96
SUMÁRIO (CONTENTS) Revista Brasileira de Engenharia Agrícola e Ambiental ISSN 1415-4366 v.20, n.1, p.1–96, Janeiro, 2016 22 METEOROLOGIA E CLIMATOLOGIA AGRÍCOLA AGRICULTURAL METEOROLOGY AND CLIMATOLOGY Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi- arid • Procedimentos para cômputo do albedo com imagens OLI-Landsat 8: Aplicação ao semiárido brasileiro Bernardo B. da Silva, , Alexandra C. Braga, Célia C. Braga, Leidjane M. M. de Oliveira, Suzana M. G. L. Montenegro & Bernardo Barbosa Junior MANEJO DE SOLO, ÁGUA E PLANTA SOIL, WATER AND PLANT MANAGEMENT Contribution of non-exchangeable potassium forms and its accumulation in corn plants Contribuição de formas não-trocáveis de potássio para seu acúmulo em plantas de milho • Montesquieu da S. Vieira, Fábio H. T. de Oliveira, Hemmannuella C. Santos & Jailma dos S. de Medeiros Soybean nutritional status and seed physiological quality with swine wastewater  • Estado nutricional e qualidade siológica de sementes de soja com água residuária da suinocultura • Olga M. Passarin, Silvio C. Sampaio, Danielle M. Rosa, Ralpho R. dos Reis & Marcus M. Correa Proline and trehalose in maize seeds germinating under low osmotic potentials • Prolina e trealose em sementes de milho germinando em baixos potenciais osmóticos • Rafaela J. B. Queiroz & Jairo O. Cazetta Growth and yield of sugarcane as a functi on of phosphorus doses and forms of application • Crescimento e produtividade da cana-de-açúcar em função de doses e formas de aplicação de fósforo •  Abel W. de  Albuquerq ue, Leopold o de A. Sá , William A . R. Rodrigues, Adriano B. Mo ura & Mano el dos S. Oliveira Filho Rapeseed population arrangement dened by adaptability and stability parameters  • Arranjo populacional em canola denido pelos parâmetros de adaptabilidade e estabilidade • Cleusa A. M. B. Krüger, Sandro L. P. Medeiros, José A. G. da Silva, Genei A. Dalmago, Ana P. F. Valentini & Juliano F. Wagner Soil chemical properties and maize yiel d under application of pig slurry biofertilizer  • Atributos químicos do solo e produtividad e de milho com aplicação de biofertilizante de dejetos suínos • Marcelo E. Bócoli, José R. Mantovani, José M. Miranda, Douglas J. Marques & Adriano B. da Silva Swine farm wastewater and mineral fertilization in corn cultivation  • Água residuária de suinocultura e adubação minera l no cultivo do milho • Pâmela A. M. Pereira, Silvio C. Sampaio, Ralpho R. dos Reis, Danielle M. Rosa & Marcus M. Correa Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization  • Cultivo do tomateiro cereja sob irrigação com águas salinas e adubação nitrogenada • Ianne G. S. Vieira, Reginaldo G. Nobre, Adaan S. Dias & Francisco W. A. Pinheiro Beet cultivation with saline efuent from sh farming  • Cultivo de beterraba com euente salino da piscicultura • Welson L. Simões, Jony E. Yuri, Miguel J. M. Guimarães, José E. dos Santos & Emanoel F. J. Araújo CONSTRUÇÕES RURAIS E AMBIÊNCIA RURAL CONSTRUCTIONS AND AMBIENT Spatial variability of air temperature in a free-stall in the Northeastern semi-arid region of Brazil  Va riabilidade espacial da temperatura do ar de um free-stall na região semiárida nordestina do Brasil • Indira C. M. Gonçalves, Silvia H. N. Turco & Clóvis M. C. Ramos 29 36 42 55 49 62 9 67 16 3

Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

Embed Size (px)

Citation preview

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 1/96

SUMÁRIO (CONTENTS)

Revista Brasileira deEngenharia Agrícola e Ambiental

ISSN 1415-4366

v.20, n.1, p.1–96, Janeiro, 2016

22

METEOROLOGIA E CLIMATOLOGIA AGRÍCOLAAGRICULTURAL METEOROLOGY AND CLIMATOLOGY

Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid • Procedimentos para cômputo do albedo com imagens OLI-Landsat 8: Aplicação ao semiárido brasileiro• Bernardo B. da Silva, , Alexandra C. Braga, Célia C. Braga, Leidjane M. M. de Oliveira, Suzana M. G. L.Montenegro & Bernardo Barbosa Junior

MANEJO DE SOLO, ÁGUA E PLANTASOIL, WATER AND PLANT MANAGEMENT

Contribution of non-exchangeable potassium forms and its accumulation in corn plants • Contribuiçãode formas não-trocáveis de potássio para seu acúmulo em plantas de milho • Montesquieu da S. Vieira, FábioH. T. de Oliveira, Hemmannuella C. Santos & Jailma dos S. de Medeiros

Soybean nutritional status and seed physiological quality with swine wastewater • Estado nutricional equalidade siológica de sementes de soja com água residuária da suinocultura • Olga M. Passarin, Silvio C.Sampaio, Danielle M. Rosa, Ralpho R. dos Reis & Marcus M. Correa

Proline and trehalose in maize seeds germinating under low osmotic potentials • Prolina e trealose emsementes de milho germinando em baixos potenciais osmóticos • Rafaela J. B. Queiroz & Jairo O. Cazetta

Growth and yield of sugarcane as a function of phosphorus doses and forms of application • Crescimentoe produtividade da cana-de-açúcar em função de doses e formas de aplicação de fósforo • Abel W. de

Albuquerque, Leopoldo de A. Sá, William A. R. Rodrigues, Adriano B. Moura & Manoel dos S. Oliveira Filho

Rapeseed population arrangement de ned by adaptability and stability parameters • Arranjo populacionalem canola de nido pelos parâmetros de adaptabilidade e estabilidade • Cleusa A. M. B. Krüger, Sandro L. P.Medeiros, José A. G. da Silva, Genei A. Dalmago, Ana P. F. Valentini & Juliano F. Wagner

Soil chemical properties and maize yield under application of pig slurry biofertilizer • Atributos químicosdo solo e produtividade de milho com aplicação de biofertilizante de dejetos suínos •Marcelo E. Bócoli, JoséR. Mantovani, José M. Miranda, Douglas J. Marques & Adriano B. da Silva

Swine farm wastewater and mineral fertilization in corn cultivation • Água residuária de suinocultura eadubação mineral no cultivo do milho •Pâmela A. M. Pereira, Silvio C. Sampaio, Ralpho R. dos Reis, DanielleM. Rosa & Marcus M. Correa

Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization • Cultivo dotomateiro cereja sob irrigação com águas salinas e adubação nitrogenada • Ianne G. S. Vieira, Reginaldo G.Nobre, Adaan S. Dias & Francisco W. A. Pinheiro

Beet cultivation with saline ef uent from sh farming • Cultivo de beterraba com e uente salino dapiscicultura •Welson L. Simões, Jony E. Yuri, Miguel J. M. Guimarães, José E. dos Santos & Emanoel F. J. Araújo

CONSTRUÇÕES RURAIS E AMBIÊNCIARURAL CONSTRUCTIONS AND AMBIENT

Spatial variability of air temperature in a free-stall in the Northeastern semi-arid region of Brazil •Variabilidade espacial da temperatura do ar de um free-stall na região semiárida nordestina do Brasil • Indira C.M. Gonçalves, Silvia H. N. Turco & Clóvis M. C. Ramos

29

36

42

55

49

62

9

67

16

3

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 2/96

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 3/96

Revista Brasileira de Engenharia Agrícola e Ambiental

Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.3–8, 2016

Procedures for calculation of the albedo with OLI-Landsat 8 images:Application to the Brazilian semi-aridBernardo B. da Silva1, 2, Alexandra C. Braga2, Célia C. Braga2,Leidjane M. M. de Oliveira 3, Suzana M. G. L. Montenegro 4 & Bernardo Barbosa Junior 5

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p3-8

A B S T R A C TTe surface albedo plays an important role in the exchanges of energy and mass in the planetaryboundary layer. Terefore, changes in albedo affect the balance of radiation and energy at thesurface, which can be detected with its monitoring. Albedo determination has been performedthrough various sensors, but there is not yet any publication dealing with albedo calculationprocedures using OLI (Operational Land Imager) - Landsat 8 images. Te objective of thestudy is to present the procedures for computing the albedo with OLI images and map it inirrigated areas of the São Gonçalo Irrigated District, PB, Brazil. Images of the year 2013, path215 and row 65, were selected. Te data necessary for calculating the albedo were extractedfrom each image metadata: additive and multiplicative terms of radiance and reectance, andsun elevation angle. Tere were large differences between the albedo values of irrigated plots,water bodies and native vegetation. Te albedo obtained with OLI images provides a higherdegree of differentiation of the various types of land use, due to the substantial increase inthe radiometric resolution of this new sensor.

Procedimentos para cômputo do albedo com imagensOLI-Landsat 8: Aplicação ao semiárido brasileiroR E S U M OO albedo da superfície desempenha papel importante nas trocas de energia e massa nacamada limite planetária. Neste sentido, alterações no albedo modicam os balanços deradiação e energia à superfície, que podem ser detectadas com seu monitoramento. Adeterminação do albedo tem sido feita através de diversos sensores mas ainda não forampublicados procedimentos de cálculo do mesmo com imagens do OLI (Operational LandImages) do Landsat 8. O objetivo do estudo é apresentar, em detalhes, procedimentos decômputo do albedo com imagens OLI e mapear o mesmo em áreas do perímetro irrigadoSão Gonçalo, PB. Foram selecionadas imagens do ano 2013, órbita e ponto 215 e 65,respectivamente. Os dados necessários ao cômputo do albedo foram extraídos do meta dadosde cada imagem, quais sejam: termos aditivo e multiplicativo da radiância e reectânciadas bandas de 2 a 7 e ângulo de elevação do Sol. Vericaram-se grandes diferenças entreos valores do albedo das parcelas irrigadas, corpos d’água e de vegetação nativa. Conclui-se que o albedo obtido com as imagens OLI apresenta maior grau de diferenciação dos

diversos tipos de uso da terra, resultado do aumento substancial da resolução radiométricadeste novo sensor.

Key words:radiancespectral reectanceatmospheric transmittancenet radiation

Palavras-chave:radiânciareectância espectraltransmitância atmosférica

saldo de radiação

1 Fundação de Amparo à Ciência e ecnologia de Pernambuco. Recife. PE E-mail: [email protected] (Corresponding author)2 Universidade Federal de Campina Grande/Programa de Pós-Graduação em Meteorologia. Campina Grande, PB. E-mail: [email protected];

[email protected] Universidade Federal de Pernambuco. Caruaru, PE. E-mail: [email protected] Universidade Federal de Pernambuco/Departamento de Engenharia Civil. Recife, PE. E-mail: [email protected] Universidade Federal da Paraíba. João Pessoa, PB. E-mail: [email protected]

Protocolo 390-2014 – 03/11/2014 • Aprovado em 03/07/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 4/96

4 Bernardo B. da Silva et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.3–8, 2016.

I

Net radiation plays a fundamental role in biophysicalprocesses involving exchanges of energy and mass in theplanetary boundary layer, since it constitutes the mainenergy source used in the heating of soil and air, and in plantevapotranspiration (Silva et al., 2005a; Wang & Davison, 2007;

Giongo et al., 2010; Lopes et al., 2013; Souza et al., 2014).Surface albedo substantially affects net radiation; thus, manysatellites carry sensors ( M - Landsat 5, E M+ - Landsat 7,AVHRR-NOAA, MODIS - erra/Aqua, AS ER - erra, amongothers) that determine and monitor the Earth’s surface albedo.Terefore, its monitoring has increasingly gained importance,since the alterations caused by natural and/or anthropicphenomena on the surface of the planet can be detected byorbital sensors, besides the role played by the albedo in climaticmodeling.

Tere are different algorithms for the calculation of surfacealbedo that use radiometric measurements of AVHRR bands 1and 2, some of which relate the spectral planetary reectancesof these bands to the surface albedo (Wydick et al., 1987; Hucek& Jacobowitz, 1995). More recently, Liang (2000) obtained, for various orbital sensors, equations that allow calculating thealbedo through the linear combination of the monochromaticreectivity of each one of these bands in the solar radiationdomain. Souza et al. (2014) applied the parametrizationproposed by asumi et al. (2008) with high and low loadingsof aerosols in different regions of Brazil and data of the MODISsensor. However, the model proposed by Zhong & Li (1988)employed by Bastiaanssen et al. (1998) in the SEBAL (SurfaceEnergy Balance Algorithm for Land) and initially applied to

M - Landsat 5 images, combines simplicity and precision. Tismodel has been widely used in many studies on the balance ofradiation (Silva et al., 2005b; 2011; Lopes et al., 2013; Gusmãoet al., 2012), energy (Silva & Bezerra, 2006; Allen et al., 2007;Arraes et al., 2012; Bezerra et al., 2014; Machado et al., 2014;Mattar et al., 2014) and in researches analyzing alterations inland use and occupation (Rodrigues et al., 2009; Giongo et al.,2010; Oliveira et al., 2012).

he albedo has also been used in climatic modelingand Krayenhoff & Voogt (2010) studied its inuence on airtemperature, while Wang & Davison (2007) evaluated the

impact of climatic variations on the albedo of temperate regionsin Canada. Loew & Govaerts (2010), evaluated the consistencyof long-term albedo data obtained with the Meteosat FirstGeneration, used in climatic modeling. In addition, it shouldbe pointed out the role of cloud albedo in climatic monitoringand analysis studied by Mueller et al. (2011).

In most studies using M and E M+, particularly inapplications of radiation and energy balance, the albedo isinitially obtained through combinations of reective bandswithout atmospheric correction and then the atmosphericeffects are corrected based on the formulation proposed byZhong & Li (1988), intensively used by Bastiaanssen et al.

(1998). More recently, asumi et al. (2008) developed analgorithm for the atmospheric correction of each one of the Mand MODIS reective bands, but based on the same correctionmodel proposed by Zhong & Li (1988). Te main difference is

that in the latter the correction is performed in the planetaryalbedo, while in the former the atmospheric correction isperformed band to band, obtained through a radiative transfermodel. Tis is the method adopted by the ME RIC (MappingEvapotranspiration with Internalized Calibration), a variationof the SEBAL and also used in mountainous areas (Allen et al.,2007; asumi et al., 2008).

Although albedo has been used in many researchesinvolving radiation and energy balances based on M orE M+ images, there are no published studies that allow itsdetermination using images from OLI (Operational LandImager), aboard Landsat 8, launched on February 11, 2013by NASA (National Aeronautics and Space Administration).Terefore, this study aimed to present the procedures thatallow albedo determination with OLI-Landsat 8 images anduse them in the mapping of areas under irrigation and native vegetation in the São Gonçalo Irrigation District-PB, Brazil.

M MTe studied area comprehends part of the Piranhas-Açu

river basin, in the semiarid region of Northeastern Brazil, andis located in the states of Paraíba and Rio Grande do Norte. Tearea comprises seven sub-basins: Piancó, Peixe, Alto Piranhas,Médio-Piranhas, Espinharas, Seridó and Baixo Piranhas. In theAlto Piranhas sub-basin, there is the main irrigation district ofthe Paraíba state, called São Gonçalo Irrigation District - SGID,which is located 15 km distant from the municipality of Sousa-PB (6.84º S; 38.32º W; 234 m), approximately 440 km fromthe state capital, João Pessoa. Te studied area encompasses,

besides the São Gonçalo Irrigation District (SGID I and II),the São Gonçalo dam, areas of native vegetation, rainfedagriculture and areas with large soil exposure (Figure 1).

Te climate of the studied region is classied as semiarid,DdA’, according to the methodology of Tornthwaite & Matther(1944), with rainy season concentrated from January to May( able 1). Te annual means of air temperature, rainfall andpotential evapotranspiration - E p are respectively equal to26.6 °C, 904.1 mm and 1418 mm, but minimum and maximumtemperatures range from 19.4 to 22.3 oC, and 31.5 to 35.6 oC,

Figure 1. Section of OLI-Landsat 8 image on September12, 2013, in RGB453 composition and highlights for theareas of Sçao Gonçalo Irrigation District (SGID) I and II andother areas selected for analysis of the results

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 5/96

5Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.3–8, 2016.

respectively. Te prevailing soils in the area are Latosols andCambisols and the natural vegetation is classied as contactbetween Caatinga and Seasonal Forest and Pioneer Formationswith Fluviomarine Inuence.

Five OLI-Landsat 8 images, path 216 and row 65, generatedin 2013 and obtained from the United States GeologicalSurvey - USGS (http://earthexplorer.usgs.gov/) were used inthe study. Tese images correspond to the Landsat 8 overpassapproximately at 09 h 45 min (local time), and have spatialresolution of 30 m and spectral resolution of 12 bits, butare available in 16 bits, which means an intensity in eachpixel between 0 and 65,535 gray levels, ensuring a higherdetailing degree of the generated information. In addition,meteorological data recorded close to the Landsat 8 passover the studied area were used, in order to determine theatmospheric transmittance used in the atmospheric correction.Te selected days and the data used in the image processingare shown in able 2.

Te albedo was calculated using the following equation(Zhong & Li, 1988; Bastiaanssen et al., 1998):

W (mm) - precipitable water, obtained as a function ofRU (%); and

Po - according to the equation of Allen et al. (2002).

Table 1. Mean rainfall - MR (mm), standard deviation - SD (mm) and monthly mean air temperature - Ta ( oC), accordingto the records of the Academic Unit of Atmospheric Sciences of the Federal University of Campina Grande (UFCG)

Table 2. Variables used in albedo calculation for the studied area: Sun elevation angle - E (degree), cosine of the Sunzenith angle - cos Z, air temperature - Ta ( oC), relative air humidity - RU (%), atmospheric pressure - Po (kPa) andatmospheric transmittance - τ

oc , referring to the moment of the satellite overpass on the days selected for the study, andEarth-to-Sun distance - d ES (astronomic unit) in each selected day

( )toa atm2oc

α − αα =

τ

where:αtoa - planetary albedo of each pixel or albedo without

atmospheric correction;αatm - atmospheric albedo; andτoc - atmospheric transmittance in the solar radiation

domain, which can be obtained by the equation (Allen et al.,2002, 2007):

0.4

oct

0.00146Po W0.35 0.627 exp 0.075

K cos Z cos Z

τ = + − −

where:Po - local atmospheric pressure (kPa);Kt - air turbidity coefficient (Kt = 1.0 for clear air and Kt

= 0.5 for extremely turbid or polluted air; K t = 1.0 was used inthis study);

Z - Sun zenith angle (extracted from the image metadata);

a oW 0.14e P 2.1= +

where:ea - partial pressure of atmospheric water vapor (KPa).

Te value of atmospheric albedo can be obtained througha radiative transfer model and, in general, is situated between0.025 and 0.040 (Allen et al., 2002). Te value of 0.03 wasadopted in the present study. Te determination of albedowithout atmospheric correction (α toa) was performed throughlinear combination of the monochromatic reectance (r b) ofthe reective bands (from 2 to 7) of the OLI - Landsat 8 (Eq.5), according to the following equation:

toa 2 2 3 3 4 4 5 5 6 6 7 7 p r p r p r p r p r p r α = × + × + × + × + × + ×

where the reectance of each one of the bands (from 2 to 7)was obtained by Chander & Markham (2003):

( )ref ,b ref ,b b

br

Add Mult ND

r cos Zd

+

=

where:Add ref,b and Mult ref,b - represent additive and multiplicative

terms of the reectance of each band, extracted from themetadata of each image (group = radiometric_rescaling), aswell as the Sun zenith angle - Z;

NDb - intensity of each pixel and band (value between 0and 65365);

b - subscript representing each one of the six OLI bands; anddr - corresponds to the correction of the eccentricity of

the terrestrial orbit, given by:

2

r ES

1d

d

=

where:

(1)

(2)

(6)

(5)

(4)

(3)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 6/96

6 Bernardo B. da Silva et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.3–8, 2016.

dES - Earth-to-Sun distance (astronomic unit) on the dayof each image, also extracted from the metadata.

For the determination of each weight (p b), it is necessaryto estimate the solar constant (K b, W m -2 μm-1) associated witheach one of the OLI reective bands and, for this, the Eq. 7 wasused according to Chander & Markham (2003).

radiation based on the additive and multiplicative terms (group= radiometric_rescaling), both in the calculation of spectralradiance and in the determination of spectral reectance, forintegrating the same group of metadata.

Tere are different techniques for the determination ofsurface albedo through orbital images. However, the mostused one with Landsat images in researches involving radiation

and energy balances results from the proposal developed byZhong & Li (1988). Tis technique requires the identicationof the weights or relative contribution of each spectral bandin the composition of the albedo in the entire solar radiationspectrum, which is widely known (Bastiaanssen el al., 1998;Allen et al., 2002; 2007; Silva et al., 2005a,b). For Landsat 8,these weights have not yet been published and one of theobjectives of this study is their determination, specically forOLI. For this, the specic solar constant (K b) of each one ofthe OLI bands from 2 to 7 was obtained based on Eq. 7. Te values of Kb (W m -2 μm-1 sr-1) for the ve selected days areshown in able 4. As observed for each OLI image, these valuessuffered a sharp change, resulting from the alterations of Lmaxand Lmin, which were used for the radiometric calibrationof M and E M+ images. Tus, based on these results, it isrecommended not to use the methodology that employs Lminand Lmax, but only the reectances (Eq. 5) and the planetaryalbedo (Eq. 4) with the mean weights represented in able 5.As can be seen in this able, these values can be considered as

b b

b r

Lk

r cosZd

π=

where:Lb (W m -2 sr-1 µm-1) - radiance of each pixel of the b-band

and the other terms have already been described.

For the determination of the L b of each pixel and band, theadditive (Add rad,b) and multiplicative (Mult rad,b) terms relativeto the radiance were used, also extracted from the metadata ofeach image, calculated according to the equation:

b rad,b rad,b bL Add Mult ND= +

Te value of each weight (p b) of each spectral band wasobtained by the ratio between the k b of that band and the sum ofall the k b values used in the calculation of the albedo, similar towhat has been done in the SEBAL and ME RIC (Bastiaanssenet al., 1998; Allen et al., 2007; asumi et al., 2008).

