redução de organismos patogênicos e de parasitas em materiais

orgânicos (Tabela 5.4). Porém, deve-se ter em mente que, geralmente, não há esterilização do

lodo de esgoto. Alguns vermes (helmintos) são sensíveis a compostagem, outros podem

sobreviver.

A vantagem econômica da compostagem está em desidratar e higienizar lodos de esgoto de

uma só vez. O composto produzido terá cerca de 50% de umidade, estará livre de odores, poderá

ser estocado e será facilmente manuseado e aplicado a solos e substratos. Outra vantagem da

compostagem é que ela diminui a disponibilidade de metais pesados do lodo de esgoto, reduzindo

seu risco de bioacumulação e de lixiviação.

Page 82: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 5.4: Desinfestação de alguns patógenos durante o processo de compostagem

Organismo Comportamento sob compostagem

Ascaris lumbricoides morte a mais de 60 oC

Ascaris lumbricoides (ovos) morte em 1h a mais de 50oC

Ascaris suum (ovos) inativado em 2 h a 55 oC ou 8 dias a 45 oC

Brucella abortus ou B. suis morte em 1 h a 55 oC ou 3 minutos a 61 oC

Cholera vibrio morte a mais de 60 oC

Corynebacterium diphtheriae morte em 45 min. a 55 oC

Entamoeba hystolystica morte a 68 oC

Entamoeba hystolystica (cistos) morte a 55 oC

Virose entérica morte a 60 oC

Escherichia coli a maioia more em 1 h a 55 oC ou em 20 min. a 60 oC

Coliforme fecal a maioria morre em 3 semanas a 55 oC

Cisto de Giardia a maioria morre em 3 semanas a 55 oC

Ovos e larvas de helmintos a maioria morre em 3 semanas a 55 oC

Ovos de Ancilostoma spp morte em 5 min. a 50 oC ou 1 dia 40 oC

Leptospires sp. morte em 10 min. a 55 oC

Micrococcus pyogenes var. aureus morte em 10 min. a 50 oC

Mycobacterium turbeculosis morte em 20 min. a 66 oC

M. turbeculosis var. hominis morte em 20 min. a 66 oC

Mycobacterium diptheriae morte em 45 min. a 55 oC

Necator americanus morte em 50 min. a 45 oC

Cistos de protozoários inativação em 3 semanas a 55 oC

Salmonella typhosa morte em 30 min. a 55 - 60 oC ou inativação a 46 oC

Salmonella spp morte em 1 - 20 h a 55 oC - 60 oC ou em 20 min. a 60 oC

Schistosome spp (ovos) morte em 1 h a 50 oC

Page 83: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Shigella spp morte em 1 h a 55 oC ou 10 dias a 40 oC

Streptococcus pyogenes morte em 10 min. a 54 oC

S. pyogenes var. aureaus morte em 10 min. a 54 oC

Taenia saginata morte em 5 min. entre 55 e 71 oC

Taenia saginata (ovos) inativação em 3 h a 60 oC

Taenia spp (ovos) inativação em 3 h a 60 oC ou além de 4 h a 45 oC

Coliformes totais a maioria morre em 3 semanas a 55 oC

Trichinella spiralis (larva) morte entre 55 e 72 oC

Adaptado de Golueke (1975), Hu, et al. (1996), Jenkins (1994), Silva et al. (1995), Vesilind (1979).

Page 84: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Para que o processo da compostagem ocorra, matéria orgânica, umidade, microrganismos (todos três

existentes no lodo de esgoto) e oxigênio devem estar presentes em proporções corretas na mistura a

ser compostada. Apesar de haver vários processos envolvidos, os fatores mais importantes que afetam

a compostagem são aeração e umidade. A temperatura é usada para monitorar a evolução do

processo. A mistura de material palhoso e de lodo de esgoto em proporções adequadas é suficiente

para iniciar o processo. Deve-se fazer uma mistura de lodo e material palhoso, com relação

carbono/nitrogênio entre 20 e 30 : 1. A Tabela 5.5 mostra algumas características importantes do lodo

de esgoto e de materiais que podem ser misturados a ele em um processo de compostagem.

Calculo da mistura ser compostada, segundo a relaçao C/N (ver Tabela 5.5)

Exemplo: misturar 12 partes de poda de grama com 1 parte de serragem

29)100/08,01()100/3,012(

)100/341()100/612(⇒

++

=serragemdegNgxpodadegNgx

serragemdegCgxpodadegCgxC

N

Relação C/N da mistura = 29:1 Fazendo o composto Após selecionar o material que será compostado com o lodo de esgoto, certifique-se de que a mistura

contém uma boa relação C/N antes de iniciar a compostagem. Caso haja falta de carbono, serragem e

palha são boas fontes.

Deposite o material e o lodo de esgoto em camadas alternadas ou misture o lodo ao material. Para a

disposição em camadas, comece sempre pela fonte de carbono. Revolva a pilha a cada três dias na

primeira semana. O freqüente revolvimento da pilha garante a boa aeração, que é o segredo de

uma boa compostagem. A temperatura deve passar de 55 oC e o período de maturação se inicia

quando a temperatura cair para a cerca de 40 oC. Um bom composto é homogênio e livre de odores.

Principais causas de uma má compostagem:

• excesso de umidade, cujo sinal mais evidente é o forte odor da pilha de compsotagem.

Adicione mais palha ou serragem à mistura.

• falta de umidade, cujo sinal é a ausência de calor. Adicione lodo de esgoto ou um pouco de água.

• má aeração, que resulta em excesso de calor ou emissão de fortes odores. Revolva a pilha.

Nao deixe seu composto exposto à chuva, nutrientes serão lixiviados

Quadro 5.1: Processo de compostagem.

Page 85: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 5.5: Composição média de alguns materiais orgânicos

Material Relação C/N

(massa/massa)

Umidade

(%)

Grama de

*C/100g

material seco

Grama de

**N/100g

material seco

Lodo de esgoto 5,5 85 30 5,5

Folhas (verde) 60 40 38,4 0,64

Folhas (secas) 200 20 60 0,3

Podas de grama

(verde)

20 85 11,1 0,56

Podas de grama

(seca)

250 20 60 0,25

Papel 170 10 39,6 0,22

Restos de frutas 35 80 14,4 0,36

Restos de

comida

15 80 14,4 0,9

Serragem 450 15 39,1 0,09

Excremento de

galinha

7 20 36 5,16

Cama de

galinheiro

10 30 32,5 32,5

Excremento de

bovinos

12 50 30 2,55

Cavaco de

madeira

Inerte

* carbono/ **nitrogênio.

Page 86: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

A estabilização e a higienização por meio da aplicação de cal (caleação) são feitas

misturando-se cal virgem (CaO) ou cal hidratada (CaOH) ao lodo de esgoto. O princípio da

caleação reside em aumentar o pH da mistura até que o ambiente se torne inapropriado à vida -

pH acima de 11,5. Cerca de 400 g de cal para cada 10 kg de lodo a 88% de umidade são

suficientes para se atingir um pH próximo a 12 e mantê-lo alto por duas semanas. Há grande

liberação de gás amônia durante a mistura, mas o forte cheiro desaparece logo em seguida. Trata-

se de um processo de “mumificação” do lodo de esgoto. Organismos patogênicos e benéficos

permanecem inativos enquanto o pH se mantiver alto (Tabela 5.6). Ao ser misturado a solos e

substratos, o pH abaixa para valores próximos a seis, havendo aceleração da mineralização da

matéria orgânica do lodo de esgoto. A esterilização do lodo por meio da caleação é questionável,

pois ovos viáveis de helmintos têm sido recuperados em lodos caleados. Além disso, óxido de

cálcio (CaO) e o hidróxido de cálcio (CaOH) são agressivos a plantas, caso entrem em contato

com suas partes. Parte dos lodos de Brasília eram caleados, mas frente a pouca demanda por esse

material, o processo foi suspenso.

Tabela 5.6: Desinfestação de alguns parasitas por meio da caleação

Organismo Comportamento após a calagem

Ascaris summ (ovos) inativação em 2 meses a pH > 12,5

Bacillus anthracis resistente à calagem

Salmonella sp. morte em 3 h a pH > 12,8

Taenia saginata (ovos) inativação em 24 h a pH > 12,0

Outra maneira de se estabilizar lodos de esgotos é deixá-lo sob radiação solar. Trata-se de

um processo ineficiente para a redução de patógenos, porém excelente para agregar valor

agronômico e econômico ao lodo de esgoto fresco. Em locais de clima quente e seco, como no

Cerrado, a irradiação solar do lodo por uma semana é capaz de reduzir substancialmente sua

quantidade de água (Figura 5.5), diminuindo significativamente o volume original. A conseqüente

concentração de sólidos na massa de lodo torna-o economicamente mais atrativo para ser

transportado e utilizado. Outro efeito presenciado em lodos irradiados é o aumento da

concentração de nitrogênio mineral (Tabela 5.7), por causa da mineralização da matéria orgânica

do lodo durante o processo de irradiação. A combinação dos efeitos da desidratação e da

Page 87: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

mineralização permite que lodos irradiados sejam aplicados entre 20 e 30% das doses necessárias

de lodo fresco para se atingir produções similares de matéria vegetal (Tabela 5.8).

Duas importantes conseqüências dos vários processos de estabilização e higienização de

lodos de esgoto são a perda de água e a redução de volume. Deve-se ter em mente que cada

processo de estabilização do lodo de esgoto produz um material diferente sob a óptica

agronômica (Tabela 5.7), ambiental e econômica.

79

80

81

82

83

84

85

86

87

88

0 2 4 6 8 10 12 14

Tempo (dias)

Um

idad

e do

lodo

(mas

sa/m

assa

- %

)

Figura 5.5: Conteúdo de água (θg) durante o processo de irradiação solar do lodo.

Fonte: Corrêa (2001).

Page 88: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 5.7: Características agronômicas de cinco lodos de esgotos

Propriedade Lodo

fresco

Lodo

compostado

Lodo

*30%-CaO

Lodo seco a

**250 oC

Lodo

irradiado

Massa seca

N-total (%)

6,51a

1,59b

4,01c

6,48a

6,53a

P-total (%)

7,21a

2,42b

5,06c

7,25a

7,26a

N-mineral (mg kg-1)

624a

277b

93,8c

356d

803e

P-disponível (mg kg-1)

268a

377b

11,9c

678d

199e

Sólidos voláteis (%)

74,7a

68,5b

54,6c

74,6a

74,9a

Massa úmida

*Θg (%)

87,8a

55,1b

76,3c

3,4d

80,1e

pH água (1:5 m/v)

6,4a

6,1ab

11,9c

5,8b

7,4d

N-total (%)

0,79a

0,71b

0,95c

6,26d

1,30e

P-total (%)

0,88a

1,09b

1,20c

7,00d

1,45e

N-mineral (mg kg-1)

76,1a

124,5b

22,2c

345d

159,8e

P-disponível (mg kg-1)

32,7a

169,1b

2,8c

655d

39,5a

*Caleado com 30% de CaO (massa/massa) em relação à matéria seca do lodo de esgoto.

** Lodo de esgoto seco à temperatura de 250 oC. Médias (n = 3) com mesma letra em cada linha

não são estatísticamente diferentes pelo teste de Tukey, P < 0,05. *Θg - água gravimétrica.

Fonte: Corrêa (2001).

5.5.1.4 Aplicação de lodos de esgoto a substratos minerados

Lodos aplicados a substratos minerados devem ser incorporados a eles com brevidade, por

razões agronômicas e sanitárias. A matéria orgânica incorporada a solos e substratos é

mineralizada e nutrientes são liberados para o crescimento das plantas. Em substratos arenosos,

lodos de esgoto mineralizam entre 10 e 30% do nitrogênio orgânico em até seis meses. Em solos

argilosos, esse percentual varia de 30 a 80%. Diferenças nas taxas de mineralização de lodos é

uma conseqüência do grau de estabilização de cada material, do clima local e do tipo de substrato

a que são incorporados. Lodo fresco e irradiado a sol são menos estáveis e, como resultado, os

Page 89: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

que mais rapidamente mineralizam em solos e substratos. Lodo compostado é a forma mais

estável. Para recuperação de substratos arenosos, o lodo compostado é a melhor opção para

conciliar crescimento de plantas e proteção ambiental. Lodo fresco e irradiado a sol são muito

eficientes em projetos de revegetação, cujo substrato da área seja predominantemente argiloso. As

doses recomendadas de lodos de esgoto a serem incorporados a substratos minerados para a

implantação de uma camada rasteira encontram-se na Tabela 5.8.

Durante o acompanhamento da evolução do estrato arbóreo de uma cascalheira explotada,

foram encontradas diferenças significativas no crescimento de mudas de jatobá-do-cerrado,

adubadas com quatro de tipos de lodos + fertilizante (CORRÊA et al., 2004). As plantas adubadas

com 18 L de lodo seco cresceram 240% em altura em 18 meses, e os jatobás tratados com os

demais tipos de lodo cresceram entre 183 e 208% (Figura 5.6). Portanto, o uso de lodo seco

acarretou um incremento extra na altura das plantas entre 16 e 30% em relação aos jatobás

adubados com as outras formas de lodo.

Tabela 5.8: Doses recomendadas de aplicação de lodos de esgoto a substratos minerados

Material Susbtrato arenoso Substrato argiloso

Lodo fresco (88% de umidade) 30 m3 ha-1 55 m3 ha-1

Lodo compostado 35 m3 ha-1 > 40 m3 ha-1

Lodo caleado 20-30 m3 ha-1 40 m3 ha-1

Lodo seco a 250 oC 10 m3 ha-1 10 m3 ha-1

Lodo irradiado por 15 dias 10 m3 ha-1 10 m3 ha-1

Page 90: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

c182,6%

b240,4%

ac190,9%

ab207,5%

0

50

100

150

200

250

300

Lodo fresco Lodocompostado

Lodo seco Lodo caleado

Incr

emen

to e

m 1

8 m

eses

(%)

Figura 5.6: Incremento em altura de jatobá-do-cerrado em 18 meses, em covas de 64 L adubadas com quatro tipos de lodo de esgoto (18 L/cova) + N.P.K. - 4:14:8 (100 g/cova). Medianas de mesma letra não são estatisticamente diferentes pelo teste de Wilcoxon-Mann-Whitney, P < 0,05. Fonte: Corrêa et al. (2004).

Ao serem aplicados a solos e substratos, a dessecação, insolação e competição com

organismos edáficos reduzirão a concentração de patógenos e parasitas presentes em lodos de

esgoto (Tabela 5.9). O tempo de sobrevivência desses organismos no solo depende da umidade,

pH, textura e porcentagem de matéria orgânica presente no solo, da exposição aos raios solares e

dos organismos de solo. Existem cerca de 1.000 a 1.500 kg de microorganismos nos primeiros 15

cm de solo de cada hectare, que acabam por dominar os patógenos e parasitas existentes em

lodos de esgoto. Os dados apresentados na Tabela 5.9 devem ser tomados como exemplos e não

podem ser usados como verdadeiros para solos e substratos brasileiros, pois os experimentos

foram realizados em condições diferentes das existentes no Brasil.

A resposta da vegetação a diferentes fontes de matéria orgânica varia em função tipo de

substrato. Em substratos arenosos, por exemplo, lodos são capazes de produzir mais biomassa

vegetal que a adubação química. Porém, em substratos argilosos, há a necessidade de se aplicarem

fertilizantes, seja qual for a fonte de matéria orgânica, pois a produção vegetal máxima dá-se com

adubação química. Após a aplicação de matéria orgânica a um susbtrato, devem-se corrigir a

acidez e as concentrações de nutrientes do substrato minerado.

Page 91: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 5.9: Sobrevivência de patógenos e parasitas em um solo arenoso

Patógeno Tempo de sobrevivência

Bactérias

Escheria colli 14 dias

Coliforme fecal de 25 dias a vários anos

Leptospires sp. 12 horas a 15 dias

Salmonella typhosa de 1 semana a 50 dias

Salmonella spp 1 mês

Shigella spp 1 semana

Streptococci sp. de 5 a 20 semanas

Streptococci typhi de 2 a 400 dias

Turbercle bacilli 178 dias

Protozoários

Entamoeba histolytica de 18 horas a 10 dias

Cistos de protozoários menos de 10 dias

Vermes

Ancylostoma doudenale de 5 dias a 6 meses

Ascaris lumbricoides 3 meses a 10 anos

A. lumbricoides (ovos) vários anos

Taenia sp. até 1 ano

Toxocara sp. até 7 anos

Trichuris sp. até 2 anos

Ovos de helmintos de 2 a 7 anos

Vírus

Enterovirus de 15 a 170 dias

Poliovirus de 8 a 91 dias

virus até 1 ano

Adaptado de Bitton et al. (1980); Cameron et al. (1996), Hu et al. (1996), Jenkins (1994), Vesilind (1979).

Page 92: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5.5.2 Correção do pH do substrato

O pH (potencial de hidrogenação) é uma medida da concentração ou da atividade de íons

hidrogênio (H+) no meio. Os solos de Cerrado apresentam pH mediamente ácido (Tabela 5.10),

enquanto o pH das áreas degradadas pela mineração varia de fortemente ácido a fortemente

alcalino (Tabela 5.10). O valor de pH fornece excelentes dicas sobre a condição química de

substratos. Substratos de Cerrado com pH < 5,0, devem apresentar concentrações tóxicas de

manganês, por exemplo. Quando o valor é menor que 4,5, pode haver ácido sulfúrico no meio.

Por outro lado, pH próximo a 8 indica a presença de carbonatos e acima de 8,5, excesso de sais

de sódio.

O pH dos substratos minerados deve ser corrigido para níveis considerados mais adequados à

nutrição vegetal (5,5 - 6,5). A capacidade de troca catiônica (CTC ou T), a saturação por bases (V)

e a disponibilidade de nutrientes para os vegetais são fortemente influenciadas pelo pH do

solo/substrato em ecossistemas tropicais. A grande maioria dos solos brasileiros apresenta

problemas de acidez, toxicidade por alumínio e baixos teores de cálcio e magnésio (LOPES,

1994). A deficiência de cálcio inibe o desenvolvimento do sistema radicular das plantas, que

acarreta menor capacidade de absorção dos nutrientes e em maior susceptibilidade das plantas a

períodos de estiagem.

Segundo Lopes (1994), “adubar solo ácido é jogar dinheiro fora”, pois nutrientes não são

absorvidos pelas plantas sob condições ácidas de solos e substratos. A acidez de substratos pode

ser contornada por meio da calagem - adição de calcário (CaCO3.MgCO3). A calagem corrige a

acidez e a toxicidade por alumínio e manganês, aumenta a absorção vegetal de vários nutrientes

(fósforo, potássio e outros) e fornece cálcio (Ca) e magnésio (Mg) para as plantas. A aplicação

de calcário a substratos induz a um maior desenvolvimento de raízes, aumentando a absorção de

água e nutrientes pelas plantas e, conseqüentemente, as chances de sobrevivência de mudas no

campo. Da Silva (2001) detectou em um Latossolo sob Cerrado stricto sensu os efeitos da calagem

quatorze anos após a correção do solo - aumento de pH e da concentração de cálcio e a

diminuição do alumínio disponível.

A maioria das espécies nativas que são adaptadas à baixa fertilidade química dos solos de

Cerrado responde bem à calagem e à adubação (HARIDASAN, 2000). Todavia, as espécies de

Cerrado das famílias Cluseaceae (Guttiferae), Melastomataceae e Vochysiaceae não se

desenvolvem bem quando se aplica calcário a suas covas, porque necessitam de solos ácidos e de

Page 93: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

alumínio trocável. Portanto, não se deve utilizar calcário na cova ao se plantar espécies dessas

famílias botânicas.

A quantidade de calcário a ser utilizada depende do poder relativo de neutralização total

(PRNT) do insumo, da textura do solo/substrato, do pH e da saturação por bases iniciais e do

pH e da saturação por bases finais a serem alcançados. Há mais de um método para se calcular a

quantidade de calcário a ser aplicado ao substrato de uma área (DE SOUZA & LOBATO, 2002b;

MALAVOLTA, 1992, LOPES, 1994). A Equação 5.1 expressa o método mais utilizado

atualmente para se calcular doses de calcário para solos de Cerrado. A necessidade de calcário

(NC) pode ser calculada por meio da fórmula abaixo:

• para substratos de qualquer textura:

NC (t ha-1) = ( )

∗××− fTVV

10012 (Equação 5.1)

em que:

• S = (Ca+2 + Mg+2 + K+ + Na+) cmolc dm-3

• T = (Ca+2 + Mg+2 + K+ + Na+ + H+ + Al+3) cmolc dm-3

• V2 % de saturação por bases desejada

• V1 % de saturação por bases do substrato a receber calcário

• V1 = TS

×100

• *Equação 5.2

Observação: não se deve elevar V2 de susbtratos minerados para valores acima dos encontrados

em solos sob condições naturais. Dessa forma, ao se cultivar espécies nativas de solos eutróficos

(aroeira, angico e outras), o valor de V2 deve-se limitar a 50 - 60%. Ao se cultivar espécies nativas

de solos distróficos (pau-santo, quaresmeira e outras) deve-se elevar V2 para valores próximos aos

encontrados em solos sob condições naturais (V2 = 20 - 40%).

Page 94: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

*f = PRNT100

(Equação 5.2)

(PRNT é dado no rótulo do produto, pelo fabricante)

Tabela 5.10: Interpretação do valor de pH encontrado em solos e substratos

Classe pH em água (1:2,5)

Fortemente ácido < 5,0

Mediamente ácido 5,0 - 5,5

Fracamente ácido 5,6 - 6,9

Neutro 7,0

Fracamente alcalino 7,1 - 7,8

Fortemente alcalino > 7,8

Fonte: De Oliveira et al. (2000).

5.5.3 Adubação com nitrogênio (N)

As espécies vegetais de Cerrado são adaptadas a condições de solos quimicamente pouco

férteis. Entretanto, espécies vegetais de Cerrado não são adpatadas às condições adversas

presentes em horizontes de solo expostos em áreas mineradas. Portanto, há a necessidade de se

adubar substratos minerados, pois as concentrações de nutrientes neles existentes encontram-se

aquém dos teores mínimos necessários para que espécies nativas de Cerrado se desenvolvam

adequadamente. Além disso, a adubação resulta em aumento do vigor de uma planta e ocasiona

aumento em sua velocidade de crescimento, entre outros benefícios.