R D

Te data extracted from the metadata, which were used inthe calculation of the radiance and reectance of OLI-Landsat8 bands 2 to 7, for two of the ve days selected for the study areshown in able 3. For each one of the selected days, the values ofAdd rad and Mult rad were different. However, with respect to thereectances, these factors remain constant, which constitutesan important simplication in the process of calculation ofthese reflectances. Many researches on radiation balancewith Landsat 5 and 7 images have used maximum (Lmax)and minimum (Lmin) radiances in the process of conversionof the gray level into spectral radiance (Bastiaanssen et al.,1998; Allen et al., 2002; 2007; Silva et al., 2005b; 2011). Tese values were updated over time but remained constant for someyears (Chander & Markham, 2003; Chander et al., 2009). Inthe case of OLI-Landsat 8, however, for each image obtainedin 2013 used in this study, the values of Lmax and Lminsuffered changes. Terefore, it is recommended to determine

Table 3. Values extracted from the metadata of the ordinal date - OD 175 (June 24) and 303 (October 30), with therespective multiplicative (Mult) and additive (Add) factors used in the calculation of radiance (Mult rad and Add rad) andre ectance (Mult ref and Add ref ) of each pixel of the studied area

Table 4. Values of the solar constant - K b (W m -2 µm -1 sr -1)speci c for the OLI-Landsat 8 bands from 2 to 7, in differentordinal dates (OD)

Table 5. Weights to be used in albedo calculation, speci cfor the OLI-Landsat 8 bands from 2 to 7, in different ordinaldates (OD)

(7)

(8)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 7/96

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 8/96

8 Bernardo B. da Silva et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.3–8, 2016.

Allen, R. G.; rezza, R.; asumi, M. Surface energy balance algorithmsfor land. Advance training and user’s manual, version 1.0.Kimberly: Te Idaho Department of Water Resources, 2002. 98p.

Arraes, F. D. D.; Andrade, E. M. de; Silva, B. B. da. Dinâmica dobalanço de energia sobre o açude de Orós e suas adjacências.Revista Caatinga, v.25, p.119-127, 2012.

Bastiaanssen, W. G. M.; Menenti, M.; Feddes, R. A.; Holslag, A. A.M. A. Remote sensing surface energy balance algorithm for land(SEBAL) - Formulation. Journal of Hydrology, v.212-213, p.198-212, 1998. http://dx.doi.org/10.1016/S0022-1694(98)00253-4

Bezerra, J. M.; Moura, G. B. de A.; Silva, B. B. da; Lopes, P. M. O.;Silva, E. F. de F. e. Parâmetros biofísicos obtidos por sensoriamentoremoto em região semiárida do estado do Rio Grande do Norte,Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, v.18, p.12 3-13 0, 20 14 . ht tp :/ /d x.do i.org/ 10 .1 590/ S141 5-43662014000100010

Chander, G.; Markhan, B. Revised Landsat 5 - M radiometriccalibration procedures and post calibration dynamic ranges.

IEEE ransactions on Geosciences and Remote Sensing, v.41,p.2674-2677, 2003. http://dx.doi.org/10.1109/ GRS.2003.818464

Chander, G.; Markham, B. L.; Helder, D. L. Summary of currentradiometric calibration coefficients for Landsat MSS, M, E M+,and EO-1 ALI sensors. Remote Sensing of Environment, v.113,p.893-903, 2009. http://dx.doi.org/10.1016/j.rse.2009.01.007

Giongo, P. R.; Moura, G. B. A.; Silva, B. B. da; Rocha, H. R. da; Medeiros,S. R. R. de; Nazareno, A. C. Albedo à superfície a partir de imagensLandsat 5 em áreas de cana-de-açúcar e cerrado. Revista Brasileirade Engenharia Agrícola e Ambiental, v.14, p.279-287, 2010. http://dx.doi.org/10.1590/S1415-43662010000300007

Gusmão, A. C. V. L.; Silva, B. B. da; Montenegro, S. M. G. L.; Galvíncio,J. D. Determinação do saldo radiativo na Ilha do Bananal, O,com imagens orbitais. Revista Brasileira de Engenharia Agrícolae Ambiental, v.16, p.1107-1114, 2012. http://dx.doi.org/10.1590/S1415-43662012001000011

Hucek, R.; Jacobowitz, H. Impact of scene dependency on AVHRRalbedo models. Journal of Atmospheric and Oceanic echnology, v.12, p.697-711, 1995. http://dx.doi.org/10.1175/1520-0426(1995)012%3C0697:IOSDOA%3E2.0.CO;2

Krayenhoff, E. S.; Voogt, J. A. Impacts of urban albedo increase onlocal air temperature at daily-annual time scales: model resultsand synthesis of previous work. Journal of Applied Meteorology

and Climatology, v.49, p.1634-1648, 2010. http://dx.doi.org/10.1175/2010JAMC2356.1

Liang, S. Narrowband to broadband conversions of land surfacealbedo I Algorithms. Remote Sensing of Environment, v.76, p.213-238, 2000. http://dx.doi.org/10.1016/S0034-4257(00)00205-4

Loew, A.; Govaerts, Y. owards multidecadal consistency meteosatsurfasse albedo. Remote Sensing, v.2, p.957-967, 2010. http://dx.doi.org/10.3390/rs2040957

Lopes, P. M. O.; Valeriano, D. de M.; Silva, B. B. da; Moura, G.B. A.; Silva, A. O. Simulação do saldo de radiação na Serrada Mantiqueira. Revista Brasileira de Engenharia Agrícola eAmbiental, v.17, p.780-789, 2013. http://dx.doi.org/10.1590/S1415-43662013000700013

Machado, C. C. C.; Silva, B. B. da; Albuquerque, M. B.; Galvíncio,J. D. Estimativa do Balanço de energia utilizando imagens M- Landsat 5 e o algoritmo SEBAL no litoral sul de Pernambuco.Revista Brasileira de Meteorologia, v.29, p.55-67, 2014. http://dx.doi.org/10.1590/S0102-77862014000100006

Mattar, C.; Franch, B.; Sobrino, J. A.; Corbari, C.; Jiménez-Muñoz,J. C.; Olivera-Guerra, L.; Skokovic, D.; Sória, G.; Oltra-Carriò,

R.; Julien,Y.; Mancini, M. Impacts of the broadband albedo onactual evapotranspiration estimated by S-SEBI model over anagricultural area. Remote Sensing of Environment, v.147, p.23-42,2014. http://dx.doi.org/10.1016/j.rse.2014.02.011

Mueller, R.; rentmann, J.; rager-Chatterjee, C.; Posselt, R.; RetoStockli, R. Te role of the effective cloud albedo for climatemonitoring and analysis. Remote Sensing, v., p.2305-2320, 2011.

Oliveira, L. M. M.; Montenegro, S. M. G. L.; Antonino, A. C. D.;Silva, B. B. da; Machado, C. C. C.; Galvíncio, J. D. Análisequantitativa de parâmetros biofísicos de bacia hidrográfica,obtidos por sensoriamento remoto. Pesquisa AgropecuáriaBrasileira, v.47, p.1209-1217, 2012. http://dx.doi.org/10.1590/

S0100-204X2012000900005Rodrigues, J. O.; Andrade, E. M. de; eixeira, A. S.; Silva, B. B da.

Sazonalidade de variáveis biofísicas em região semiárida peloemprego do sensoriamento remoto. Engenharia Agrícola, v.29, p.452-465, 2009. http://dx.doi.org/10.1590/S0100-69162009000300012

Silva, B. B. da; Bezerra, M. V. C. Determinação dos uxos de calorsensível e latente na superfície utilizando imagens M - Landsat5. Revista Brasileira de Agrometeorologia, v.14, p.174-186, 2006.

Silva, B. B. da; Braga, A. C.; Braga, C. C. Balanço de radiação noperímetro irrigado São Gonçalo - PB mediante imagens orbitais.Revista Caatinga, v.24, p.145-152, 2011.

Silva, B. B. da; Lopes, G. M.; Azevedo, P. V. de. Determinação doalbedo de áreas irrigadas com base em imagens Landsat 5- M.Revista Brasileira de Agrometeorologia, v.13, p.201-211, 2005a.

Silva, B. B. da; Lopes, G. M.; Azevedo, P. V. de. Balanço de radiaçãoem áreas irrigadas utilizando imagens Landsat 5 - M. RevistaBrasileira de Meteorologia, v.20, 243-252, 2005b.

Souza, J. D. de; Silva, B. B. da; Ceballos, J. C. Surface albedo obtainedwith MODIS images in cases of low and high aerosol loading inthe atmosphere. Revista Brasileira de Geofísica, v.32, p.5-20, 2014.

asumi, M.; Allen, R. G.; rezza, R. At-surface reectance and albedofrom satellite for operational calculation of land surface balance.Journal of Hydrologic Enginnering, v.13, p.51-63, 2008. http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51)

Tornthwaite, C. W.; Matther, J. R. Te water balance. Centerton:Drexel Institute of echnology - Laboratory of Climatology.1944. 104p.

Wang, S; Davidson, A. Impact of climate variations on surface albedoof a temperate grassland. Agricultural and Forest Meteorology, v.142, p.133-142, 2007.

Wydick, J.; Davies, P.; Gruber, A. Estimation of broadband planetaryalbedo from operational narrowband satellite measurements.Washington: National Oceanic and Atmospheric Administration,1987. 32p, NOAA echnical Report, NESDIS 27.

Zhong, Q.; Li, Y. H. Satellite observation of surface albedo over theQinghai-Xizang plateau region. Advances in Atmospheric Science, v.5, p.57-65, 1988. http://dx.doi.org/10.1007/BF02657346

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 9/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.9–15, 2016

Contribution o non-exchangeable potassium ormsand its accumulation in corn plantsMontesquieu da S. Vieira1, Fábio H. . de Oliveira2,Hemmannuella C. Santos3 & Jailma dos S. de Medeiros4

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p9-15

A B S T R A C TTe state o Paraíba, Brazil, has soils rom well- to poorly-developed, in which potassium (K)is ound in different levels, orms and, consequently, with varying availability to plants. Teobjective o this study was to evaluate the contribution o non-exchangeable K orms to cornplants in 12 soils rom Paraíba state, along our successive cycles. Te experimental designwas completely randomized block with three replicates and the 24 treatments consisted othe combination between two K levels (0 and 100 mg dm-3) and 12 soils. Be ore and afereach cycle, subsamples o 0.2 dm3 were collected in each pot or the determination o non-exchangeable K (Kne), exchangeable K (Ke) and soluble K (Ks). For each cycle, dry matterproduction, dry matter K content and plant K content (absorbed K) were determined. Inthe studied soils, the amounts o absorbed K afer successive cycles were higher than theamounts o exchangeable K released, which shows the contribution o non-exchangeableK orms to corn nutrition.

Contribuição de ormas não-trocáveisde potássio para seu acúmulo em plantas de milhoR E S U M ONo estado da Paraíba ocorrem desde solos bem desenvolvidos até solos pouco desenvolvidosem que o potássio (K) é encontrado em di erentes teores, ormas e, consequentemente,com disponibilidade variada para as plantas. Neste sentido se objetivou, com este trabalho,avaliar a contribuição das ormas não trocáveis de K para plantas de milho em 12 solos doestado da Paraíba por meio de quatro cultivos sucessivos. O delineamento experimentalutilizado oi o de blocos casualizados com três repetições e os 24 tratamentos consistiramda combinação de duas doses de K (0 e 100 mg dm-3) e 12 solos. Antes e após cada cultivode milho oram retiradas, de cada vaso, subamostras de 0,2 dm3 para determinação dosteores de K não-trocável (Knt), K trocável (Kt) e K solúvel (Ks). Para cada cultivo oramdeterminados a produção de matéria seca, o teor de K na matéria seca e o conteúdo deK na planta (K absorvido). Nos solos estudados as quantidades de K absorvido após oscultivos sucessivos oram maiores que as quantidades de K trocável liberadas o que evidenciacontribuição de ormas não trocáveis de K para a nutrição do milho.

Key words:Northeastern soilsmineralogy K ormsK availability

Palavras-chave:solos do Nordestemineralogia

ormas de Kdisponibilidade de K

1 Instituto Federal de Educação, Ciência e ecnologia do Rio Grande do Norte/Diretoria Acadêmica. Ipanguaçu, RN. E-mail: [email protected] Universidade Federal Rural do Semi-Árido/Departamento de Ciências Ambientais e ecnológicas. Mossoró, RN. E-mail: abio@u ersa.edu.br3 Universidade Federal da Paraíba/Centro de Ciências Humanas, Sociais e Agrárias/Departamento de Agricultura. Bananeiras, PB, E-mail: hcs.u [email protected](Corresponding author)

4 Universidade Federal da Paraíba/Centro de Ciências Agrárias. Areia, PB. E-mail: [email protected]

Protocolo 223-2014 – 02/07/2014 • Aprovado em 03/07/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 10/96

10 Montesquieu da S. Vieira et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.9–15, 2016.

I

Potassium (K) is the second most required element bythe majority o the cultivated plants; its absorption by plantstriggers a continuous process o depletion o the different ormso K, which is more pronounced when the contents o availableK are lower. Te supply o K is buffered by its exchangeable

and non-exchangeable orms, adsorbed with low and highbinding energy in the exchange sites, respectively (Kaminski etal., 2007). Tus, the K o the structural orms o eldspars andmicas and the K retained in the interlayers o some expandable2:1 clay minerals are considered as non-exchangeable K ormsthat can act as a source o K to plants (Fraga et al., 2009).

In well-developed soils, the exchangeable K is the mostimportant reserve o available K to plants, which justiesthe determination o only this chemical orm to evaluate itsavailability in these soils. Currently, it is estimated that thereare more than 30 chemical extractors to evaluate the availableK in the soil, and 1 mol L-1 NH4OAc at pH 7.0 is the standard

extractor to evaluate the exchangeable K in the soil (Helmke& Sparks, 1996).Extractors such as Mehlich-1 and mixed ion exchange resin

only estimate the available K in the soil and are the most usedin Brazil (Raij et al., 2001); in the state o Paraíba, Mehlich-1is the only K extractor used in routine analysis. However, allsoils, to a greater or lesser degree, have K in orms that are non-exchangeable or not conventionally extracted to evaluate Kavailability, which contribute to the K nutrition o the cultivatedplants (Werle et al., 2008).

Since the state o Paraíba has soils rom well- to poorly-developed, with great variations in their chemical, physical andmineralogical characteristics (Brasil, 1972), it is essential toevaluate their capacity to supply K to plants, through its non-exchangeable orms. Tere ore, this study aimed to evaluate thecontribution o non-exchangeable K orms to corn plants in 12soils o the state o Paraíba, Brazil, along our successive cycles.

M M

Samples rom the layer o 0-30 cm o twelve soils rom thestate o Paraíba, Brazil, were used. Te soils were classied

by Brasil (1972) and t in the new classication proposedby EMBRAPA (2006) as Yellow Argisol (PA); Gray Argisol(PAC); Eutrophic Red Argisol (PVe); Red Yellow Argisol(PVA); Yellow Latosol (LA); Distrophic Red Argisol (PVd);Regolithic Neosol (RR); Litholic Neosol (RL); Haplic Luvisol( X); Haplic Planosol (SX); Fluvic Neosol (RY); and HaplicVertisol (VX). Te samples were subjected to chemical, physical

and mineralogical analysis ( ables 1 and 2) in the Laboratoryo Soil and Rural Engineering, at the Center o AgriculturalSciences o the Federal University o Paraíba, according to themethodology described in Donagema et al. (2011).

Te liming requirement o the soils was calculated throughthe methods o Al3+ neutralization and increase in the contentso Ca2+ and Mg2+, and through the base saturation method(Alvarez V. & Ribeiro, 1999), according to Farias et al. (2009a).

Afer correcting the acidity o all the soils, two doses oK were applied (0 and 100 mg dm-3) in the orm o KCl (A.R.grade) in solution and the soils were incubated or 21 days.Tese two incubation periods were per ormed with soil samples(3.2 dm3) inside plastic pots in a greenhouse. A ter eachincubation period, the samples o all the soils were air-dried,pounded to break up clods, sieved through a 4-mm screen andplaced back into the pots.

Immediately afer the incubation period o K doses withthe soils and be ore corn planting, a soil sample o 0.2 dm3 wascollected in each pot or the determination o the contents oexchangeable K; soluble K, extracted with distilled water andnon-exchangeable K, which was estimated by subtracting thecontent o exchangeable K, extracted with 1 mol L-1 NH4OAc atpH 7.0, rom the content o K in the soil, extracted with boiling1 mol L-1 HNO3 (Helmke & Sparks, 1996). For each soil and allextractors, the soil K contents in mg kg-1 were multiplied bysoil density in order to obtain the results in mg dm-3.

Te remaining volume o soil (3.0 dm3) received a ertilizationwith macro and micronutrients, except K, according to Farias etal. (2009b). Afer ertilization, the soil samples were placed backinto the pots and moistened with an amount o distilled watercorresponding to 50% o soil total porosity.

Immediately a ter the ertilization with macro andmicronutrients, the 2C577 hybrid corn cultivar was planted.

(1)Analysis performed according to the methodologies described in Donagema et al. (2011);(2) EMBRAPA (2006): PA - Yellow Argisol; PAC - Gray Argisol; PVe - Eutrophic Red Argisol; PVA -Red Yellow Argisol; LA - Yellow Latosol; PVd - Distrophic Red Argisol; RR - Regolithic Neosol; RL - Litholic Neosol; TX - Haplic Luvisol; SX - Haplic Planosol; RY - Fluvic Neosol; VX - HapVertisol; OC - Organic carbon.(3)Medeiros et al. (2014); (4)More-developed soils: Ki ≤ 2.46; Less-developed soils: Ki ≥ 2.46;(5)Alvarez V. et al. (2000)

Table 1. Chemical characteristics of 12 soils representative of the state of Paraíba, Brazil (1)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 11/96

11Contribution of non-exchangeable potassium forms and its accumulation in corn plants

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.9–15, 2016.

Tirty days afer sowing, the shoots o the plants in each potwere cut at a height o 1 cm rom the soil and then subjectedto a pre-drying in a greenhouse. Te roots were removed rom

the pots and the soil adhered to them was initially separatedwith tap running water and then using distilled water througha quick wash.

Afer plant harvest at the end o the rst cycle, a soilsubsample o 0.1 dm3 was collected rom each one o the 72 pots

or the determination o the contents o soluble K, exchangeableK and non-exchangeable K. Te remaining volume o soil wasplaced back into the pot or the next three cycles, as done orthe rst cycle, rom sowing to harvest and not allowing theoccurrence o deciency o other nutrients to plants.

Afer pre-drying, the material was placed in per oratedpaper bags and dried in a orced-air oven at 70 ºC, until

constant weight. Shoot and root dry matters were mixed,ground in a Wiley-type mill and mineralized through sul uricdigestion, and K was determined in the extracts through amephotometry ( edesco et al., 1995).

From the values o dry matter production, obtainedthrough the weighing o the plants in each pot, and K contentsin the dry matter, the total contents o K in the dry matter werecalculated. Te amounts o K extracted rom the soil by plantswere calculated by dividing the total contents o K in the drymatter by the soil volume o each pot and were expressed inthe same unity (mg dm-3) used or the extractors.

Te amounts o Kne and Ke released afer our successive

cycles were obtained by the difference between the initial valueo these K orms and the value obtained afer the last cycle.Both orms were added and the percentages in relation to theK absorbed by plants were calculated.

Soil ertilization or the other cycles was per ormed accordingto Farias et al. (2009b) and consisted o two applications o N inthe orm o commercial urea (60 and 70 mg dm-3). Along with

this last N application, 32.98 mg dm-3

o S [(NH4)2SO4], 40 mgdm-3 o Ca (CaCl2.2H2O), 72.5 mg dm-3 o Mg (MgSO4.7H2O)and 50 mg dm-3 o P (NH4H2PO4) were applied.

In the third cycle, 87.5 mg dm-3 o P were applied in thesoils PA, LA, PVe, X, RY, RL and SX, 75 mg dm-3 o P wereapplied in PAC and RL, and 102.5 mg dm-3o P were applied inPVd, PVA and VX. In addition, all soils received 30 mg dm-3 oS [(NH4)2SO4] and 0.2 mg dm-3 o B(H3BO3), 2 mg dm-3 o Fe(FeCl3.6H2O), 1 mg dm-3 o Cu (CuSO4.5H2O), 2 mg dm-3 oMn (MnCl2.4H2O) and 2 mg dm-3 o Zn (ZnSO4.7H2O). Tis

ertilization was per ormed only once, at sowing. In the ourth planting, three N doses (commercial urea)

were applied rom the 7th

day afer planting on, consistingo one application o 60 mg dm-3 and the others o 50 mgdm-3 each. Along with the rst N application, 50 mg dm-3 oP (NH4H2PO4), 60 mg dm-3 o Ca (CaCl2.2H2O), 20 mg dm-3 o Mg and 28 mg dm-3 o S (MgSO4.7H2O) were also applied.

Tese ertilizations were used based on expertise and theidentication o possible symptoms o nutritional deciency.Afer each cycle, the procedures o harvest and preparation othe material or the analysis o plant K contents were repeated.

Te statistical analysis consisted o analysis o variance,regression and correlation.

R DMean values o dry matter, plant K content and absorbed

K decreased along the successive cycles ( able 3). Dry matter

(1)PA - Yellow Argisol; PAC - Gray Argisol; PVe - Eutrophic Red Arg isol; PVA - Red Yellow Argisol; LA - Yellow Latosol; PVd - Dystrophic Red Argisol; RR - Regolithic Neosol; RL - Litholic NeosoTX - Haplic Luvisol; SX - Haplic Planosol; RY - Fluvic Neosol; VX - Haplic Vertisol.(2)Brasil (1972);(3)Donagema et al. (2011);(4)Kt - kaolinite; Gb - Gibbsite; Gt - Goethite; Mi - Mica; (2:1): 2:1mineral; Hm: hematite; Qz: quartz; Fp: feldspar; Minerals are shown in the order of predominance in the soil;(5) More-developed soils: Ki ≤ 2.46 (Except RR); Less-developed soils: Ki ≥ 2.46.

Table 2. Soil class, geological formation and lithology (2), textural analysis (3) and sampling location of soils representativeof the state of Paraíba, Brazil

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 12/96

12 Montesquieu da S. Vieira et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.9–15, 2016.

production in the rst cycle was similar between the two soilgroups, with mean o 23.6 g pot-1 or the more-developed soilsand 24.9 g pot-1 or the less-developed soils.