De todos os elementos necessários às plantas, apenas carbono, hidrogênio e oxigênio não

são assimilados diretamente dos solos e substratos. Os demais nutrientes devem estar disponíveis

nos solos para que sejam assimilados pelas raízes. Nitrogênio, fósforo, potássio, cálcio, magnésio

e enxofre são chamados de macronutrientes, pois são demandados em quantidades

relativamente grandes pelos vegetais. Boro, cloro, cobre, ferro, manganês, molibdênio, sódio e

zinco e outros são conhecidos como micronutrientes, porque são assimilados pelas plantas em

pequenas quantidades. Dessa forma, a matéria orgânica e os fertilizantes químicos devem cobrir a

Page 95: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

diferença entre a quantidade de nutrientes que a vegetação necessita e aquela disponível em

substratos minerados.

Nitrogênio é considerado um estimulador de crescimento de plantas. Há diferentes respostas

de espécies ao suprimento de nitrogênio, apesar de todas responderem positivamente a sua

aplicação (NETO et al., 2004). Porém, a adubação nitrogenada é um pouco complexa, pois se

deve fazer um balanço da quantidade de aplicação de fertilizante em função da quantidade de

nitrogênio existente no substrato, da quantidade imobilizada por ele, da eficiência da planta em

utilizá-lo e da quantidade fornecida pela mineralização da matéria orgânica incorporada. Além

disso, o nitrogênio é muito móvel e a amônia (NH4+) e o nitrato (NO3

-) podem lixiviar. Parte do

nitrato pode, ainda, ser desnitrificada e volatilizar. Os efeitos da aplicação de fertilizantes

nitrogenados estendem-se por pouco tempo. Por isso, espera-se que a decomposição da matéria

orgânica e/ou a fixação simbiótica do nitrogênio do ar supram as plantas desse nutriente em

longo prazo.

Doses excessivas de fertilizantes nitrogenados causam acamamento da planta, aumentam a

susceptibilidade dos vegetais ao ataque de doenças e insetos e, freqüentemente, causam danos ao

meio ambiente e à saúde humana, por causa da contaminação da água por nitrato. Doses de

nitrogênio aquém das necessidades vegetais limitam o desenvolvimento das plantas, que ficam

baixas, com raízes pouco desenvolvidas e clorose nas folhas, por causa da pouca síntese de

clorofila.

O nitrogênio é particularmente demandado por vegetais que estão nas fases iniciais de

desenvolvimento. Reduções no crescimento inicial de mudas em campo por deficiência de

nitrogênio são freqüentemente relatadas na literatura (NETO et al., 2004). Para cada 1% de

matéria orgânica adicionada a substratos de Cerrado, espera-se que entre 10 e 40 kg ha-1 de

nitrogênio mineral (NH4+ + NO3

-+ NO2-) sejam liberados para o crescimento vegetal. A

concentração média de N-total (N-orgânico + N-mineral) em solos de Cerrado é de 90 mg kg-1

ou 2,7 t ha-1 (2,7 Mg ha-1), considerando uma camada superficial de 30 cm de solo

(MALAVOLTA & KLIEMANN, 1985).

Ervas, arbustos e árvores da família Fabaceae (leguminosas) são muito empregados em

projetos de recuperação de solos e substratos degradados. Um grande número de espécies de

leguminosas estabelece uma relação ecológica de mutualismo (simbiose) com bactérias do gênero

Page 96: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Rhizobium, que assimilam nitrogênio do ar e enriquecem o substrato com esse nutriente. Cerca

de 90% das espécies da subfamília Mimosoideae, 97% das Papilionoideae e 23% das

Caesalpinoideae brasileiras nodulam para Rizobium. São conhecidas 25 especies de bactérias

nodulantes, distribuídas entre os gêneros Rhizobium, Azorrhizobium, Sinorhizobium,

Mesorhizobium.

Entretanto, a grande maioria das espécies de leguminosas ainda não foi estudada quanto à

capacidade de nodulação (GONÇALVES et al., 2004a). Sabe-se que a calagem de solos ácidos

geralmente estimula e aumenta a nodulação de Rhizobium em leguminosas (NETO et al., 2004).

O plantio de leguminosas fixadores de nitrogênio constitui-se, portanto, em uma adubação

nitrogenada de substratos. Trabalhos mais recentes têm identificado bactérias fixadoras de

nitrogênio vivendo em mutualismo com espécies da família Graminae, tais como as bactérias

Azospirillum brasiliense e Herbaspirillum seropedicae.

A demanda de nitrogênio por espécies arbóreas de Cerrado é menor do que por culturas

agrícolas. A aplicação de cerca de 20 mg kg-1 de nitrogênio a substratos arenosos e 40 mg kg-1 a

substratos argilosos (nitrogênio fornecido pela matéria orgânica + nitrogênio de fertilizantes)

tem-se mostrado suficiente em projetos de revegetação de áreas degradadas. Geralmente aplica-se

1/3 do fertilizante demandado durante o plantio e 2/3 como adubação de cobertura, após a

emergência da camada rasteira e/ou enraizamento das mudas nas covas. Esse manejo visa reduzir

as perdas de nitrogênio por lixiviação. Uréia não deve ser usada em adubação de cobertura, pois

há grande perda por volatilização quando não incorporada a aos substratos.

Quadro 5.2: Equivalência mg kg-1 kg ha-1.

20 mg de N por kg de substrato 40 kg ha-1

40 mg de N por kg de substrato 80 kg ha-1

Page 97: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5.5.4 Adubação com fósforo (P)

Fósforo é o terceiro nutriente mais demandado pelas plantas, após nitrogênio e potássio.

Entretanto, solos tropicais e subtropicais apresentam alta capacidade de fixação de fósforo e

baixas concentrações desse elemento, que tornam o fósforo a maior limitação para o plantio

florestal nessas regiões (POGGIANI & SCHUMACHER, 2004). O problema é mais severo em

áreas de deficit hídrico, como ocorre no Cerrado, pois a movimentação desse elemento, que se

move principalmente por difusão, é ainda mais restrita em solos secos. Além disso, falta d`água

reduz a mineralização da matéria orgânica do solo, e menos fósforo é liberado (GONÇALVES et

al., 2004b).

Plantas absorvem fósforo sob a forma de fosfatos (HPO4-2 e H2PO4

-) e essa assimilação

depende também do pH do solo. A maior disponibilidade de fósforo para as plantas ocorre

quando o solo encontra-se com valores de pH entre 6 e 7. O fósforo é vital para uma série de

reações e processos que ocorrem nas plantas: fotossíntese, respiração, divisão celular, síntese de

DNA, RNA, ATP e outros. Os sintomas de deficiência de fósforo nas plantas são de difícil

identificação. Geralmente as plantas deficientes em fósforo apresentam-se pequenas e escuras.

Há intensa competição entre plantas e solos pelo fósforo. No Cerrado, os solos são

freqüentemente argilosos, mediamente ácidos e ricos em sesquióxidos de ferro e alumínio, que

resultam na retenção de grandes quantidades de fósforo. Como resultado dessas características,

há pouco fósforo disponível para as plantas em solos de Cerrado. Do total de fósforo existente

em solos de Cerrado, cerca de 74% encontram-se fixados, 25% estão sob a forma de P-orgânico e

0,5% aparece como P-lábil. Menos de 0,1% do P-total encontra-se na solução do solo

(MALAVOLTA & KLIEMANN, 1985) e, conseqüentemente, há menos de 0,5 mg kg-1 de P-

disponível para o uso das plantas. Parte do fósforo aplicado por meio de fertilizantes não será

absorvida pela vegetação, pois ficará retida pelas argilas e por alguns outros compostos.

Conforme mostrado na Tabela 5.11, para o cultivo de espécies arbóreas, deve-se calcular a

adubação fosfatada em função do teor de argila no solo, por três razões (RAIJ et al., 1987):

• os solos mais argilosos são geralmente mais produtivos e, portanto, a demanda nutricional

de fósforo pelas plantas é maior. As melhores produtividades conseguidas em solos mais

argilosos são atribuídas à maior capacidade de retenção e armazenamento de água e

nutrientes por eles;

Page 98: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

• o teor de argila do solo está diretamente relacionado com o potencial de retenção de

fósforo do solo, pois a composição mineralógica das argilas dos solos de Cerrado é

predominante de natureza sesquioxídica;

• espécies arbóreas apresentam ciclo longo de vida e, portanto, absorverem fósforo por um

longo tempo.

A resposta de uma espécie à aplicação de fósforo está relacionada ao tamanho de sua semente

e concentração de fósforo nela, forma desenvolvimento das raízes, capacidade de micorrização,

taxa de crescimento e estágio de desenvolvimento da planta. Espera-se que a melhor resposta à

adubação de fósforo seja dada por plantas novas que crescem rápido e que apresentem sementes

pequenas e com pouca reserva. Espécies climácicas, pelo lento crescimento e grande reserva de

fósforo nas sementes, geralmente crescem independentes do suprimento de fósforo (NETO et al.,

2004).

Ao contrário do nitrogênio, o fósforo deve ser aplicado de uma só vez, para se reduzirem

custos. As plantas necessitam de pelo menos cinco partes de nitrogênio para cada parte de

fósforo. Entretanto, deve-se aplicar fósforo em quantidades maiores que as demandadas pelas

plantas, pois grande parte irá primeiramente suprir as reações do substrato e não será usada pela

vegetação. A concentração de fósforo disponível (extrator Mehlich I) entre 10 e 15 mg kg-1

garante o suprimento desse nutriente para a vegetação implantada sobre substratos minerados.

Da Silva (2001) detectou a persistência dos efeitos da adubação fosfatada de um Latossolo sob

Cerrado stricto sensu oito anos após a aplicação de superfosfato simples.

Tabela 5.11: Dose de fósforo em covas de 100 L, em função do teor de argila do substrato da cova

Argila no substrato Dose de P2O5

(g/100L de substrato)

até 15% 3

16 - 35% 5

36 - 60% 10

acima de 60% 14

Fonte: adapatado de De Andrade (2002) e Vilela et al. (2002).

.

Page 99: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

5.5.5 Adubação com potássio (K)

O potássio é o segundo nutriente mais demandado pelas plantas, mas as repostas de espécies

arbóreas a adubação com potássio são mais modestas do que com nitrogênio e fósforo (NETO et

al., 2004). Da mesma forma que o fósforo, disponibilidade de potássio nos solos de Cerrado é

baixa. Esse elemento não faz parte de estruturas vegetais, mas é cofator de pelo menos sessenta

enzimas. Além disso, concentrações adequadas de potássio nas raízes mantêm a pressão osmótica

favorável à absorção de água. Plantas deficientes em potássio sofrem mais estresse hídrico e são

mais susceptíveis a períodos secos. Os principais sintomas de deficiência de potássio nas plantas

é a redução da sua resistência à seca, aparecimento de manchas cloróticas e necróticas e raízes

pouco desenvolvidas e com partes podres.

A exemplo do nitrogênio, há perdas de potássio do solo por lixiviação e, por isso, deve-se

fracionar sua aplicação em substratos arenosos. A calagem auxilia a adsorção de íons potássio

pela parte sólida do solo/substrato, diminuindo a sua lixiviação. A matéria orgânica também

reduz a lixiviação de potássio. Concentrações a partir de 15 mg kg-1 de potássio trocável (extrator

Mehlich I) em substratos minerados são consideradas apropriadas para o desenvolvimento da

cobertura vegetal em áreas degradadas. Outros advogam que 3% do valor da Soma de Bases (S =

Ca+2 + Mg+2 + K++ Na+) de um solo/substrato devam ser de potássio, pois haveria um melhor

equilíbrio entre os nutrientes.

5.5.6 Adubação com enxofre (S) e gessagem

Os vegetais absorvem cerca de dez partes de nitrogênio para cada parte de enxofre, que se

encontra em solos de Cerrado quase que exclusivamente sob a forma orgânica. Como outros

nutrientes, há deficiência de enxofre nos solos de Cerrado. O enxofre faz parte da composição de

vários fertilizantes e corretivos, tais como o gesso agrícola (CaSO4.H2O), o superfosfato simples,

o sulfato de cobre, de ferro, de magnésio, de potássio, de sódio, de zinco e outros. O emprego de

gesso agrícola tem sido recomendado para substratos com excesso de alumínio trocável, quando

se opta pelo plantio de espécies não tolerantes à toxidez por alumínio. Além de ser uma fonte de

enxofre, a aplicação de gesso agrícola provoca o aprofundamento das raízes, quando a

profundidade efetiva permite, que aproveitam melhor a água e os nutrientes.

A lixiviação do potássio e magnésio também é reduzida com a aplicação de gesso. O gesso

agrícola deve ser misturado ao substrato ou aplicado à superfície somente após a incorporação do

calcário. A dose de gesso com 15% de enxofre é calculada por meio da Equação 5.3 abaixo. Ao se

Page 100: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

aplicar gesso agrícola como fonte de enxofre, deve-se subtrair da dose recomendada o enxofre

aplicado via gessagem e como micronutrientes. Como recomendação geral, pode-se

complementar a aplicação de enxofre adicionado ao substrato em suas variadas formas até se

atingir a dose de 20 kg ha-1 de enxofre. As espécies de Cerrado das famílias Cluseaceae

(Guttiferae), Melastomataceae e Vochysiaceae não se desenvolvem bem quando se aplica

gesso a suas covas, porque são espécies adaptadas ao excesso de alumínio trocável.

Dose de gesso ( ) 7520

%arg100

×=⎟⎠⎞

⎜⎝⎛ substratonoila

Lg

(Equação 5.3)

5.5.7 Adubação com micronutrientes

Os micronutrientes são geralmente menos deficientes em solos e susbtratos minerados do

que os macronutrientes. Dos cerca de doze micronutrientes, o zinco é o micronutriente que mais

apresenta deficiência em solos de Cerrado. Seguem o boro, o cobre e o manganês

(MALAVOLTA & KLIEMANN, 1985). Dessa forma, boro e zinco são os micronutrientes mais

aplicados em solos florestais (NETO et al., 2004).

Formulações comerciais contêm uma mistura de vários micronutrientes, que podem ser

usados para suprir as necessidades das plantas. Além disso, a adição de matéria orgânica em

quantidades suficientes costuma suprir a demanda por micronutrientes de espécies arbóreas de

Cerrado. Há também a formulação N.P.K. com micronutrientes, que é conveniente para

PRAD’s.

Page 101: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Fator Limitante

Justus von Liebig (1803-1873) considerado o pai da agricultura moderna, ele descobriu

que o carbono das plantas vem do CO2 atmosférico e que o oxigênio e o hidrogênio vêm da

água absorvida por elas. Desvendou também a importância dos elementos químicos

(nutrientes) para o metabolismo vegetal e postulou a Lei do Mínimo, que diz que o

crescimento de uma planta é limitado pelo elemento ou pelo fator que aparece em menor

concentração, quando todos os outros são suficientes. A Lei do Mínimo originou

posteriormente o conceito de Fator Limitante, baseado no mesmo princípio da limitação

imposta por nutrientes ou fatores necessários ao crescimento das plantas.

Quadro 5.3: Teoria do Fator Limitante.

5.5.8 Recomendações gerais de adubação

A análise de substratos minerados deve preceder qualquer recomendação de manejo,

adubação e implantação de espécies a serem utilizadas como comunidade pioneira em um PRAD.

Informações sobre a textura do substrato, teor de matéria orgânica e pH são imprescindíveis

para o tratamento de substratos que serão revegetados. As concentrações de nutrientes são

ínfimas em substratos minerados. Portanto, pode-se recomendar uma adubação padrão para

covas que receberão espécies lenhosas perenes e outra para a camada rasteira, sem que haja

grande risco de se incorrer em erros. Entretanto, Campos et al. (2003 apud GOEDERT &

CORRÊA, 2004) lembram que as características dos “solos construídos” dependem em grande

parte das características herdadas dos materiais geológicos remanescentes na jazida.

A Tabela 5.12 traz as proporções de insumos que podem ser aplicados a cada 100 L de

substrato de covas, visando ao plantio de mudas lenhosas de Cerrado. As quantidades

recomendadas devem ser ajustadas para covas maiores ou menores que 100 L. Uma alternativa à

Tabela 5.12 é adubar o substrato das covas e da camada rasteira visando atingir valores de pH, de

matéria orgânica e de nutrientes próximos aos encontrados em solos sob condições naturais

(Figura 5.7). Haveria a aplicação de menores quantidades de insumos, que pode favorecer as

espécies de Cerrado e dificultar a entrada de espécies exóticas que possuem vantagens

competitivas sob condições de substrato mais fértil, tais como Brachiaria sp., Eucalyptus sp., e

outras. Algumas instituíções (Universidade de Brasília, Embrapa-Cerrados) recomendam para

áreas degradadas a abertura de covas de 0,4 m de largura x 0,4 m de comprimento x 0,6 m de

Page 102: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

profundidade, adubadas com 30 L de esterco ou outro adubo orgânico, 200 g de calcário e 150 g

de N.P.K., 4:14:8.

Observação: substratos cascalhentos devem receber entre 40 e 60% das doses de insumos

calculadas/recomendadas, pois entre 40 e 60% do volume da cova é composto por partículas

maiores que 2 mm de diâmetro (cascalho, calhau e matacão).

Tabela 5.12: Adubação de covas de 100 litros, abertas em substrato minerado

Insumo

Adubação de

100 litros de substrato

30 dias após plantio

(para 100 litros de substrato)

*Esterco de curral ou

composto de lixo 30 L zero

*Esterco de aves,

vermicomposto ou

lodo de esgoto

18 L zero

Calcário dolomítico

(90% PRNT) 100 g zero

**Gesso agrícola Equação 5.7 zero

Nitrogênio zero 10 g/cova

Fósforo (P2O5) Tabela 5.12 zero

Potássio (K2O) zero 10 g/cova

Micronutrientes - 1 g de zinco, 0,5 g de boro e manganês, 0,2

g de cobre e de molibdênio

zero

*Aplicam-se 30 L de uma das fontes de matéria orgânica listada na segunda linha da Tabela 5.12 ou 18 L de uma das fontes de matéria orgânica listada na terceira linha da mesma tabela. ** a ser aplicado à superfície da cova após misturar o calcário ao substrato.

Page 103: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

0

10

20

30

40

50Ca (mg/kg)

K (mg/kg)

Matéria orgânica (g/kg)

Mn (mg/kg)

pH (KCl)

Mg (mg/kg)

Solo de CerradoSubstrato minerado

Figura 5.7: Valores de Ca, K, matéria orgânica, Mn, pH e Mg em um solo de Cerrado e em um substrato minerado no Cerrado. Fonte: Goedert & Corrêa (2004).

5.5.9 Adubação da camada rasteira

A subsolagem/escarificação, a recomposição topográfica e a gradeação (quebra de torrões e

incorporação de matéria orgânica) devem ser seguidas pela adubação química do substrato, que

será feita em toda a área, quando o objetivo é implantar uma camada herbácea sobre o substrato

minerado. As doses recomendadas de insumos são baseadas na adubação da camada superficial

de 20 cm de substrato, pois a maioria dos implementos agrícolas limita-se a essa profundidade. O

cálculo da dose de calcário a ser aplicado deve seguir a Equação 5.1. Incorporam-se, em seguida,

as fontes de fósforo, (conforme Tabela 5.13) potássio (30 kg ha-1 de K2O) e de

micronutrientes (2 kg ha-1 de Zn, 2 kg ha-1 de Cu, 1 kg ha-1 de B e 0,2 kg ha-1 de Mo). Os

principais fertilizantes disponíveis no mercado, com as respectivas concentrações de nutrientes,

encontram-se listados na Tabela 5.14.

Page 104: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 5.13: Doses de fósforo para implantação

da camada rasteira em substratos minerados

Argila no substrato P2O5 (kg/ha)

até 15% 40

16 - 35% 60

36 - 60% 90

acima de 60% 120

Fonte: Vilela et al. (2002).

Após a incorporação do calcário e demais nutrientes, procede-se à gessagem, conforme a

fórmula abaixo:

Dose de calcário ( ) 50%arg ×=⎟⎠⎞

⎜⎝⎛ substratonoila

hakg

(Equação

5.4)

amônia) e completa-se o enxofre até a dose final

e 30 kg ha-1.

Quadro 5.4: Algumas relações de densidade global e massa de substrato ha-1.

Após germinação das sementes, adicionam-se outros 30 kg ha-1 de K2O, entre 40 e 50 kg ha-1

de nitrogênio (sulfato de amônia ou nitrato de

d

Considerando 20 cm de camada superficial:

Substrato com densidade global = 0,9 Mg m-3 1.800 toneladas de substrato ha-1 Substrato com densidade global = 1,0 Mg m-3 2.000 toneladas de substrato ha-1 S ubstrato com densidade global = 1,2 Mg m-3 2.400 toneladas de substrato ha-1

Page 105: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Observação: substratos cascalhentos devem receber entre 40 e 60% das doses de insumos

calculadas/recomendadas, pois entre 40 e 60% do volume do substrato é composto por

partículas maiores que 2 mm de diâmetro (cascalho, calhau e matacão).

Tabela 5.14: A

Fertilizante

lguns fertilizantes disponíveis no mercado

Fórmula química Teor do elemento

Insumos que isturados cpodem ser m om matéria orgânica

Ácido bórico H3BO3 17,5% de B

Cloreto de amônio H4Cl N 26% de N e 66% de Cl

Cloreto de cobalto oCl2.2H2O C 34% de Co e 44% de Cl

Cloreto de potássio KCl 60% de K2O e 47% de Cl

Farinha de ossos 25 % de P2O5 e 25% de Ca

Fosfato bicálcico 38% de P2O5 e 13% de Ca

Fosfato monoamônico

(MAP)

NH4H2PO4 10% de N e 46% de P2O5

Fosfato diamônico (DAP) (NH4)2HPO4 18% de N e 34% de P2O5

Fosfato natural 4)6(F,OH)2 Ca10(PO 6% de P2O5 e 25% de Ca

F.T.E. 1,8% de B, 0,9% de Co, 3% de Fe, 2%

de Mo e 9% de Zn de Mn, 0,1%

Gesso CaSO4 de 16% a 20% de Ca e 15% de S

Molibdato de amônio 7O24.2H2O e 6% de N (NH4)6Mo 54% de Mo

Nitrato de amônio NH4NO3 33% de N

Nitrato de potássio KNO3 5% de K2O 13% de N e 4

Nitrato de sódio aNO3 N 15% de N

Nitrocálcio NH4NO3.Ca(NO3)2 22% de N, de 2% a 8% de Ca e de 1%

a 4% de Mg

Sal potássico e N 14% d

N.P.K. - 4:14:8 4% de N, 14% de P2O5 e 8% de K2O

N.P.K. - 10:10:10 10% de P2O5 e 10% de 10% de N,

K2O

N.P.K. - 20:0:20 20% de N, 0% de P2O5 e 20% de K2O

Salitre do Chile NaNO3 16% de N

Salitre de potássio 14% de K2O

Page 106: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Sulfato de amônio (NH4)SO4 20% de N e 17% de S

Sulfato de cobre CuSO4.5H2O 24% de Cu e 17% de S

Sulfato de ferro Fe SO4.7H2O 20% de Fe e 16% de S

Sulfato de magnésio MgSO4 10% de Mg e 16% de S

Sulfato de manganês Mn SO4.4H2O 26% de Mn e 16% de S

Sulfato de potássio K2SO4 50% de K2O e 18% de S

Sulfato de potássio e

magnésio

K2SO4.MgSO4 22% de K2O, 11% de Mg e 22% de S

Sulfato de zinco 6% de Zn e 16% de S ZnSO4.7H2O de 21% a 3

Superfosfat 12% de S o simples Ca(H2PO4)2.CaSO4 18% de P2O5, 20% de Ca e

Superfosfato triplo 4)2 0% de P2O5 e 10% de Ca Ca(H2PO 4

Uréia (NH2)2CO 5% de N 4

Insumos que NÃO podem ser misturados com matéria orgânica

Cal hidratada aOH C

Cal virgem CaO

Calcários CaCO3.MgCO3

Escórias

Nitrato de cálcio Ca(NO3)2 15% de N

Termofosfato 18% de P2O5 e 9% de Mg

Fontes: De Sousa & Lobato (2002b), Jones (1982), Malavolta (1992), Oleynik (1980),

White (1997).

Page 107: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

apítulo 6

Escolha da comunidade vegetal

orgânica do substrato, funcionando como

dubação verde. As melhorias proporcionadas pela camada rasteira ao substrato exposto podem

per

A

ILVA et al., 2004). A grande desvantagem de se implantar uma camada rasteira em áreas

min

C

6.1 Estrato herbáceo

O tratamento dado ao substrato minerado e a incorporação de determinada quantidade de

insumos devem ser compatíveis com as necessidades das espécies que formarão a nova cobertura

vegetal da área. Estabelecer uma camada herbácea rasteira é proporcionar grande estabilidade a

substratos minerados e à paisagem. Além do efetivo controle da erosão, a camada herbácea

melhora a estrutura e aumenta o teor de matéria

a

mitir que sementes de outras ervas, arbustos e árvores se desenvolvam no local, havendo,

dessa forma, a aceleração do processo de sucessão.

A mistura de gramíneas e leguminosas é quase sempre a opção escolhida para compor o

estrato rasteiro em projetos de revegetação. As gramíneas produzem grande biomassa aérea e

subterrânea (raízes), que evitam erosão e aumentam o teor de carbono do “solo em processo de

construção”. As leguminosas são escolhidas por causa das bactérias do gênero Rhizobium, que

habitam suas raízes e fixam nitrogênio do ar, adubando o substrato com esse nutriente. Os teores

de matéria orgânica em substratos que recebem plantios mistos de leguminosas com espécies de

outras famílias são maiores do que em susbtratos cobertos com plantios homogêneos (D

S

eradas na região do Cerrado é o perigo de fogo na época seca. A biomassa seca sobre o

substrato tem grande poder combustível em épocas quentes e de baixa umidade relativa do ar.

Poucos são os trabalhos de revegetação de áreas degradadas no Cerrado que utilizam espécies

nativas para compor o estrato herbáceo, apesar de existirem, só no Distrito Federal, 209 espécies

Page 108: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

de gramíneas nativas (MARTINS et al., 2001). Porém, ao serem semeadas como camada rasteira,

as espécies de gramíneas (Poaceae) nativas são substituídas por outras de maior valência

ecológica. Martins et al. (2001) semearam 32 espécies de gramíneas nativas de Cerrado (Tabela

6.1) em uma cascalheira explotada e, passados quatro anos, identificaram a colonização

espontânea da área por outras quatro espécies de gramíneas nativas, quatro de gramíneas exóticas,

três espécies de Cyperaceae e trinta outras espécies nativas e exóticas de ervas arbustos e árvores.

as 32 espécies originalmente semeadas, Andropogon selloanus, Eragrostis rufescens, Hypogynium

virga

entemente da composição de espécies originalmente

semeadas. Mesmo quando há grande número de espécies de leguminosas compondo a camada

rast

precisam ser manejadas até que o estrato arbóreo-arbustivo

steja bem estabelecido. As espécies invasoras lenhosas devem ser erradicadas por meio de cortes

raso

A Tabela 6.3 mostra algumas espécies de gramíneas e leguminosas herbáceas que são

eqüentemente utilizadas em PRAD’s no Cerrado. A mistura de sementes de gramíneas e

guminosas é geralmente aplicada sobre a superfície e incorporada ao substrato por meio de uma

rade leve.

D

tum, Paspalum trichostomum, Trachypogon macroglossus e Schizachyrium tenerum desapareceram da

área. Porém, apesar da grande diversidade de espécies no local revegetado, Martins et al. (2001)

relatam a dominância do capim Melinis minutiflora após quatro anos de sucessão.

A dificuldade de obtenção de sementes e a baixa percentagem de germinação de muitas

espécies são outros inconvenientes que resultam na pouca utilização de gramíneas nativas de

Cerrado em PRAD’s (Tabela 6.2). O processo de sucessão resulta freqüentemente na dominância

do estrato herbáceo pelo capim gordura - Melinis minutiflora (MARTINS et al., 2004) e pelo capim

braquiária - Brachiaria spp, independ

eira pioneira, a sucessão favorece a invasão da área por essas duas espécies de capins exóticos.

Eucalyptus spp., Pinus spp e Leucaena leucoephacepha também são relatados como invasores de áreas

revegetadas em processo de sucessão.

As espécies exóticas e agressivas

e

s. As invasoras herbáceas devem ser anualmente capinadas até que não ofereçam risco às

árvores e arbustos plantados. É forte a competição entre ervas e mudas de árvores e arbustos em

estágios iniciais de desenvolvimento.

fr

le

g

Page 109: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

T s de gramíneas usadas sobre

s

Esp

abela 6.1: Espécie nativas de Cerrado

ubstratos minerados

écie

Andropogon bicornis Hypogynium virgatum

Andropogon leucostachyus Panicum campestre

Andropogon selloanus m Paspalum gardnerianu

Aristida gibbosa Paspalum pectinatum

Aristida recurvata Paspalum pilosum

Aristida setifolia Paspalum plicatulum

Aristida torta Paspalum polyphyllum

Arundinella hispida Paspalum reduncum

Axonopus barbigerus s Paspalum splenden

Axonopus canescens Paspalum stellatum

Ctenium cirrhosum Paspalum trichostomum

Diectomis fastigiata Setaria geniculata

Digitaria ciliaris Schizachyrium hirtiflorum

Echinolaena inflexa Schizachyrium microstachyum

Eragrostis maypurensis Schizachyrium tenerum

Eragrostis rufescens Thrasya glaziovii

Gymnopogon spicatus Thrasya petrosa

Hyparrhenia bracteata Trachypogon macroglossus

Fonte: Martins et al. (2001).

Page 110: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

T tagem de germinação algumas

e eas nativas do Cerrad

Germin o (%)

abela 6.2: Percen de

spécies de gramín o

Espécie açã

Diectiomis fastigiata 66

Schizachyrium sp. 53

Paspalum stellatum 14

Paspalum splendens 15

Setaria geniculata 9

Thrasys sp. 1

Hypoginium virgatum < 1

Axonopus barbigerus < 1

Axonopus cannensis < 1

Fonte: Leite et al. (1994).

Page 111: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

T trato herbáceo de proj

m b

abela 6.3: Espécies utilizadas na composição do es etos de revegetação

Família/Espécie Nome comu Semeadura Produção de iomassa

E ao Cerradspécies exóticas o Graminae (Poaceae)

Andropogon gayanus andropogon 5 a 70 kg ha-1 20 t ha-1

Brachiaria decumbens capim braquiária 6 a 12 kg ha-1 30 -1 a 45 t haBrachiaria humidicola capim agulha 1 2 a 25 kg ha-1 45 t ha-1

Paspalum notatum grama babatais 40 kg ha-1 6 t ha-1 Paspalum saurae capim pensacola 25 a 50 kg ha-1 30 t ha-1

Leguminosae (Fabaceae) Cajanus cajan feijão guandu 20 a 40 kg ha-1 24 -1 a 40 t ha

Calopogonium mucunoides nio 3 a 50 kg ha-1 calopogô 35 t ha-1 Canavalia ensiformis 20 -1 feijão de porco 150 kg ha-1 a 60 t haCentrosema pubescens centrosema 4 a 5 kg ha-1 20 t ha-1

Crotalaria spp crotalária 8 a 20 kg ha-1 14 -1 a 60 t haDolichos lablab labe-labe 25 a 35 kg ha-1 35 a 40 t ha-1 Lupinus sp. tremoço 25 t ha-1

Medicago sativa alfafa 80 t ha-1 Mucura aterrima a 60 kg ha-1 45 t ha-1 mucuna preta 12

Pueraria phaseoloides puerária, kudzu tropical 15 a 30 kg ha-1 10 a 40 t ha-1 Trifolium repens trevo branco 2 kg ha-1 30 t ha-1 Stizolobium sp. mucuna 15 a 40 t ha-1 Stylosanthes spp estilosante 1 a 2,5 kg ha-1 30 t ha-1

Espécies nativas do Cerrado Graminae (Poaceae)

*Hyparrhenia rufa capim jaraguá 15 a 35 kg ha-1 35 t ha-1 Leguminosae (Fabaceae)

Arachis pintoi amendoim forrageiro 12 a 20 kg ha-1 8 a 10 t hacv. Belmonte -1 Stylosanthes capitata mineirão 2 kg ha-1 14 a 24 t ha-1

Stylosanthes guianenses mineirão 2 kg ha-1 10 a 13 t ha-1 Stylosanthes macrocephala mineirão 2 kg ha-1

Fc

ontes: Galeti (1973), Vilela et al. (2002) e informações não publicadas. *Há referências que onsideram o capim jaraguá nativo do Cerrado. Outras referências o consideram africano.

Page 112: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

o maior eficiência técnica, econômica e,

sobretudo, ambiental. Os três pontos críticos da seleção da comunidade vegetal que irá dar início

al;

) definir a densidade de plantio (no de plantas/hectare);

de capacidade de substratos minerados reterem umidade nos meses secos

m sido uma das maiores causas de perdas de árvores em projetos de revegetação de áreas

min

ela 6.4). Algumas delas já foram testadas e acompanhadas

uanto à resposta de crescimento e sobrevivência sob condições adversas de substratos

min

alteram o ambiente ao transferirem nutrientes do solo para a biomassa, elevarem a matéria

6.2 Estrato lenhoso (árvores e arbustos)

PRAD’s que visam restituir a função ecológica de uma área e que adotam modelos auto-

sucessionais da camada lenhosa têm experimentad

ao processo de sucessão em uma área degradada são:

1) escolher corretamente as espécies que irão compor a comunidade vegetal inici

2

3) definir o número de plantas de cada uma das espécies a ser usado no plantio.

O tratamento dos substratos melhora as condições químicas, físicas e biológicas do meio de

crescimento das plantas. Entretanto, o Cerrado apresenta uma estação seca pronunciada, que

limita o plantio de árvores a alguns meses do ano e causa considerável perda de mudas por

estresse hídrico. A falta

te

eradas no Cerrado.

Dessa forma, devem-se selecionar espécies nativas que suportem grandes deficits hídricos do

substrato para compor a comunidade pioneira. O levantamento daquelas espécies que revegetam

espontaneamente áreas mineradas é um valioso indicativo sobre o provável sucesso que terão ao

serem plantadas em locais com condições são semelhantes. Corrêa & Melo Filho (2004b)

identificaram que metade das espécies que brotava espontaneamente em áreas mineradas no

Distrito Federal era de Cerrado stricto sensu. Há uma série de espécies lenhosas de Cerrado que

têm sido utilizadas em PRAD’s (Tab

q

erados no Cerrado (Tabela 6.5).

Projetos de revegetação geralmente optam por implantar uma comunidade composta por

espécies pioneiras, secundárias e climácicas (clímaxes). Espécies pioneiras conseguem crescer

em solos de baixa fertilidade e apresentam maior eficiência no uso de nutrientes fornecidos por

meio da adubação (POGGIANI & SCHUMACHER, 2004). Essas espécies colonizadoras

Page 113: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

orgânica do solo, alterarem o microclima, reduzirem a flutuação de temperatura no estrato

inferior e aumentarem a umidade do ar. Essas modificações facilitam a entrada de espécies de

outros grupos ecológicos, acelerando o processo de sucessão (GONÇALVES et al., 2004a).

los de revegetação

utilizados na recuperação de áreas degradadas no Brasil, como segue abaixo:

isturadas

às nativas (NOGUEIRA, 1977 apud KAGEYAMA & GANDARA, 2004);

próximo a área degradada (JOLY, 1990 apud KAGEYAMA

& GANDARA, 2004);

dárias

tardias (KAGEYAMA et al., 1996 apud KAGEYAMA & GANDARA, 2004);

ES, LEITÃO &

CRESTANA, 1992 apud KAGEYAMA & GANDARA, 2004);

secundárias iniciais intercaladas em uma linha de plantio. Segue-se com uma outra

As árvores de cada fase sucessional são alternadas em linhas, misturadas dentro das linhas,

distribuídas ao acaso, em grupamentos e em ilhas de vegetação, a depender da situação local e do

resultado desejado. Em geral, plantam-se entre 50 e 60% de espécies pioneiras, que são de

crescimento rápido, cerca de 10% de climácicas, restando entre 30 e 40% de espécies secundárias.

Kageyama & Gandara (2004) fizeram uma revisão dos principais mode

• modelo sem o uso de grupos ecológicos e plantio ao acaso das espécies arbóreas na

área a ser revegetada (“coquetel”). Pode haver o uso de expécies exóticas m

• modelo sem o uso de grupos ecológicos, mas introduzindo-se as espécies na posição

aproximada do terreno em que existiam anteriormente. Deve-se proceder a um

levantamento fitossociológico da área antes do desmatamento ou fazê-lo em um

fragmento de vegetação

• modelo com o uso de grupos ecológicos. As espécies pioneiras devem sombrear as

espécies climácicas e as espécies secundárias iniciais devem tutorar as secun

• modelo com o uso de grupos ecológicos, com o plantio de pioneiras, secundárias e

climácicas em módulos de nove plantas. As espécies climácicas devem ficar no centro,

rodeadas pelas espécies dos outros grupos e respeitando-se a abundância de cada

espécie, que deve ser previamente determinada por meio de levantamento

fitossociológico da área ou das proximidades (RODRIGU

• modelo com o uso de grupos ecológicos, implandando-se as espécies pioneiras e

Page 114: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

linha composta de secundárias tardias, intercaladas com espécies climácicas

(KAGEYAMA & GANDARA, 2000 apud KAGEYAMA & GANDARA, 2004);

• modelo com o uso de grupos ecológicos, implantando-se as espécies pioneiras em

uma linha e, na linha seguinte, as secundárias e as climácicas. Deve-se respeitar a

densidade das espécies raras e comuns (KAGEYAMA & GANDARA, 2000 apud

KAGEYAMA & GANDARA, 2004);

• implanta-se o modelo anterior em 20% da área a ser revegetada. Os demais 80% da

área devem receber apenas espécies pioneiras. Deixa-se então que a sucessão se

encarregue de restaurar a parte da área (80%) que recebeu apenas espécies pioneiras.

Espera-se que as sementes que vierem das secundárias e climácicas, implantadas em

parte dos 20% da área, sirvam para essa restauração natural (KAGEYAMA &

GANDARA, 2000 apud KAGEYAMA & GANDARA, 2004).

As espécies pioneiras suportam bem condições de substrato e microclima desfavoráveis. As

espécies sucessionais posteriores - secundárias e climácicas - possuem vantagens competitivas

quando há melhorias do substrato e do meio. Apesar do microclima adverso, covas adubadas em

projetos de revegetação tendem a funcionar como substratos de estágios secundários ou

climácicos, haja vista a maior disponibilidade de matéria orgânica e de nutrientes proporcionada

pela adubação. Por isso, algumas espécies mudam o comportamtento quando submetidas a

condições de substrados adubados.

Por esse motivo, o modelo que melhor se adapta a áreas degradadas pela mineração no

Cerrado considera dois grupos: espécies de crescimento rápido e espécies de crescimento

mais lento, independentemente da ecologia delas. Nesse sentido, espécies de Mata Mesofítica e

de Galeria apresentam desenvolvimento superior ao de espécies de Cerrado stricto sensu quando

plantadas em covas adubadas, em áreas mineradas no Cerrado, independentemente do grupo

ecológico a que pertencem (CORRÊA & CARDOSO, 1998).

Durante muito tempo, o plantio em módulos foi usado como estratégia de restauração, pois

se pode combinar em uma mesma área espécies com características diferentes de crescimento,

sobrevivência, longevidade, tolerância à sombra e ao sol e outras. Apesar de fazer sentido do

ponto de vista ecológico e sucessional, a implantação de módulos é tarefa complexa, onerosa e

Page 115: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

que demanda muita mão-de-obra. Além disso, trabalhos que compararam plantios aleatórios a

plantios em módulos não encontraram diferenças entre a eficiência dos dois modelos (PRIMACK

& RODRIGUES, 2002).

Mais recentemente, PRAD’s têm adotado em sua camada lenhosa o conceito de espécies

facilitadores da sucessão. São espécies que auxiliam o estabelecimento espontâneo de outras no

local em recuperação. As espécies facilitadoras geralmente atraem um variado número de animais

e microrganismos e são também conhecidas como bagueiras (baga fruto). Corrêa et al. (2005),

por exemplo, recuperaram uma jazida de cascalho utilizando Inga marginata, que favoreceu a

entrada de quinze outras espécies arbóreas nativas no local, quase todas disseminadas pela fauna.

Os adeptos da concepção de espécies facilitadoras julgam que é mais importante selecionar um

reduzido número de espécies que induzam a sucessão do que optar por um elevado número de

espécies ecologicamente pouco relevantes. Estudos recentes defendem que o funcionamento de

ecossistemas prescinde da diversidade completa da comunidade, podendo ser mantido com um

reduzido número de espécies, sobretudo espécies-chave e espécies facilitadoras da sucessão

(LYONS et al., 2005). Dessa forma, a recuperação de áreas mineradas não requer a reintrodução

de todas as espécies originalmente presentes no local, mas apenas daquelas tolerantes e adaptadas

às condições áridas do local (PRIMACK & RODRIGUES, 2002).

Outro critério muito utilizado é a escolha de espécies que preferem sombra (esciófitas) ou

exigem luz (heliófitas). Há espécies heliófitas em todos os grupos ecológicos - pioneiras,

secundárias e climácicas (Tabela 6.4 e Tabela 6.5). Portanto, não haveria dificuldade em se

compor uma comunidade vegetal exclusivamente com espécies que exigem plena luz.

A Universidade de Brasília - UnB, Embrapa-Cerrados e Ministério do Meio Ambiente -

MMA desenvolveram o conceito de “espécies de uso múltiplo”, a serem utilizadas na revegetação

de áreas desmatadas, pertubadas e degradadas. “Espécies de uso múltiplo” são aquelas aptas a

iniciarem uma sucessão ecológica e que, ao mesmo tempo, geram benefícios para o proprietário

do local, tais como produzir madeira, lenha, frutos, óleos medicinais, serem melíferas e outros.

São exemplos de “espécies de uso múltiplo” recomendadas pela UnB/MMA/Embrapa para a

recuperação de áreas degradadas no Cerrado a Acacia polyphylla (angico-monjolo), Anadenanthera

colubrina var. colubrina (angico-vermelho) Myracrodruon urundeuva (aroeira), Dipterix alata (baru),

Copaíba langsdorffii (copaíba, pau-d’óleo), Dimorphandra mollis (faveiro), Astronium fraxinifolium

Page 116: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

(Gonçalo Alves), Inga cylindra (ingá), Tabebuia carayba (ipê-caraíba), Hymenaea courbaril (jatobá-da-

mata), Hymenaea stigonocarpa (jatobá-do-cerrado), Genipa americana (jenipapo), Solanum lycocarpum

(lobeira) Cryptocaria aschersoniana (louro precioso), Hancornia speciosa (mangaba), Blepharocalix

salicifolius (Maria Preta) Tapirira guianensis (pombeiro), Tibouchina stenostachya (quaresmeira) e Ormosia

stipularis (tento ormosia).

A UnB/Embrapa/MMA recomendam intercalar espécies de Cerrado stricto sensu, de Mata de

Galeria e de Mata Mesofítica em linhas de plantio, pois alegam que o consórcio de espécies de

diferentes fitofisionomias em projetos de revegetação é compatível com o caráter mosaico de

vegetação do bioma Cerrado. A intercalação em linhas visa a cobrir rapidamente o solo/susbtrato

com as espécies de crescimento rápido, sem prejudicar o crescimento das espécies de crescimento

mais lento na linha ao lado. Dessa forma, a dinâmica natural do Cerrado, em que espécies se

sucedem e a superfície da área fica sempre coberta por vegetação, é reproduzida no projeto.