From the second cycle on, the difference between thetwo soil groups became more evident and the dry matterproduction in less-developed soils (17.5 g pot-1) was 2.4 timeshigher than that observed in more-developed soils (7.4 g pot-1).In the third cycle, in which corn cultivation was still possiblein all the soils, the dry matter production in less-developedsoils was, on average, 5.6 times higher than in more-developedsoils ( able 3).

In the ourth cycle, plants cultivated in the soils PA andPAC died a ew days afer emergence and, in PVA, LA, PVd,RR and RL, plants showed very limited growth ( able 3)and severe symptoms o K deciency in the leaves. Te soilsSX, RY and VX, which have the highest contents o clay andK-source minerals ( ables 1 and 2), were the ones with notmuch variation in dry matter production along the corn cyclesand with the highest dry matter productions in the ourthcycle ( able 3). Tis shows that less-developed soils withhigher proportion o mica and 2:1 silicate clays, especiallythe most clayey ones, are the soils with the highest capacity tosupply K to plants in medium and long term. Data o Santoset al. (2013) indicate that these soils show higher K bufferingcapacity (KBC), which avors the maintenance o K more orless constant in the soil solution or long periods. In addition,

the silt raction in the soil can also be a great source o non-exchangeable K (Silva et al., 2008).

K ertilization increased plant K contents during theirst cycle, especially in more-developed soils and in the

less-developed ones with higher sand contents (RR and RL).However, this effect only reected in a considerable increaseo corn dry matter production in the soils PA, PAC and RR( able 3), which are the ones with the highest sand contentsand the lowest Ke contents ( able 1). Tis benecial effect othe K dose on plant growth was virtually limited to the rstcycle ( able 3), evidencing the need to replenish the K exportedby the harvests afer each cycle in these soils. Soils with lowKBC, such as PA, PAC, RR and RL, require split and requentK ertilizations to maintain soil ertility (Santos et al., 2013).

Te dry matter production o plants cultivated in more-developed soils did not correlate (second, third and ourthcycles) or showed low correlation (rst cycle) with Ks contents( able 4), but showed good correlation with Kne contents andespecially with Ke contents.

In the more-developed soils, the correlation between Knecontent and dry matter production was low in the rst cycle,but it was high in the subsequent ones, possibly due to thecontribution o Kne to plant nutrition and growth, which isdirectly proportional to the depletion o soil Ke. Tere ore,the non-exchangeable K constituted a reserve o K suppliedto plants, thus guaranteeing their nutrition especially inmore-developed soils, as observed by Alves et al. (2013) andRosolem et al. (2012). Similar behavior was observed in theabsorbed K. It should be pointed out that the contribution osoluble K, rom the second cycle on, was not signicant in

more-developed soils, but was signicant until the third cyclein the less-developed ones.

Te amounts o Kne and Ke released and absorbed by cornplants afer our successive cycles are shown in able 5. In

Table 3. Dry matter production #, plant K content and absorbed K in the four successive corn cycles, as a function ofthe K doses added to more- and less-developed soils of the state of Paraíba, Brazil

(1) PA - Yellow Argisol; PAC - Gray Argisol; PVe - Eutrophic Red Argisol; PVA - Red Yellow Argisol; LA - Yellow Latosol; PVd - Dystrophic Red Argisol; RR - Regolithic Neosol; RL - LitholNeosol; TX - Haplic Luvisol; SX - Haplic Planosol; RY - Fluvic Neosol; VX - Haplic Vertisol.(2)Dry matter was not evaluated because plants died a few days after germination.(3)Parametersnot determined due to the lack or little amount of dry matter for the chemical analysis.# Means followed by the same letter do not differ at 0.05 probability level by F test

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 13/96

13Contribution of non-exchangeable potassium forms and its accumulation in corn plants

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.9–15, 2016.

more-developed soils with higher clay contents (PVe, PVA, LAand PVd), the amounts o Ke released afer our successive corncycles were similar to the amounts o K absorbed by plants inthe absence o K ertilization, while in more-developed soilswith lower clay contents (PA and PAC) this only occurredafer the application o the K dose o 100 mg dm-3 ( able 5).In the soils PA and PAC, in the absence o K ertilization, theamount o Kne + Ke released afer the cycles was lower thanthe K absorbed by plants, indicating that other orms o Kne,not extracted with boiling 1 mol L-1 HNO3, may have beenreleased and absorbed by plants.

When K was not added to less-developed soils, the releasedKe represented 20 (RY) to 74% ( X) o the K absorbed byplants. Tese values vary rom 21 (SX) to 84% (RR) when a Kdose o 100 mg dm-3 was added ( able 5). Te less-developedsoils with higher clay contents and predominance o mica

and 2:1 minerals in the clay raction (SX, RY and VX) ( able1) were the soils in which the released Ke represented only asmall raction o the amount o K absorbed by plants ( able 5).

In the soil SX, the released amounts o Kne + Ke werehigher than the amounts o K absorbed by plants, especially

or the K dose o 100 mg dm-3 ( able 5), evidencing that thenon-exchangeable orms o K released and absorbed by plantswere efficiently estimated by boiling 1 mol L-1 HNO3. Te samedid not occur in the soils RY and VX, in which the releasedKe represented only 20 to 40% o the great amount (589 to801 mg dm-3, respectively) o K absorbed by plants in thesesoils ( able 5).

According to Meurer et al. (1996), the K extractablewith boiling 1 mol L-1 HNO3, which is considered as areserve available in the medium term, can be an unreliableapproximation o the soil capacity or K supply, but it is not

necessarily related to the dynamics o K release in the soils.Furthermore, it should be considered the potential capacity othe acid treatment in the dissolution o structural K, similar toother strong acids, which can lead to an overestimation in thequantication o Kne contents in the soil. Te methodologyemployed in the present study uses a time o 15 minutes orsoil boiling with 1 mol L-1 HNO3, which is longer than the timeused in most studies ound (10 minutes).

In less-developed soils originated rom granite, Nachtigall

& Vahl (1991) observed high contents o K extracted by boiling1 mol L-1 HNO3, which was not released to plants. Similarresults were observed by Mielniczuk & Selbach (1978) in soilso the state o Rio Grande do Sul. In other cases, boiling 1 molL-1 HNO3 can underestimate Kne, indicating a participation onon-exchangeable orms used by plants that are not extractedthrough this methodology (Nachtigall & Vahl, 1991; Silva etal., 2000; Cabbau et al., 2004; Villa et al., 2004). Tese results,as the ones observed in the present study, compromise thegeneralization o the use o boiling 1 mol L-1 HNO3 as an indexo Kne supply to plants.

With the data rom able 5, multiple and single linear

regression equations were adjusted to the accumulated K inthe plants as a variable o Kne and/or Ke ( able 6). In more-developed soils, variations in the K absorbed by plants are verywell explained (R 2 = 0.99) by the variations in the Ke released,

Table 4. Coef cients of single linear correlation betweenthe variables non-exchangeable K content (Kne),exchangeable K content (Ke) soluble K content (Ks), drymatter and absorbed K content

(1)MDS - More-developed soils (n = 12 for each cycle individually and n = 48 for all thecycles); (2)LDS - Less-developed soils (n = 12 for each cycle individually and n = 48 forall the cycles);(3)ALL - All the soils (n = 24 for each cycle individually and n = 96 for all the cycles); *,**Signi cant at 0.05 and 0.01 probability level, respectively;nsNot signi cant

Table 5. Amounts of non-exchangeable K (Kne) andexchangeable K (Ke) released and K absorbed by cornplants after four successive cycles, as a function of K dosesadded to more- and less-developed soils of the state ofParaíba, Brazil

(1) PA - Yellow Argisol; PAC - Gray Argisol; PVe - Eutrophic Red Argisol; PVA - Red YellowArgisol; LA - Yellow Latosol; PVd - Dystrophic Red Argisol; RR - Regolithic Neosol; RL -

Litholic Neosol; TX - Haplic Luvisol; SX - Hapl ic Planosol; RY - Fluvic Neosol; VX - HaplicVertisol.(2)Values in parentheses are percentages calculated in relation to the absorbed K;(3)

Final values of non-exchangeable K were higher than the initial value

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 14/96

14 Montesquieu da S. Vieira et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.9–15, 2016.

but little explained (R 2 = 0.43) by the variations in the Knecontents released. According to the multiple regression model,the variable Kne did not contribute to the increase in R 2 and thecoefficient o the model associated with this variable was notsignicant. Tus, it can be concluded that, in more-developedsoils, the variations in the amounts o K absorbed by plantsare exclusively explained by the variations in the amounts o

Ke released afer the cycles.In less-developed soils, variations in the K absorbed by plants

were partially explained (R 2 = 0.61) by the variations in the Kereleased, but were not explained (R 2 = 0.13 and not signicanteffect or Kne) by the variations in the contents o Kne released( able 6). Considering the variables Kne and Ke together in themultiple regression model, the value o R 2 increased to 0.72.Tis R 2 value is still lower than 0.99, evidencing once more thatin less-developed soils, not all the non-exchangeable orms oK susceptible to absorption by plants were extracted rom thesoil with boiling 1 mol L-1 HNO3, as previously mentioned.When these regression equations were adjusted consideringthe twelve soils together, the R 2 values were much lower ( able6), evidencing that the separation o the soils into two groupsaccording to the degree o development was important to betterunderstand the studied phenomenon.

Alvarez V., V. H.; Ribeiro, A. C. Calagem. In: Ribeiro, A. C.; Guimarães,P. . G.; Alvarez V., V. H. Recomendações para o uso de corretivose ertilizantes em Minas Gerais. Viçosa: Comissão de Fertilidadedo Solo do Estado de Minas Gerais, 1999. p.43-60.

Alves, M. J. F.; Melo, V. F.; Reissmann, C. B.; Kaseker, J. F. Reservamineral de potássio em Latossolo cultivado comPinus taeda L. Revista Brasileira de Ciência do Solo, v.37, p.1599-1610, 2013.

http://dx.doi.org/10.1590/S0100-06832013000600016Brasil. Levantamento exploratório reconhecimento de solos do estado

da Paraíba. Rio de Janeiro: SUDENE, 1972. 683p.Cabbau, A. R.; Faquin, V. F.; Fernandes, L. A.; Andrade, A. .;

Lima Sobrinho, R. R. Resposta e níveis críticos de potássiopara o arroz cultivado em solos de várzea inundados. Ciência eAgrotecnologia, v.28, p.75-86, 2004. http://dx.doi.org/10.1590/S1413-70542004000100010

Donagema, G. K.; Campos, D. V. B.; Calderano, S. B.; eixeira, W. G.;Viana, J. H. Manual de métodos de análises de solos. 2.ed. Rio deJaneiro: Embrapa Solos, 2011. 230p.

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. SistemaBrasileiro de Classicação de Solos. 2.ed. Rio de Janeiro: EmbrapaSolos, 2006. 306p.

Farias, D. R.; Oliveira, F. H. .; Santos, D.; Arruda, J. A.; Hoffmann,R. B.; Novais, R. F. Fós oro em solos representativos do estado daParaíba: I- Isotermas de adsorção e medidas do ator capacidadede ós oro. Revista Brasileira de Ciência do Solo, v.33, p.623-632,2009a. http://dx.doi.org/10.1590/S0100-06832009000300015

Farias, D. R.; Oliveira, F. H. .; Santos, D.; Arruda, J. A.; Hoffmann,R. B.; Novais, R. F. Fós oro em solos representativos do estadoda Paraíba: I- Disponibilidade de ós oro para plantas demilho. Revista Brasileira de Ciência do Solo, v.33, p.633-646,

2009b. http://dx.doi.org/10.1590/S0100-06832009000300016Fraga, . I.; Genro Júnior; S. A.; Inda, A. V.; Anghinoni, I. Suprimento

de potássio e mineralogia de solos de várzea sob cultivossucessivos de arroz irrigado. Revista Brasileira de Ciência doSolo, v.33, p.497-506, 2009. http://dx.doi.org/10.1590/S0100-06832009000300003

Helmke, P. A.; Sparks, D. L. Lithium, sodium, rubidium and cesium.In: Sparks, D. L.; Page, A. L.; Helmke, P. A.; Loeppert, R. H.;Soltanpour, P. N.; abatabai, M. A.; Johnston, C. .; Sumner, M.E. Methods o soil analysis. Madison: SSSA/ASA, 1996. p.551-574.

Kaminski, J.; Brunetto, G.; Moterle, D. F.; Rheinheimer, D. S. Depleçãode ormas de potássio de solos a etada por cultivos sucessivos.Revista Brasileira de Ciência do Solo, v.31, p.1003-1010, 2007.http://dx.doi.org/10.1590/S0100-06832007000500017

Medeiros, J. S.; Oliveira, F. H. .; Santos, H. C.; Arruda, J. A.; Vieira,M. S. Formas de potássio em solos representativos do estadoda Paraíba. Revista Ciência Agronômica, v.45, p.417-426, 2014.http://dx.doi.org/10.1590/S1806-66902014000200025

Meurer, E. J.; Kämp , N.; Anghinoni, I. Fontes potenciais de potássioem alguns solos do Rio Grande do Sul. Revista Brasileira deCiência do Solo, v.20, p.41-47, 1996.

Mielniczuk, J.; Selbach, P. A. Capacidade de suprimento de potássiode seis solos do Rio Grande do Sul. Revista Brasileira de Ciência

do Solo, v.2, p.115-120, 1978.Nachtigall, G. R.; Vahl, L. C. Capacidade de suprimento de potássiodos solos da região sul do Rio Grande do Sul. Revista Brasileirade Ciência do Solo, v.15, p.37-42, 1991.

*,**, and oSigni cant at 0.01, 0.05 and 0.10 probability level, respectively;nsNot signi cant

Table 6. Multiple and single linear regression equationsfor the estimation of K absorbed by corn plants alongfour successive cycles (Y, in mg dm -3) as a functionof the contents (mg dm -3) of exchangeable K (Ke) andnon-exchangeable K (Kne) released, in more- and less-developed soils of the state of Paraíba, Brazil

C1. In all the studied soils, especially in the less-developed

ones with higher contents o clay and 2:1 minerals, theamounts o K absorbed afer successive cycles were higherthan the released contents o exchangeable K, evidencing thecontribution o non-exchangeable K orms to corn nutrition.

2. Te extractor 1 mol L-1 HNO3 in boiling water was notefficient to extract all the non-exchangeable K orms susceptibleto absorption by corn plants.

L C

Alvarez V., V. H.; Novais, R. F.; Dias, L. E.; Oliveira, J. A. Determinaçãoe uso do ós oro remanescente. Boletim In ormativo da SociedadeBrasileira de Ciência do Solo, v.25, p.27-32, 2000.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 15/96

15Contribution of non-exchangeable potassium forms and its accumulation in corn plants

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.9–15, 2016.

Raij, B. van; Andrade, J. C.; Cantarella, H.; Quaggio, J. A. Análisequímica para avaliação da ertilidade de solos tropicais. Campinas:Instituto Agronômico de Campinas, 2001. 285p.

Rosolem, C. A.; Vicentini, J. P. . M. M.; Steiner, F. Suprimento de potássioem unção da adubação potássica residual em um Latossolo Vermelhodo Cerrado. Revista Brasileira de Ciência do Solo, v.36, p.1507-1515,2012. http://dx.doi.org/10.1590/S0100-06832012000500015

Santos, H. C.; Oliveira, F. H. .; Hoffmann, R. B.; Santos, D. Relaçõesquantidade/intensidade de potássio em solos representativos doestado da Paraíba – Brasil. Revista de Ciências Agrárias, v.56,p.338-346, 2013. http://dx.doi.org/10.4322/rca.2013.051

Silva, I. R.; Furtini Neto, A. E.; Fernandes, L. A.; Curi, N.; Vale, F. R.Formas, relação quantidade/intensidade e biodisponibilidadede potássio em di erentes Latossolos. Pesquisa AgropecuáriaBrasileira, v.35, p.2065-2073, 2000. http://dx.doi.org/10.1590/S0100-204X2000001000019

Silva, V. A.; Marchi, G.; Guilherme, L. R. G.; Lima, J. M.; Nogueira, F.D.; Guimarães, P. . G. Kinetics o K release rom soils o Braziliancoffee regions: effect o organic acids. Revista Brasileira de Ciênciado Solo, v.32, p.533-540, 2008. http://dx.doi.org/10.1590/S0100-06832008000200008

edesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss,S. J. Análises de solo, plantas e outros materiais. Porto Alegre:

UFRGS, 1995.174p.Villa, M. R.; Fernandes, L. A.; Faquin, V. Formas de potássio e sua

disponibilidade para o eijoeiro. Revista Brasileira de Ciênciado Solo, v.28, p.649-658, 2004. http://dx.doi.org/10.1590/S0100-06832004000400007

Werle, R.; Garcia, R. A.; Rosolem, C. A. Lixiviação de potássio emunção da textura e da disponibilidade do nutriente no solo.

Revista Brasileira de Ciência do Solo, v.32, p.2297-2305, 2008.http://dx.doi.org/10.1590/S0100-06832008000600009

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 16/96

Revista Brasileira de Engenharia Agrícola e Ambiental

Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.16–21, 2016

Soybean nutritional status and seed physiological quality with swine wastewaterOlga M. Passarin 1, Silvio C. Sampaio1, Danielle M. Rosa1, Ralpho R. dos Reis1 & Marcus M. Correa 2

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p16-21

A B S T R A C TSwine wastewater application is a practice that can become viable in agriculture, orminimizing ertilization costs and improving soil conditions. Tere ore, it is essentialto establish criteria that dene appropriate application doses rom the agronomic andenvironmental perspectives. Te objective o this study was to evaluate the effects o swinewastewater doses associated with mineral ertilization on soybean nutritional status andphysiological quality o seed. Te experiment was conducted in the agricultural year o2010/2011, using twenty- our drainage lysimeters in randomized block design in 4 x 2

actorial scheme, with our swine wastewater doses (0, 100, 200 and 300 m3 ha-1) appliedbe ore sowing, associated with presence and absence o mineral ertilization, in threereplicates. Leaves at the owering stage were collected or determinations o N, P, K+, Ca+2,Mg+2, Cu+2, Zn+2, Mn and Fe. Symptoms o toxicity and nutritional deciency were observedin the crop. Furthermore, higher doses o swine wastewater caused lower physiologicalquality in soybean seeds.

Estado nutricional e qualidade siológica de sementesde soja com água residuária da suinoculturaR E S U M OA disposição de água residuária da suinocultura é uma prática que se pode tornar viávelà agricultura, por minimizar custos com ertilização e melhorar as condições do solo.Para tanto, é undamental o estabelecimento de critérios que denam doses de aplicação

adequadas do ponto de vista agronômico e ambiental. O objetivo do presente trabalho oiavaliar o e eito de doses de água residuária de suinocultura associada à adubação mineral noestado nutricional da planta e na qualidade siológica da semente da soja. O experimento,conduzido no ano agrícola 2010/2011, oi realizado em 24 lisímetros de drenagem, emdelineamento em blocos casualizados em esquema atorial 4 x 2, sendo quatro doses deágua residuária da suinocultura, 0, 100, 200 e 300 m 3 ha -1 aplicadas antes da semeadura,combinadas com a presença e ausência de adubação mineral em três repetições. Folhasem estádio de orescimento oram coletadas para a determinação de N, P, K +, Ca+2, Mg+2,Cu+2, Zn+2, Mn e Fe. Sintomas de toxicidade e deciências nutricionais na cultura oramdetectados. Além disto, o aumento da dose de água residuária da suinocultura propicioumenor qualidade siológica nas sementes de soja.

Key words:mineral ertilizationswine wastewater reuse

Palavras-chave:ertilização mineral

dejeto suínoreúso de água

1 Universidade Estadual do Oeste do Paraná/Grupo de Pesquisa em Ciências Agro-Ambientais. Cascavel, PR. E-mail: [email protected];[email protected] (Corresponding author); [email protected]; [email protected]; [email protected] rpe.br

Protocolo 358-2014 – 09/10/2014 • Aprovado em 10/07/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 17/96

17Soybean nutritional status and seed physiological quality with swine wastewater

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.16–21, 2016.

I

Residues rom swine (Caovilla et al., 2010; Sampaio et al.,2010) and cattle (Ayuke et al., 2011) arming, or being rich innutrients, can be used as bio ertilizers in agriculture. In liquid

orm, these residues are more efficient when disposed on soilsur ace, supplying plants with water and nutrients (Caovilla

et al., 2010; Sampaio et al., 2010). On the other hand, theseresidues in liquid orm require more-detailed studies on theirdestination in the soil, because they can cause diffuse pollution,which is difficult to detect and control.

Studies show that the main negative effects caused bythe use o liquid residues in agriculture are related to watercontamination by nitrogen and phosphorus (Smanhotto etal., 2010) and accumulation o heavy metals on soil sur ace(Bosco et al., 2008b; Lucas et al., 2013). Te positive effects arerelated to the increase in organic matter and nutrients in thesoil (Assmann et al., 2007; Bosco et al., 2008a).

Additionally, there is a concern about the indiscriminate

use o antimicrobial agents, which can lead to the geneticresistance o soil microorganisms when present in the wastes(Munir et al., 2011; Liu et al., 2013). Tus, in order to search

or positive and negative effects o the use o effluents inagriculture, research studies have ocused on soil (Sampaioet al., 2010), leachate (Prior et al., 2009; Maggi et al., 2011),runoff (Bosco et al., 2008b; Doblinski et al., 2010; Wang et al.,2013) and on agricultural crops (Kessler et al., 2013a; 2013b).In addition to these topics, some studies also concentrate onthe soil biota ( essaro et al., 2013; Brooks et al., 2014).

Researches on the use o wastewater in the initialdevelopment stage o crops are still incipient; however,

the study o Pelissari et al. (2009) allows observing a greatpotential in the development o viable techniques on thisline. Tese authors observed that the time or the productiono Eucalyptus seedlings in plant nurseries decreased by 67%when the imported mineral ertilizer was substituted by swine

wastewater. As to the nutritional status o soybean plants, inthe study o Kessler et al. (2013a) there was no difference in thecontents o Cu+2, Fe+2, Mn+2, Ca+2 and P; on the other hand, thecontents o K+, Mg+2, pH, N, B and Zn +2 were changed by themanagement with swine wastewater and mineral ertilization.