Quando se pensa em integrar ecologicamente a área a ser revegetada ao ecossistema do

entorno, as espécies podem ser escolhidas pela forma e pelo veículo de dispersão das sementes:

vento, animais, água e outros. Porém, seja qual for o critério para a escolha das espécies que irão

compor a comunidade arbórea inicial, mudas sadias e bem desenvolvidas atenuam as diferenças

entre as classes sucessionais e aumentam as chances de sobrevivência delas no campo. O

tratamento dispensado às mudas durante a fase de viveiro influencia o desenvolvimento e a

sobrevivência das plantas no campo. O manejo adequado de mudas que irão ser usadas em

projetos de revegetação é discutido nos trabalhos de Melo et al. (1998) e Mundin (2004). Felfili et

al. (2001) recomendam que mudas de espécies arbóreas de Cerrado a serem usadas em áreas

mineradas sejam produzidas em sacos plásticos de 15 x 25 cm ou maiores, com substrato

adubado com matéria orgânica ou fertilizante. Além disso, as plantas devem-se desenvolver

durante um ano no viveiro antes de irem, sempre na estação chuvosa, para o campo (FELFILI et

al., 2001).

A escolha de ervas, arbustos e árvores, pioneiras, secundárias e climácicas, no espaçamento

desejado, permitirão combiná-las de acordo com a estrutura pretendida para a área. A escolha do

espaçamento influenciará a intensidade de revegetação, a cobertura vegetal, a manutenção e a

necessidade de replantios. Um espaçamento 2 x 2m entre covas permitirá o plantio de 2.500

mudas por hectare. Um espaçamento 4 x 4 m comportará 625 mudas por hectare, que é próximo

da densidade de um Cerrado stricto sensu. Espaçamentos maiores entre árvores (6 x 6 m, 8 x 8 m,

12 x 12 m) são utilizados quando existe uma componente paisagística e/ou recreativa no PRAD.

Page 117: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Deve-se escolher o número de mudas por hectare em função do espaçamento desejado - ou

vice-versa - e a proporção de cada espécie em função da estrutura almejada. Estudos

fitossociológicos de ambientes naturais preservados, alterados, perturbados e degradados têm

como objetivo não apenas determinar a escolha das espécies a serem plantadas, mas também

descobrir em que proporção empregá-las nos projetos de revegetação. A tentativa de reprodução

das estruturas de comunidades naturais parece ser um bom caminho, pois tem sido largamente

empregada, alcançando bons resultados. Em projetos de restauração, procura-se aproximar a

composição da comunidade vegetal a ser implantada da estrutura fitossociológica das áreas

adjacentes não degradadas, ou mesmo da estrutura do ecossistema nativo.

Em um hectare de Cerrado são encontradas cerca de dez a vinte espécies muito abundantes e

aproximadamente cinqüenta espécies pouco abundantes. Por essa razão, Felfili et al. (2002)

recomendam que não se deve permitir que existam mais de 150 indivíduos de uma mesma

espécie em um hectare de Cerrado recuperado. Esses autores aconselham que em projetos de

restauração de Cerrados seja plantado um grande número de mudas de pelo menos 10 espécies

diferentes. Mudas de outras 30 espécies de Cerrado, no mínimo, devem ser também utilizadas

em menor quantidade no projeto. Dessa forma, a recomendação de Felfili et al. (2002) de se

utilizarem, pelo menos, 40 espécies diferentes em projetos de restauração de Cerrado justifica-se,

quando se pretende obter uma diversidade de espécies semelhante a de áreas naturais.

Silva Júnior (2005) levantou as cem espécies de árvores mais freqüentes no Cerrado stricto

sensu do Brasil Central e determinou as suas respectivas densidades naturais. Como exemplo,

Dimorphandra mollis - faveiro - ocorre em áreas nativas de Cerrado a uma densidade de 8 a 15

plantas para cada 10 hectares. A utilização da densidade natural das cem espécies levantadas por

Silva Júnior (2005) é também um critério adequado para se definir o número de plantas de cada

espécie a serem utilizadas nos projetos de revegetação de áreas mineradas no Cerrado.

Em um projeto de revegetação pode-se ainda intensificar a estrutura existente na própria área

degradada, visando a uma maior cobertura vegetal do substrato e à aceleração da sucessão.

Levantamentos florísticos e fitossociológicos de comunidades que revegetam naturalmente áreas

explotadas pela mineração permitem identificar espécies de maior importância na estrutura dessas

comunidades. São as espécies que devem possuir mais chances de se estabelecerem e de

contribuírem para o processo sucessional em lavras explotadas.

Page 118: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

A identificação de espécies e de suas respectivas contribuições para uma determinada

comunidade facilita a configuração de uma estrutura fitossociológica em um projeto de

revegetação. A combinação da freqüência, abundância e dominância de uma determinada

espécie na comunidade em que ela aparece é expressa sob um valor de IVI (Índice de Valor de

Importância). O IVI de cada espécie determinará a quantidade de indivíduos que deverá ser

plantada em uma área a ser revegetada. Configura-se assim a estrutura da comunidade pioneira

que se encarregará da sucessão no local.

6.2.1 Exemplo de configuração de um estrato lenhoso de um projeto de restauração

hipotético

Suponha que um levantamento florístico tenha identificado as espécies abaixo, cujos

respectivos IVI’s foram também calculados.

Espécies arbóreas encontradas em uma área degradada

hipotética no Cerrado

Espécie IVI Ecologia

Bowdichia virgilioides 0,122 pioneira

Didymopanax sp. 0,108 pioneira

Eriotheca pubescens 0,157 secundária

Myracrodruon urundeuva 0,123 clímax

Piptocarpha rotundifolia 0,365 pioneira

Stryphnodendron adstringens 0,072 secundária

Plathymenia reticulata 0,053 secundária

Para se definir a quantidade de cada espécie a ser empregada na restauração, deve-se:

1) somar os IVI’s de todas as espécies e se obter o IVItotal = 1,0;

2) definir o número de árvores por hectare vamos usar 625 mudas/ha, neste caso, para

nos aproximarmos de um Cerrado denso;

Page 119: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

3) definir, com base no IVI de cada espécie, o número de mudas/ha para cada uma das

espécies, por meio de uma “regra de três”, como exemplificado abaixo:

IVI = 1,0 625 mudas/ha

IVI = 0,122 X1 mudas/ha X1 = 76 mudas/ha de Bowdichia virgilioides

IVI = 0,108 X2 mudas/ha X2 = 68 mudas/ha de Didymopanax sp.

IVI = 0,157 X3 mudas/ha X3 = 98 mudas/ha de Eriotheca pubescens

IVI = 0,123 X4 mudas/ha X4 = 77 mudas/ha de Myracrodruon urundeuva

IVI = 0,365 X5 mudas/ha X5 = 228 mudas/ha de Piptocarpha rotundifolia

IVI = 0,072 X6 mudas/ha X6 = 45 mudas/ha de Stryphnodendron adstringens

IVI = 0,053 X7 mudas/ha X7 = 33 mudas/ha de Plathymenia reticulata

Pode-se, ainda, optar por dividir as espécies por grupo ecológico e se utilizarem, por exemplo,

50% de pioneiras, 40% de secundárias e 10% de climácicas. Neste segundo caso, deve-se:

1) classificar as espécies quanto ao grupo sucessional e definir o número de mudas de cada

grupo a ser utilizado. Como definido acima, utilizaremos 50% de pioneiras, 40% de

secundárias e 10% de climácicas;

4) para 625 mudas/ha, serão necessárias 313 mudas/ha de espécies pioneiras (50% x

625/100), 250 mudas/ha de secundárias (40% x 625/100) e 62 mudas/ha de espécies

climácicas (10% x 625/100);

5) somam-se os IVIs das espécies pioneiras: 0,122 + 0,108 + 0,365 = 0,595;

6) define-se o número de mudas de cada espécie pioneira por meio da “regra de três”: 313

mudas/ha correspondem à soma de IVI = 0,595 um IVI de 0,122 corresponde,

Page 120: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

portanto, a 64 mudas/ha de Bowdichia virgilioides. IVI = 0,108 57 mudas/ha de

Didymopanax sp. e IVI = 0,365 192 mudas/ha de Piptocarpha rotundifolia;

7) para as secundárias, temos a soma de IVI = 0,282, que corresponde a 250 mudas/ha.

Serão 139 mudas/ha de Eriotheca pubescens, 64 mudas/ha de Stryphnodendron adstringens e 47

mudas/ha de Plathymenia reticulata;

8) como só foi identificada apenas uma espécie clímax, as 63 mudas/ha serão de

Myracrodruon urundeuva. Caso houvesse mais de uma espécie clímax, dever-se-ia calcular o

número de plantas de cada espécie conforme o procedimento adotado para as espécies

pioneiras e secundárias.

O cálculo do número de mudas de cada espécie sem considerar o grupo sucessional reflete a

proporção entre as espécies que ocorrem naturalmente na área em questão, com intensidade

maior, menor ou igual a que ocorre naturalmente na lavra explotada, a depender do espaçamento

entre árvores escolhido.

O desenvolvimento de árvores em “solos reconstruídos” a partir de substratos minerados é

assunto controverso. Para Faria et al. (1994), deve-se esperar um crescimento da maioria das

espécies arbóreas inferior ao desenvolvimento das mesmas espécies em solos nativos, mesmo

quando melhoradas as características físicas, químicas e biológicas do substrato minerado.

Entretanto, Mesquita & Corrêa (2004) relatam que Inga marginata, sob condições iguais de

tratamento, cresceu mais em um substrato minerado do que em solo nativo.

O crescimento em altura de uma árvore é um bom indicator das condições presentes em uma

cova e no sítio em que a planta se encontra. Espécies arbóreas que duplicam a altura em áreas

degradadas após a primeira estação de crescimento podem ser consideradas como tendo o

comportamento de pioneiras. Um outro parâmetro importante na escolha de espécies é a

capacidade de sobrevivência, independentemente de seu crescimento. Algumas espécies nativas

do Cerrado mostram boa combinação entre sobrevivência e incremento em altura, quando

testadas em áreas mineradas (Tabela 6.5). O ingá, por exemplo, tem apresentado ótimo

desenvolvimento e sobrevivência em jazidas revegetadas. O desempenho dessa espécie sob esses

dois critérios mostra que ela está adaptada a condições adversas de substratos degradados. De

uma forma em geral, o rápido crescimento e a elevada produção de biomassa e de sobrevivência

das leguminosas proporcionam sombreamento e maior acúmulo de matéria orgânica e de

Page 121: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

nutrientes em substratos. Essas condições favorecem a germinação de sementes e propágulos de

espécies secundárias e climácicas, havendo, dessa forma, a garantia da sustentabilidade ecológica

do projeto.

O uso de índices que indiquem mudanças ecológicas, tais como ganhos ou perdas de

diversidade e de cobertura vegetal na comunidade inicialmente implantada, é uma das formas de

se avaliar a sustentabilidade ecológica de um projeto de revegetação. Aumentos de diversidade,

como mostrado na Figura 6.1, e de cobertura vegetal por meios naturais indicam sustentabilidade

da sucessão após a implantação de uma comunidade em uma área minerada.

H’ = 0,98 bel

H’ = 0,174 bel

H’ = 0,85 bel

H’ = 2,27 bel

0

0,4

0,8

1,2

1,6

2

2,4

1994 1996 1998 2000 2002 2004

Ano

Índi

ce d

e Sh

anno

n (b

el)

Figura 6.1: Evolução da diversidade de espécies em uma área minerada após o plantio de Inga marginata e Tibouchina stenocarpa. H’= 2,27 corresponde a 17 espécies arbóreas nativas do Cerrado, sendo duas espécies plantadas e outras 15 espontâneamente regeneradas após o plantio. Fonte: adaptado de Corrêa et al. (2005).

Entretanto, a combinação de baixas percentagens de sobrevivência e precário crescimento

reflete a pouca vocação de algumas espécies lenhosas para serem utilizadas em PRAD’s. Esse é o

caso do jequitibá, do guatambu-carteira e do pequi (Tabela 6.5). Outras espécies, que apresentam

insignificante crescimento, mas altas porcentagens de sobrevivência, como a copaíba, devem ser

Page 122: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

utilizadas quando o objetivo principal não seja a rápida cobertura vegetal do substrato, mas o

aumento da diversidade ou o estímulo ao aparecimento de fauna. A copaíba apresenta

crescimento lento sob quaisquer condições de plantio (LORENZI, 1992) e, portanto, o desejável

nela é sua resistência a condições áridas.

Tabela 6.4: Espécies lenhosas de Cerrado, usadas na recuperação de áreas mineradas

Família/Espécie Nome comum Habitat/Ecologia

Anacardiaceae

Schinus terebinthifolius aroeira-mansa, cambuí M,Mg,C/p/h

Annonaceae

† Annona coriacea araticum, cabeça-de-nego C,Ce/p/h

† Annona crassifolia araticum-do-cerrado C,Ce/h

Annona sylvatica

Rollinia sylvatica (sinon.)

araticum-do-mato M/h

Duguetia furfuraceae corticeira Mg,C/h

Duguetia sp. araticum C/h

Xylopia emarginata pindaíba, embira-preta Mg/p/h

Apocynaceae

† Aspidosperma macrocarpon guatambu-do-cerrado C,Ce/h

Aspidosperma subincanum pereiro Mg/h

† Hancornia speciosa mangaba C,Ce,Cs/h

† Himatanthus obovatus pau-de-leite C,Ce/p/h

Araliaceae

Dendropanax cuneatum maria-mole Mg/p/h

† Schefflera macrocarpa mandiocão M,Mg,C,Ce/p/h

Sciadodendron excelsum carobão M/p/h

Arecaceae (Palmae)

Syagrus oleraceae guariroba, gueiroba M,C/h

Syagrus romanzoffiana jerivá Mg,B/h

Asteraceae (Compositae)

Eremanthus glomerulatus C

Gochnatia polymorpha candeia, cambará C/p/h

Page 123: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Piptocarpha rotundifolia assa-peixe de folha branca C/p/h

Bignoniaceae

† Tabebuia ochracea ipê-amarelo C/s,c/h

† Tabebuia serratifolia pau-d’arco C,Ce/h

Stenolobium stans ipê-de-jardim C/s,c/h

Bombacaceae

Eriotheca gracilipes embiruçu, painiera-do-campo M,C/h

Eriotheca pubescens embiruçu, colher-de-vaqueiro C/s/h

Boraginaceae

Cordia trichotoma louro, louro-pardo, freijó M,C/p/h

Cordia sellowiana capitão-do-mato M/p/h

Burseraceae

Protium heptaphyllum almecegueira, breu-branco Mg/h

Cecropiaceae

Cecropia spp embaúba M,Mg,C/p/h

Celastraceae

Austroplenckia populnea marmelinho-do-campo M,Ce/h

Combretaceae

Terminalia brasiliensis amarelinho, capitão-do-mato C/h

Dilleniaceae

† Curatella americana lixeira, lixa, cajueiro-bravo C, Ce,Cs/h

Ebenaceae

† Diospyros burchellii olho-de-boi C,Cs/s

Erythroxylaceae

† Erythroxylum suberosum cabelo-de-nego C,Ce.Cs

† Erythroxylum tortuosum mercurinho C,Cs/s,c

Euphorbiaceae

Croton floribundus capixingui, velame M/p/h

Mabea fistulifera canudeiro, raiz-de-tiú C/p/h

Pera glabrata sapateiro, laranjeira-do-cerrado Mg,C/p,s/h

Flacourtiaceae

Casearia sylvestris cafezinho-do-mato Mg/p/h

Lauraceae

Page 124: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Ocotea corymbosa canela-preta, canela-fedorenta M,C,Ce/h

Ocotea odorifera

Ocotea pretiosa (sinon.)

canela-sassafrás, canela-parda,

louro-cheiroso

C/h

Ocotea pulchella canela-preta Mg,C/h

Ocotea spixiana canela-preta M, Mg, Ce/s/h

Persea pyrifolia abacateiro-do-mato M/p/h

Leguminosae – Caesalpinoideae

Diptychandra aurantiaca balsaminho, faveiro-doce M,Ce/p/h

† Sclerolobium paniculatum carvoeiro, passariúva C,Ce/p

Leguminosae – Mimosoideae

Anadenanthera falcata angico-do-cerrado C/p/h

† Enterolobium gummiferum tamboril-do-cerrado C,Ce,Cs/p

Piptadenia gonoacantha pau-jacaré M/p

Leguminosae – Papilionoideae

Andira anthelmia

A. pisonis (sinon.)

garacuí, angelim-de-morcego M,Mg,Ce/h

† Andira paniculata mata-barata C,Ce,Cs/s

† Ascomium dasycarpum amargosinha C,Ce/h

† Bowdichia virgilioides sucupira-preta M, C, Ce/p,s,c/h

† Dalbergia miscolobium jacarandá-do-cerrado C,Ce/p/h

Dalbergia villosa canafístula-brava, jacarandá M,C/p/h

† Machaerium acutifolium jacarandá-do-campo M,C,Ce,Cs/s,h

† Machaerium opacum jacarandá-muchiba C,Ce,Cs/p,s/h

Machaerium villosum

M. lanatum (sinon.)

sapuva, jacarandá-do-cerradão M,Ce/p/h

Ormosia arborea cabreúva-vermelha, olho-de-boi M/s,c/h

† Pterodon emarginatus sucupira-branca C,Ce

† Vataira macrocarpa amargosa C,Ce/s

Loganiaceae

† Strychnos pseudoquina quina-do-cerrado C,Ce,Cs/h

Lythraceae

† Lafoensia pacari dedaleiro, pacari, mangaba-brava M,C,Ce/p/h

Malpighiaceae

Page 125: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Byrsonima basiloba murici C/p/h

† Byrsonima coccolobifolia murici-rosa C,Ce,Cs/p/h

Byrsonima crassa murici C,Ce/p/h

† Byrsonima verbascifolia murici C,Cs/p/h

Miristicaceae

Virola sebifera ucuúba-do-cerrado, virola M,C/p,c/h

Moraceae

† Brosimum gaudichaudii mama-cadela C,Ce

Myrsinaceae

Hexachlamys edulis ivaí, pêssego-do-mato C/p/h

Rapanea guianensis jacaré-do-mato, capororoca M,C/p,s/h

Rapanea umbellata copororoca C/p

Myrtaceae

Myrcia rostrata cuamirim M,Mg/p

Myrcianthes pungens guabiju, guabiroba-açu M/s

Nyctaginaceae

Guapira opposita flor-de-pérola M/s

† Guapira noxia caparrosa Mg,C,Ce,Cs

Ochnaceae

Ouratea castanaefolia farinha-seca, folha-de-castanha M,Ce/p,s,c/h

† Ouratea hexasperma cabelo-de-nego C,Cs/s

Proteaceae

† Roupala montana carne-de-vaca Mg,C,Ce/s

Rubiaceae

Alibertia spp. marmelada M, Ce

Amaioua guianensis marmelada, café-do-cerrado M/s

† Palicourea rigida bate-caixa C, Ce/p/h

Rutaceae

Zanthoxylum riedelianum maminha-de-porca, temberati C/p/h

Sapindaceae

Cupania vernalis arco-de-peneira, camboatá M/s/h

Matayba guianensis mataíba Mg/s

Sapotaceae

Page 126: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Pouteria caimito leiteiro-preto S

† Pouteria ramiflora curiola Mg,C,Ce,Cs/h

Pouteria torta grão-de-galo C,Ce,Cs/h

Solanaceae

† Solanum lycocarpum lobeira C,Ce,Cs/p/h

Solanum paniculatum jurubeba C/p/h

Styracaceae

† Styrax ferrugineus pindaíba, laranjinha-do-cerrado C,Ce,Cs/p/h

Verbenaceae

Aegiphila sellowiana capoeirão Mg/p

Vitex polygama tarumã-do-cerrado, Maria Preta M,C/p/h

Vochysiaceae

† Qualea parviflora pau-terra-mirim C,Ce,Cs/h

† Salvertia convallariodora colher-de-vaqueiro C,Cs/p,s/h

† Vochysia elliptica pau-doce C,Ce,Cs/p

† Vochysia rufa pau-doce C,Ce

Vochysia tucanorum caixeta, pau-doce, fruta-de-tucano C,Ce/p/h

† Vochysia thyrsoidea gomeira C,Ce/h

Habitat: M (Mata Mesofítica), Mg (Mata de Galeria), C (Cerrado), Ce (Cerradão), Cs (campos) B (Brejo). Ecologia: p (pioneira), s (secundária), c (clímax), h (heliófita). † Trata-se de uma das cem espécies mais freqüentes no Cerrado stricto sensu do Brasil Central, de acordo com Silva Júnior (2005).

Page 127: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 6.5: Desempenho de algumas espécies plantadas em áreas mineradas no Cerrado após duas estações de crescimento (18 meses)

Família/Espécie Nome

popular

Habitat/

Ecologia

Sobrevivência

(%)

Incremento

(%)

Anacardiaceae

Astronium fraxinifolium Gonçalo-Alves M,Mg,C/s,c 81 0,5

Myracrodruon urundeuva aroeira M,Mg/s,c 72 - 98 57 - 106

Tapirira guianensis pombeiro Mg/p/h 93 - 97 200 - 380

Annonaceae

† Xylopia aromatica pimenta-macaco C,Ce/p/h 90 157

Apocynaceae

Aspidosperma pyrifolium peroba-rosa M,C/s,c 66 112

Aspidosperma ramiflorum guatambu-

carteira

M/s,c 70 0,5

† Aspidosperma tomentosum bolsinha C,Ce/h 96 14

Bignoniaceae

† Cybistax antisyphilitica ipê-verde C,Ce/p,s/h 59 - 73 32

Jacaranda brasiliana

Bignonia brasiliana (sinon.)

caroba-do-

cerrado

M,C/h 86 123

Jacaranda cuspidifolia jacarandá-caroba M,C/p/h 71 80

Tabebuia caraiba ipê-amarelo C,Ce/s/h 57 72

Tabebuia impetiginosa ipê-roxo M,Mg/s,c 57 63

Tabebuia roseo-alba ipê-branco M/s,c 79 - 83 56 - 160

Bombacaceae

Pseudobombax longiflorum embiruçu M/p/h 68 22

Caryocaraceae

† Caryocar brasiliense pequi C,Ce,Cs/c 30 1,2

Clusiaceae (Guttiferae)

Kielmeyera coriacea pau-santo C,Ce,Cs/p/h 52 - 100 0 - 89

Combretaceae

† Terminalia argentea capitão-do-

cerrado

M,C,Ce/s,c 71 - 100 116

Hippocrateaceae

Page 128: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Salacia crassifolia bacupari C,Ce/h 98 1,9

Lauraceae

Cryptocarya aschersoniana louro-precioso M,Mg/e 94 34

Lecytidaceae

Cariniana estrellensis jequitibá M,C/s,c 12 0,0

Leguminosae – Caesalpinoideae

† Dimorphandra mollis faveiro C,Ce,Cs/p/h 48 28

† Copaifera langsdorffii copaíba M,Mg,C,Ce/s,c 80 - 100 0,7

Hymenaea stilbocarpa

H. courbaril (sinon.)

jatobá-da-

mata

Mg,Ce/p,s,c/e,h 75 - 98 71 - 96

† Hymenaea stigonocarpa jatobá-do-

cerrado

C,Ce/p,s,c/h 88 180 - 240

Leguminosae – Mimosoideae

Acacia polyphylla angico-monjolo M/p/h 90 - 100 82 - 367

Albizia hasslerii farinha-seca M/p/h 98 322

Anadenanthera colubrina angico M,Mg/p 75 0,4

Anadenanthera macrocarpa angico M,C,Ce/p,s/h 94 270

Enterolobium contortisiliquum tamboril M/p,s/h 39 23

Inga marginata ingá M,Mg,Ce/p,s/h 92 - 100 196

Inga cylindrica ingá M,Mg/p,s/h 95 40 - 390

Piptadenia peregrina angico M,Mg/p 73 - 100 20 - 33

† Plathymenia reticulata vinhático C,Ce,Cs/s 74 - 100 71 - 78

† Stryphnodendron adstringens barbatimão C,Ce/p,s/h 55 - 83 12 - 95

Leguminosae – Papilionoideae

† Dipterix alata baru M,C,Ce/s,c 62 - 90 72 - 135

Myroxylum balsamum bálsamo M,Mg/s,c 90 39

Ormosia stipularis tento ormosia Mg/h 65 12

Platypodium elegans canzileiro Mg/s 89 74

Platymiscium floribundum feijão-cru Mg/s,c/e 98 173

† Pterodon pubescens sucupira-branca C,Ce/h 88 98

Lythraceae

Fisocalimma scaberrima cega-machado M/c 54 - 82 127 - 128

Melastomataceae

Page 129: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tibouchina candolleana quaresmeira M,C,B/p 46 - 53 85 - 214

Moraceae

Brosimum rubescens conduru M/h 38 2,1

Myrtaceae

† Eugenia dysenterica cagaita C,Ce/s,c/h 78 - 88 35

† Blepharocalyx salicifolius Maria Preta C,Ce,Cs/p 58 - 84 0,4

Polygonaceae

Triplaris brasiliana pau-formiga M,Mg 91 183

Rubiaceae

Genipa americana jenipapo Mg,C,B/p,s/h 87 - 95 180 - 354

Rutaceae

Fagara rhoifolia mama-de-porca M,C,Ce/s,c 97 138

† Zanthoxylum rhoifolium maminha-porca M,C,Ce/s,c 63 - 86 57 - 124

Sapindaceae

Dilodendron bipinnatum maria-pobre M/p 91 1,1

† Magonia pubescens tingüi-do-cerrado M,C,Ce/p,c/h 98 13

Talisia esculenta pitomba M,Ce/p,s/h 68 6,7

Sterculiaceae

Guazuma ulmifolia mutamba M,Mg/p,s 79 79

Sterculia striata chichá M/p 83 5

Tiliaceae

Apeiba tibourbou pente-macaco M,Mg/p 75 0,3

Luehea divaricata açoita-cavalo M,Mg/h 88 15

Luhea grandiflora açoita-cavalo M,Mg/s 79 106

Vochysiaceae

† Qualea grandiflora pau-terra C,Ce,Cs/p,s/h 81 11

Habitat: M (Mata Mesofítica), Mg (Mata de Galeria), C (Cerrado), Ce (Cerradão), Cs (campos) B (Brejo). Ecologia: p (pioneira), s (secundária), c (clímax), e (esciófita), h (heliófita). † Trata-se de uma das cem espécies mais freqüentes no Cerrado stricto sensu do Brasil Central, de acordo com Silva Júnior (2005). Fontes: Corrêa & Cardoso (1998), Leite et al. (1994), Barbosa et al. (2002) e dados primários do autor.

Page 130: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Capítulo 7

Sistemas de revegetação de áreas mineradas

7.1 Estrato herbáceo

A presença de uma camada herbácea rasteira sobre o substrato minerado é essencial em

jazidas explotadas de areia, áreas de declive acentuado e em bordas de chapadas, para se evitar e

conter a erosão. A rápida cobertura de solos e substratos é uma das mais importantes medidas

para o controle da erosão. Ervas crescem em poucas semanas, proporcionam uma grande

estabilidade topográfica, demandam pouca ou nenhuma manutenção e melhoram rapidamente as

características físicas e biológicas de substratos. Além disso, ervas costumam acumular mais

nutrientes na biomassa que plantas lenhosas (GONÇALVES et al., 2004b), e o estoque de

nutrientes sob a forma de biomassa evita a perda deles por lixiviação e carreamento. Além disso,

haverá a restauração dos ciclos naturais do carbono, nitrogênio e outros no local em recuperação.

Entretamento, a recuperação de uma área somente com a implantação de uma camada rasteira

resulta em um ambiente monótono, de baixa diversidade biológica, estrutural, e muito susceptível

ao fogo na época seca (Foto 7.1).

A implantação de uma camada herbácea é suficiente apenas onde a fisionomia original da área

era de Campo, pois a camada lenhosa é naturalmente ausente nesses locais. Para as demais

fisionomias de Cerrado, que apresentam estrato lenhoso, pode-se ainda implantar inicialmente o

estrato herbáceo - para melhorar as condições do substrato - e somente após o estabelecimento

dessa camada (2 ou 3 anos), introduzir árvores e arbustos. Nesse manejo, pode-se determinar a

altura mínima das mudas ao irem para o campo, para se evitar competição aérea com as ervas. A

sobrevivência e o crescimento de árvores e arbustos são maiores quando não há competição com

a camada herbácea. Além disso, o estrato lenhoso plantado posteriormente encontrará um

substrato pré-recuperado, que apresenta melhores condições químicas, físicas e biológicas.

Dois tipos de sucessão ecológica podem ser esperados em áreas revegetadas com uma

camada rasteira: a sucessão de espécies herbáceas e a entrada de árvores e arbustos quando as

ervas de porte mais alto dão lugar a outras de menor porte. A adubação dada a substratos

Page 131: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

minerados cria um ambiente edáfico rico em nutrientes, que estimula o crescimento de grande

biomassa de uma ou poucas espécies logo após o plantio (Foto 7.1). Nos primeiros anos que se

sucedem, outras ervas se estabelecem no local, havendo um aumento da diversidade de espécies e

uma redução do porte do estrato herbáceo. Sementes de espécies lenhosas chegam ao local,

germinam e se desenvolvem sobre esse estrato herbáceo de menor porte (Foto 7.2).

Portanto, a evolução do estrato herbáceo implantado sobre substratos minerados cria

condições para a germinação e o desenvolvimento de espécies lenhosas que espontaneamente

chegam ao local revegetado (Foto 7.2). Martins et al. (2001) implantaram uma camada rasteira

composta exclusivamente de gramíneas em uma cascalheira explotada e identificaram 21 espécies

arbóreas e arbustivas, que se estabeleceram no local após quatro anos de sucessão. O

estabelecimento espontâneo de Byrsonima spp (murici), Cecropia spp (embaúba), Schefflera

macrocarpa (mandiocão), Solanum lycocarpum (lobeira), Solanum paniculatum (jurubeba), Xylopia

aromática (pimenta-de-macaco) em áreas mineradas que receberam uma camada herbácea sobre o

substrato tem sido freqüente.

Foto 7.1: Área revegetada exclusivamente com estrato herbáceo.

Page 132: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Foto 7.2: Estrato arbóreo brotando sobre substrato revegetado exclusivamente com espécies herbáceas, três anos após o tratamento do substrato.

7.2 Estrato arbóreo

Há locais minerados em que a erosão não representa problema significativo e, portanto, a

relação custo/benefício de se implantar um estrato herbáceo pode ser desfavorável. Além disso,

em Unidades de Conservação de Proteção Integral (SNUC), a entrada de máquinas pesadas e a

disseminação de espécies herbáceas exóticas, sobretudo as de grande valência ecológica, não são

permitidas ou desejáveis. Nesses casos, a camada rasteira é dispensável e os projetos de

revegetação são limitados ao coveamento da área, à adubação das covas e ao plantio de mudas de

espécies lenhosas (Figura 7.1a). Na silvicultura, esse manejo de se limitar a preparação do solo a

covas ou a linhas de cultivo denomina-se cultivo mínimo da área (GONÇALVES et al., 2004b).

Há grande apelo ecológico em se plantar árvores em locais minerados (Foto 7.3). Geralmente

se opta por espécies arbóreas que dão suporte à fauna nativa, que por sua vez se encarrega de

trazer sementes de outras espécies e depositar esterco no local. Outra vantagem desse modelo é o

baixo impacto que os trabalhos de revegetação causam à área minerada. Escavação,

movimentação de terra e aporte de insumos são pontualmente limitados às covas. O custo de

arborização de áreas mineradas é mais baixo do que o de implantar uma camada rasteira, pois

geralmente não se utilizam máquinas. Além disso, muitos postos de trabalho são criados durante

Page 133: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

o coveamento e o plantio. Outra vantagem é o menor risco de fogo na época de estiagem, porque

a massa combustível na área em processo de recuperação é pequena.

Entretanto, a evolução de projetos de arborização de jazidas mineradas não se restringe ao

crescimento das árvores e arbustos plantados. Corrêa & Melo Filho (1996) revegetaram uma

cascalheira explotada com Inga marginata, sem tratarem o substrato da área, exceto a adubação das

covas. Após seis anos de sucessão, grande número de plantas das espécies Bauhinia sp. (unha-de-

vaca), Byrsonima coccolobifolia (murici), Cecropia sp. (embaúba), Dalbergia miscolobium (jacarandá-do-

cerrado), Kielmeyera neriifolia (pau-santo), Machaerium opacum (jacarandá-muchiba), Palicourea rígida

(bate-caixa), Solanum lycocarpum (lobeira), Solanum sp. (juá) e Stryphnodendron adstringens (bartatimão)

se estabeleceram espontaneamente no local (CORRÊA et al., 2005). Houve também a invasão da

área por herbáceas, sobretudo capim-gordura e outras gramíneas.

Os mecanismos de estabelecimento espontâneo de árvores em áreas que foram revegetadas

exclusivamente por meio do tratamento do substrato de covas ainda são pouco entendidos.

Entretanto, Corrêa et al., (2005) identificaram que parte das brotações espontâneas ocorre nas

covas adubadas. Portanto, quando a muda plantada não morre, dois ou mais indivíduos lenhosos

dividem a mesma cova. Outras brotações espontâneas, tais como lobeiras e muricis, originam-se

respectivamente do interior de formigueiros e cupinzeiros. Formigas e cupins são geralmente os

primeiros representantes da fauna que se estabelecem em uma área em processo de recuperação.

O crescimento de ervas em covas adubadas e em suas imediações cria nichos ocupados por esses

insetos, que enterram grande quantidade de material orgânico e de sementes. Finalmente, há

significativa brotação de árvores sobre manchas de capim que se estabeleceram no substrato

minerado a partir das covas adubadas. Esses três mecanismos parecem explicar a aceleração do

processo de sucessão após a arborização de áreas mineradas.

A relação ecológica entre invertebrados de solos e plantas crescendo em áreas degradadas é

tão forte que eles são usados como bioindicadores do avanço seral de comunidades em processo

de sucessão ecológica (DA COSTA et al., 2003; FERREIRA et al., 2003). Invertebrados são

diversos em espécies, em exigências e sensíveis a mudanças ambientais (FERREIRA et al., 2003).

O número e composição de organismos de solo refletem padrões de sucessão da vegetação e

eventuais perturbações de um local (FREITAS et al., 2004). Coleópteras e formigas, por exemplo,

são utilizados como bioindicadores do estágio de sucessão de áreas mineradas em processo de

recuperação em Minas Gerais (DA COSTA et al., 2003; FERREIRA et al., 2003). Além disso,

Page 134: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

insetos são particularmente eficientes em fornecer informações em ecossistemas fragmentados e

de longa influência antrópica. As formigas, por exemplo, são consideradas um dos melhores

grupos de inverterbados para a avaliação e monitoramento ambientais, porque respondem

rapidamente a mudanças do ambiente, são fieis ao microhabitat e dispersam sementes (FREITAS et

al, 2004).

Reis et al. (1996) explicam que as espécies herbáceas ruderais, anemócoras, cuja reprodução

não depende da polinização por animais, são as primeiras colonizadoras. O estabelecimento de

espécies lenhosas por meio de sementes ocorre somente após o aumento da biomassa vegetal de

uma área em processo de regeneração (CAVASSAN et al., 2003). Finalmente, em um estágio seral

mais avançado, a deposição de fezes, contendo sementes de outras áreas, intensificaria o processo

de sucessão (REIS et al., 1996). Considerando o caso extremo de degradação causada pela

mineração, a regeneração natural segue, segundo Seitz (1996), a seguinte seqüência: espécies

anemócoras ou com sementes persistentes espécies ornitócoras espécies zoócoras.

Em um processo de regeneração de longo prazo, o modelo que utiliza apenas árvores

plantadas pontualmente em covas adubadas é eficiente pela participação paulatina da natureza na

recuperação. Porém, sem o estrato herbáceo, o recobrimento do solo é mais lento do que em

modelos convencionais, que utilizam árvores sobre uma camada herbácea. Ainda que não seja o

manejo mais indicado para locais com problemas de erosão, Corrêa (1998b) reduziu as perdas de

sedimentos de uma área minerada de 11,4 t (ha.ano)-1 para 5,4 t (ha.ano)-1, plantando árvores em

cordões, em nível. Balistiri & Aumond (1997) criticam o uso de estrato herbáceo em projetos de

revegetação de áreas mineradas, pois a cobertura vegetal da superfície é geralmente conseguida

com espécies exóticas. O uso de camada herbácea requer um ou dois coroamentos das mudas por

ano, até que o porte das árvores seja suficiente para sobressair ao estrado rasteiro (Foto 7.4).

Page 135: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Figura 7.1a: Estrato arbóreo. Figura 7.1b: Estato arbóreo sobre

herbáceo.

Foto 7.3: Área revegetada com mudas de espécies arbóreas, tutoradas.

Page 136: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Foto 7.4: Estrato herbáceo brotando em área revegetada exclusivamente com espécies arbóreas.

7.3 Estrato arbóreo sobre rasteiro

O modelo clássico de revegetação de áreas mineradas é estabelecer um estrato arbóreo-

arbustivo sobre um estrato herbáceo, concomitantemente (Figura 7.1b). Esse modelo associa a

estabilidade da paisagem, proporcionada pela camada rasteira, ao ganho ecológico de se

estabelecer um bosque ou floresta de espécies nativas. A escarificação e a adubação de todo o

substrato incrementam o desenvolvimento das árvores, quando suas raízes extrapolam os limites

da cova (Figura 7.1b). É sem dúvida o modelo que mais agrega benefícios, mas o que também

mais demanda manutenção. Se de um lado o estrato herbáceo auxilia o desenvolvimento de raízes

da camada arbórea, de outro, ele compete com a parte aérea das mudas que estão em fase de

desenvolvimento. Dessa forma, manter o estrato herbáceo sempre com porte inferior ao da

camada arbórea é essencial para o sucesso deste modelo.

A recuperação de uma área de empréstimo no Cerrado de Minas Gerais, por exemplo,

utilizou a sistema convencional: área totalmente escarificada, com terraços em nível, intercalados

por linhas de sulcamento. Cobertura morta sobre o substrato, semeadura de herbáceas exóticas e

plantio de 26 espécies arbóreas, nativas e exóticas. A intensa competição da camada herbácea

com a lenhosa exigiu o coroamento semestral das mudas nos três primeiros anos e a aplicação de

herbicida no quarto ano após o plantio (DAVIDE & FARIA, 1997). Passaram-se cinco anos até

Page 137: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

que as árvores atingissem a altura necessária para que o estrato herbáceo não apresentasse riscos

para a camada lenhosa.

Competição com a camada rasteira e deficit hídrico de substratos são as principais causas de

mortes e de pouco desenvolvimento de mudas lenhosas em projetos de revegetação de áreas

degradadas pela mineração no Cerrado. Mortalidade de até 20% pode ser considerada baixa. Em

grandes projetos, mortalidade de até 40% das mudas é considerada normal (PINÃ RODRIGUES

et al., 1997). Quaresmeiras, por exemplo, são especialmente susceptíveis a deficit hídrico. Além

disso, a camada lenhosa de vários projetos de revegetação no Cerrado tem sido consumida em

incêndios, devido à falta de manutenção adequada da camada rasteira e da vigilância da área.

7.4 Regeneração induzida

A mineração é proibida em Unidades de Conservação de Proteção Integral, de acordo com o

Sistema Nacional de Unidades de Conservação da Natureza - SNUC. Apesar disso, várias áreas

sob a condição de Proteção Integral apresentam locais degradados pela mineração. As Unidades

de Conservação possuem normas próprias, que impedem a reprodução da maioria dos modelos

convencionais de revegetação empregados em outros locais. Introdução de espécimes exógenos,

ainda que nativos do ecossistema, de material orgânico e de fertilizantes são poucas vezes aceitos

pelos administradores dessas Unidades.

Embora não sejam desertos, as áreas degradadas pela mineração a eles se assemelham pelo

baixo potencial biológico (CORRÊA, 1989). A impossibilidade de aplicação de métodos

convencionais de revegetação obriga a adoção de técnicas alternativas que estimulem e acelerem o

processo de regeneração natural. O manejo apropriado da topografia e do substrato de locais

minerados pode provocar respostas biológicas favoráveis e acelerar o processo de sucessão. A

quebra da crosta superficial de substratos, por exemplo, favorece o surgimento de cupinzeiros, de

formigueiros e de plantas de espécies diversas. A construção de terraços, barreiras e valas acarreta

a retenção de água e de sedimentos no local minerado, que estimulam o processo de revegetação

espontânea de lavras.

O terraceamento de uma cascalheira abandonada no Parque Nacional de Brasília, por

exemplo, acelerou significativamente o processo de regeneração no local (Foto 7.5). Enxurradas

transportam toda sorte de partículas, preferencialmente argila, matéria orgânica e sementes leves

(DEDECEK, 1986). Permitir a saída do material que verte para locais minerados é reduzir ainda

Page 138: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

mais as chances de regeneração natural desses locais, pois as águas pluviais lavam e empobrecem

ainda mais os substratos minerados. Por outro lado, reter enxurradas e sedimentos na cava

explotada é favorecer sua revegetação.

Corrêa (1998b) escavou valas para coletar água e sedimentos nas linhas de interseção de

enxurradas de duas áreas mineradas. As enxurradas desembocavam anteriormente em corpos

d’água e, portanto, a simples coleta dos sedimentos desses locais já seria, sozinha, medida útil para

o controle de assoreamento e de poluição. Após uma estação chuvosa, as valas das duas áreas

apresentavam grande quantidade de sedimentos e de plantas germinado em seu interior. A

sustentabilidade da proposta foi comprovada seis anos após sua implantação, quando foi

verificada a existência de um cordão de vegetação espontaneamente regenerada sobre as valas

preenchidas com sedimentos. Trevisol et al. (2002) relatam a colonização espontânea de 45

espécies sobre sedimentos de diques, que foram construídos para controlar erosão em

ecossistema de Mata Atlântica.

A adubação natural proporcionada por sedimentos é resultado de seus teores de matéria

orgânica e de nutrientes. Há entre duas e três vezes mais matéria orgânica em sedimentos do que

nos substratos minerados que os originaram (Tabela 7.1). Sedimentos coletados em áreas

mineradas no Cerrado apresentam concentrações de cálcio, magnésio, potássio e ferro entre seis e

47 vezes maiores do que a concentração desses nutrientes nos substratos expostos. Além disso,

sedimentos retêm mais água do que substratos (CORRÊA, 1998b). Dessa forma, quando

métodos convencionais não podem ser utilizados em uma área, disciplinar as suas águas para

acumular sedimentos em covas, valas ou canais de terraços é medida efetiva para acelerar a

regeneração natural.

O manejo da fauna tem sido outra estratégia usada para acelerar o processo de sucessão em

áreas alteradas, desmatadas e degradadas (Foto 7.6). Melo (1997) instalou poleiros em uma área

alterada e registrou o pouso de 94 espécies de aves, que dispersaram 11.505 sementes de dez

espécies e 40 morfoespécies em cinco meses de observação. Espécies da família Melastomataceae,

Cecropia spp. e Coccocypselum spp. corresponderam a 95% das sementes dispersadas pela avifauna.

A atração de dispersores de sementes para uma área degradada requer que a topografia e o

substrato do local sejam favoráveis à germinação e ao estabelecimento de plântulas. Mesmo onde

não se permita tratar o substrato, correções na topografia e o manejo de sedimentos podem

tornar a avifauna um efetivo agente de revegetação de áreas mineradas.

Page 139: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 7.1: Matéria orgânica (M.O.) e nutrientes em substratos e em sedimentos de duas áreas mineradas no Cerrado

Material M.O. pH Ca Mg P K Fe Mn Zn

% H2O _____________________________mg kg1____________________________

Substrato A 0,97a 4,7a 2,71a 0,71a 0,00a 2,40a 2,25a 0,08a 0,12a

Sedimento A 2,02b 5,3b 2,16a 0,70a 0,00a 2,63a 17,92b 0,20b 0,24b

Substrato B 1,09a 4,9a 0,28b 0,33b 0,00a 0,23b 1,11c 0,35c 0,25b

Sedimento B 3,03c 5,7b 13,86c 1,97c 0,00a 5,45c 4,56d 0,32c 0,37c

Médias de mesma letra não diferem estatisticamente pelo teste de Tukey, P < 0,05.

Foto 7.5: Revegetação espontânea após construção de terraços e acúmulo de sedimentos sobre substrato minerado.

Page 140: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Foto 7.6: Poleiros instalados em área de empréstimo no Parque Nacional de Brasília. No detalhe, coruja-buraqueira pousada em um dos poleiros.