Te great potential o use o wastewater in agriculturalareas re ers to grasses and orests, due to the high nutrient

cycling power, especially o nitrogen. On the other hand,leguminous plants, such as soybean, are always associated withthe production o grasses on a arm, due to crop rotation, asin the Western region o Paraná, Brazil, where agriculturalcycles composed o soybean-corn-black oat with intensedapplications o swine wastewater are common. In the globalcontext in swine-producing regions, where grain productionis also concentrated, the effects o the application o organicbio ertilizers (Carvalho et al., 2001), tannery sludge (Costaet al., 2001), biosolids (Currie et al., 2003) and sewage sludge(Vieira et al., 2005) on soybean plants started to be studied.

Based on the above and aiming to contribute to the state o

the art on the subject, this study aimed to evaluate the effectso 4 years o swine wastewater application on the nutritionalstatus o soybean and on the physiological quality o its seeds.

M M

Te experiment was carried out in the agricultural year o2010/2011. Te experimental area is located at the geographicalcoordinates o 24° 54' 02" S and 53° 32' 00" W, in Cascavel-PR, Brazil, at a mean altitude o 680 m. Te climate is veryhumid, mesothermal subtropical, with mean annual rain allo 1800 mm, mean temperature o 20 ºC and mean relative

air humidity o 75%. Te means o rain all and temperatureduring the experiment are shown in Figure 1. Te soil in thearea is classied as distro erric Red Latosol.

Te experimental area consisted o 24 plots, each one witharea o 1.60 m2. Tis area has a history o experiments that have

Figure 1. Monthly total rainfall and mean temperature recorded during the experiment

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 18/96

18 Olga M. Passarin et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.16–21, 2016.

virtually repeated the same agricultural management, onlychanging the crops. Te regional pattern o crop rotation ‘corn-black oat-soybean’ has been used since the rst experiment in2006, with cultivation o corn (Zea mays L.) (1º) and soybean(Glycine max (L.) Merrill) (2º); in 2007, black oat ( Avenastrigosa Schreb.) (3º) and soybean (4º); in 2008, black oat(5º) and baby corn (6º); in 2009, corn (7º), black oat (8º) and

soybean (9º); and in 2010, corn (10º) and black oat (11º). Tisstudy ocused on soybean cultivation (12º experiment).

Te treatments aimed to study the absence (A) and presence(P) o mineral ertilization (MF) combined with 4 doses oswine wastewater (SW): 0, 100, 200 and 300 m3 ha1, totaling 8treatments: ( 1) 0 SW-A, environmental control; ( 2) 0 SW-P,agronomic control; ( 3) 100 SW-A; ( 4) 100 SW-P; ( 5) 200SW-A; ( 6) 200 SW-P; ( 7) 300 SW-A; ( 8) 300 SW-P. Tepresence o MF represented conventional chemical ertilizationrecommended or the crop.

Te swine wastewater was collected in the outlet o thebiodigester o a piglet-producing unit and its chemicalcharacteristics are shown in able 1. Be ore sowing each crop,SW was applied in the experimental units according to thetreatments. he soybean cultivar CD 208 (COODE EC),which has a semi-early cycle o 131 days, was planted usinga density o 20 seeds per linear meter and spacing o 45 cmbetween rows. At sowing, 250 kg ha -1 o NPK ormulation(0:20:20) were applied.

Following the methodology described by EMBRAPA(1999), leaves with petioles were collected or diagnosis,corresponding to the 3º and 4º tri oliate leaves rom the mainstem, in the initial owering period. Tese leaves were washed,dried and prepared or the determination o nitrogen (N),phosphorus (P), potassium (K +), calcium (Ca+2), magnesium(Mg+2), copper (Cu +2), zinc (Zn +2), iron (Fe +2) and manganese(Mn), according to the methodology o edesco et al. (1995).From the obtained contents, the nutritional interpretationsuggested by EMBRAPA (1999) was per ormed, according

able 2.

Te germination test was per ormed according to the Rulesor Seed Analysis (Brasil, 2009). Te seeds were germinated on

germitest paper, moistened with distilled water; immediatelyafer, the seeds were placed in a BOD device at 25 ºC orseven days and the results were expressed in percentages ogerminated, abnormal and dead seeds.

Te experimental design was a 4 x 2 actorial scheme withour levels o SW and two o MF, with three replicates. Be ore

the analysis o variance, a descriptive data analysis and an errornormality test were per ormed. For the parameters that did notshow normal distribution o errors, data trans ormation wasper ormed. ukey test at 0.05 probability level was used orthe comparison o means. Regression analysis was per ormed

or the variables germinated, abnormal and dead seeds, as aunction o the application o SW doses. Te statistical program

Minitab 17 was used or the analysis.

R D

Tere were no signicant differences in the lea contentso N, P, Mn and Cu+2 between the treatments ( able 3). Swinewastewater (SW) and mineral ertilization (MF) promotedsignicant differences in the contents o K+, Ca+2 and Mg +2.Te content o K + increased proportionally to the applied SWdoses, which can be explained by the act that this element isrelatively mobile in the water-soil-plant system, contributingand acilitating its trans er to plants (Bertol et al., 2010).

Te behavior observed or Ca +2 and Mg+2 was contrary tothat or K+, i.e., its contents decreased with the increase in SW,indicating that these elements were retained in the soil matrix.

Te data o SW composition ( able 1) show that contents oCa+2 and Mg +2 are higher as compared to K +. Since the CECin Latosols is naturally high (in this experiment: 110-130mmol c dm -3), it leads to higher xation o bivalent elementssuch as Ca+2 and Mg +2, while K+ remains in the soil solution,available or absorption by plants.

In the diagnosed contents, the lowest P values wereobserved in the treatments with doses o 0 and 300 m 3 ha-1.It is pertinent to point out that, or Zn +2, the highest contentwas obtained in the treatments ertigated with the dose o 300m3 ha-1. According to Malavolta et al. (1997), the excess oZn +2 reduces the absorption o P. Tus, Zn +2 possibly induced

the antagonistic action on P, decreasing its availability, whichwas already low due to the small amount applied via SW. Tisnutritional decit led to a metabolic dis unction in the seed,which did not have energy to break down reserve-substances

EC - Electrical conductivity; TC - Total carbon; TN - Total nitrogen; TOC - Total organic carbon;TIC - Total inorganic carbon; P - Phosphorus; K+ - Potassium, Na+ - Sodium, Ca+2 - Calcium;Mg+2 - Magnesium; Cu+2 - Copper; Zn+2 - Zinc; TS - Total solids; FTS - Fixed total solids;VTS - Volatile total solids

Table 1. Physico-chemical characterization of the swinewastewater

Table 2. Levels of interpretation of nutrients in soybeanleaves, according to EMBRAPA (1999)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 19/96

19Soybean nutritional status and seed physiological quality with swine wastewater

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.16–21, 2016.

Table 3. Analysis of variance (p-value) and means comparison test for the nutrients in soybean plants

*** Means followed by equal lowercase letters in the column do not differ by Tukey test at 0.05 probability level for the follow-up analysis of SW inside MF and equal uppercase letters in thecolumn do not differ by Tukey test at 0.05 probability level for the follow-up analysis of MF inside SW; ** Means followed by same lowercase letters in the column do not differ by Tukey testat 0.05 probability level for SW and means followed by same uppercase letters in the column do not differ by Tukey test at 0.05 probability level for MF; A - Absence of MF; P - Presence ofMF; *Signi cant at 0.05; CV - Coef cient of variation; NS - Not signi cant

and nourish the embryonic axis, hampering the germinationprocess. Other studies also cite the importance o appropriateP contents or germination, seed emergence and adequatesoybean yields (Guerra et al., 2006). On the other hand,high contents o Ca+2 and Mg +2 can induce the ormation otheir phosphates (Novais et al., 2007), contributing to theimmobilization o P.

For the macronutrients P and K +, not all the treatmentssupplied plants adequately ( able 2). 33% o P values and16.66% o K values are below the contents considered asadequate. Plants in the treatment 1 and 7 showed P contentsbelow the adequate range. Tis was expected, since P is anelement o little mobility in the soil, which is the reason or itsaccumulation in the supercial layer, restricting its availability

to plants (Scherer, 2007). It is known that P is a nutrientrequired in large amounts by plants and it is responsible orstorage and permutation o genetic in ormation, with unctiono energy trans er as a carrier and activator o amino acids(Malavolta et al., 1997). For K+, this deciency was observedin the treatment o environmental control, with values around14 g kg-1.

Part o Zn+2 values were above the ones established byEMBRAPA (1999). In all treatments, the level o Cu+2 wasconsidered as low, possibly because it is strongly adsorbed tosoil organic and inorganic colloids. In the process o activeabsorption, there is a competition between Cu +2 and Zn +2 or

the sites o the carrier (Malavolta et al., 1997), which explainsits low content in the analyzed plant tissue; however, despitebeing low, it did not affect nodulation, which was observed atthe eld. Te values o Zn +2 varied rom sufficient to high and,although the increase in its availability does not constitute animmediate problem, it can lead to plant nutritional imbalancesin the long term.

Te other elements are within the range considered assufficient or the soybean crop.

he regression curves o germination percentage asa unction o the SW doses or the seeds obtained in thetreatments with MF + SW ( 4, 6 and 8) and only with

SW ( 3, 5 and 7) showed determination coefficients (R 2

)o 0.953 and 0.999, respectively (Figure 2). Te treatmentsthat combined MF with SW showed an increasing quadraticresponse, while the germination o seeds treated with SW

showed a decreasing quadratic response. Te highest SW dosesin the absence o MF changed the physiological potential othe seeds and reduced germination percentage, a sign thatthe isolated use o this animal residue does not supply plantnutritional requirements in a balanced way, which can lead tonegative effects in the production process.

In the comparison between the percentages o germinated,abnormal and dead seeds (Figure 3A), seed germination wasequal to 86% or the dose o 100 m3 ha-1. As the dose increasedto 200 m3 ha-1, the germination percentage decreased by 10%.In the treatment with dose o 300 m 3 ha-1, the germinationremained at 22%.

Te presence o MF was expressive or the treatments incombination with SW ( 4, 6 and 8), since it promotedadequate germination percentage (Figure 3B). Te presence oreadily available macronutrients in the MF, combined with theincrement o micronutrients present in the SW, led to optimalmineral conditions or the ormation o grains.

Te results indicate that the treatment with SW + MF doseo 300 m3 ha-1 promoted balanced ertilization during plant vegetative stage, which allowed the accumulation o reservesthat were later translocated to the seeds during the ormation

o the embryo and storage organs (Carvalho & Nakagawa,2000). In general, ertilization recommendations are correlatedonly with crop yield and not with physiological quality o seed(Maeda et al., 1986).

Figure 2. Germination of soybean seeds as a function ofthe application of swine wastewater (SW) and mineralfertilization + swine wastewater (MF + SW)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 20/96

20 Olga M. Passarin et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.16–21, 2016.

Figure 3. Physiological quality (Germinated, Abnormaland Dead) of soybean seeds produced in the presenceof swine wastewater (SW) (A) and mineral fertilization +swine wastewater (MF+SW) (B)

he use o SW as the only nutritional source is notrecommended or the ertilization o soils or soybeancultivation intended or seed production.

C

1. As to soybean nutritional status, the association o swinewastewater and mineral ertilization is adequate, except withrespect to Cu.

2. Te application o swine wastewater is not recommendedas a total substitute o mineral ertilizers, especially or cropintended or seed production.

3. Te association o two nutritional sources, mineralertilizer and swine wastewater, rom 200 m3 ha-1 on, promotes

the production o seeds with adequate physiological quality.

L C

Assmann, . M.; Assmann, J. M.; Cassol, L. C.; Diehl, R. C.; Manteli,C.; Magiero, C. Desempenho da mistura orrageira de aveia preta

mais azevém e atributos químicos do solo em unção da aplicaçãode esterco líquido de suínos. Revista Brasileira de Ciência doSolo, v.31, p.1515-1523, 2007. http://dx.doi.org/10.1590/S0100-06832007000600028

Ayuke, F. O.; Brussaarda, L.; Vanlauwe, B.; Six, J.; Lelei, D. K.;Kibunja, C. N.; Pulle, M. M. Soil ertility management: Impactson soil macro auna, soil aggregation and soil organic matterallocation. Applied Soil Ecology, v.48, p.53-62, 2011. http://dx.doi.org/10.1016/j.apsoil.2011.02.001

Bertol, O. J.; Fey, E.; Favaretto, N.; Lavoranti, J.; Rizzi, N. E. Mobility oP, Cu and Zn in soil columns under no-till and organic and mineral

ertilization. Revista Brasileira Ciência do Solo, v.34, p.1841-1850,2010. http://dx.doi.org/10.1590/S0100-06832010000600008

Bosco, . C. dal; Iost, C.; Silva, L. N.; Carnellosi, C. F.; Ebert, D. C.;Schreiner, J. S.; Sampaio, S. C. Utilização de água residuária desuinocultura em propriedade agrícola – Estudo de caso. Irriga, v.13, p.139-144, 2008a.

Bosco, . C. dal; Sampaio, S. C.; Opazo, M. A. U.; Gomes, S. G.;Nóbrega, L. H. P. Aplicação de água residuária de suinoculturaem solo cultivado com soja: cobre e zinco no material escoadoe no solo. Engenharia Agrícola, v.28, p.699-709, 2008b. http://dx.doi.org/10.1590/S0100-69162008000400010

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regraspara análise de sementes. Brasília: MAPA/ACS, 2009. 395p.

Brooks, J. P.; Adeli, A.; Mclaughlin, M. R. Microbial ecology, bacterialpathogens, and antibiotic resistant genes in swine manurewastewater as in uenced by three wine management systems.Water Research, v.57, p.96-103, 2014. http://dx.doi.org/10.1016/j.watres.2014.03.017

Caovilla, F. A.; Sampaio, S. C.; Smanhotto, A.; Nobrega, L. H. P.;Queiroz, M. M. F.; Gomes, B. M. Característ icas químicas de solocultivado com soja e irrigado com água residuária da suinocultura.Revista Brasileira de Engenharia Agrícola e Ambiental, v.14,p.692-697, 2010.

Carvalho, M. A. C.; Sá, A. R. F.; Buzetti, O. M. E. S.; Santos, N. C.B.;Bassan, D. A. Z. Produtividade e qualidade de sementes de

eijoeiro (Phaseolus vulgaris L.) sob inuência de parcelamentoe ontes de nitrogênio. Revista Brasileira de Ciência doSolo, v.25, p.617-624,2001. http://dx.doi.org/10.1590/S0100-06832001000300010

Carvalho, N. M.; Nakagawa, J. Sementes: Ciência, tecnologia eprodução. 4.ed. Jaboticabal: FUNEP, 2000. 588p.

Costa, C. N.; Castilhos, D. D.; Castilhos, R. M. V.; Konrad, E.E.;Passianoto, C. C.; Rodrigues, C. G. E eito da adição de lodosde curtume sobre as alterações químicas do solo, rendimento de

matéria seca e absorção de nutrientes em soja. Revista Brasileirade Agrociência, v.7, p.189-191, 2001.

Currie, V. C.; Angle, J. S Hill, R. L. Biosolids application to soybeansand e ects on input and output o nitrogen. Agriculture,Ecosystems and Environment, v.97, p.345-351, 2003. http://dx.doi.org/10.1016/S0167-8809(03)00134-8

Doblinski, A. F.; Sampaio, S. C.; Silva, V. R.; Nóbrega, L. H. P.;Gomes, S. D.; Bosco, . C. dal. Nonpoint source pollution byswine arming wastewater in bean crop. Revista Brasileira deEngenharia Agrícola e Ambiental, v.14, p.87-93, 2010. http://dx.doi.org/10.1590/S1415-43662010000100012

EMBRAPA – Empresa Brasileira de Pesquisa a Agropecuária.Recomendações técnicas para a cultura da soja na Regiãocentral do Brasil. 1999/2000. Londrina: Embrapa Soja; EmbrapaAgropecuária Oeste, 5 1999. 226p. Documentos, 132

A.

SW (m 3 ha -1)B.

MF + SW (m 3 ha -1)

P e r c e n t a g e

P e r c e n t a g e

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 21/96

21Soybean nutritional status and seed physiological quality with swine wastewater

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.16–21, 2016.

Guerra, C. A.; Marchetti, M. E.; Robaina, A. D.; Souza, C. F.; Gonçalves,M. C.; Novelino, J. O. Qualidade siológica de sementes de sojaem unção da adubação com ós oro, molibdênio e cobalto. ActaScientiarum Agronomy, v.28, p.91-97, 2006.

Kessler, N. C. H; Sampaio, S. C.; Lucas, S. D.; Sorace, M; Citolin, A. C.Swine wastewater associated with mineral ertilization in soybean(Glycine max L.) cultures: 9th production cycle. Journal o Food,

Agriculture & Environment, v.11, p.936-942, 2013a.Kessler, N. C. H; Sampaio, S. C.; Sorace, M; Prado, N. V.; Palma, D.;

Cunha, E.; Andrade, L. H. Swine wastewater associated withmineral ertilization in blackoat ( Avena sativa ) cultures: 8 th production cycle. Journal o Food, Agriculture & Environment, v.11, p.1437-1443, 2013b.

Liu, L.; Liu, C.; Zheng, J.; Huang, X.; Wang, Y.; Liu, Y.; Zhu, G.Elimination o veterinary antibiotics and antibiotic resistancegenes rom swine wastewater in the vertical ow constructedwetlands. Chemosphere, v.91, p.1088-1093, 2013. http://dx.doi.org/10.1016/j.chemosphere.2013.01.007

Lucas, S. D. M.; Sampaio, S. C.; Uribe-Opazo, M. A.; Gomes, S. D.;

Kessler, N. C. H.; Prado, N. V. Long-term behavior o Cu andZn in soil and leachate o anintensive no-tillage system underswine wastewater and mineral ertilization. A rican Journal oAgricultural Research, v.8, p.639-647, 2013.

Maeda, J. A.; Lago, A. A.; ella, R. E eito de calagem e adubaçãocom NPK na qualidade de sementes de amendoim. PesquisaAgropecuária Brasileira, v.21, p.941-944, 1986.

Maggi, C. F.; Freitas, C. L. F.; Sampaio, S. C.; Dieter, J. Lixiviação denutrientes em solo cultivado com aplicação de água residuáriade suinocultura. Revista Brasileira de Engenharia Agrícola eAmbiental, v.15, p.170-177, 2011. http://dx.doi.org/10.1590/S1415-43662011000200010

Malavolta, E.; Vitti, G. C.; Oliveira, S. A. Avaliação do estadonutricional das plantas. 2.ed. Piracicaba: PO AFOS, 1997. 319p.

Munir, M.; Wong, K.; Xagoraraki, I. Release o antibiotic resistantbacteria and genes in the effluent and biosolids o ve wastewaterutilities in Michigan. Water Research, v.45, p.681-693, 2011. http://dx.doi.org/10.1016/j.watres.2010.08.033

Novais, R. F.; Alvarez V., V. H.; Barros, N. F.; Fontes, R. L. F.; Catarutti,R. B.; Neves, J. C. L. Fertilidade do solo. Viçosa: SociedadeBrasileira de Ciência do Solo, 2007. 1017p.

Pelissari, R. A. Z.; Sampaio, S. C.; Gomes, S. D.; Crepalli, M. S. Lodo têxtil eágua residuária da suinocultura na produção de mudas de Eucalyptus grandis (W, Hill ex Maiden). Engenharia Agrícola, v.29, p.288-300,2009. http://dx.doi.org/10.1590/S0100-69162009000200012

Prior, M.; Smanhotto, A.; Sampaio, S. C.; Nóbrega, L. H. P.; Opazo,M. A. U.; Dieter, J. Acúmulo e percolação de ós oro no solodevido à aplicação de água residuária de suinocultura na cultura

do milho ( Zea mays L.). Pesquisa Aplicada & Agrotecnologia, v.2, p.89-96, 2009.

Sampaio, S. C.; Fiori, M. G. S.; Opazo, M. A. U.; Nóbrega, L. H. P.Comportamento das ormas de nitrogênio em solo cultivado commilho irrigado com água residuária da suinocultura. EngenhariaAgrícola, v.30, p.138-149, 2010. http://dx.doi.org/10.1590/S0100-69162010000100015

Scherer, E. E.; Baldissera, I. .; Nesi, C. N. Propriedades químicas deum Latossolo Vermelho sob plantio direto e adubação com estercode suínos. Revista Brasileira de Ciência do Solo, v.31, p.123-131,2007. http://dx.doi.org/10.1590/S0100-06832007000100013

Smanhotto, A.; Sousa, A. P.; Sampaio, S. C.; Nóbrega, L. H. P.; Prior,

M. Cobre e zinco no material percolado e no solo com a aplicaçãode água residuaria de suinocultura em solo cultivado comsoja. Engenharia Agrícola, v.30, p.347-357, 2010. http://dx.doi.org/10.1590/S0100-69162010000200017

edesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss, S. J.Análise de solo, plantas e outros materiais. Porto Alegre: UFRGS.1995. 174p. Boletim écnico, 5

essaro, D.; Sampaio, S. C.; Alves, L. F. A.; Dieter, J.; Cordovil, C. S. C.M. S.; Varennes, A.; Pansera, W. A. Macro auna o soil treated withswine wastewater combined with chemical ertilization. A ricanJournal o Agricultural Research, v.8, p.86-92, 2013. http://dx.doi.org/10.5897/AJAR12.1829

Vieira, R. F.; anaka, R. .; sai, S. M.; Pérez, D. V.; Silva, C. M.M. Disponibilidade de nutrientes no solo, qualidade de grãose produtividade da soja em solo adubado com lodo de esgoto.Pesquisa Agropecuária Brasileira, v.40, p.919-926, 2005. http://dx.doi.org/10.1590/S0100-204X2005000900012

Wang, W.; Liang, .; Wang, L.; Liu, Y.; Wang, Y.; Zhang, C. Teeffects o ertilizer applications on runoff loss o phosphorus.Environmental Earth Science, v.68, p.1313-1319, 2013. http://dx.doi.org/10.1007/s12665-012-1829-2

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 22/96

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 23/96

23Proline and trehalose in maize seeds germinating under low osmotic potentials

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.22–28, 2016.

I

Te understanding on drought tolerance in crop plantsis a matter o great relevance, once water limitation is one othe greatest constraints or agriculture (Rodriguez-Salazar etal., 2009; Xoconostle-Cázarez et al., 2010). Maize is one o themost important commodities produced worldwide (FAO, 2014)

and drought has a strong limiting effect on seed germination,on plant development and on the yield o this crop. Tus,knowledge on mechanisms that enable maize cope withdrought has a undamental importance, especially consideringthat this crop provides signicant part o human ood acrossthe world, which is under risk in a scenery o growing globalwarming. Although there are many studies regarding thestrategies o plant drought tolerance, most part have ocusedmainly on parameters measured in the green tissues o plantshoots (Abo-El-Kheir & Mekki, 2007; Lopes et al., 2011). Whilethere is no doubt that seed per ormance reects on later plantdevelopment (Mondo et al., 2013), reports on the development

o protective mechanism in seeds are still scarce in the literature(Takur & Sharma, 2005; Mohammadkhani & Heidari, 2008;Špoljarević et al., 2011).

Based on studies with adult or young plants, it was stated thatgenerally the response to water limitation is the developmento an osmoprotection mechanism. Tis mechanism is initiatedby an osmotic adjustment to keep plant metabolism running,at least at a minimum rate, and or a relatively short period otime under drought (Mohammadkhani & Heidari, 2008). Tisphenomenon comprises the synthesis o certain compatiblesolutes that may have a prime role on the protection o keyproteins, on stabilizing cell membranes, and on the control

o instable chemicals species (Mohammadkhani & Heidari,2008, Xoconostle-Cázarez et al., 2010). In this case, thosecompatible solutes are ofen designated as osmoprotectors.Proline and trehalose are some o the main compatiblesolutes largely studied in the evaluation o plants to detecttolerance to drought, and ofen used as plant breeding tool tosegregate sensible and tolerant genotypes ( rovato et al., 2008;Anami et al., 2009). Although trehalose has been consideredas osmoprotector, lately some authors have reported that itshould not be regarded only as a protective sugar, and that

urther investigation is required to elucidate its exact role inthe stress tolerance in plants (Paul et al., 2008; Fernandez et

al., 2010). It is also advocated that trehalose and proline areused as energy sources, and that proline may be metabolizedas nitrogen source readily available or plant re-establishment just afer the period o water limitation (Kavi Kishor et al.,2005; rovato et al., 2008).

Although the seed is a plant part, it is different rom othergreen plant organs, requently studied in research about thedevelopment o osmoptotection mechanism. During their

ormation, the seeds are typically importer o photoassimilates,while green plant tissues are characteristically producers andexporters o those compounds (Ludewig & Flügge, 2013).However, during the germination process, the seeds, at the

same time have some tissues working as a non-photossyntheticsource (e.g. endosperm) and others as sink (e.g. embryo axis)o photoassimilates. Tus, our hypothesis is that when seedsare germinating they may have a distinct behavior compared

to that o largely studied green tissues, regarding the capacityto develop osmoprotection mechanism. Moreover, it is possiblethat distinct seed tissues have different behaviors on thisphysiological response. Tis hypothesis is supported by theknowledge that the response and tolerance o crop plants toabiotic stress are quantitative traits controlled by many differentgenes (Lopes et al., 2011). Tis act rein orces the idea thatdifferent organs, or even different tissues o a same plant organ,may have distinct behavior regarding the degree o response towater stress (Abo-El-Kheir & Mekki, 2007; Mohammadkhani& Heidari, 2008; Anami et al., 2009, ardieu, 2012). Tere ore,specic study to better understand this phenomenon in theseed are matter o great interest.

Under natural conditions, several actors a ect seedgermination simultaneously. Tus, it is very difficult to insulatethe effect o a single actor (e.g. water decit) to be studiedunder these conditions. As a way to circumvent this problem,water-stress conditions may be simulated in laboratory by usingsolutions with different osmotic potentials, which are usuallyobtained by adding distinct concentrations o polyethyleneglycol (PEG) in the germination medium. PEG is ofen used

or this purpose because it is chemically inert, non-toxic tothe seeds, and works as an strong osmotic agent (Villela et al.,1991; Queiroz et al., 2000; Meneses et al., 2011).

Considering the a orementioned, this research wasidealized with the objective to evaluate i maize seeds areable to accumulate proline and trehalose as mechanism oosmoprotection, when germinating under low osmotic potential.Also, to check the possibility to use the levels o trehalose and/or proline in a dened seed part, as a biochemical indicator todifferentiate genotypes regarding drought tolerance.

M M

reatments included seeds o 2 maize genotypes subjectedto 5 levels o osmotic potential, composing 10 treatments, with4 replicates. he assays were carried out with maize seedso similar size, belonging to the single-cross hybrids: DKB-390 (Dekalb), and DAS-2B710 (Dow AgroScience). Be orethe assays, the seeds were treated with nistatine solution(1%) in order to guarantee their sanity during the tests.Each experimental unit was constituted o two plastic boxes

(gerbox®), o size 11.0 x 11.0 x 3.5 cm, containing 50 seeds (25seeds each box) deposited on a sterile germitest® paper sheet.he distinct osmotic potential treatments were imposed by

soaking the paper sheet with: Sterile distilled water (control,corresponding to potential 0.0 MPa) or solutions withdi erent PEG 6000 concentrations to obtain the osmoticpotentials corresponding to: -0.3; -0.6; -0.9; and -1.2 MPa,

ollowing indications o Villela et al. (1991). All experimentalunits were randomly distributed in a germination chamberadjusted to temperature o 30 ± 2 °C, atmosphere with 60 ±2% relative humidity, and photoperiod o 12 h, as indicatedby Brasil (2009). Every 03 days, the seeds were trans erred

to new boxes containing the respective resh treatments inorder to mantain the desired osmotic potential constant.Germination evaluations were per ormed daily until 10 daysa ter imposition o treatments, considering as germinated

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 24/96

24 Rafaela J. B. Queiroz & Jairo O. Cazetta

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.22–28, 2016.

seeds those with primary root protrusion at least 2 mm long.hese data were used to determine the germination index

(GI) and the germination speed index (GSI), as proposed byMaguire (1962). he average germination time (A G) wasobtained according to that described by Edmond & Drapala(1958). Dry mass allocation (DM) among seed tissues wasdetermined a ter 10 days o imposition o treatments. Forthis determination, the embryo axis and the endosperm wereexcised. he aerial part (when present) and the roots were cuto quite close to the sur ace o the seed coat. All these tissueswere dried (by lyophylization) constant weight, and the drymass was measured using an analytical scale. A ter that, thesamples were ground in the presence o liquid nitrogen, be orebiochemical analysis. he proline content in the endosperm(EN) and embryo axis (EA) was determined according tothe method proposed by Bates et al. (1973). he trehalosecontent was determined with the enzymatic method describedby Neves et al. (1994), except that the trehalase used in thisassay was obtained rom the ungusRhizopus microsporus,

ollowing indications o Queiroz et al. (2008). he statisticalanalysis o the data was per ormed in a actorial arrangemento 2 x 5 (2 hybrids x 5 osmotic potentials) within a completelyrandomized design, with our replicates. Data signi icancewas assessed by analysis o variance (F test). Polynomialregression analysis was per ormed to better evaluate thequantitative e ect o osmotic potential, and to study theinteraction hybrid x osmotic potential (when signi icant(p < 0.05)). Figures were made by choosing the polynomialequation with the highest coe icient o determination (R 2),and highest F test signi icance (Barbosa & Maldonado Júnior,

2010). Also, Pearson’s correlation was per ormed amongstudied variables.

R D

In studies on the e ects induced by a given stress, itis necessary initially to ensure that the stress was actuallyimposed at desired levels. With this concern, physiologicalmeasurements were carried out, and data showed that theimposed osmotic potentials were effective (p < 0.01) to inducechanges on the measured variables, except or embryo axis drymatter ( able 1).

Except or GSI, A G and proline in the endosperm, theosmotic potential had effect independent rom the genotypes(p > 0.05). In the case o embryo axis dry matter, the interactionbetween hybrid and osmotic potential showed a low signicanteffect (p < 0.05), although no signicant effect (p > 0.05) wasobserved or hybrids or osmotic potentials, independently( able 1).

Te restriction on water availability induced a reduction oabout 47% or DKB-390 hybrid (DKB) and 52% or DAS-2B710(DAS) in the germination index (GI) o seeds, considering dataobtained at the lowest osmotic potential (-1.2 MPa, Figure 1A).

** and * - Signi cant at p < 0.01 and p < 0.05 level of probability, respectively;ns - Not signi cant; CV - Coef cient of variation

Table 1. Analysis of variance (F test) for germination index (GI), germination speed index (GSI), average time forgermination (ATG), and dry matter of shoot, root, endosperm and embryo axis

Figure 1. Germination Index (A), germination speed index(B), and average time for germination (C), for maize seeds ofthe genotypes DKB-390 and DAS-2B710, after germinatingfor 10 days under varying osmotic potential

A.

B.

C.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 25/96

25Proline and trehalose in maize seeds germinating under low osmotic potentials

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.22–28, 2016.

he germination speed index (GSI) was reducedproportionally to water limitation (Figure 1B), while themean germination time (AG ) showed an inverse behavior

or both genotypes (Figure 1C). Tese results indicate thatwater stress harmed germination, so seeds demanded moretime to germinate. Te GSI o the DKB hybrid, at the highestand the lowest studied osmotic potentials, were 10.43 and2.15 germinated seeds per day, respectively (Figure 1B). Tese values were higher than 8.47 and 1.63 germinated seeds per dayo the DAS hybrid, at the respective same potentials.

Te seeds o DAS hybrid tended to show higher A G andlower GSI compared to DKB (Figures 1B and 1C). Tese datashowed that GI, GSI and A G are suitable to describe theprocess o germination under adverse conditions. However, dueto the signicant effects o the interaction between genotypesand the osmotic potential ( able 1, and Figures 1B and 1C),the use o GSI and A G as tools to distinguish the response othe hybrids to water limitations seems to be unsure. Besidesreducing seed germination (Figure 1B), low water availabilitywas detrimental to the seedlings growth ( able 1, Figure 2Cand 2D).

he detrimental e ect o water limitation on seedlingsgrowth has been also observed by Mohammadkhani &Heidari (2008), and it was expected, shoot and root as becausedepend on the endosperm as source o energy, besidesmetabolites, until the plantlet achieves autonomy or its ownsupport (Aoki et al., 2006).

With the decrease in water availability ( rom 0 to -1.2 MPa)the seeds tended to show more dry mass kept in the endosperm(Figure 2A), and the shoot and the roots tended to decreasegrowth (Figures 2C and 2D). Te hybrid DKB kept moreendosperm dry mass, and less shoot growth in comparison toDAS (Figs. 2A and 2C). For the DKB, the embryo axis dry massremained constant with increasing stress, while this variabletended to increase in DAS (Figure 2B).

he accumulation o proline in seed tissues wasproportionally increased by increasing the water limitation(Figure 3A). Nevertheless, most part o the total proline othe seed was ound in the embryo axis. Tis is an indicationthat this tissue is much more sensitive than endosperm to theaccumulation o proline, and this trend was observed in bothstudied hybrids (Figure 3A).

Te accumulation o proline in the tissues by reducingosmotic potential is an evidence that maize seeds are also ableto develop osmoprotection mechanism, as requently occurs inadult plants. Te higher proline accumulation in the embryoaxis, compared to that o endosperm, seems to be related tothe greater metabolic activity and substantial presence osoluble carbohydrates in the embryo axis. Tis statement isbased on the observations o Mohammadkhani & Heidari(2008), in which the accumulation o proline is relativelydependent on the levels o soluble carbohydrates in thetissues, since sucrose has a positive effect on the accumulationo this osmoprotectant. Although the endosperm o maize

seeds is a storage organ, rich in carbohydrates, it is composedmainly o starch and other insoluble carbohydrates. Also, theendosperm is a tissue highly dependent on the embryo topromote the mobilization o its storage compounds, during

Figure 2. Dry mass kept in the endosperm (A), and drymass of the embryo axis (B), shoot (C) and root (D), fromseeds of two maize hybrids (DKB-390 and DAS-2B710)after 10 days germinating under varying osmotic potential

A.

B.

C.

D.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 26/96

26 Rafaela J. B. Queiroz & Jairo O. Cazetta

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.22–28, 2016.

potential (p > 0.05) independently o the hybrid ( able 1,Figure 3B). he trehalose content in the embryo axis oseeds germinating with no water limitation (0.0 MPa) wasclearly (R 2 = 0.99, p < 0.01) higher than that in the stressedones (Figure 3B). Also, under intense stress (-1.2 MPa), thetrehalose level in the embryo axis tended to reduce even more.In the endosperm tissue, the trehalose concentration waslower than that or embryo axis. Although data o trehalosein the endosperm have presented a less clear adjustment tothe average e ect equation (R 2= 0.34, p < 0.05), the behavioro this equation was similar to that observed or embryo axisdata. hese results indicate that with increase o stress, theseeds tended to consume trehalose, rather than accumulateit. his behavior is opposite to the trend observed or theproline contents (Figure 3B).

he act that higher concentrations o trehalose weredetected in seeds afer 10 days germinating under no waterlimitation suggests that this compound must be produced bythe endosperm as a metabolite or the germination process.Also, the lower concentrations ound in seeds germinatingunder stress conditions may be an indication that itsproduction, rom the reserves stored in the endosperm,decreased more than its consumption by seed tissues. Ten,these results suggest that trehalose in maize seeds germinatingunder water stress is more used as energy source than asosmoprotector compound. Tis explanation is rein orced bythe act that the increase in the proline accumulation undermore limiting conditions certainly required extra carbon, andenergy source, and trehalose must have been used to supportproline synthesis. Tere ore, in seeds germinating under lowosmotic potential, the trehalose may have a similar role toits isomer sucrose, as suggested be ore by Grennan (2007).Moreover, trehalose presented similar tendencies o the GIand GSI, which are variables related to growth ( ables 1 and2). So, this is another evidence that this carbohydrate has moreimportance as storage compound than as osmoregulator, inmaize seeds germinating under stress conditions.

Te analysis o interactions among the studied variables( able 2) indicated that variables that quanti y the germinationprocess showed high correlation among themselves as wellas with some metabolic variables. Tus, the seeds with astergermination (high GSI, and low A G) also presented more dry

mass o shoot and root as well as higher trehalose content inthe embryo axis, compared to those having low GSI and highA G. Te opposite has occurred with the behavior o prolinecontent, either in the endosperm or embryo axis.

Te negative correlation among the proline content inthe endosperm with the dry matter o shoot and root ( able2) indicates that, under stress conditions, the metabolism inthe proline synthesis pathway had priority in detriment othe germination process. It is interesting to mention that theembryo axis dry matter does not show signicant correlationwith any other studied variable ( able 2). Tis is an indicationthat the seed tends to keep the embryo axis alive and protected

rom the effects o the water limitation, mainly by accumulatingproline in this tissue. Also, the negative correlation betweenthe levels o proline in the embryo axis and trehalose in theendosperm ( able 2) rein orces the idea that, under water

Figure 3. Levels of proline (A), and trehalose (B), in the drymatter of endosperm (EN) and embryo axis (EA) of seedsfrom the maize hybrids DKB-390 and DAS-2B710, after 10days germinating under varying osmotic potential

A.

B.

germination. Because o that, the endosperm normally has alower metabolism activity compared to that o embryo axis,and it seems that its metabolic activity is even more reducedunder drought (Sánchez-Linares et al., 2012). Tese actsare, probably, what may justi y the low proline synthesis andaccumulation in the endosperm tissue, in seeds germinatingunder water limitations. Considering that proline accumulatedmuch more in the embryo axis than in the endosperm, also

that this accumulation was directly proportional to the levelo the imposed stress, and that the values were different (p <0.01) or genotypes ( able 1, Figure 3A), this compound may beconsidered as a biochemical indicator o tolerance to droughtin these hybrids, when quantied in the embryo axis. Besidesbeing an osmoprotector compound, it is speculated that theproline can also act as an inducer o secondary dormancy oembryo axis under drought, as observed or sorghum (Takur& Sharma, 2005). Tus, this amino acid may take part in thesystem that protects key vital molecules o seed tissues and also,in some way, associated or not to the abcisic acid (Takur &Sharma, 2005), may be involved in the induction o the embryo

axis dormancy under low water availability, which agrees withthe results o this research.rehalose was ound in the endosperm and embryo axis

o the germinating seeds, and its content varied with osmotic

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 27/96

27Proline and trehalose in maize seeds germinating under low osmotic potentials

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.22–28, 2016.

stress, the trehalose is carried to the embryo to be used asenergy and carbon source to the synthesis o proline.

C

1. Maize seeds are able to develop mechanism oosmoprotection when germinating under water limitation.

2. Te proline contents in the embryo axis o maize seedsgerminating under water limitation are directly proportionalto the intensity o this stress.

3. Distinct hybrids show different proline levels accumulatedin the embryo axis, when seeds are germinating under the sameconditions o water limitation.

4. Te content o trehalose decreases in the tissues o maizeseeds germinating under water limitation in trend not directlyproportional to the intensity o this stress.

5. rehalose in maize seeds germinating under low osmoticpotential is more used as energy source or germination andproline synthesis in the embryo axis, than as osmoprotectorcompound.

A

Te authors would like to thank Dr. João Atílio Jorge(USP-Ribeirão Preto) or his help in offering inocula o theRhizopus microsporus and guidelines to grow this ungusaiming the production o trehalase, and Dr. João MartinsPizauro Junior (Unesp-Jaboticabal) or his technical support

on the purication o the trehalase used in this work.Tis research was nancially supported by FAPESP - SãoPaulo State Research Foundation (Proc. 2007/54.746-2),CAPES - Coordenação de Aper eiçoamento de Pessoal de NívelSuperior, and CNPq - Conselho Nacional de DesenvolvimentoCientíco e ecnológico.

L C

Abo-El-Kheir, M. S. A.; Mekki, B. B. Response o maize single cross-10to water décits during silking and lling stages. World AppliedScience Journal, v.3, p.269-272, 2007.

Anami, S.; Block, M. de; Machuka J.; Lijsebettnens, M.V. MolecularImprovement o tropical maize to drought stress tolerance inSaharan A rica. Critical Reviews in Plant Science, v.28, p.16-35,2009. http://dx.doi.org/10.1080/07352680802665305

Aoki, N.; Sco eld, G. N.; Wang, X.; O er, C. E.; Patrick, J. W.;Furbank, R. . Pathway o sugar transport in germinating wheatseeds. Plant Physiology, v.141, p.1255-1263, 2006. http://dx.doi.org/10.1104/pp.106.082719

Barbosa, J. C.; Maldonado Júnior, W. Agrostat - Sistema para análisesestatísticas de ensaios agronômicos. Versão 1.0. Jaboticabal:Departamento de Ciências Exatas, 2010. sp.

Bates, L. S.; Waldren, R. P.; eare, I. D. Rapid determination o reeproline or water stress studies. Plant and Soil, v.39, p.205-207,1973. http://dx.doi.org/10.1007/BF00018060

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regraspara análise de sementes. Secretaria de De esa Agropecuária,Brasília: MAPA/ACS, 2009. 395p.

Edmond, J. B.; Drapala, W. J. Te effects o temperature, sand andsoil, and acetone on germination o okra seed. Proceedings oAmerican Society o Horticultural Science, v.71, p.428-434, 1958.

FAO - Food and Agriculture Organization. Statistics Division. Faostat.http:// aostat3. ao.org/home/E. 24 out. 2014.

Fernandez, O.; Béthencourt, L.; Quero, A.; Sangwan, R.S.; Clément,C. rehalose and plant stress response: Friend or oe? rends inPlant Science, v.15, p.409-417, 2010. http://dx.doi.org/10.1016/j.tplants.2010.04.004

Grennan, A. K. Te role o trehalose biosynthesis in plants. PlantPhysiology, v.144, p.3-5, 2007. http://dx.doi.org/10.1104/pp.104.900223

Kavi Kishor, P. B.; Sangam, S.; Amrutha, R. N.; Sri Laxmi, P.; Naidu,K. R.; Rao, K. R. S.; Reddy, K. J.; Teriappan, P.; Sreenivasulu,N. Regulation o proline biosynthesis, degradation, uptake and

transport in higher plants: Its implications in plant growth andabiotic stress tolerance. Current Science, v.88, p.424-438, 2005.Lopes, M. S.; Araus, J. L.; Heerden, P. D. R. van; Foyer, C. H. Enhancing

drought tolerance in C4 crops. Journal o Experimental Botany, v.62, p.3135-3153, 2011. http://dx.doi.org/10.1093/jxb/err105

Ludewig, F.; Flügge, U. Role o metabolite transporters in source-sinkcarbon allocation. Frontiers on Plant Science, v.4, p.1-16, 2013.http://dx.doi.org/10.3389/ pls.2013.00231

Maguire, J. D. Speed o germination-aid in selection and evaluation orseedling emergence and vigor. Crop Science, v.2, p.176-177, 1962.http://dx.doi.org/10.2135/cropsci1962.0011183X000200020033x

Meneses, C. H. S. G.; Bruno, R. L. de A.; Fernandes, P. D.;

Pereira, W. E; Lima, L. H. G. M.; Lima, M. M. A.; Vidal, M. S.Germination o cotton cultivar seeds under water stress inducedby polyethyleneglycol-6000. Scientia Agricola, v.68, p.131-138,2011. http://dx.doi.org/10.1590/S0103-90162011000200001

Table 2. Correlations (Pearson test) among the studied variables, measured in maize seedlings after 10 days germinatingunder decreasing osmotic potential

GI - Germination index; GSI - Germination speed index; ATG - Average time for germination; ProEN - Proline content in the endosperm; ProEA - Proline content in the embryo axis; TreEN - Trehalosecontent in the endosperm; TreEA - Trehalose content in the embryo axis; SDM - Shoot dry mass; ENDM - Endosperm dry mass; EADM - Embryo axis dry mass; RDM - Root dry mass; * Signi cantcorrelation at p < 0.05; ** Signi cant correlation at p < 0.01;ns not signi cant (p > 0.05)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 28/96

28 Rafaela J. B. Queiroz & Jairo O. Cazetta

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.22–28, 2016.

Mohammadkhani, N.; Heidari, R. Drought-induced accumulation osugars and proline in two maize varieties. World Applied ScienceJournal, v.3, p.449-453, 2008.