Page 141: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Capítulo 8

Custos, monitoramento e manutenção de projetos de revegetação de áreas mineradas

8.1 Custos de recuperação

Há trabalhos que visam a mensurar a viabilidade econômica de se aplicarem as leis ambientais

que obrigam recuperar áreas degradadas pela mineração. Especialistas garantem que as despesas

com o controle ambiental na atividade de mineração, incluindo a revegetação das áreas

degradadas, são inferiores a 1% do custo de investimentos em uma grande lavra (DIAS, 1985).

Para pequenas minerações, como a de argila em Santa Catarina, os dispêndios com recuperação,

manutenção e monitoramento são inferiores a 10% do custo de extração do mineral (AUMOND

et al., 1997). A exploração de areia em pequena escala apresenta uma das piores relações custo

ambiental/benefício econômico. Ainda assim, o custo operacional para exploração desse material

é de aproximadamente US$ 1,14/tonelada, para um custo ambiental de US$ 0,40/tonelada

(OLIVEIRA NETO & PETTER, 2005). Além disso, o custo de controle ambiental da atividade

- US$ 0,40/tonelada - mostra-se irrisório frente ao valor econômico do mineral extraído - US$

10,00 a US$ 20,00 a tonelada.

No Distrito Federal, o gasto com revegetação de cascalheiras (reposição do ecossistema) é a

metade do custo de extração do cascalho retirado, ou entre 1 e 2,5% do valor de mercado do

material lavrado. Carvalho (1993) calculou que as despesas com a recuperação de uma cascalheira

correspondiam a 0,56% do valor da obra de pavimentação para a qual o cascalho era destinado.

Conseqüentemente, argumentos de que o controle ambiental inviabiliza economicamente a

atividade mineraria é infundado.

O valor de recuperação de cada hectare degradado varia em função da proposta a ser

implantada, da forma e do nível de gerenciamento da lavra, do nível tecnológico a ser adotado no

PRAD, do tipo de material explorado, da escala do projeto de mineração e de alguns outros

fatores. Entretanto, PRAD’s executados em áreas de Cerrado têm sido orçados entre R$ 500,00 e

R$ 15.000,00 por hectare revegetado. Para áreas exclusivamente arborizadas, sem que haja

Page 142: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

tratamento extensivo do substrato, planta-se uma árvore por cerca de R$ 5,00. Adotando-se 625

plantas/ha, o investimento de implantação seria de R$ 3.125,00/ha e cerca de R$ 200,00/ha para

manutenção, excluída a vigilância ostensiva. Para projetos que utilizam o modelo clássico de

estrato arbóreo-arbustivo sobre camada rasteira, os custos variam de R$ 4.000,00 a R$ 10.000,00

por hectare revegetado. Se há um programa de monitoramento e de manutenção por dois anos,

esse valor pode chegar a R$ 15.000,00 por hectare recuperado, principalmente se o PRAD visa a

uma restauração.

Os custos de implantação de um modelo clássico de revegetação de uma área minerada no

Cerrado podem ser divididos em 30% para operações de máquinas, 28% para mão-de-obra, 22%

para mudas de árvores nativas, 9% para sementes do estrato herbáceo, 9% para fertilizantes e

corretivos químicos e 2% para transporte de lodo de esgoto obtido gratuitamente. Manutenção e

monitoramento não estão incluídos neste orçamento. Para se restaurar um Cerrado no Nordeste

brasileiro, 46% do orçamento foram destinados à abertura manual de covas e plantio de mudas,

21% para aquisição de mudas, 15% para 24 meses de manutenção (adubações, controle de

formigas, reposição de mudas, coroamento e aceiramento), 9,5% para insumos agrícolas e 8,5%

para a compra de esterco bovino. De Almeida (2004) discute métodos de valoração pericial de

áreas degradadas pela mineração, visando obter o custo de reposição de ecossistemas.

8.2 Monitoramento e manutenção

Uma das etapas mais negligenciadas em PRAD’s é o monitoramento e a manutenção do

projeto implantado. Inspeções periódicas, para verificar a evolução da proposta e a necessidade

de reposição de mudas, capinas, controle de formigas, de fogo e a vigilância ostensiva, por

pelo menos dois anos, são tão importantes quanto a execução do projeto de revegetação. O

monitoramento e a manutenção visam a intervir até que os mecanismos naturais garantam a

sustentabilidade ecológica da comunidade implantada.

A sustentabilidade é geralmente avaliada por meio do cálculo da porcentagem de

sobrevivência e do crescimento das mudas. Consideram-se auto-sustentados projetos com baixas

porcentagens de morte de mudas e com bom desenvolvimento das plantas lenhosas e/ou da

camada herbácea. A brotação espontânea de espécies nativas do ecossistema em questão no local

em recuperação é também um sinal de sustentabilidade ecológica.

Page 143: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Até três meses após o plantio de uma muda, a planta acumula pouco nutrientes em seu

tecido. Durante esse período, as plantas usam seus próprios nutrientes no crescimento das raízes.

Conseqüentemente, as mudas perdem parte do vigor e podem apresentar sintomas de deficiência

nutricional. Após o enraizamento, o sistema radicular explora o substrato adubado da cova, as

taxas de fotossíntese se intensificam e a planta investe em folhas e no incremento aéreo. A

resposta das plantas à fertilização é comum nessa fase (GONÇALVES et al., 2004b). PRAD’s

freqüentemente prevêem 24 meses de manutenção, pois é o período de maior taxa de

crescimento de plantas lenhosas (Figura 8.1). Portanto, adubações e tratos culturais são essenciais

nos primeiros 24 meses de desenvolvimento das mudas no campo.

A colonização espontânea da área em processo de recuperação por espécies favoráveis pode

indicar condições apropriadas do substrato à sucessão. Caso essas espécies dificultem o

desenvolvimento daquelas espécies desejáveis para o local, o controle das invasoras pode ser

necessário, mesmo para um período posterior a 24 meses.

0,0

0,5

1,0

1,5

2,0

2,5

0 10 20 30 40 50 60 70 80 90

Tempo (meses)

Altu

ra (m

)

IngáQuaresmeira

Figura 8.1: Crescimento de Inga marginata (n = 20) e Tibouchina stenocarpa (n = 30) em área minerada no Cerrado durante 90 meses.

Page 144: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

O Brasil carece de normas que regulamentam critérios sobre monitoramento e manutenção

de áreas degradadas pela mineração. O Estado de São Paulo, que possui manchas de Cerrado,

fixou orientação para o reflorestamento heterogêneo de áreas degradadas. A Resolução SMA no

21, de 21/11/2001 (Anexo 8.1) e a Resolução SMA no 47, de 26/11/2003 (Anexo 8.2),

estabelecem as diretrizes gerais para PRAD’s e para o acompanhamento, monitoramento e

manutenção do projeto até que a sustentabilidade seja alcançada. Tratamento da paisagem e do

solo, número de espécies por hectare recuperado, espécies ameaçadas de extinção, matrizes,

processo sucessional e outros aspectos são aborados pelas SMA no 21 e SMA no 47. Não há

conhecimento de normas semelhantes em outros Estados brasileiros.

Nos Estados Unidos, o “Mining Control and Reclamation Act (SMCRA, PL 95-87, 1977)”

estabelece que o minerador deve manter a área sob monitoramento e manutenção por até dez

anos após a revegetação. O substrato das minas explotadas deve ser revegetado logo após o final

da mineração com uma camada herbácea que deverá estar cobrindo pelo menos 70% da

superfície na segunda estação de crescimento. A diversidade vegetal deve ser semelhante à

anterior (restauração) e o sistema implantado deve ser auto-sucessional.

No Brasil, apesar da ausência de critérios legais sobre até quando intervir, os PRAD’s devem

prever orçamento para a reposição de mudas, adubações de cobertura, vigilância e todas as outras

ações mencionadas abaixo. Além disso, a Tabela 8.1 mostra o sumário das ações de manutenção

necessárias, considerando um período de 24 meses.

• Inspeções no mínimo trimestrais.

• Adubações de cobertura sempre no período chuvoso.

• Reposição de mudas sempre no início da estação chuvosa.

• Capinas ao final das chuvas, com o firmamento da estação seca.

• Controle de formigas preferencialmente na estação seca e com iscas.

• Controle de fogo por meio de capinas, vigilância, aceiramento ou mesmo fogo

controlado.

• Vigilância durante todo o ano.

Page 145: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 8.1: Cronograma de acompanhamento de locais em recuperação

Época Ações

15 dias a 30 dias após o plantio Avaliação de sobrevivência das mudas. Reposição de mudas mortas

30 dias após o plantio Adubação de cobertura (Tabela 5.12), identificação de sinais de ataque de pragas (formigas) e patógenos. Controles necessários

Fim do 1o período chuvoso Avaliação de sobrevivência de mudas, identificação de sinais de ataque de pragas (formigas) e patógenos. Controles necessários. Capinas, coroamento das mudas e controle de fogo (aceiramento)

Início do 2o período chuvoso Avaliação de sobrevivência de mudas, reabertura e de covas. Replantio de mudas mortas. Identificação de sinais de ataque de pragas e patógenos. Controles necessários

30 dias após o 2o plantio Reposição de mudas mortas

Fim do 2o período chuvoso Avaliação de sobrevivência de mudas, identificação de sinais de ataque de pragas (formigas) e patógenos. Controles necessários. Capinas, coroamento das mudas e controle de fogo (aceiramento)

Início do 3o período chuvoso Avaliação de sobrevivência de mudas e reabertura de covas. Replantio de mudas mortas. Identificação de sinais de deficiência nutricional, de ataque de pragas e patógenos. Adubações e controles necessários

A partir do fim do 3o período chuvoso

Capinas e aceiramento anuais para controle de fogo

A Tabela 8.2, a seguir, mostra os principais sinais de deficiência nutricional, que devem ser

observados nas plantas durante o monitoramento de um projeto de revegetação de uma área

minerada.

Page 146: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Tabela 8.2: Sintomas de deficiências nutricionais

Sintoma Deficiência

Plantas fracas, folhas verde-claras ou amareladas. Folhas velhas pálidas e murchas Nitrogênio

Plantas com pouco crescimento, folhas verde-escuras, às vezes vermelho-

arroxeadas

Fósforo

Manchas brancas, amarelas ou ferruginosas nas folhas. Caules finos e internódios

curtos

Potássio

Pontas das folhas novas deformadas. Manchas amarelas ou pardas nas bordas das

folhas e entre nervuras

Cálcio

Folhas curvadas e facilmente destacáveis. Manchas amarelas entre as nervuras das

folhas velhas

Magnésio

Necrose nas folhas novas. Folhas novas verde-claras, Manchas vermelho-

arroxeadas nos pecíolos ou nos caules

Enxofre

Deformação da ponta das folhas. Morte da gema terminal, onde podem aparecer

brotos em leque

Boro

Folhas pequenas, às vezes retorcidas, com manchas amarelas. Aparecimento de

tufos de folhas nas pontas dos ramos

Zinco

Page 147: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Anexo 8.1

SECRETÁRIO DO MEIO AMBIENTE

Resolução SMA no 21, de 21.11.2001

Fixa orientação para o reflorestamento heterogêneo de áreas degradadas e dá providências correlatas

O Secretário de Estado do Meio Ambiente, em cumprimento ao disposto nos artigos 23, VII,

e 225, § 1º, I, da Constituição Federal, nos artigos 191 e 193 da Constituição do Estado, nos

artigos 2º e 4º da Lei federal nº 6.938, de 31 de agosto de 1981, e nos 2º, 4º e 7º da Lei estadual nº

9.509, de 20 de março de 1997, e

Considerando o "Projeto de Produção de Mudas de Plantas Nativas - Espécies Arbóreas para

Recomposição Vegetal, de interesse para a economia estadual", aprovado pelo Decreto nº 46.113,

de 21 de setembro de 2001.

Considerando a constatação feita pela Coordenadoria de Informações Técnicas,

Documentação e Pesquisa Ambiental - CINP, da Pasta, quanto à baixa diversidade vegetal das

áreas reflorestadas com espécies nativas, nas quais têm sido utilizadas menos de 33 espécies

arbóreas, o que se agrava, ainda mais, quando se verifica que são plantadas praticamente as

mesmas espécies em todo o Estado, independentemente da região, sendo 2/3 (dois terços) delas

iniciais da sucessão, de ciclo de vida curto (15 - 20 anos), o que irá levar os reflorestamentos ao

declínio em um certo espaço de tempo, como vem sendo observado na prática.

Considerando que a perda da diversidade biológica significa a redução de recursos genéticos

úteis e disponíveis ao desenvolvimento sustentável, na forma de madeira, frutos, forragem,

plantas ornamentais e produtos de interesse alimentar, industrial e farmacológico.

Considerando que o Departamento Estadual de Proteção de Recursos Naturais - DEPRN, da

Pasta, tem constatado que os plantios realizados podem apresentar resultados mais satisfatórios

quando estabelecidos critérios técnicos para a escolha e combinação das espécies, resolve:

Page 148: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Art. 1º - Com a finalidade de ser promovido o reflorestamento heterogêneo de áreas

degradadas, especialmente nas matas ciliares, o Departamento Estadual de Proteção de Recursos

Naturais - DEPRN, da Pasta, observado o rigoroso cumprimento do disposto no Decreto nº

46.113, de 21 de setembro de 2001, verificará a possibilidade, consideradas as peculiaridades

locais e regionais e tanto quanto possível, do uso de espécies nativas, constantes do Anexo a esta

resolução:

I - nas seguintes proporções:

a) 30 espécies distintas para projetos de até 1 hectare;

b) 50 espécies distintas para projetos de até 20 hectares;

c) 60 espécies distintas para projetos de até 50 hectares;

d) 80 espécies distintas para projetos com mais de 50 hectares.

II - sendo priorizada a utilização de espécies ameaçadas de extinção, respeitando-se as regiões

ou formações de ocorrência, na seguinte proporção:

a) 5% (cinco por cento) das mudas, com pelo menos 5 espécies distintas, para projetos de até

1 hectare;

b) 10% (dez por cento) das mudas, com pelo menos 10 espécies distintas, para projetos de até

20 hectares;

c) 10% (dez por cento) das mudas, com pelo menos 12 espécies distintas, para projetos de até

50 hectares;

d) 10% (dez por cento) das mudas, com pelo menos 15 espécies distintas para projetos com

mais de 50 hectares.

§ 1º - No caso de áreas degradadas localizadas em restingas, manguezais e florestas paludosas

(mata de brejo):

Page 149: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

I - as espécies selecionadas para o plantio serão escolhidas entre espécies arbóreas de áreas

naturais da vizinhança, atentando para as variações edáficas e topográficas locais;

II - proporção de 50% (cinqüenta por cento), sempre que possível, das espécies naturais

existentes na vizinhança.

§ 2º - As mudas a serem utilizadas deverão, preferencialmente, ser produzidas com sementes

procedentes da mesma região da área objeto da recuperação e nativas do bioma ou formação

florestal correspondente, bem como ter pelo menos 20 cm (vinte centímetros) de altura e

apresentar sistema radicular e rustificação que possibilitem a sua sobrevivência pós-plantio.

§ 3º - Para a implantação das medidas de recuperação deverá ser utilizado o processo

sucessional como estratégia básica.

Art. 2º - Na execução dos trabalhos de recuperação deverão ser considerados o preparo do

solo, as estratégias e técnicas de plantio e, especialmente, a distribuição das mudas das diferentes

espécies no campo, além da possibilidade de auto-recuperação dessas áreas no que se refere à

possibilidade da presença ou chegada de propágulos (sementes ou indivíduos remanescentes)

oriundos do banco de sementes e da "chuva" de sementes, dependendo do local da área objeto de

recuperação e da vizinhança, devendo, ainda, levar em conta a presença de remanescentes

florestais próximos e considerar o histórico e uso atual da área, no que se refere às práticas

culturais, com alteração da drenagem do solo, retirada ou revolvimento periódico do solo, uso de

herbicidas e outros.

§ 1º - As áreas reflorestadas deverão ser conservadas mediante o controle de formigas,

realização de, no mínimo, 3 (três) capinas e/ou coroamento anuais, mantendo as entrelinhas

vegetadas e baixas e, se possível, efetuar, pelo menos, duas adubações anuais com formulação

normalmente utilizadas na região, ou de acordo com os resultados da análise do solo.

§ 2º - Nas restingas, manguezais e florestas paludosas (mata de brejo), deverá ser promovida a

restauração da hidrodinâmica do solo e, no caso de áreas com retirada ou revolvimento anterior

do solo, da sua estrutura.

Page 150: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Art. 3º - A Secretaria do Meio Ambiente, mediante programas específicos, estimulará o

desenvolvimento de pesquisas para o aprimoramento do conhecimento científico das medidas

estabelecidas nesta resolução, visando ampliar os conhecimentos sobre ecologia das espécies e

formações e sobre tecnologia de produção de sementes e mudas, bem como estabelecer modelos

alternativos para a recuperação de áreas degradadas, em conjunto com outras Secretaria de

Estado, Universidades, instituições científicas, Poderes Públicos das demais esferas de governo e

organizações não governamentais.

Artigo 4º - Esta resolução entra em vigor na data de sua publicação. Publicado novamente

por ter saído com incorreções no Diário Oficial de 22-11-2001.

ANEXO da Resolução SMA no 21, de 21.11.2001

Listagem das espécies arbóreas, com a indicação do bioma/ecossistema de ocorrência natural no

Estado de São Paulo e a classe sucessional a que pertencem.

Page 151: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Anexo 8.2

GABINETE DO SECRETÁRIO DO MEIO AMBIENTE

Resolução SMA no 47, de 26.11.2003

Altera e amplia a Resolução SMA no 21, de 21.11.2001 e fixa orientação para o

reflorestamento heterogêneo de áreas degradadas e dá providências correlatas

O Secretário de Estado do Meio Ambiente, em cumprimento ao disposto nos artigos 23, VII,

e 225, § 1º, I, da Constituição Federal, nos artigos 191 e 193 da Constituição do Estado, nos

artigos 2º e 4º da Lei federal nº 6.938, de 31 de agosto de 1981, e nos 2º, 4º e 7º da Lei estadual nº

9.509, de 20 de março de 1997, e

Considerando o contido na Agenda 21 e na Convenção da Biodiversidade.

Considerando a constatação feita pela equipe do Instituto de Botânica, relacionada ao projeto

"Modelos de Repovoamento Vegetal para Proteção de Sistemas Hídricos em Áreas Degradadas

dos Diversos Biomas no Estado de São Paulo" (Políticas Públicas / FAPESP) quanto à baixa

diversidade vegetal das áreas reflorestadas com espécies nativas, nas quais têm sido utilizadas

menos de 33 espécies arbóreas, o que se agrava, ainda mais, quando se verifica que são plantadas

praticamente as mesmas espécies em todo o Estado, independentemente da região, sendo 2/3

(dois terços) delas, em geral, de estágios iniciais da sucessão, de ciclo de vida curto (15-20 anos), o

que irá levar os reflorestamentos ao declínio em um certo espaço de tempo, como vem sendo

observado na prática.

Considerando a necessidade de revisão periódica dos termos contidos na Resolução SMA 21,

de 21-11-2001, tendo em vista o avanço do conhecimento científico e resultados obtidos com sua

aplicação prática.

Considerando que a perda da diversidade biológica significa a redução de recursos genéticos

disponíveis ao desenvolvimento sustentável, na forma de madeira, frutos, forragem, plantas

ornamentais e produtos de interesse alimentar, industrial e farmacológico.

Considerando que o Departamento Estadual de Proteção de Recursos Naturais - DEPRN tem

constatado que dentre outras formas de Recuperação de Áreas Degradadas, os plantios realizados

Page 152: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

têm apresentado resultados mais satisfatórios a partir dos critérios técnicos para a escolha e

combinação das espécies, estabelecidos na Resolução SMA 21/01, resolve:

Art. 1º - A recuperação de áreas degradadas exige elevada diversidade, que pode ser obtida

com o plantio de mudas e/ou outras técnicas tais como semeadura direta, indução e/ou

condução da regeneração natural.

§ 1 - O caput deste artigo não se aplica para áreas de recuperação com menos de 1,0 (um)

hectare, nas quais deverão ser utilizadas, no mínimo, 30 espécies.

§ 2 - Respeitando-se as formações de ocorrência, recomenda-se a utilização de espécies

ameaçadas de extinção, e/ou atrativas da fauna associada.

§ 3 - As espécies escolhidas deverão contemplar os dois grupos ecológicos: pioneiras

(pioneiras e secundárias iniciais) e não pioneiras (secundárias tardias e climácicas), considerando-

se o limite mínimo de 40% para qualquer dos grupos.

§ 4 - Com relação ao número de indivíduos por espécie, nenhuma espécie poderá ultrapassar o

limite máximo de 20% do total do plantio.

Art. 2º - A recuperação florestal de áreas degradadas nas formações de floresta ombrófila,

floresta estacional semidecidual e savanas florestadas (cerradão) será efetivada mediante o plantio

de mudas de, no mínimo, 80 (oitenta) espécies arbóreas das formações vegetais de ocorrência

regional, exemplificadas na listagem do Anexo a esta resolução, não excluindo espécies levantadas

regionalmente.

Art. 3º - Na execução dos trabalhos de recuperação florestal, deverão ser priorizadas as

seguintes áreas:

a) as áreas consideradas de preservação permanente pela Lei Federal 4.771/65, em especial

aquelas localizadas em nascentes e olhos d'água;

b) de interligação de fragmentos florestais remanescentes na paisagem regional (corredores

ecológicos);

c) de elevado potencial de erodibilidade;

Page 153: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Art. 4º - Para formações ou situações de baixa diversidade de espécies arbóreas, tais como:

florestas estacionais deciduais, formações paludosas e de restinga, manguezal, além das áreas

rochosas, o número de espécies a ser utilizado será definido por projeto técnico circunstanciado,

a ser aprovado no âmbito da Coordenadoria de Licenciamento Ambiental e de Proteção de

Recursos Naturais - CPRN, considerando-se a maior diversidade possível.

Art. 5º - Para projetos de recuperação mediante plantio, o solo deverá ser devidamente

preparado, atentando para as recomendações técnicas de conservação de solo, de calagem e

adubação, do controle inicial de competidores, além de isolar a área dos fatores de degradação.