Mondo, V. H. V.; Cicero, S. M.; Dourado Neto, D.; Pupim, . L.; Dias,M. A. N. Seed vigor and initial growth o corn crop. Journal oSeed Science, v.35, p.64-69, 2013. http://dx.doi.org/10.1590/S2317-15372013000100009

Neves, M. J.; erenzi, H. F.; Leone, F. A.; Jorge, J. A. Quanticationo trehalose in biological samples with a conidial trehalase romthe thermophylic ungus Hudicola grisea var. thermoidea. WorldJournal o Microbiology and Biotechnology, v.10, p.17-19, 1994.http://dx.doi.org/10.1007/BF00357555

Paul, M.J.; Primavesi, L.F.; Jhurreea, D.; Zhang, Y. rehalosemetabolism and signaling. Annual Review o Plant Biology, v.59 , p.417-441, 2008. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092945

Queiroz, M. F.; Fernandes, P. D.; Almeida, F. de A. C. In ecção de sementese anormalidade de plântulas de eijão, em unção do condicionamentoosmótico induzido por polietileno glicol-6000. Revista Brasileira de

Engenharia Agrícola e Ambiental, v.4, p.409-415, 2000. http://dx.doi.org/10.1590/S1415-43662000000300017

Queiroz, R. J. B.; Santos, D. M. M.; Carlin, S. D.; Marin, A.; Banzatto, D.A.; Cazetta, J. O. Osmoprotetores em cana-de-açúcar sob o e eito dadisponibilidade hídrica no solo. Cientíca, v.36, p.107 115, 2008.

Rodriguez Salazar, J.; Suárez, R.; Caballero Mellado, J.; Iturriaga,G. rehalose accumulation in Azospirillum brasiliense improvesdrought tolerance and biomass in maize plants. FEMSMicrobiology Letters, v.296, p.52-59, 2009. http://dx.doi.org/10.1111/j.1574-6968.2009.01614.x

Sánchez Linares, L.; Gavilanes Ruíz, M.; Díaz Pontones, D.; GuzmánChávez, F.; Calzada Alejo, V.; Zurita Villegas, V.; Luna Loaiza,V.; Moreno Sánchez, R.; Bernal Lugo, I.; Sánchez Nieto, S. Earlycarbon mobilization and radicle protrusion in maize germination.Journal o Experimental Botany, v.63, p.4513-4526, 2012. http://dx.doi.org/10.1093/jxb/ers130

Špoljarević, M.; Agić, D.; Lisjak, M.; Gumze, A.; Wilson, I. D.;

Hancock, J. .; eklić, . Te relationship o proline content andmetabolism on the productivity o maize plants. Plant Signaling& Behavior, v.6, p.251-257, 2011. http://dx.doi.org/10.4161/psb.6.2.14336

ardieu, F. Any trait or trait-related allele can con er drought tolerance: just design the right drought scenario. Journal o ExperimentalBotany, v.63, p.25-31, 2012. http://dx.doi.org/10.1093/jxb/err269

Takur, M.; Sharma, A. D. Salt-stress-induced proline accumulationin germinating embryos: evidence suggesting a role o proline inseed germination. Journal o Arid Environment, v.62, p.517-523,2005. http://dx.doi.org/10.1016/j.jaridenv.2005.01.005

rovato, M.; Mattioli, R.; Constantino, P. Multiple Roles o Proline in

Plant Stress olerance and Development. Rendiconti Lincei, v.19,p.325-346, 2008. http://dx.doi.org/10.1007/s12210-008-0022-8

Villela, F.A.; Doni Filho, L.; Sequeira, E. L. abela de potencialosmótico em unção da concentração de polietilenoglicol 6000 eda temperatura. Pesquisa Agropecuária Brasileira, v.26, p.1957-1968, 1991.

Xoconostle-Cázares, B.; Ramíres-Ortega, F. A.; Flores-Elenes, L.;Ruiz-Medrano, R. Drought tolerance in crop plants. AmericanJournal o Plant Physiology, v.5, p.241-256, 2010. http://dx.doi.org/10.3923/ajpp.2010.241.256

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 29/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.29–35, 2016

Growth and yield o sugarcane as a unctiono phosphorus doses and orms o applicationAbel W. de Albuquerque1, Leopoldo de A. Sá1, William A. R. Rodrigues1,Adriano B. Moura1 & Manoel dos S. Oliveira Filho1

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p29-35

A B S T R A C TTis study aimed to evaluate sugarcane growth and its agricultural and industrial yieldinuenced by phosphorus (P) sources and orms o application. Te experiment was carriedout at the Paisa Sugar Mill, in Penedo-AL, Brazil, rom February 2012 to February 2013.Te adopted experimental design was a randomized block in a actorial arrangement, with

our replicates. Te treatments consisted o ve doses o triple superphosphate applied inthe planting urrow (0, 50, 100, 150 and 200 kg ha-1 o P2O5), and three doses o Bayóvarreactive phosphate rock (0, 100 and 200 kg ha-1 o P2O5) applied in the total area. Phosphorusapplied in the planting urrow improved sugarcane quality through the reduction o ber andincreases in purity, corrected pol, total recoverable sugar, ton o pol per hectare ( PH) andton o sugarcane per hectare ( SH). Te Bayóvar reactive phosphate rock promoted increases

in stem diameter at 120 days afer planting (DAP), PH and SH. For the interaction triplesuperphosphate applied in the planting urrow x Bayóvar reactive phosphate rock appliedin the total area, there were signicant differences in the number o tillers at 30 DAP, stemdiameter at 120 DAP and SH.

Crescimento e produtividade da cana-de-açúcarem unção de doses e ormas de aplicação de ós oroR E S U M OPropôs-se, com este estudo, avaliar o crescimento e a produtividade agrícola e industrialda cana-de-açúcar inuenciada por ontes, doses e ormas de aplicação de ós oro. Oexperimento oi conduzido na Usina Paisa, Penedo - AL, no período de evereiro de 2012a evereiro de 2013. O delineamento experimental utilizado oi o de blocos casualizadosem arranjo atorial, com quatro repetições. Os tratamentos consistiram de cinco doses desuper os ato triplo P2O5 (0, 50, 100, 150 e 200 kg ha-1 de P2O5) aplicadas no sulco de plantioe três doses de P2O5 (0, 100 e 200 kg ha-1) com a onte os ato natural reativo Bayóvar,aplicado em área total.O ós oro aplicado no sulco de plantio promoveu melhorias naqualidade da cana-de-açúcar pela redução da bra e do aumento dapureza, do pol dacana corrigido, doaçúcar total recuperávele açúcar provável por hectare ( PH) além deter aumentado a produtividade de colmos por hectare ( CH). Oos ato natural reativoproporcionou acréscimos nodiâmetro do colmo aos 120 dias após o plantio (DAP), PHe CH. A interaçãosuper os ato triplo no sulco de plantio x os ato natural reativo emárea total exerceu e eitos signicativos na população de perlhos aos 30 DAP, diâmetro docolmo aos 120 DAP e CH.

Key words:phosphorus ertilizersoil managementagroindustrial yield

Palavras-chave:ertilizante os atado

manejo do solorendimento agroindustrial

1 Universidade Federal de Alagoas/Centro de Ciências Agrárias. Rio Largo, AL. E-mail: [email protected]; [email protected](Corresponding author); [email protected]; [email protected]; [email protected]

Protocolo 388-2014 – 31/10/2014 • Aprovado em 26/06/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 30/96

30 Abel W. de Albuquerque et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.29–35, 2016.

I

he expansion o sugarcane ields in Brazil has beenintensied because o the increasing demand or bio uels,especially rom ethanol and sugar production, its main product(Ferreira Júnior et al., 2012; Moura Filho et al., 2014). Brazilis the global leader in sugarcane production, with about 634.8

million tons per season. Te state o Alagoas is responsibleor 22.4 million tons, occupying the sixth position among theproducing states. Despite being the largest sugarcane producerin the Northeast region o Brazil, Alagoas has a sugarcane yieldbelow the national average. In the 2014/2015 season, the stateobtained mean yield o 58.2 t ha-1, against a national mean o70.5 t ha-1 (CONAB, 2015).

Te low yield o sugarcane elds in the state o Alagoas ismostly due to the low ertility o its soils, which reduces plantgrowth and development (Melo Filho et al., 2007). In thiscontext, the use o soil management practices can contribute toincrease the ertility o these soils, thus increasing agriculturalyield.

Although phosphorus (P) is absorbed in lower amountsby the sugarcane crop, compared with other primarymacronutrients (Espironelo et al., 1986; Reis Júnior &Monnerat, 2003), it plays an important role in photosynthesis,root development, tillering and in sugarcane yield and quality(Meyer & Wood, 2001).

Phosphate ertilizers can be classied as soluble or littlesoluble. he soluble ones have been commonly used orhaving high agronomic efficiency in the short term, but witha high cost. On the other hand, the less soluble sources, suchas reactive natural phosphates, are characterized by low initialdissolution speed, with lower cost per ton o ertilizer (Santoset al., 2012). However, considering the cumulative productiono many crops afer P application, the per ormance o somenatural phosphates can become equal to that o more solublesources (Resende et al., 2006).

In this context, this study aimed to evaluate sugarcanegrowth and its agricultural and industrial yields, inuencedby P sources, doses and orms o application.

M M

he study was conducted rom February 23, 2012, toFebruary 19, 2013, at the Paisa Sugar Mill, in the municipalityo Penedo-AL, Brazil (10º 16’ 47’’ S; 36º 24’ 47’’ W). Teexperimental area is located on the Coastal Plains and the soilis classied as typical distrophic Yellow Latosol, with mediumtexture and moderate A horizon.

Te statistical design was randomized blocks, in a 5 x 3actorial scheme, with our replicates. Each plot consisted

o eight 20-m long rows, combined with spacing o 1.4 x 0.9

m. Te evaluation area consisted o the our central rows,considering a length o 10 m.

Te treatments were ve doses o P2O5 (0, 50, 100, 150 and200 kg ha-1), using the source triple superphosphate applied inthe planting urrow, and three doses o P2O5 (0, 100 and 200 kgha-1), using the source Bayóvar reactive phosphate rock appliedin the total area. Soil tillage consisted o one harrowing and one

urrowing. Liming was not necessary, since the soil had basesaturation (V%) higher than 60% ( able 1). Te soil showedcontents o phosphorus and potassium considered very low,according to the classication proposed by Raij et al. (1996).

Fertilization in the planting urrow was per ormed using 70kg ha-1 o N, as ammonium sul ate, and 140 kg ha-1 o K2O, aspotassium chloride. Te sugarcane variety RB92579 was used,

or its production potential in the Northeast region o Brazil.Climate data were obtained rom the weather station

o the Paisa Sugar Mill and the mean temperature in theregion was 26.2 °C, with mean maximum o 30.5 °C and

mean minimum o 21.9 °C. Relative air humidity rangedrom 65 to 95% and the total rain all was equal to 1,321 mm.Re erence evapotranspiration was estimated through thePenman-Monteith-FAO-56 method (Allen et al., 1998) and theobtained value was 1,617 mm. Rain alls were concentrated inthe beginning o the experiment, in February, and rom Mayto August 2012. In the other months, the crop suffered waterstress, which limited its growth and yield.

For crop growth evaluation, the parameters stem diameter,plant height and lea area index (LAI) were used. Tirty plantswere randomly sampled in the evaluation area o each plot at120, 240 and 360 days afer planting (DAP). In addition, the

number o tillers per linear meter was evaluated, consideringthe total number in the evaluation area at 30, 90, 120, 150,270 and 360 DAP.

Lea area (LA) was calculated according to Eq. 1 (Hermann& Câmara, 1999):

OM - Organic matter; CEC - Cation exchange capacity; V - Base saturation

Table 1. Soil chemical analyses in the layers of 0-20 and 20-40 cm, before experiment installation, Paisa Sugar Mill,Penedo-AL, Brazil

( ) ( )LA L W 0.75 N 2= × × × +

where:LA - lea area, m2;L - length o the +3 lea , m;W - width o the +3 lea , m;0.75 - correction actor or crop lea area; andN - number o open leaves with at least 20% o green

area. Te lea area index (LAI) was calculated through Eq. 2:

LA NTLAI

S

×=

(1)

(2)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 31/96

31Growth and yield of sugarcane as a function of phosphorus doses and forms of application

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.29–35, 2016.

where:LA - lea area, m2;N - number o tillers per meter; andS - spacing between rows, m.

For stem diameter determination, a caliper was used at theheight corresponding to the middle section o the plant, romits base; plant height was measured with a tape measure romthe soil sur ace to the last visible auricle region o the +1 lea .

At the end o the cycle (360 days), sugarcane was harvestedand weighed or the estimation o the tons o sugarcane perhectare ( SH) in the evaluation area. For the determination oagro-industrial characteristics, 10 stalks were randomly sampledin each plot and analysed in the Laboratory o echnologicalAnalysis o the Paisa Sugar Mill, or the contents o soluble solids(Brix, %), ber (%), purity (%), corrected pol (CP, %) and totalrecoverable sugar ( RS). Te probable ton o pol per hectare( PH) was obtained by multiplying SH by CP/100.

Te data were subjected to analysis o variance and Ftest, using the statistical program SAEG 5.0. Te signicantinteractions between actors were evaluated using regressionanalysis; the coefficients o the components o each model weretested and the signicant models with the highest coefficientso determination (R 2 adjusted) were selected using the programFcalc (Moura Filho & Cruz, 1996).

R D

According to the summary o the analysis o variance ( able2), there was signicant effect o P doses in the planting urrowon the variables purity, ber, CP, RS, PH and SH; or theP doses applied in the total area, the effect was signicant orstem diameter at 120 DAP, PH and SH. As to the interactionLocalized x otal Area, there was signicant effect or thenumber o tillers at 30 DAP, stem diameter at 120 DAP and

SH. Tere were no signicant effects or plant height, LAIand Brix.

For the number o tillers, there was signicant effect (p <0.01) or the interaction L x A at 30 DAP. For the treatmentwithout P application in the total area, there was exponentialeffect, according to the equation shown in able 3.

For the dose o 100 kg ha-1 o P2O5applied in the total area,

there was a decreasing linear effect on the number o tillers,while the dose o 200 kg ha-1 o P2O5, also applied in the totalarea, caused a quadratic response (Figure 1A). From 90 DAP

*Signi cant at 0.01 probability level; **Signi cant at 0.05 probability level andnsNot signi cant; L - Localized P fertilization in the planting furrow (triple superphosphate); TA - P fertilizationin the total area (Bayóvar reactive phosphate rock)

Table2. Analysis of variance for number of tillers at 30 days after planting (DAP), stem diameter at 120 DAP, purity,ber, corrected pol (CP), total recoverable sugar (TRS), ton of pol per hectare (TPH) and ton of sugarcane per hectare

(TSH), as a function of phosphorus doses and forms of application

Table 3. Regression equations for the number of tillers at30 days after planting (DAP) and stem diameter at 120DAP

Figure 1. (A) Number of tillers (linear m-1

) at 30 days afterplanting (DAP) and (B) Stem diameter (mm) at 120 DAP, asa function of phosphorus doses and forms of application

A.

B.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 32/96

32 Abel W. de Albuquerque et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.29–35, 2016.

on, there was no signicant effect with respect to P doses andorms o application or this growth variable.

Santos et al. (2009), evaluating P sources on sugarcanegrowth in the municipality o Coruripe-AL, did not observesignicant effect o different P sources on the number otillers o the plant cane, although P is considered essential ortillering and root system growth in grasses, increasing their

yields (Santos et al., 2002).As to stem diameter, there was signicant effect (p < 0.05)

or the P application in the total area and the interaction L xA (p < 0.05) at 120 DAP. From 240 DAP on, there was no

signicant effect o P doses and orms o application.For the treatment without P application in the total area,

the response o stem diameter was best represented by themean, with value o 13 mm (Figure 1B). For the dose o 100kg ha-1 o P2O5 applied in the total area, combined with theapplication o 173 kg ha-1 o P2O5 in the planting urrow, amaximum diameter o 15 mm was observed. Te dose o200 kg ha-1 o P2O5 applied in the total area caused a lowerresponse, compared with the other treatments. Caione etal. (2011), studying P doses and orms o application onthe sugarcane crop, observed no signicant effect or stemdiameter.

Juice purity was inuenced (p < 0.01) only by the applicationo P doses in the planting urrow. According to Figure 2A, theeffect o the doses promoted a quadratic response, reachinga purity value o 90.35%, with the maximum dose o 130 kgha-1 o P2O5. All the treatments showed values above 85% opurity, with mean o 89.5%, which is essential to obtain good juice quality, increasing the quality o the produced sugarand, consequently, its economic value.

In São Paulo, a minimum juice purity o 80% isrecommended or sugarcane industrialization at thebeginning o the season and 85% at the end o the season(Franco, 2003).

For ber content, the effect was signicant (p < 0.01) orthe P doses applied in the planting urrow. Te lowest bercontent (Figure 2B) (12.9 %) was obtained at the dose o97.5 kg ha-1 o P2O5. Tis is different rom the result reportedby Simões Neto et al. (2012), who analysed agro-industrialsugarcane characteristics as a unction o phosphate

ertilization and did not observe signicant values or ber

contents. Currently, ber contents between low and mediumare desired in electricity generation and production ocellulosic ethanol.

CP values also showed signicant effect (p < 0.05) withrespect to P ertilization in the planting urrow, and the doseo 69 kg ha-1 promoted the highest sucrose content (16.8%),thus contributing to a higher sugarcane price (Figure 2C). Tisresult is similar to that obtained by Elamin et al. (2007), in astudy conducted in Sudan, who concluded that P deciencyresults in signicant decrease in sucrose accumulation in thesugarcane, because P ertilization directly affects the amounto sugar and juice purity.

As to RS, there was a signicant effect (p < 0.05) inrelation to the localized P doses. Te effect o the dosespromoted a quadratic response and, based on the regressionequation (Figure 2D), the highest RS content (161.6 kg t-1)

Figure 2. (A) Purity (%), (B) Fiber (%), (C) corrected pol(CP, %) and (D) total recoverable sugar (TRS, kg t -1), asa function of phosphorus doses applied in the plantingfurrow

A.

Doses of P 2O5 in the planting furrow (kg ha -1)

B.

C.

D.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 33/96

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 34/96

34 Abel W. de Albuquerque et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.29–35, 2016.

unction o phosphate ertilization, observed that the highestincrements in SH and PH occurred or the same P doses,which indicates a limitation o the soils related to P deciencyor low availability, regardless o their chemical, physical ormineralogical characteristics.

C

1. Te application o phosphorus in the planting urrowinuenced purity, ber, corrected pol, total recoverable sugar,ton o pol per hectare ( PH) and ton o sugarcane per hectare( SH).

2. Phosphate application in the total area promotedincreases in stem diameter at 120 days afer planting (DAP),

PH and SH.3. Tere was signicant effect or the interaction Localized

x otal Area or the number o tillers at 30 DAP, stem diameterat 120 DAP and SH.

4. Te maximum yield was obtained with the combinationo 200 kg ha-1 o P2O5 in the total area and 100 kg ha-1 o P2O5 applied in the planting urrow.

A

o the Coordination or the Improvement o HigherEducation Personnel (CAPES), or the scholarship, and to thePaisa Sugar Mill, or providing support and the experimentalarea.

L C

Allen, R. G.; Pereira, L. S.; Raes, D.; Smuth, M. Crop Evapotranspiration:Guidelines or computing crop water requirements. Rome: FAO,1998, 301p. Irrigation and Drainage Paper 56.

Caione, G.; eixeira, M. . R.; Lange, A.; Silva, A. F.; Fernandes, F.M. Modos de aplicação e doses de ós oro em cana-de-açúcar

orrageira cultivada em Latossolo Vermelho-Amarelo. Revistade Ciências Agro-Ambientais, v.9, p.1- 11, 2011.

Calheiros, A. S.; Oliveira, M. W.; Ferreira, V. M.; Barbosa, G. V. S.;Santiago, A. D.; Aristides, E. V. S. Produção de biomassa, de açúcare de proteína em unção de variedades de cana e de adubação

os atada. Semina: Ciências Agrárias, v.33, p.809-818, 2012. http://dx.doi.org/10.5433/1679-0359.2012v33n2p809

CONAB - Companhia Nacional de Abastecimento. Acompanhamentode sa ra brasileira: cana-de-açúcar, quarto levantamento, 2015.Brasília: CONAB, 2015. 29p.

Costa, J. P. V.; Barros, N. F.; Albuquerque, A. W.; Moura Filho, G.;Santos, J. R. Fluxo di usivo de ós oro em unção de doses e daumidade do solo. Revista Brasileira de Engenharia Agrícola eAmbiental, v.10, p.828-835, 2006. http://dx.doi.org/10.1590/S1415-43662006000400007

Elamin, E. A.; Eltilib, M. A.; Elnasikh, M. H.; Ibrahim, S. H.;Elsheikh, M. A.; Babiker, E. E. Te inuence o phosphorus and

potassium ertilization on the quality o sugar o two sugarcane varieties grown on three soil series o Sudan. Journal o AppliedSciences, v.7, p.2345-2350, 2007. http://dx.doi.org/10.3923/ jas.2007.2345.2350

Espironelo, A.; Gallo, J. R.; Lavorenti, A.; Igue, .; Hiroce, R. E eitosda adubação NPK nos teores de macronutrientes das olhas decana-de-açúcar (cana-soca). Bragantia, v.45, p.377-382, 1986.http://dx.doi.org/10.1590/S0006-87051986000200016

Farias, C. H. A.; Fernandes, P. D.; Gheyi, H. R.; Dantas Neto, J.Qualidade industrial de cana-de-açúcar sob irrigação e adubaçãocom zinco, em abuleiro Costeiro paraibano. Revista Brasileira de

Engenharia Agrícola e Ambiental, v.13, p.419-428, 2009. http://dx.doi.org/10.1590/S1415-43662009000400008

Ferreira Júnior, R. A.; Souza, J. L.; Lyra, G. B.; eodoro, I.; Santos, M.A.; Porrio, A. C. S. Crescimento e otossíntese de cana-de-açúcarem unção de variáveis biométricas e meteorológicas. RevistaBrasileira de Engenharia. Agrícola e Ambiental, v.16, p.1229-1236, 2012. http://dx.doi.org/10.1590/S1415-43662012001100012

Franco, A. Cana-de-açúcar cultivada em solo adubado com lodo deesgoto e vinhaça: nitrogênio no sistema solo-planta, produtividadee características tecnológicas. Jaboticabal: UNESP, 2003. 90p.Dissertação Mestrado

Hermann, E. R.; Câmara, G. M. S. Um método simples para

estimar a área oliar de cana-de-açúcar. S AB: Açúcar, Álcool eSubprodutos, v.17, p.32-34, 1999.