§ 1 - A manutenção das áreas restauradas deverá ser executada por, no mínimo, 18 meses após

o plantio, incluindo o controle de formigas, capinas e/ou coroamentos, adubação e outros,

conforme avaliação técnica do responsável pelo projeto.

§ 2 - Tendo como objetivo final a recuperação da floresta, será admitida a ocupação das

entrelinhas, com espécies para adubação verde e/ou de interesse econômico, por até dois anos,

desde que o projeto utilize princípios agro-ecológicos.

Art. 6º - Para recuperação de áreas com algum tipo de cobertura florestal nativa remanescente,

recomenda-se:

a) a proteção da área de qualquer ação de degradação;

b) o controle de espécies exóticas ou nativas em desequilíbrio;

c) o adensamento na borda da área, usando espécies de rápido crescimento e boa cobertura;

d) o enriquecimento dessas áreas com espécies finais da sucessão.

Art. 7º - Para a recuperação de áreas degradadas mediante outras técnicas, associadas ou não

ao plantio de mudas, deverá ser apresentado um projeto específico, contendo:

a) avaliação da paisagem;

b) avaliação do histórico de degradação da área;

c) retirada dos fatores de degradação;

Page 154: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

d) avaliação dos processos de regeneração natural;

e) aproveitamento do potencial de auto-recuperação.

Parágrafo único - A não presença e/ou expressão deste potencial de auto-recuperação adotar-

se-ão as medidas previstas no artigo 2º.

Art. 8º - A execução dos trabalhos de recuperação florestal deverá observar os seguintes

aspectos:

I - o solo deverá ser preparado em consonância com a estratégia de recuperação adotada,

atentando para as recomendações técnicas de conservação de solo, de calagem, adubação e

aplicação de matéria orgânica, com destaque para análise físico-química do solo;

II - avaliação do potencial de auto-recuperação dessas áreas no que se refere: à presença ou

chegada de propágulos (sementes ou indivíduos remanescentes), oriundos do banco de sementes

e da "chuva" de sementes, dependendo da área - objeto de recuperação e da vizinhança, em

função da presença de remanescentes florestais próximos;

III - avaliação do histórico e uso atual da área, no que se refere às práticas culturais, como

alteração da drenagem do solo, retirada ou revolvimento periódico do solo, uso de herbicidas e

outros;

IV - em situações onde for observada a regeneração natural de espécies nativas, no pré e pós-

plantio, esta deverá ser aproveitada na recuperação da área, estimulando e conduzindo os

indivíduos regenerantes através de práticas silviculturais;

V - a área de recuperação deverá ser isolada dos fatores de degradação;

VI - deverá haver controle de formigas cortadeiras e de espécies competidoras indesejáveis,

especialmente gramíneas e cipós;

Artigo 9º - Na recuperação de áreas de restinga, manguezais e formações paludosas deverá ser

promovida a restauração da hidrodinâmica no solo e, no caso de áreas com aterro, retirada ou

revolvimento anterior do solo, de suas características físico-químicas;

Art. 10 - A Secretaria do Meio Ambiente, de forma integrada com outras Secretarias de

Estado, Universidades, Instituições Científicas, Ministério Público, outras esferas de governo e

Page 155: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

organizações não governamentais, estimulará o desenvolvimento de pesquisas e extensão, bem

como o aprimoramento do conhecimento científico das medidas estabelecidas nesta resolução,

visando:

I - ampliar os conhecimentos sobre ecologia das espécies e formações florestais, e sobre

tecnologia de produção de sementes e mudas;

II - estabelecer modelos alternativos, visando à obtenção de maior eficiência e menor custo,

para recuperação de áreas degradadas;

III - capacitar proprietários rurais e produtores de mudas e/ou sementes para práticas de

restauração e produção, com diversidade florística e genética, de sementes e mudas de espécies

nativas.

IV - estimular processos de certificação de viveiros florestais, que garantam a produção de

mudas com diversidade florística e genética.

Art. 11- A Secretaria Estadual do Meio Ambiente deverá atualizar, anualmente, a listagem

exemplificativa das espécies florestais nativas de ocorrência nos diversos biomas do Estado de

São Paulo.

Art. 12 - O cumprimento integral das disposições contidasnesta Resolução deverá ser exigido

nos seguintes casos:

I - recuperação de áreas degradadas ou reflorestamentos exigidos como condição para a

emissão de licenças ambientais por órgãos integrantes do SEAQUA;

II - recuperação de áreas degradadas ou reflorestamentos exigidos com o objetivo de

promover a reparação de danos ambientais que foram objeto de autuações administrativas;

III - recuperações ambientais ou reflorestamentos previstos em Termos de Ajustamento de

Conduta firmados com a SMA;

IV - projetos implantados com recursos públicos sujeitos à aprovação de órgãos integrantes

do SEAQUA;

§ 1º - Nos casos previstos neste artigo deverá ser exigido projeto técnico, contendo todas as

informações necessárias à sua análise, que deverá ser anexado ao processo administrativo que

Page 156: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

trata do licenciamento, autuação ou TAC, ou deverá ser tratado em processo administrativo

específico a critério do órgão responsável.

§ 2º - Poderão ser dispensados da apresentação de projeto técnico, com a devida anotação de

responsabilidade técnica (ART), a recuperação de áreas com até 1 ha ou localizadas em

propriedades rurais com até 2 módulos rurais;

Art 13 - Para fins de acompanhamento e para evitar conflitos com as atividades de

fiscalização, os projetos de recuperação e reflorestamento de áreas consideradas de preservação

permanente pela Lei Federal 4.771/65 para sua implantação deverão ser submetidos previamente

ao DEPRN, independentemente da necessidade de licenciamento ou aprovação de projeto.

Parágrafo único: O DEPRN deverá estabelecer procedimentos a serem observados para o

cumprimento deste artigo.

Art. 14 - Esta resolução entra em vigor na data de sua publicação, revogando-se as disposições

em contrário.

ANEXO da Resolução SMA no 47

Listagem das espécies arbóreas e indicação de sua ocorrência natural nos biomas /

ecossistemas e regiões ecológicas do Estado de São Paulo. (Biomas / Ecossistemas: RES -

Vegetação de Restinga; MAN - Manguezal; FOD - Floresta Ombrófila Densa, FOM - Floresta

Ombrófila Mista; FES - Floresta Estacional Semidecidual; MC - Mata Ciliar; MP - Mata Paludosa;

FED - Floresta Estacional Decidual; CER - Cerrado. Regiões Ecológicas: LS - Litoral Sul; LN -

Litoral Norte; SE - Sudeste; CE - Centro; SO - Sudoeste; NO - Noroeste). * Os nomes das

espécies entre colchetes indicam sinônimos.

Publicado no Diário Oficial do Estado de São Paulo - Meio Ambiente de 27 de novembro de 2003

Page 157: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Glossário

Abundância número de indivíduos de determinada espécie presente em uma área.

Adubação verde é o cultivo de determinada(s) planta(s) para posterior incorporação dela(s)

ao substrato, visando aumentar seu teor de matéria orgânica.

Aração quase nunca é usada na recuperação de áreas mineradas. Serve para revirar camadas de

solo e incorporar material orgânico e adubos a substratos.

Biótopo área ocupada por uma biocenose; parcela da superfície ocupada por um conjunto

específico da flora e da fauna, num determinado tempo; todo espaço finito no qual podem viver

plantas e animais que definam uma biocenose específica; conjunto de clima, solo e água.

Desertificação processo natural e/ou antrópico que transforma uma área ou região em

deserto. Termo indevidamente usado no Brasil para se referir a áreas mineradas e a terras

agrícolas agudamente degradadas. Só há desertificação em regiões onde o clima é propício para

que ela ocorra.

Diversidade relação entre o número de espécie e de indivíduos em uma determinada

comunidade.

Dominância cobertura vegetal que um indivíduo ou determinada espécie proporciona a uma

área. É uma associação de porte do(s) indivíduo(s), abundância e freqüência.

Drenagem retirada do excesso de água do solo, comumente por meio da abertura de canais

ou sulcos superficiais ou subsuperficiais.

Ecologia estudo do meio ambiente sob o aspecto físico e biológico.

Escarificação é o rompimento da camada superficial do solo ou do substrato que se

apresenta compactada e, por isso, dificulta ou impede a infiltração de água e o enraizamento de

plantas. Em áreas mineradas a escarificação cruzada é mais eficiente que a em linhas apenas.

Page 158: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Esciófita planta adaptada ao crescimento à sombra.

Estudos ambientais Ecologia + aspectos social, culturais, econômicos, religiosos, políticos e

outros.

Freqüência número de vezes que determinada espécie aparece em uma área ou região.

Gradeação visa quebrar torrões e pulverizar o material grosseiro depositado à superfície. É

também usada para assentar e picar restos vegetais, incorporar material orgânico e adubos a

substratos, nivelar a superfície do terreno e quebrar superfícies pouco compactadas, em

substituição à escarificação.

Heliófita planta adaptada ao crescimento à plena luz, em ambiente aberto, exposta à

insolação.

Higrófita planta adaptada ao crescimento em ambiente aquático ou brejoso.

Meio ambiente é o objeto da Ecologia.

Mesófita planta adaptada ao crescimento em ambiente intermediário entre seco e úmido.

Representa o maior grupo de plantas.

Resiliência capacidade de regeneração após a ocorrência do dano (raízes geminíferas de

espécies arbóreas do Cerrado).

Resistência capacidade de resistir ao dano (tecido lenhoso, casca, espinhos, defesa química e

outras.

Revegetação termo relativamente novo no Brasil, que significa repor a vegetação em um

local degradado, principalmente pela mineração.

Riqueza de espécies é o número de espécies diferentes em uma determinada comunidade.

Page 159: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Solos distróficos solos em que os valores de saturação por bases (V) limitam-se a menos de

50%. São popurlamente conhecidos como solos quimicamente pobres. Sob condições naturais

dão suporte a Campos, Campos Sujos, Cerrados stricto sensu e a Cerradões.

Solos eutróficos solos em que os valores de saturação por bases (V) situam-se acima de 50%.

São popurlamente conhecidos como solos quimicamente ricos. Sob condições naturais, dão

suporte a Matas Mesofíticas ou, por vezes, a Cerradões.

Solos mesotróficos solos em que os valores de saturação por bases (V) situam-se entre 40 e

60%.

Subsolagem em áreas de tráfego de máquinas, uma camada adensada pode-se formar abaixo

da camada superficial. Essa camada adensada dificulta a penetração de água e raízes na camada

subsuperficial.

Sucessão primária colonização de uma área ou substrato nunca antes habitado por

organismos (ex: substratos expostos pela mineração, áreas cobertas erupções vulcânicas).

Sucessão secundária recolonização natural de uma área que fora objeto de influência

biológica antes da degradação (ex: áreas desmatadas ou queimadas).

Terraceamento é a construção de barreiras físicas, geralmente acompanhando as curvas de

nível de uma área, para disciplinar as águas e controlar a erosão.

Valência ecológica é a possibilidade de uma espécie viver em ambientes diferentes, sob ação

de fatores ecológicos diversos. A valência ecológica está relacionada com a possibilidade de

distribuição de um organismo em diferentes habitats.

Valor ambiental que contribui para a estabilidade do meio ambiente, sobretudo o meio

utilizado pelo homem.

Valor ecológico que contribui para o meio natural, favorecendo fauna e/ou flora nativas.

Xerófita planta adaptada a solos e substratos muito secos, com pouca disponibilidade de água.

Page 160: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Referências

Anand, M. & Desrochers, R. E. (2004). Quantification of restoration success using complex

systems concepts and models. Restoration Ecology, v.12, n.1, p.117-123.

Araujo, G.H.S.; Almeida, J.R. & Guerra, A.J.T. (2005). Gestão ambiental de áreas degradadas. Ed.

Bertrand Brasil Ltda, São Cristovão/RJ, 320p.

Baptista, G. M. M. (2003). Diagnóstico ambiental de erosão laminar: modelo geotecnológico e

aplicação. E. Universa, Brasília/DF, 101p.

Balistieri, P.R.M.N. & Aumond, J.J. (1997). Recuperação ambiental em mina de argila, Doutor

Pedrinho - SC. In: III Simpósio Nacional de Recuperação de Áreas Degradadas - III

SINRAD. Sociedade Brasileira de Recuperação de Áreas Degradadas/SOBRADE &

Universidade Federal de Viçosa/UFV. Ouro Preto, MG, 18 a 24 de maio, p. 42-51.

Barbosa, J.M.; Prudente, C.M. & Santos Júnior, N.A. (2002). Efeito da intensidade luminosa e

umidade do solo sobre o estabelecimento de indivíduos de Eugenia brasiliensis LAM,

Eugenia uniflora L. e Copaifera langsdorffii DESF. Em área de mata ciliar em recuperação a

partir do plantio de mudas. In: V Simpósio Nacional sobre recuperação de áreas degradadas -

SINRAD. Água e Biodiversidade. Univ. Fed. Lavras, CEMAC, SOBRADE. Trabalhos

voluntários. Belo Horizonte, 18-22/11/2002, p. 368-370.

Barth, R.C. (1989). Avaliação da recuperação de áreas mineradas no Brasil. Boletim Técnico no 1.

SIF/UFV, Viçosa, MG. 41p. In: Curso Recuperação de áreas degradadas, vol. II.

UFPr/FUPEF-Pr/Associação Paranaense de Engenheiros Florestais. Curitiba, 5 - 15/07/93.

Begon, M; Harper, J. L.; Townsend, C.R. (1990). Ecology: indivduals, populations and

communities. 2o ed. Blackwell Scientific Publications, Boston, 945p.

Bitton, G., Damron, B.L. & Davidson, J.M. (1980). Sludge-health risks of land application. Arbor

Science Publishers Inc., Michigan, 358p.

Page 161: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Brady, N.C. (1989). Natureza e Propriedades dos Solos. Trad. Antônio B. Neiva Figueiredo Filho,

Rio de Janeiro, 7ª edição, 878p.

Cameron, K.C., Di H.J. & Mclaren, R.G. (1996). Is the soil an appropriate dumping ground for

our wastes? In: Australian and New Zealand National Soils Conference 1996, Plenary papers,

University of Melbourne, Australia, p. 31-53.

Cavassan, O.; Bertoncini, A.P.; Almeida Neto, L.C. & Carboni, M. (2003). A contribuição relativa

de propágulos reprodutivos e vegetativos na recomposição da vegetação de cerrado em um

trecho degradado na Reserva Ecológica do Campus de Bauru da Unesp. In: VI Congresso de

Ecologia do Brasil. Sales, V.C; Tonini, I.M.; Dantas, E.W.C (eds). Anais de trabalhos

completos, p.414-415. ISBN 859039544-8. Fortaleza, 9-4/11/2003.

Coraucci Filho, B.; Sobrinho P.A; Figueiredo, R.F. & Vieira, D.B. (1996). Avaliação da produção

da matéria vegetal em solo que recebeu esgoto doméstico bruto. In: XIII Congresso Latino

Americano de Ciência do Solo. SLACS/SBCS/ESALQ/SBM. Comissão 9, Poluição do Solo

e Qualidade do Ambiente, Trabalho 8. Programa Oficial. Águas de Lindóia, SP, 4 a 8 de

agosto, p.36.

Cardoso, F.B.F. & Carvalho, J.P. (1998). Caracterização e explotação de jazidas de cascalho

laterítico. In: Ecologia e recuperação de áreas degradadas no Cerrado. Corrêa, R.S. & Melo

Filho, B. Editora Paralelo 15, Coleção Régio montano campestris. Brasília, p.139-147.

Carvalho, R.M. (1993). Palestra sobre explotação de cascalho. DER. Auditório da Administração

Regional do Guará, 16/09/1993. Mimeo, 18p.

Corrêa, A.A.M. (1989). Recuperação de terras degradadas. Boletim FBCN - 24:20-29. Rio de

Janeiro.

Corrêa, R.S. (1991). Soil problems in connection with mining activities in Brazilian Amazonian

region. Dissertação apresentada para obtenção do Diploma de Pós-graduação em Gestão

Ambiental a Universidade Tecnológica de Dresden - Alemanha.

Page 162: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Corrêa, R.S. (1995). Aspectos vegetacionais e edáficos de uma área de desaterro no Cerrado sobre

latossolo vermelho escuro. Dissertação apresentada ao Departamento de Ecologia da

Universidade de Brasília para obtenção do grau de Mestre em Ecologia. Brasília, julho.

Corrêa, R.S. (1998a). Degradação de recuperação de áreas no Distrito Federal. In: Ecologia e

recuperação de áreas degradadas no Cerrado. Corrêa, R.S. & Melo Filho, B. Editora Paralelo

15, Coleção Régio montano campestris. Brasília, p.13-19.

Corrêa, R.S. (1998b) Manejo de substratos e de áreas escavadas. In: Ecologia e recuperação de

áreas degradadas no Cerrado. Corrêa, R.S. & Melo Filho, B. Editora Paralelo 15, Coleção

Régio montano campestris. Brasília, p.117-138.

Corrêa, R.S. (2001) Beneficial use of biosolids based on their N and P fertilising value. Tese de

Doutorado. Institute of Land and Food Resources. The University of Melbourne, Austrália.

Corrêa, R.S. & Cardoso, E.S. (1998). Espécies testadas na revegetação de áreas degradadas. In:

Ecologia e recuperação de áreas degradadas no Cerrado. Corrêa, R.S. & Melo Filho, B.

Editora Paralelo 15, Coleção Régio montano campestris. Brasília, p.101-116.

Corrêa, R.S.; Leite, L.L. & Bastos, E.K. (1998). A dinâmica da degradação e da regeneração. In:

Ecologia e recuperação de áreas degradadas no Cerrado. Corrêa, R.S. & Melo Filho, B.

Editora Paralelo 15, Coleção Régio montano campestris. Brasília, p.49-63.

Corrêa, R.S. & Melo Filho, B. (1996). Crescimento de Inga marginata em área de cerrado minerada.

In: 3o Congresso de Ecologia do Brasil - Manejo de Ecossistemas e Mudanças Globais.

Departamento de Ecologia - Universidade de Brasília/UnB. Resumos, Manejo e Recuperação

de Ecossitemas. Brasília, DF, 06 a 11 de outubro, p.456-457.

Corrêa, R.S. & Melo Filho, B. (2004a). Desempenho de dois resíduos orgânicos para a

sobrevivência de mudas de espécies arbóreas de Cerrado sob condições adversas de área

minerada. SANARE. Janeiro-Junho. ISSN 01047175. Sanepar, Curitiba/PR, 21(21): 59-66.

Page 163: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Corrêa, R.S. & Melo Filho, B. (2004b). Aspectos ecológicos da sucessão secundária em áreas

mineradas no cerrado. In: Corrêa, R.S. & Baptista, G.M.M. (orgs). Brasília. Mineração e áreas

degradadas no cerrado. Editora Universa, il. Brasília, p.123-158.

Corrêa, R.S; Melo Filho, B. & Bernardes, R.S. (2000). Deposição de esgoto doméstico para

controle de poluição e revegetação induzida em área degradada. Revista Brasileira de

Engenharia Sanitária e Ambiental. Maio-Agosto. ISSN 1415-4366. Universidade Federal da

Paraíba, Campina Grande/PB, 4(2): 252-256.

Corrêa, R.S.; Regis, D.N.; Borges, C.L.; Farias, Y.S.; Melo, L.F.O.; Pina, E.R.; Duarte, R.N. &

Carvalho, A.A. (2004). Uso de quatro biossólidos no cultivo de jatobá-do-cerrado (Hymenaea

stigonocarpa) em área degradada pela mineração no cerrado. In: 3º Simpósio Brasileiro de

Engenharia Ambiental. Tecnologia Ambiental, Trabalhos Completos, Resíduos Sólidos. CD

ROM. Universidade Católica de Brasília. Taguatinga-DF, 3-7/10/2004.

Corrêa, R.S.; Silva, L.C.R. & Melo Filho, B. (2005). Evolução da diversidade de espécies e da

cobertura vegetal em uma área minerada em processo de recuperação no Cerrado do Distrito

Federal: contribuição da fauna. In: VI Simpósio Nacional e Congresso Latino Americano de

Recuperação de Áreas Degradadas - VI SINRAD. Anais, Trabalhos voluntários orais, p.99-

106. Sociedade Brasileira de Recuperação de Áreas Degradadas/ SOBRADE. Curitiba, 24-

28/10/2005.

Correia, J.R; Reatto, A. & Spera, S.T. (2002). Solos e suas relações com o uso e o manejo. In:

Cerrado, correção do solo e adubação. De Souza, D. M. G. & Lobato, E. (eds). Empresa

Brasileira de Pesquisa Agropecuária. Planaltina. p.29-61.

Cox, J.A. & Whelan, R.J. (2000). Soil development of an artificial soil mix: nutrient dynamics,

plant growth, and initial physical changes. In: Australian Journal of Soil Research. CSIRO

Publishing. Austrália, vol.38, 465-477.

Dajoz, R. (1973). Ecologia geral. 2a edição. Editora Vozes. São Paulo, 474p.

Da Costa, C.B.; Coelho, I.R.; Campos, R.I.; Almeira, S.S.P.& Ribeiro, S.P. (2003). Monitoramento

e avaliação de áreas reabilitadas utilizando formigas como bioindicadores em uma área da

Page 164: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Mineração Rio Novo, Diamantina – MG. In: VI Congresso de Ecologia do Brasil. Sales, V.C;

Tonini, I.M.; Dantas, E.W.C (eds). Anais de trabalhos completos, p.416-417. ISBN

859039544-8. Fortaleza, 9-4/11/2003.

Da Silva, M.E.F. (2001). Efeitos a longo prazo da calagem e adubação sobre a disponibilidade de

nutrientes no solo, a concentração de nutrientes na serrapilheira e a nutrição mineral de três

espécies lenhosas nativas de um Cerrado sensu stricto. Dissertação de Mestrado. Departamento

de Ecologia da Universidade de Brasília, Instituto de Biologia. Brasília, 106p.

Da Silva, I.R.; Novais, R.F., Barros, N.F. & Da Silva, E.F. (2004). Manejo de resíduos e matéria

orgânica do solo em plantações de eucalipto: uma questão estratégica para a manutenção da

sustentabilidade. Boletim Informativo da Sociedade Brasileira de Ciência do Solo -

setembro/dezembro. Universidade Federal de Viçosa, 29(3): 10-15.