Korndör er, G. H.; Melo, S. P. Fontes de ós oro (uida ou sólida) naprodutividade agrícola e industrial da cana-de-açúcar. Ciência eAgrotecnologia, v.33, p.92-97, 2009. http://dx.doi.org/10.1590/S1413-70542009000100013

Melo Filho, J. F. de; Souza, A. L. V.; Souza, L. S. Determinação doíndice de qualidade subsupercial em um Latossolo AmareloCoeso dos abuleiros Costeiros sob oresta natural. RevistaBrasileira de Ciência do Solo, v.31, p.1599-1608, 2007. http://dx.doi.org/10.1590/S0100-06832007000600036

Meyer, J. H.; Wood, R. A. Te effects o soil ertility and nutrition on

sugarcane quality: A review. South A rican Sugar echnologistsAssociation, v.75, p.242-245, 2001.

Morelli, J. L.; Nelli, E. J.; Baptistella, J. R.; Demattê, J. L. I. ermo os atona produtividade da cana-de-açúcar e nas propriedades químicasde um solo arenoso de baixa ertilidade. Revista Brasileira deCiência do Solo, v.15, p.57-61, 1991.

Moura Filho, G.; Albuquerque, A. W.; Moura, A. B.; Santos, A. C.I.; Oliveira Filho, M. S.; Silva, L. C. Diagnose nutricional de variedades de cana-de-açúcar em argissolos. Revista Brasileira deEngenharia Agrícola e Ambiental, v.18, p.1102-1109, 2014. http://dx.doi.org/10.1590/1807-1929/agriambi.v18n11p1102-1109

Moura Filho, G.; Cruz, C. D. Fcalc or Windows v.1.1: Programa

para cálculo do F corrigido em análises de regressão: este doscoecientes. Viçosa: UFV, 1996. Sofware.

Raij, B. van.; Silva, N. M.; Bataglia, O. C.; Quaggio, J. A.; Hiroce,R.; Catarella, H.; Bellinazzi Junior, R.; Dechen, A. R.; rani, P.E. Recomendação de adubação e calagem para o Estado de SãoPaulo. Campinas: Instituto Agronômico, 1996. 285p. Boletim

écnico, 100Reis Junior, R. A.; Monnerat, P. H. DRIS norms validation or

sugarcane crop. Pesquisa Agropecuária do Brasil, v.38, p.379-385, 2003. http://dx.doi.org/10.1590/S0100-204X2003000300007

Resende, A. V.; Furtini Neto, A. E.; Alves, V. M. C.; Muniz, J. A.;Curi, N.; Faquin, V.; Kimpara, D. I.; Santos, J. Z. L.; Carneiro, L.

F. Fontes e modos de aplicação de ós oro para o milho em solocultivado da região do cerrado. Revista Brasileira de Ciência doSolo, v.30, p.453-466, 2006. http://dx.doi.org/10.1590/S0100-06832006000300007

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 35/96

35Growth and yield of sugarcane as a function of phosphorus doses and forms of application

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.29–35, 2016.

Santos, F. C.; Albuquerque Filho, M. R.; Novais, R. F.; Ferreira, G.B.; Carvalho, M. C. S.; Silva Filho, J. L. Fontes, doses e ormasde aplicação de ós oro para o algodoeiro no Cerrado da Bahia.Revista Ceres, v.59, p.537-543, 2012. http://dx.doi.org/10.1590/S0034-737X2012000400015

Santos, H. Q.; Fonseca, D. M.; Cantarutti, R. B.; Alvarez V. V. H.;Nascimento Júnior, D. Níveis críticos de ós oro no solo e na planta

para gramíneas orrageiras tropicais em di erentes idades. RevistaBrasileira de Ciência do Solo, v.26, p.173-182, 2002. http://dx.doi.org/10.1590/S0100-06832002000100018

Santos, V. R.; Moura Filho, G.; Albuquerque, A. W.; Costa, J. P. V.;Santos, C. G.; Santos, A. C. I. Crescimento e produtividadeagrícola de cana-de-açúcar em di erentes ontes de ós oro. RevistaBrasileira de Engenharia Agrícola e Ambiental, v.13, p.389-396,2009. http://dx.doi.org/10.1590/S1415-43662009000400004

Simões Neto, D. E.; Oliveira, A. C.; Rocha, A. .; Freire, F. J.; Freire, M. B.G. S.; Nascimento, C. W. A. Características agroindustriais da cana-

de-açúcar em unção da adubação os atada, em solos de Pernambuco.Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.347-354,2012. http://dx.doi.org/10.1590/S1415-43662012000400003

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 36/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.36–41, 2016

Rapeseed population arrangement dened by adaptability and stability parametersCleusa A. M. B. Krüger1, Sandro L. P. Medeiros2, José A. G. da Silva1,Genei A. Dalmago3, Ana P. F. Valentini4 & Juliano F. Wagner4

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p36-41

A B S T R A C TTe objective o this study was to identi y the plant arrangement that allows greater grainyield with adaptability and stability o rapeseed hybrids. Te experiments were conducted inrandomized block design with our replicates and the 12 treatments consisted o combinationo inter-row spacings (0.20, 0.40, and 0.60 m) and plant densities (20, 40, 60 and 80 plantsm-2). Te hybrids Hyola 432 (early cycle) and Hyola 61 (medium cycle) were cultivatedin three growing seasons (2008, 2009 and 2010). Grain yield was evaluated based on theparameters adaptability and stability according to the models o Wricke and Eberhart &Russell. Te plant arrangement or obtaining higher grain yield depends on the cultivatedgenotype. Higher grain yield was obtained in the arrangements o 0.20 m x 60 and 0.40 mx 60 plants m-2 or Hyola 432, and in 0.20 m x 60 plants m-2 or Hyola 61, in the three yearso evaluation. In the inter-row spacing o 0.40 m and densities o 40 and 60 plants m-2,Hyola 432 shows high yield, adaptability to wide environments and stability. For Hyola 61,high productivity with overall adaptability was obtained in the inter-row spacing o 0.40m, with 60 plants m-2.

Arranjo populacional em canola denidopelos parâmetros de adaptabilidade e estabilidadeR E S U M O

Propôs-se, com este trabalho, identi icar o arranjo de plantas que possibilite maiorprodutividade de grãos com adaptabilidade e estabilidade em híbridos de canola. Osexperimentos oram desenvolvidos em blocos ao acaso com quatro repetições nos 12tratamentos da combinação entre o espaçamento entre linhas (0,20, 0,40, 0,60 m) e adensidade de plantas (20, 40, 60 e 80 plantas m-2). Foram cultivados os híbridos Hyola432 - ciclo precoce e Hyola 61 - ciclo médio, em três sa ras agrícolas (2008, 2009 e 2010)Foi avaliada a produtividade de grãos pelos parâmetros de adaptabilidade e estabilidadepelo modelo de Wricke e de Eberhart e Russell. O arranjo de plantas para a obtenção demaior produtividade de grãos depende do genótipo cultivado. A produtividade de grãospara o Hyola 432 oi maior nos arranjos de plantas de 0,20 m x 60 e 0,40 m x 60 plantasm-2 e para o Hyola 61 no arranjo de 0,20 m x 60 plantas m-2, nos três anos de avaliação.No espaçamento entre linhas de 0,40 m e densidade de 40 e 60 plantas m-2 o Hyola 432evidencia alta produtividade, adaptabilidade a ambientes amplos e estabilidade. No Hyola61 a alta produtividade com adaptabilidade geral oi obtida no espaçamento entre linhasde 0,40 m com 60 plantas m-2.

Key words:Brassica napus L.inter-row spacingplant density grain yield

Palavras-chave:Brassica napus L.espaçamento entre linhasdensidade de plantasprodutividade de grãos

1 Universidade Regional do Noroeste do Estado do Rio Grande do Sul/Departamento de Estudos Agrários. Ijuí, RS. E-mail: [email protected](Corresponding author); jags [email protected]

2 Universidade Federal de Santa Maria/Centro de Ciências Rurais. Santa Maria, RS. E-mail: [email protected] Embrapa rigo. Passo Fundo, RS. E-mail: [email protected] Bayer CropScience/Unidade de Pesquisa Cruz Alta. Cruz Alta, RS. E-mail: ana. [email protected]; [email protected]

Protocolo 398-2014 – 11/11/2014 • Aprovado em 10/07/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 37/96

37Rapeseed population arrangement defned by adaptability and stability parameters

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.36–41, 2016.

I

Te state o Rio Grande do Sul has the highest productiono rapeseed in Brazil, with mean o 39.5 thousand tons andyield o 1,320 kg ha-1 (CONAB, 2013). Rapeseed yield hasgreat variations along the cultivation years. Tese variationscan occur due to the differences in meteorological conditions

rom year to year (Dalmago et al., 2009), losses through naturalthreshing, due to uneven maturation o siliques (Silva et al.,2011) and management practices, such as sowing spacing anddensity (Shahin & Valiollah, 2009).

Rapeseed management practices were reported by omm(2007), who indicates orchards with 40 plants m-2, uni ormlydistributed, with the lowest spacing available in the sowingmachine; however, this author also highlights success ul resultswith spacings o up to 45 cm between rows. In this context,Chavarria et al. (2011) point out that the efforts in researchand development are incipient or rapeseed, and there is a lacko technical-scientic in ormation on crop management, such

as adequate inter-row spacing and sowing density.Rapeseed is a grain-producing species with phenotypicalplasticity, which determines plant morphological adjustmentto di erent conditions o space and light, thus showingcompensating mechanisms among the di erent plantcomponents, which alter the relationships o source and sink(Jullien et al., 2011). Tere ore, an adequate plant arrangementcan contribute to higher uni ormity o silique maturation, aswell as to the increase in grain yield (Bandeira et al., 2013).Shahin & Valiollah (2009) point out that rapeseed yield ismore stable when plants are uni ormly distributed. Tere ore,indicating a plant arrangement that allows high grain yield and

silique maturation uni ormity is o great importance or theconsolidation o the crop in Brazil.Te use o biometric models that allow estimating the

stability o grain yield represents valuable in ormation orthe recommendation o cultivars and/or adjustment othe best crop management (Silva & Duarte, 2006). Amongthese models, adaptability and stability models, through thequantication o their parameters, aim to dene the responseo genotypes to specic environmental conditions (Benin etal., 2005). Tere are different models or the determination othese parameters. Te method o Eberhart & Russell (1966) isbased on simple linear regression o the genotype as a unction

o environmental indices. Te linear regression coefficient(β1i) is a measurement o the adaptability and the standarddeviations (σ2di) are a measurement o the stability. Te idealgenotype is that with regression coefficient equal to one andwith the lowest regression deviation possible (Cruz & Carneiro,2003). Te model o Wricke (1965) employs the methodologycalled ecovalence, which decomposes the sum o the squareso the interaction into parts attributed to each genotype andconsiders as the most stable the one with the lowest estimateo ecovalence (ωi) (Cruz & Carneiro, 2003). Te models oWricke (1965) and Eberhart & Russell (1966) have been usedin various studies with grain-producing species, such as in Silva

& Duarte (2006) with soybean, Cargnelutti Filho et al. (2007)with corn and Pereira et al. (2009), with bean.Rapeseed per ormance is directly associated with

management practices and the meteorological conditions

during its cycle, notably air temperature and rain all (Dalmagoet al., 2009). he need or the generation o scienti icin ormation in order to improve the state o the art regardingthe management practices or the success o this crop mustbe highlighted.

Tis study aimed to identi y the arrangement o plantsthat allows higher grain yield with adaptability and stabilityin rapeseed hybrids.

M M

he studies were carried out in the agricultural yearso 2008, 2009 and 2010, at the Regional Institute o RuralDevelopment (IRDeR), linked to the Department o AgrarianStudies o the Regional University o Northwestern Rio Grandedo Sul (UNIJUÍ), in Augusto Pestana-RS, Brazil (28º 26’ 306”S; 54º 00’ 58” W; 298 m). Te soil in the experimental areais classied as typical distro erric Red Latosol (Santos et al.,2006). Te climate in the region is C a (subtropical), accordingto Köppen’s classication.

Te experiments were set in a randomized block design,with our replicates. Te treatments o plant arrangementsconsidered three inter-row spacings (0.20, 0.40 and 0.60 m)and our plant densities (20, 40, 60 and 80 plants m-2) in the

ollowing combinations: 0.20 x 20, 0.20 x 40, 0.20 x 60, 0.20 x80, 0.40 x 20, 0.40 x 40, 0.40 x 60, 0.40 x 80, 0.60 x 20, 0.60 x 40,0.60 x 60 and 0.60 x 80. Te hybrids Hyola 432, with early cycle,and Hyola 61, with medium cycle, were used in this study. Teexperimental unit consisted o ve 5-m-long rows, changingthe dimensions o the area according to the proposed spacings.

Soil correction and crop ertilization were per ormedaccording to the soil analysis or an expected grain yield oapproximately 1,500 kg ha-1. Sowing was manually per ormedin the third week o May, in the years o 2008 and 2009, andin the last week o June, in 2010, as recommended by theagroclimatic zoning or rapeseed. An amount o seeds greaterthan the minimum necessary or each density was used orsowing. Te nal adjustment in the number o plants, in orderto obtain the desired plant densities, was per ormed throughthinning, when plants had two to three leaves. Te analysed variable was grain yield (kg ha-1), which was estimated throughthe manual harvest o the entire plot and the drying o samples

until constant weight, close to 12%. Plots were harvested inlate October in 2008 and 2009, and in late November in 2010.Te analysis o variance was per ormed to identi y the

interaction Cultivation Yearversus Plant Arrangement inrapeseed hybrids with different maturation cycles. Ten, themeans were grouped through the method Scott-Knott at 0.05probability level. Te parameters adaptability and stabilitywere estimated through the method o simple regression oEberhart & Russell (1966) and stability through the method oWricke (1965). Te stability model proposed by Wricke (1965)considers as stable the genotypes with low values o ecovalence(ωi). In the methodology proposed by Eberhart & Russell

(1966), genotypes with regression deviations (σ2di) equal to zeroare considered as stable and those with σ2

di ≠0 are consideredas unstable. Adaptability is given by the linear regressioncoefficient (βi), which classies genotypes adapted to avorable

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 38/96

38 Cleusa A. M. B. Krüger et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.36–41, 2016.

environments (βi > 1), genotypes adapted to un avorableenvironments (βi < 1) and those with wide adaptation (βi = 1)(Cruz & Carneiro, 2003). Te analysis were per ormed usingthe computational program GENES (Cruz, 2006).

R D

According to the analysis o variance, there were signicanteffects o the isolated actors (plant arrangement and cultivationyear) on the grain yields o the evaluated hybrids ( able1). In addition, the interaction between actors also causedsignicant effects and, thus, it needed to be detailed regardingplant arrangement by evaluation year. Te mean squares orthe cultivation years showed greater effects o this actor ascompared to plant arrangement, regardless o the tested hybrid.Such condition evidences more pronounced effects o cultivationyear compared with plant arrangement, indicating that themeteorological conditions o a certain year were more decisive

or the alterations in grain yield. Furthermore, the mean squareor the hybrid Hyola 432 was higher than that or Hyola 61,

which raises the hypothesis o higher instability o this hybridregarding the expression o grain yield.

Rapeseed grain yield is a result o the interaction betweengenetic potential, management techniques, such as nitrogen

ertilization (Kae er et al., 2014), and meteorologicalconditions occurring during the crop cycle, associated with airtemperature (Dalmago et al., 2009). Marjanović-Jeromela et al.(2011) attributed yield variations in winter rapeseed along thecultivation years to the irregular availability o rain all duringthe crop cycle, especially in the grain lling stage. In addition,

Bandeira et al. (2013) pointed out that an inadequate plantarrangement in this species also tends to promote variations ingrain yield, especially because it is a species with indeterminategrowth habit (Koenig et al., 2011).

For Hyola 432, the highest grain yields in 2008 wereobtained with the arrangements o 0.20 x 60 and 0.40 x 60( able 2); in 2009, the highest yield occurred or the conditiono 0.20 x 60 and, in 2010, the best response was observed inthe arrangement o 0.40 x 60, similar to the year o 2008. Teinter-row spacings o 0.20 and 0.40 m were the most adequateconditions or this hybrid, compared with Hyola 61, providedthat a plant density o 60 plants m-2 is maintained ( able 2).

According to the overall mean, the hybrid Hyola 432showed superiority o grain yield (S) in the inter-row spacings

o 0.20 and 0.40 m associated with the density o 60 plants m-2 ( able 2). Te inter-row spacing o 0.20 m with density o 40plants m-2 also promoted the highest grain yield or Hyola 61.However, in the inter-row spacing o 0.40 m, although Hyola432 was not superior to Hyola 61, the obtained means wereclose to those o the arrangement with the highest yield atdensities o 20 and 40 plants m-2.

Rapeseed grain yield, besides showing differences regardingthe cultivation years and plant arrangement, evidenceddifferent responses or the tested hybrids. Bandeira et al.(2013) observed higher grain yield in spacing o 17 cm withpopulation density o 45 plants m-2 using the hybrid Hyola61. On the other hand, Jacob Júnior el al. (2012) observedhigher grain yield using a density o 250 thousand plants perhectare or the hybrid occata. Due to rapeseed phenotypicalplasticity, a actor related to the growth/owering habit, thegreat alterations in its morphology stand out (Sultan, 2003).

In the comparison between cultivation years or the hybridHyola 432, the year o 2009 was avorable to the expression othe highest grain yield, ollowed by 2010 and 2008, respectively,which were different ( able 2). On the other hand, Hyola 61showed similar grain yield response in the cultivation yearso 2009 and 2010, with the lowest grain yield in 2008. Tese

results tend to characterize the hybrid Hyola 432 as the onewith the highest instability or grain production, comparedwith Hyola 61. Studies on genetic and environmental effectsshow that 73% o the variation in grain yield in winter rapeseed*Signi cant at 0.05 probability level by F test; DF – Degrees of freedom

Table 1. Summary of the analysis of variance for grain yieldas a function of plant arrangement in different cultivationyears for two rapeseed hybrids

Table 2. Mean grain yield as a function of plantarrangements in the cultivation years of two rapeseedhybrids

Means followed by the same lowercase letters in the column and uppercase letters in therow do not differ at 0.05 probability level, according to the model of Scott-Knott; S - Superior to the mean + 1 standard deviation ; and I – In ferior to the mean + 1 standard deviat ion

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 39/96

39Rapeseed population arrangement defned by adaptability and stability parameters

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.36–41, 2016.

is explained by the environment, 8% by difference betweengenotypes and 19% by the interaction genotype x environment(Marjanović-Jeromela et al., 2011).

Tere ore, the determination o environments that areavorable and stable or rapeseed grain yield becomes relevant.

Te observed results, caused by the effects o cultivationyears, can also be conrmed by the analysis o the meteorologicalconditions during the crop cycle (Figure 1). In the year o 2009,rapeseed plants showed the highest grain yield, possibly dueto the highest rain all observed along crop cycle (1124 mm),

Figure 1. Meteorological data of air temperature (T mean ) and rainfall (P) during the development of rapeseed in 2008(A), 2009 (B) and 2010 (C)

A.

B.

R a i n f a l l ( m m

)

T e m p e r a t u r e

( o C )

C.

MonthsJul Aug Sep Oct Nov

P 2008mean 2008

P 2009mean 2009

P 2010mean 2010

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 40/96

40 Cleusa A. M. B. Krüger et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.36–41, 2016.

compared with the climatological normal (1047 mm), differentrom that in 2008, when rain all was lower, especially in

September and, in 2010, in November, when the crop was inthe stage o owering and grain lling.

Te analysis o adaptability and stability o rapeseed indifferent plant arrangements showed that, despite having thehighest grain yield means in the arrangements o 0.20 x 60and 0.40 x 60, the hybrid Hyola 432 showed adaptability orboth avorable and un avorable cultivation environments onlyin the arrangement o 0.40 x 60 ( able 3). On the other hand,there was no stability in the arrangement o 0.40 x 60, sinceσ2

di was signicant, indicating that the mean value o grainyield, although high, did not point to stability o expressionin this condition.

Te plant arrangements o 0.20 x 80 and 0.40 x 40 alsopromoted yields above 1000 kg ha-1 and, despite showingwide adaptability, were not stable according to the model oEberhart & Russell (1966). Nevertheless, Hyola 432 in theplant arrangement o 0.40 x 60 was the most stable condition,according to the model o Wricke (1965), with a lowerecovalence value compared with the arrangement o 0.20 x60 ( able 3).

In the hybrid Hyola 61, the arrangements o 0.40 x 60and 0.40 x 80 simultaneously promoted high grain yield andadaptability to avorable and un avorable environments ( able3). Te plant arrangements o 0.20 x 40, 0.20 x 60 and 0.20 x 80 mshowed specic adaptability to avorable environments (β1 >

1). Rapeseed plants in the inter-row spacing o 0.20 m and atdensities o 60 and 80 plants m-2 showed stability according tothe model o Eberhart & Russell (1966). Te arrangement o0.40 x 40, besides promoting high grain yield mean, showed aninteresting peculiarity; although it showed stability, it indicatedspeci ic adaptability to un avorable environments. hiscondition could be more appropriate or the recommendation

to armers with lower technological support or rom areas withhigher agro-ecological variations. In general, the inter-rowspacing o 0.40 m with density o 60 plants m-2 is the mostadequate condition, because it shows high grain yield meanwith general adaptability ( able 3).

he analysis o adaptability and stability have beenincreasingly used in the identication o cultivars with morestable and predictable behavior regarding the environmental variations (Silva & Duarte, 2006), as well as in the denition omore adequate cultivation techniques (Krüger et al., 2011). Itshould be pointed out that there could be different responsesbetween the methods o estimation o adaptability and stability(Cargnelutti Filho et al., 2007) as observed in the present study.Tis is somehow expected, since the method o Wricke (1965)indicates that the stability does not depend on mean yield andadaptability to general environments, avorable and un avorable,contrary to the model o Eberhart & Russell (1966).

In the present study, it was possible to indicate, using stabilityand adaptability models, a more adequate plant arrangement

or two rapeseed hybrids, considering the meteorologicalconditions o different seasons. Tis in ormation is o greatimportance because these are species with indeterminategrowth habit, responsive to alterations in plant arrangementand with lack o more speci ic recommendations or thecultivation regions. he parameters o adaptability andstability contribute to management adjustments and betterrecommendation o cultivars. his is observed in specieso agricultural interest, such as corn or grain production(Cargnelutti Filho et al., 2007), oat or the content o beta-glucan (Crestani et al., 2010) and soybean or oil and proteincontents in the seeds (Rodrigues et al., 2014).