Davide, A C. & Faria, J.M.R. (1997). Revegetação de área de empréstimo da usina hidrelétrica de

Camargos (CEMIG). In: III Simpósio Nacional de Recuperação de Áreas Degradadas - III

SINRAD. Sociedade Brasileira de Recuperação de Áreas Degradadas/SOBRADE &

Universidade Federal de Viçosa/UFV. Ouro Preto, MG, 18 a 24 de maio, p. 462-473.

De Almeida, R. (2004). Perícia em local de extração mineral. In: Corrêa, R.S. & Baptista, G.M.M.

(orgs). Brasília. Mineração e áreas degradadas no cerrado. Editora Universa, il. Brasília, p.105-

122.

De Andrade, L.R.M. (2002). Corretivos e fertilizantes para culturas perenes e semiperenes. In:

Cerrado, correção do solo e adubação. De Souza, D. M. G. & Lobato, E. (eds). Empresa

Brasileira de Pesquisa Agropecuária. Planaltina, p.317-366.

De Barros, N.F.; Neves, J.C.L. & Novais, R.F. (2004). Mineral fertilizer recommendations for

eucalypt plantations. In: Gonçalves, J.L.M. & Benedetti, V. (orgs). Piracicaba. Forest nutrition

and fertilization. Instituto de Pesquisas Florestais e Estudos Florestais, il. São Paulo, p.269-

284.

Dedecek, R.A. (1986). Erosão e práticas conservacionistas nos cerrados. Circular Técnica n 22.

SSN:0102-0102. Ministério da Agricultura/MA, Empresa Brasileira de Pesquisa

Page 165: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Agropecuária/EMBRAPA, Centro de Pesquisa Agropecuária dos Cerrados/CPAC.

Planaltina/DF, 16p.

De Oliveira, S.A.; Mesquita Filho, M. V.; Souza, A F. & Fontes, R.R. (2000). Análises químicas de

solo e de calcário para fins de fertilidade do solo. Edunb. Textos Universitários,

UnB/EMBRAPA. Brasília, 31p.

De Souza, D.M.G. & Lobato, E. eds (2002a). Anexo 6. In: Cerrado: correção do solo e adubação.

EMBRAPA/CERRADOS. Planaltina, p.392.

De Souza, D.M.G. & Lobato, E. eds (2002b). Correção da acidez do solo. In: Cerrado: correção

do solo e adubação. EMBRAPA/CERRADOS. Planaltina, p.81-96.

Dias, A.S. & Silva, J.R.C. (2003). A erosividade das chuvas em Fortaleza (CE). I – distribuição,

probabilidade, de ocorrência e período de retorno - 1a aproximação. In: Revista Brasileira de

Ciência do Solo, 27: 335-345.

Duringan, G.; Melo, A.C.G.; Contieri, W.A. & Nakata, H. (2004). Regeneração natural da

vegetação de Cerrado sob florestas plantadas com espécies nativas e exóticas. In: Bôas,

O.V.& Duringan, G. (orgs.). Pesquisas em conservação e recuperação ambiental no oeste

paulista. IFSMA, São Paulo, p.350-362.

Eiten, G. (1994). Vegetação do Cerrado. In: Cerrado: caracterização, ocupação e perspectivas.

Pinto, M.N (org). Universidade de Brasília. 2a edição, p. 7-73.

Faria, J.M.R.; Davide, A.C. & Botelho, S.A. (1994). Comportamento do guapuruvu (Shizolobium

parahyba) leguninosae - caesalpinoideae e cássia-verrugosa (Senna multijuga) leguminosa -

caesalpinoideae em área degradada sob dois regimes de nutrição . In: I Simpósio Sul-

americano e II Simpósio Nacional de Recuperação de Áreas Degradadas. Fundação de

Pesquisas Florestais do Paraná - FUPEF. Trabalhos voluntários - geral 3/. Foz do Iguaçu, 06

a 10 de novembro, p.499-508.

Page 166: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Felfili, J.M.; Fagg, C.W.; da Silva, J.C.; de Oliveira, E.C.L.; Pinto, J.R.R.; da Silva Jr. & Ramos,

K.M. O. (2002). Plantas da APA Gama e Cabeça de Veado: espécies, ecossitemas e

recuperação. Universidade de Brasília, Depto. de Engenharia Florestal. 52p.

Felfili, J.M.; Franco, A.C.; Fagg, C.W. & Souza-Silva, J.C. (2001). Desenvolvimento inicial de

espécies de Mata de Galeria. In: Ribeiro, J.F.; Fonseca, C.E.L. & Souza-Silva, J.C. (eds.).

Cerrado: caracterização e recuperação de Matas de Galeria. Embrapa-Cerrados. Planaltina,

p.779-811.

Ferreira, R.S.; Rocha, W.D.; Costa, C.B.; Coelho, I.R.; Almeida, S.S.P.; Soares, J.P. & Ribeiro, S.

P. (2003). Utilização de coleoptera (Cicindelidae) como bioindicador em áreas da Mineração

Rio Novo, Diamantina – MG. In: VI Congresso de Ecologia do Brasil. Sales, V.C; Tonini,

I.M.; Dantas, E.W.C (eds). Anais de trabalhos completos, p.578-579. ISBN 859039544-8.

Fortaleza, 9-4/11/2003.

Foster, G.R. (1991). Advances in Wind and water erosion prediction. Journal of Soil and Water

Conservation., p.27-33, January-February 1991.

Freitas, A.V.L.; Francini, R.B. & Brown Jr., K.S. (2004). Insetos como indicadores ambientais. In:

Métodos de estudos em biologia da conservação: manejo da vida silvestre. Cullen Jr., L.;

Rudran, R. & Valladares-Padua, C. (orgs.). Editora UFPR; Fundação o Boticário.

Curitiba/PR, p.125-151.

Galeti, P.A. (1973). Conservação do solo – reflorestamento, clima. 2a edição. Instituto

Campineiro de Ensino Agrícola. Campinas, 286p.

Goedert, W.J. & Corrêa, R.S. (2004). Uso, degradação e qualidade do solo. In: Corrêa, R.S. &

Baptista, G.M.M. (orgs). Brasília. Mineração e áreas degradadas no cerrado. Editora

Universa, il. Brasília, p.159-172.

Golueke, C.G. (1975). Composting - a study of the processes and its principles. Rodale Press Inc

Book Division, Emmaus, Pensylvania USA.

Page 167: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Gonçalves, J.L.M. & Mello, S.L.M. (2004). The root system of trees. In: Gonçalves, J.L.M. &

Benedetti, V. (orgs). Piracicaba. Forest nutrition and fertilization. Instituto de Pesquisas

Florestais e Estudos Florestais, il. São Paulo, p.223-267.

Gonçalves, J.L.M.; Santarelli, E.G.; Neto, S.P.M. & Manara, M.P. (2004a). Seedling production of

native species: substrate, nutrition, shading, and fertilization. In: Gonçalves, J.L.M. &

Benedetti, V. (orgs). Piracicaba. Forest nutrition and fertilization. Instituto de Pesquisas

Florestais e Estudos Florestais, il. São Paulo, p.307-345.

Gonçalves, J.L.M.; Stape, J.L.; Benedetti, V.; Fessel, V.A.G. & Gava, J.L. (2004b). An evaluation

of minimum and intensive soil preparation regarding fertility and tree nutrition. In:

Gonçalves, J.L.M. & Benedetti, V. (orgs). Piracicaba. Forest nutrition and fertilization.

Instituto de Pesquisas Florestais e Estudos Florestais, il. São Paulo, p.13-64.

Haridasan, M. (1994). Solos do Distrito Federal. In: Cerrado: Caracterização, Ocupação e

Perspectivas. Maria Novaes Pinto (org.). Brasília. Ed. Universidade de Brasília. 2a edição, il.,

revisada e ampliada. Brasília, p.321-344.

Haridasan, M. (2000). Nutrição mineral de plantas nativas do Cerrado. Revista Brasileira de

Fisiologia Vegetal, 12(1): 54-64.

Hu, C.J., Gibbs, R.A., Mort, N.R., Hofsted, H.T., Ho, G.E. & Unkovich, I. (1996). Reuse

dominates sludge options. Waste Management and Environment, 7: 15-23.

IBAMA - Instituto do Meio Ambiente e dos Recursos Naturais Renováveis (1990). Manual de

recuperação de áreas degradadas pela mineração: técnicas de vegetação. Brasília, 96p.

Jenkins, J.C. (1994). The humanure handbook: a guide to composting human manure. Jenkins

Publishing, Grove USA.

Jones, U.S. (1982) Fertilizers and soil fertility. Reston Pub. Company. 2nd edition.Virginia, 421p.

Kageyama, P. & Gandara, F.B. (2004). Restauração e conservação de ecossistemas tropicais. In:

Métodos de estudos em biologia da conservação: manejo da vida silvestre. Cullen Jr., L.;

Page 168: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Rudran, R. & Valladares-Padua, C. (orgs.). Editora UFPR; Fundação o Boticário.

Curitiba/PR, p .383-394.

Krebs, C.J. (1985). Ecology: the experimental analysis of distribution and abundance. Nova York.

120Harper and Row, 585p.

Leite, L.L; Martins, C.R. & Haridasan, M. (1992). Propriedades físico-hídricas do solo de uma

cascalheira e de áreas adjacentes com vegetação nativa de Campo Sujo e Cerrado no Parque

Nacional de Brasília. In: Simpósio Nacional Recuperação de Áreas Degradadas. Curitiba.

Trabalhos Voluntários - p. 392-399.

Leite, L.L; Martins, C.R. & Haridasan, M., (1994). Efeitos da descompactação e adubação do solo

na revegetação espontânea de uma cascalheira no Parque Nacional de Brasília. In:

Recuperação de Áreas Degradadas. In: I Simpósio Sul-Americano e II Simpósio Nacional.

Balensiefer, M.; Araújo, A. J. & Rosot, N C. (eds). Trabalhos voluntários, Geral 6, FUPEF,

Foz do Iguaçu, p. 527-534.

Lorenzi, H. (1992). Árvores brasileiras. Manual de identificação e cultivo de plantas, 352p.

Lopes, A.S. (1984). Solos sob “cerrado”: características, propriedades e manejo. Piracicaba,

POTAFOS, 2ª edição, 162p.

Lopes, A.S. (1994). Manejo: aspectos químicos. In: Solos altamente suscetíveis à erosão. Pereira,

P.P.; Ferreira, M. E. & da Cruz, M.C.P. (eds.). Jaboticabal, FCAV – UNESP/SBCS, p.79-111.

Lyle Jr., E.S. (1987). Surface mine reclamation manual. School of Forestry, Auburn University.

Elsevier, NY, 266p.

Lyons, K.G.; Brigham, C.A.; Traut, B.A.; Schwartz, M.W. (2005) Rare species and ecosystem

functioning. Conservation Biology, v.19, n.4, p.1019-1024.

Macedo, J. (1994). Solos do Cerrado. In: Solos altamente suscetíveis à erosão. Pereira, P.P.;

Ferreira, M. E. & da Cruz, M.C.P. (eds.). Jaboticabal, FCAV – UNESP/SBCS, p.69-76.

Page 169: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Mafra, B.F. (2007). Determinação da erodibilidade de substrato minerado por meio do

Nomograma de Wischmeier et al., 1971. Brasília. Universidade Católica de Brasília, Curso de

Engenharia Ambiental. Monografia de Graduação, 74p.

Majer, J.D. (1989). Animals in primary succession: the role of fauna in reclaimed lands. London,

Cambridge University Press, 469p.

Malavolta, E. (1992). ABC da análise de solos e folhas – amostragem, interpretação e sugestões

de adubação. Agronômica CERES. Piracicaba, 124p.

Malavolta, E. & Kliemann, H.J. (1985). Desordens nutricionais do Cerrado. POTAFOS,

Piracicaba, 136p.

Martins, E.S.; Baptista, G.M.M. & Carvalho, J.C. (2004). Caracterização geológica e

geomorfológica de depósitos de cascalho laterítico no Distrito Federal. In: Mineração e áreas

degradadas no Cerrado. Corrêa, R.S. & Baptista, G. M.M. Editora Universa. Brasília, p.69-80.

Martins, C.R.; Leite, L.L. & Haridasan, M. (2001). Recuperação de uma área degradada pela

mineração de cascalho com uso de gramíneas nativas. R. Árvore, Viçosa-MG, 24(2): 157-166.

Martins, C.R.; Leite, L.L. & Haridasan, M. (2004). Capim gordura (Melinis minutiflora P. Beauv.),

uma gramínea exótica que compromete a recuperação de áreas degradadas em Unidades de

Conservação. R. Árvore, Viçosa-MG, 28(5): 739-747.

Melo, J.T.; Silva, J.A.; Torres, R.A.A., Silveira, C.E.S. & Caldas, L.S. (1998). Coleta, propagação e

desevolvimento inicial de espécies do Cerrado. In: Sano, S.M. & Almeida, S.P. (eds.). Cerrado:

ambiente e flora. Embrapa-CPAC. Planaltina, p.195-246.

Melo, V.A. (1997). Poleiros artificiais e dispersão de sementes por aves em uma área de

reflorestamento no Estado de Minas Gerais. Curso de Ciências Florestais, UFV. Dissertação

de Mestrado. Viçosa, 39p.

Mesquita, P.G. & Corrêa, R.S. (2004). Comparação entre o crescimento de três espécies arbóreas

de cerrado em área nativa e em área minerada. In: Revista do VII Congresso e Exposição

Page 170: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Internacional sobre Florestas - Forest 2004, p. 52 - 54 & Volume de Resumos, p. 31-32.

Centro de Convenções da Academia de Tênis. Brasília, 27-30/9/2004.

MMA/PNUD - Ministério do Meio Ambiente/Programa das Nações Unidas para o

Desenvolvimento (2002). Agenda 21 Brasileira. Resultado da Consulta Nacional. Comissão de

Políticas de Desenvolvimento Sustentável e da Agenda 21 Nacional. Bezerra, M.C. de L. et al.

(organizadores) Volume 1, 144p.

Mundin, T.G. (2004). Avaliação de espécies nativas usadas na revegetação de áreas degradadas.

Departamento de Engenharia Florestal, Universidade de Brasília. Monografia de graduação.

Brasília, 97p.

Neto, A.E.F.; Siqueira, J.O.; Curi, N. & Moreira, F.M.S. (2004). Fertilization in native species

reforastation. In: Gonçalves, J.L.M. & Benedetti, V. (orgs). Piracicaba. Forest nutrition and

fertilization. Instituto de Pesquisas Florestais e Estudos Florestais, il. São Paulo, p.347-378.

Odum, E.P. (1988). Ecologia. University of Georgia. Ed. Guanabara. Rio de Janeiro. 434p.

Oleynik, J. (1980). Manual de fertilização e correção do solo. EMATER/ACARPA. Curitiba, 90p.

Oliveira Neto, R. & Petter, C.O. (2005). A abordagem da economia ambiental no contexto da

mineração. In: R. Esc. Minas, Ouro Preto, 58(1): 71-75.

Pascual, J.A.; Ayuso, M.; Garcia, C. & E Hernández, T. (1997). Characterization of urban wastes

according to fertility and phytotoxicity parameters. In: Waste Management & Research vol.15,

p.103-112.

Pinã-Rodrigues, F.C. M.; Lopes, L. & Bloomfield, V.K. (1997). Análise do desenvolvimento de

espécies arbóreas da Mata Atllântica em sistema de plantio adensado para a revegetação de

áreas degradadas em encosta, no entorno do Parque Estadual do Desengano (RJ). In:

Simpósio Nacional de Recuperação de Áreas Degradadas - III SINRAD. Sociedade Brasileira

de Recuperação de Áreas Degradadas/SOBRADE & Universidade Federal de Viçosa/UFV.

Ouro Preto, MG, 18 a 24 de maio, p.283-291.

Page 171: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Pinto, M.A.T.; Neder, K.D.; Luduvice, M.L & Pereira, C.E.B.(1993). Manejo e destinação

produzidos em estações de tratamento de esgotos no Distrito Federal. In: Seminário sobre

tratamento e Disposição de Lodos. Rio de Janeiro, 13 a 16 de dezembro, p. 168-191.

Poggiani, F. & Schumacher, M.V. (2004). Nutrient cycling in native forests. In: Gonçalves, J.L.M.

& Benedetti, V. (orgs). Piracicaba. Forest nutrition and fertilization. Instituto de Pesquisas

Florestais e Estudos Florestais, il. São Paulo, p.285-305.

Primack, R. B. & Rodrigues, E. (2002). Biologia da conservação. Primack & Rodrigues. Londrina,

328p.

Raij, B. van; Quaggio, J.A.; Cantarella, H.; Ferreira, M.E.; Lopes, A.S. & Bataglia, O.C. (1987).

Análise química do solo para fins de fertilidade. Fundação Cargill. Campinas, 170 p.

Ranzani, C. (1980) Erodibilidade de alguns solos do Estado do Amazonas. Acta Amazônica, no 2,

vol. 10(2):263-269.

Reis, A.; Nakazono, E.M. & Matos, J.Z. (1996). Utilização da sucessão e das interações planta-

animal na recuperação de áreas florestais degradadas. In: Recuperação de áreas degradadas.

III Curso de Atualização, 29-42. Curitiba, 12-16/02/1996.

Resck, D.V.S. (1981). Parâmetros conservacionistas dos solos sob vegetação de cerrados. Circular

Técnica no 6. EMBRAPA, Centro de Pesquisa Agropecuária dos Cerrados. Planaltina/DF,

outubro, 32p.

Rodrigues, R.R. & Gandolfi, S. (1998). Restauração de florestas tropicais: subsídios para uma

definição metodológica e indicadores de avaliação e monitoramento. In: Recuperação de áreas

degradadas. L.E. Dias & J.W.V. de Mello, Editores. UFV, Depto. de Solos e Sociedade

Brasileira de Recuperação de Áreas Degradadas. p.203-215.

Roose, E.J. (1977). Application of Universal Soil Loss Equation of Wischmeier and Smith in

West Africa. Soil Conservation and Management in the Humid Tropics. Edited by D.J.

Greenland & R. Lal. John Wiley & Sons. NY, p.178-187.

Page 172: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

SANEPAR - Companhia de Saneamento do Paraná (1994). Projeto de utilização do lodo de

esgoto/pesquisa interdisciplinar. Relatório Gerencial Andamento dos Trabalhos. Núcleo de

Consultoria e Desenvolvimento Tecnológico, Companhia de Saneamento do Paraná.

Curitiba, 65p.

Seganfredo, M.L.; Eltz, F.L.F. & Brum, A.C.R.. (1997). Perdas de solo, água e nutrientes por

erosão em sistemas de culturas em plantio direto. In: Revista Brasileira de Ciência do Solo,

21(2): 287-291.

Seitz, R.A. (1996). As potencialidades da regeneração natural na recuperação de áreas degradadas.

In: Recuperação de áreas degradadas. III Curso de Atualização, 45-52. Curitiba, 12-

16/02/1996.

Silva, J.C.; Andraus, S.; Medeiros, M.L.M.B.; Andereoli, C.V.; Fernandes, F.; Bonnet, B.R.P.&

Barreto, C.L.G. (1995). Evaluation of sludge sewage sanity for agricultural purpose after

chemical and thermal treatment. In: 7th International Symposium on Microbial Ecology.

Santos, SP, August 27th to Sptember 1st, p.3-24.

Silva, J.R.C. & Dias, A.S. (2003). A erosividade das chuvas em Fortaleza (CE). II – correlação

com o coeficiente de chuva e atualização do fator R no período de 1962 a 2001. Revista

Brasileira de Ciência do Solo, v. 27, p. 347-354.

Silva Júnior, M.C. (2005). 100 árvores do Cerrado: guia de campo. Ed. Rede de Sementes do

Cerrado. il. Brasília, 278p.

Tomer, M.; Charleson, T; Barton, L.; Gielen, G.; Thorn, A.; Peacock, A. & Hopkins, K. (1998).

Nitrogen and phosphorus removal in an effluent-irrigated forest plantation in New Zealand.

In: National Soils Conference Environmental Benefits of Soil Management. Brisbane. Anais.

Australia, 27 a 29 de abril de1998, p.79-85.

Trevisol, R.G.; Neves, L.G.; da Silva, R.T. & Valcarcel, R. (2002). Análise da colonização vegetal

espontânea em ambientes modificados por medidas físicas na recuperação de áreas

degradadas. In: V Simpósio Nacional sobre recuperação de áreas degradadas - SINRAD.

Page 173: Projetos de Recuperação de Áreas Degradadas – PRADs · 4.3.3 Fator L - comprimento de rampa e Fator S - declividade do terreno conjugados no Fator LS - fator topográfico

Água e Biodiversidade. Univ. Fed. Lavras, CEMAC, SOBRADE. Trabalhos voluntários, 18-

22/11/2002, Belo Horizonte, p.437-439.

Tucci, C. A. & Lopes, A.S. (1991). Efeito de corretivo, matéria orgânica e tempo de incubação na

capacidade de troca de cátions em solos sob vegetação de Cerrado. Rev. U.A. Série : Ciências

Agrárias, 1(1): 65-76.

USDA - United States Department of Agriculture (1978). Predicting rainfall erosion losses: a

guide to coservation planning. U.S. Government Printing Office: Agriculture Handbook 537,

58p.

Vilela, L. Soares, W.V.; de Souza, D.M.G. & Macedo, M.C.M. (2002). Calagem e adubação para

pastagens. In: Cerrado, correção do solo e adubação. De Souza, D. M. G. & Lobato, E. (eds).

Empresa Brasileira de Pesquisa Agropecuária. Planaltina. p.367-382.

Vesilind, P.A. (1979) Treatment and disposal of wastewater sludges. Revised Edition. Ann Arbor

Science Publishers Inc, Michigan USA.

Wischmeier, W.H.; Johnson, C.B. & Cross, B.V. (1971). A soil erodibility nomograph for

farmland and construction sites. Journal of Soil and Water Conservation, v. 26, p. 189-193.

White, R.E. (1997). Principles and practices of soil science: the soil as a natural resource.

Blackwell Science, Victoria, 348p.