C

1. Te arrangement o plants or obtaining the highest grainyield depends on the cultivated genotype.

2. Grain yield was higher in the arrangements o 0.20 m x60 plants m-2 and 0.40 m x 60 plants m-2 or Hyola 432 and inthe arrangement o 0.20 m x 60 plants m-2 or Hyola 61, in thethree evaluation years.

3. In the inter-row spacing o 0.40 m and densities o 40and 60 plants m-2, Hyola 432 shows high yield, adaptability towide environments and stability. For Hyola 61, high yield withgeneral adaptability was obtained in the inter-row spacing o0.40 m with 60 plants m-2.

L CBandeira, . P.; Chavarria, G.; omm, G. O. Desempenho agronômico

de canola em di erentes espaçamentos entre linhas e densidadesde plantas. Pesquisa Agropecuária Brasileira, v.48, p.1332-1341,2013. http://dx.doi.org/10.1590/S0100-204X2013001000004

β1 – Adaptability coef cient;σ2

d – Regression deviations; R2 – Coef cient of determination,obtained by the method of Eberhart & Russell (1966);ω i – Stability coef cient obtained by the method of Wricke (1965); *Signi cant; nsNot signi cant by F test and t-test

able 3. Mean grain yield and parameters o adaptability andstability in rapeseed according to Eberhart & Russell (1966)and Wricke (1965), as a unction o plant arrangement

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 41/96

41Rapeseed population arrangement defned by adaptability and stability parameters

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.36–41, 2016.

Benin, G. ; Carvalho, F. I. F. de; Oliveira, A. C.; Lorencetti, C.; Vieira,E. A.; Coimbra, J. L. M.; Valério, I. P.; Floss, E. L.; Bertan, I.; Silva,G. A. G. Adaptabilidade e estabilidade em aveia em ambientesestraticados. Ciência Rural, v.35, p.295-302, 2005. http://dx.doi.org/10.1590/S0103-84782005000200008

Cargnelutti Filho, A.; Perecin, D.; Malheiros, E. B.; Guadagnin, J.P. Comparação de métodos de adaptabilidade e estabilidade

relacionados à produtividade de grãos de cultivares de milho.Bragantia, v.66, p.571-578, 2007. http://dx.doi.org/10.1590/S0006-87052007000400006

Chavarria, G.; omm, G. O.; Muller, A.; Mendonça, H. F.; Mello, N.;Betto, S. Índice de área oliar em canola cultivada sob variaçõesde espaçamento e de densidade de semeadura. Ciência Rural, v.41, p.2084-2089, 2011. http://dx.doi.org/10.1590/S0103-84782011001200008

CONAB - Companhia Nacional de Abastecimento. Acompanhamentode sa ra brasileira: Grãos, décimo segundo levantamento,setembro 2013/Companhia Nacional de Abastecimento – Brasília:CONAB, 2013. 30p.

Crestani, M.; Carvalho, F. I. F. de; Oliveira, A. C. de; Silva, J. A.G. da; Gutkoski, L. C.; Sartori, J. F.; Barbieri, R. L.; Baretta, D.Conteúdo de β-glucana em cultivares de aveia branca cultivadasem di erentes ambientes. Pesquisa Agropecuária Brasileira, v.45,p.261-268, 2010.

Cruz, C. D. Programa Genes: Biometria. Viçosa: UFV, 2006. 382p.Cruz, C. D.; Carneiro, P. C. S. Modelos biométricos aplicados ao

melhoramento genéticos. Viçosa: UFV, 2003. 585p.Dalmago, G. A.; Cunha, G. R. da; omm, G. O.; Santi, A.; Pires, J. L.

F. Canola, In: Monteiro, J. E. B. A. (org.). Agrometeorologia doscultivos. 1.ed. Brasília: INME , 2009. v.1, p.131-149.

Eberhart, S. A.; Russell, W. A. Stability parameters or comparing variet ie s. Crop Sc ience, v.6, p.6-40 , 1966. http:/ /dx.doi.org/10.2135/cropsci1966.0011183X000600010011x

Jacob Júnior, E. A.; Mertz, L. M.; Henning, F. A.; Quílon, I. R.; Maia,M. de S.; Altisent, J. M. D. Changes in canola plant architectureand seed physiological quality in response to different sowingdensities. Revista Brasileira de Sementes. v.34, p.14-20, 2012.http://dx.doi.org/10.1590/S0101-31222012000100002

Jullien, A.; Mathieu, A.; Allirand, J. M.; Pinet, A.; Reffye, P de;Courne, P-H; Ney, B. Characterization o the interactions betweenarchitecture and source–sink relationships in winter oilseed rape(Brassica napus ) using the GreenLab model. Annals o Botany, v.107, p.765-779, 2011. http://dx.doi.org/10.1093/aob/mcq205

Kae er, J. E.; Guimarães, V. F.; Richart, A.; omm; G. O.; Müller, A. L.Produtividade de grãos e componentes de produção da canola deacordo com ontes e doses de nitrogênio. Pesquisa AgropecuáriaBrasileira, v.49, p.273-280, 2014. http://dx.doi.org/10.1590/S0100-204X2014000400005

Koenig, R. .; Hammac, W. A.; Pan, W. L. Canola growth, development,and ertility. Washington: Washington State University, 2011. 6p.

Krüger, C. A. M. B.; Medeiros, S. L. P.; Silva, J. A. G. da.; Gaviraghi, J.Herdabilidade e correlação enotípica de caracteres relacionadosà produtividade de grãos e à mor ologia da canola. PesquisaAgropecuária Brasileira, v.46, p.1625-1632, 2011.

Marjanović-Jeromela, A.; Nagal, N.; Gvozdanović-Varga, J.; Hristov,

N.; Kondić-Špika, A.; Vasić, M.; Marinković, R. Genotype byenvironment interaction or seed yield per plant in rapeseedusing AMMI model. Pesquisa Agropecuária Brasileira, v.46,p.174-181, 2011.

Pereira, H. S.; Melo, L. C.; Peloso, M. J. D.; Faria, L. C. de; Costa, J. G.C. da; Díaz, J. L. C.; Rava, C. A.; Wendland, A. Comparação demétodos de análise de adaptabilidade e estabilidade enotípica em

eijoeiro-comum. Pesquisa Agropecuária Brasileira, v.44, p.374-383, 2009. http://dx.doi.org/10.1590/S0100-204X2009000400007

Rodrigues, J. I. da S.; Cruz, C. D.; Piovesan, N. D.; de Barros, E. G.;Moreira, M. A. Biometric analysis o protein and oil contentso soybean genotypes in di erent environments. Pesquisa

Agropecuária Brasileira, v.49, p.475-482, 2014. http://dx.doi.org/10.1590/S0100-204X2014000600009

Santos, H. G. dos; Jacomine, P. K. .; Anjos, L. H. C. dos; Oliveira, V.A. de; Oliveira, J. B. de; Coelho, M. R.; Lumbreras, J. F.; Cunha,

. J. F. (ed.). Sistema brasileiro de classicação de solos. Rio deJaneiro: Embrapa Solos, 2006. 306p.

Shahin, Y.; Valiollah, R. Effects o row spacing and seeding rates onsome agronomical traits o spring canola (Brassica napus L,)cultivars. Journal o Central European Agriculture, v.10, p.115-122, 2009.

Silva, J. A. G. da; Motta, M. B. da; Wunsch, J. A.; Crestani, M.;Fernandes, S.B.V.; Berto, J. L.; Gaviraghi, F.; Martins, J. A. K.;Wagner, J. F.; Valentini, A. P. F.; Zambonato, F. Dessecação empré-colheita como estratégia de manejo na redução de perdas por

atores de ambiente em canola. Revista Brasileira de Agrociência, v.16, p.151-158, 2011.

Silva, W. C. J.; Duarte, J. B. Métodos estatísticos para estudo deadaptabilidade e estabilidade enotípica em soja. PesquisaAgropecuária Brasileira, v.41, p.23-30, 2006. http://dx.doi.org/10.1590/S0100-204X2006000100004

Sultan, S. E. Phenotypic plasticity in plants: A case study in ecologicaldevelopment. Evolution & Development, v.5, p.25-33, 2003. http://dx.doi.org/10.1046/j.1525-142X.2003.03005.x

omm, G. O. Indicativos tecnológicos para produção de canola noRio Grande do Sul. Passo Fundo: Embrapa rigo, 2007. 32p.<http://www,cnpt,embrapa,br/culturas/canola/p_sp03_2007,pd >10 Mai. 2014.

Wricke, G. Zur berechning der okovalenz bei sommerweizen undha er. Zeitschrif ur Panzenzuchtung, v.52, p.127-138, 1965.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 42/96

Revista Brasileira de Engenharia Agrícola e Ambiental

Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.42–48, 2016

Soil chemical properties and maize yield under applicationo pig slurry bio ertilizerMarcelo E. Bócoli1, José R. Mantovani2, José M. Miranda 2, Douglas J. Marques 2 & Adriano B. da Silva2

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p42-48

A B S T R A C TOrganic materials subjected to a process o anaerobic digestion in a digester producebio ertilizer that can be used in agriculture as nutrient source. Te objective o this studywas to evaluate the effect o pig slurry bio ertilizer on soil chemical properties and on cornyield and nutrient concentrations in leaves and kernels. Te experiment was conductedin the eld rom November 2012 to April 2013, and was arranged in a randomized blockdesign with seven treatments and our replicates. Te treatments consisted o doses o pigslurry bio ertilizer (0; 40; 80; 120; 160; 200 and 240 m3 ha-1), applied to the soil sur ace ina single application, at stage V 2 o corn plants. Tirty-three days afer bio ertilization, soilsamples were collected in each plot. Corn was harvested 129 days afer sowing. Doses upto 240 m 3 ha-1 o pig slurry bio ertilizer applied to soil with good ertility did not inuencesoil chemical properties and corn yield. Te use o pig slurry bio ertilizer had no detectableeffect on nutrient concentrations in corn leaves and kernels.

Atributos químicos do solo e produtividade de milhocom aplicação de bio ertilizante de dejetos suínosR E S U M OMateriais orgânicos submetidos a um processo de digestão anaeróbia, por meio debiodigestor, produzem bio ertilizante que pode ser utilizado na agricultura como onte denutrientes. O objetivo do presente trabalho oi avaliar o e eito de bio ertilizante de dejetolíquido de suínos em atributos químicos do solo, na produtividade e no teor de nutrientesnas olhas e nos grãos de milho. O experimento oi realizado em condições de campo, denovembro de 2012 a abril de 2013. Empregou-se delineamento experimental em blocos aoacaso, com sete tratamentos em quatro repetições. Os tratamentos oram constituídos pordoses de bio ertilizante de dejeto líquido de suínos, 0; 40; 80; 120; 160; 200 e 240 m3 ha-1,aplicadas na super ície do solo, de uma única vez, no estádio enológico V2 do milho. Aos33 dias após a aplicação do bio ertilizante oram coletadas, em cada parcela, amostras desolo. A colheita oi realizada aos 129 dias após a semeadura do milho. A aplicação de até240 m3 ha-1 de bio ertilizante de dejeto líquido de suínos, em solo com boas condições de

ertilidade, não alterou os atributos químicos do solo e não inuenciou na produtividade demilho. O uso de bio ertilizante de dejeto líquido de suínos não a etou os teores de nutrientesno tecido oliar nem nos grãos de milho.

Key words:organic ertilizationmanurewasteeffluent

Palavras-chave:adubação orgânicaestercoresíduoeuente

1 Instituto Federal Sul de Minas. Muzambinho, MG. E-mail: [email protected] Universidade José do Rosário Vellano/Faculdade de Agronomia. Al enas, MG. E-mail: [email protected] (Corresponding author); jose.miranda@uni enas.br; dougl [email protected] ; adriano.s ilva@uni enas.br

Protocolo 404-2014 – 18/11/2014 • Aprovado em 17/07/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 43/96

43Soil chemical properties and maize yield under application of pig slurry biofertilizer

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.42–48, 2016.

I

In piggery, the system used by most producers is to pen theanimals in small eedlots, resulting in the generation o largeamounts o waste in liquid orm (Giacomini et al. 2014). Pigslurry consists o eces, urine, uneaten eed, animal hair, and varying amounts o water rom the waterers and cleaning o

the installations (Sousa et al., 2014).In the pig pens, each sow produces 35-40 L o waste per day,

and in the nishing phase, the daily production o manure peranimal varies rom 12 to15 L (Seidel et al., 2010).

Pig slurry can be used in agriculture as a nutrient source orplants, and its use as organic ertilizer allows greater nutrientcycling in the environment (Lourenzi et al., 2014). Severalreports in the literature mention improvements in soil ertilityand increases in crop yields when using pig slurry as organic

ertilizer, without having gone through biodigestion (Cerettaet al., 2003; 2005; Scherer et al., 2010; Lourenzi et al., 2014).However, successive applications o this organic ertilizer can

promote excessive increases in P, Cu and Zn in soil, posing apotential contamination risk o soil and sur ace and subsur acewater bodies (Ceretta et al., 2010; Girotto et al., 2010; Veigaet al., 2012).

Pig slurry can be digested in an anaerobic process in abiodigester, by which biogas is produced, use ul as uel, aswell as biodigester effluent, also called bio ertilizer, suitableas ertilizer in agriculture (Vilela Júnior et al., 2003; Silva etal., 2012). In the anaerobic digestion, various types o bacteriaconvert complex organic compounds into components withsimpler structure (Silva et al., 2012). As a result, the nutrientsin the bio ertilizer are more readily available to plants thanthose in undigested organic ertilizer (Vilela Júnior et al., 2003).Furthermore, the biodigester can reduce 90% o chemicaloxygen demand (COD) and biochemical oxygen demand(BDO) and up to 99% o coli orms (Silva et al., 2012).

In Brazil, studies involving the use o biodigesters wererelated to wastewater treatment and energy use o biogas,but in ormation on the effect o bio ertilizers on soil ertilityproperties is scarce (Silva et al., 2012). Te studies publishedso ar ocus on vegetables (Vilela Júnior et al., 2003; Santoset al., 2012; Sediyama et al., 2009; 2014) or pasture (OrricoJúnior et al., 2012), but ew eld studies addressed pig slurrybio ertilization o cereals such as corn.

Te goal o this study was to assess the effect o pig slurrybio ertilizer on soil chemical properties, corn yield and nutrientconcentrations in corn leaves and kernels.

M M

Te experiment was conducted in the eld rom November2012 to April 2013, at the Federal Institute o Education,Science and echnology o the South o Minas, Muzambinho,

Minas Gerais State, Brazil (21o 18’ 00” S; 46o 30’ 00” W;1033 m asl). During the experiment, the temperature in theexperimental area ranged rom 15 to 31 °C and the cumulativerain all in the period was 1395 mm (Figure 1).

Te soil o the experimental area was classied as Oxisol,with clayey texture, on which maize was sown in the 2010/2011and common bean in the 2011/2012 growing season. Prior to

the experiment, composite soil samples were collected (layers0-0.20 m and 0.20-0.40 m), which were subjected to initialchemical routine analysis (Silva, 1999) ( able 1). In theselayers soil particle-size analysis (Camargo et al., 2009) wasalso per ormed, and the results were: 500 and 530 g kg -1 clay;170 and 160 g kg-1 silt; 330 and 310 g kg-1 sand, respectively.

Soil tillage consisted o subsoiling, ollowed by diskharrowing and two passings with a leveling harrow. No limingwas per ormed in the area, since the base saturation (V%) othe top layer (0-0.20 m) was higher than that considered asadequate or the crop (CFSEMG, 1999).

Te experiment, with 7 treatments and 4 replicates, a total

o 28 plots, was arranged in a randomized block design. Tetreatments consisted o rates o pig slurry bio ertilizer (0, 40,80, 120, 160, 200 and 240 m3 ha -1).

Each plot consisted o ve 5-m long rows spaced 0.60 mapart, amounting to a total area o 15 m 2. Te evaluated areaper plot consisted o the t hree central rows, disregarding1.0 m at either end, resulting in a total area o 5.4 m 2.

Te corn hybrid Superis Viptera 3, genetically modied,with an insecticidal agent event Bt ( Bacillus thuringiensis), wassown mechanically (8 seeds m -1), on 19/11/2012. Fertilization atsowing was applied as described by CFSEMG (1999), based onthe results o the initial soil analysis ( able 1) and an expected

yield o over 8 t ha-1. o this end, 20 kg N ha

-1 and 60 kg P2O5

ha -1 were applied at planting to all plots, using the sourcesurea and superphosphate granules. Afer plant emergence,in the V 2 growth stage, plants were thinned to 4 plants m -1,corresponding to a population o 66,667 plants ha -1.

OM – Organic matter; H + Al – Potential acidity; CEC – Cation exchange capacity; V – Base saturation

Table 1. Chemical analysis of the soil used in the experiment

Tmin and Tmax correspond to minimum and maximum air temperature, respectively

Figure 1. Air temperature and rainfall in the experimentalperiod

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 44/96

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 45/96

45Soil chemical properties and maize yield under application of pig slurry biofertilizer

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.42–48, 2016.

Te organic matter content o the soil was not altered bythe application o pig slurry bio ertilizer ( able 3), due to thelow dry matter content o this organic ertilizer, low C/N ratioand the presence o readily decomposable organic C in theswine waste, aside rom the likely increase in soil microbialactivity afer effluent application (Ceretta et al., 2003; Sousaet al., 2014).

Similar results were reported by Caovilla et al. (2010),Medeiros et al. (2011) and Homem et al. (2014) in relationto the soil ertility properties. Caovilla et al. (2010) ound nosignicant changes in pH, base saturation, and concentrationso P, K+, Ca2+, and Mg 2+ in soil drip-irrigated with swinewastewater at di erent concentrations during soybeancultivation. Medeiros et al. (2011) ound that the use o swinewastewater or cotton irrigation did not alter pH, soil organic

matter, P, Ca, Cu, and Zn in the topsoil (0-0.2 m). Homemet al. (2014) observed that successive applications o swinewastewater, which amounted to 150 m 3 ha -1, did not increasepH and P, K +, Na+, Ca2+, and Mg2+ concentrations in the 0-0.2m soil layer in an area o Brachiaria decumbens .

In a pot experiment, Duarte et al. (2008) ound that therewas no change in pH and levels o P and K in soil irrigatedwith wastewater rom a sewage treatment, in sweet peppercultivation. According to these authors, the soil pH o theeffluent-irrigated areas may increase due to the increase inthe denitrication process, where one mole o H + is consumed

or every denitried mole o NO3-. Cabral et al. (2011), in

an experiment under eld conditions with elephant grass,observed that soil pH did not vary and that the P and Mgconcentrations in the soil increased with the application o upto 750 m 3 ha -1 o swine wastewater.

Tere are several reports in the literature o increasedlevels o soil nutrients afer pig slurry application under eldconditions (Ceretta et al., 2003; Scherer et al., 2010; Girottoet al., 2010; Veiga et al., 2012). However, these studies usedorganic ertilizers with a higher dry matter content comparedwith the bio ertilizer used in this experiment. In addition, thesestudies tested successive pig slurry applications.

Ceretta et al. (2003) applied 28 rates o up to 40 m 3 ha-1

o pig slurry to the sur ace o a pasture soil in 4 years, andobserved increases in Ca, Mg, and especially soil P, whichreached extremely high values in the 0-0.1 m layer. Accordingto these authors, there was no increase in soil pH, and K and

organic C afer applying the organic ertilizer. Scherer et al.(2010) ound that in areas treated with swine waste in the longterm (around 15 years, and between 20 and 25 years), the P,K, Cu and Zn concentrations increased markedly in the soilsur ace layers, especially in 0-0.05 m.

Girotto et al. (2010) ound linear increases in available Cuand Zn concentrations in soil layers o a no-tillage area treatedwith 17 applications o up to 80 m3 ha -1 o pig slurry over 78months. According to the authors, the levels o available Cuand Zn in the 0-0.10 m soil layer o the treatment with thehighest rate o organic ertilizer were, on average, 12 and 24times higher, respectively, than in the control. Veiga et al.(2012) ound that continuous application o high pig slurryrates, up to 200 m 3 ha-1 yr-1 on the soil sur ace, resulted insharp increases in P, Cu and Zn concentrations to a depth o

0.2 m. Tese authors also reported a reduction in soil pH withthe application o organic ertilizer, and attributed it to theacidication process o nitrication.

Te concentrations o N, P, K, Ca, Mg, Cu and Zn in cornleaves were not affected (p> 0.05) by the application o pigslurry bio ertilizer to the soil sur ace ( able 5). Te meanso these lea nutrient levels were, respectively, 34; 3.0; 25; 4.1and 2.0 g kg-1; 12 and 25 mg kg-1, and were within the rangeconsidered as suitable or maize (Cantarella et al., 1997), whichexpresses balanced nutritional level.

Nutrient concentrations, especially K and N, were expectedto increase in the soil and corn lea tissue with the application

o pig slurry bio ertilizer. Tis act was not observed, probablydue to the N and K leaching caused by the bio ertilizer to a soillayer below those assessed in the experiment, which resultsin non-use o these nutrients effluent by corn. In bio ertilizer,nutrients as N are more readily available to plants (VilelaJúnior et al., 2003). However, these orms are also more proneto leaching losses.

Similar results were obtained by Santos et al. (2012) andSediyama et al. (2014), who detected no changes in oliar N, Pand K concentrations in sweet pepper and pumpkin, with theapplication o pig slurry bio ertilizer. In contrast, Sediyama etal. (2009) reported increases in oliar concentrations o N, Ca

and Mg in okra with the use o up to 48 m3

ha-1

o pig slurrybio ertilizer.Sartor et al. (2012) treated a no-tillage cereal crop or 6 years

with 10 applications o up to 60 m3 o pig slurry ha-1, and ound

Table 4. Concentrations of Ca, Mg, Cu and Zn in the three studied soil layers, as related to the application of pig slurrybiofertilizer

NSNot signi cant by F test (p > 0.05); CV - Coef cient ofvariation

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 46/96

46 Marcelo E. Bócoli et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.42–48, 2016.

Table 5. Nutrient concentrations in corn leaf tissue as related to the application of pig slurry biofertilizer

NS - Not signi cant by F test (p > 0.05); CV - Coef cient ofvariation

NSNot signi cant by F test (p > 0.05); CV - Coef cient ofvariation

Table 7. Nutrient concentrations in the corn kernels as related to the application of pig slurry biofertilizer

NS - Not signi cant by F test (p > 0.05); CV - Coef cient ofvariation

Table 6. Corn grain yield and yield components as related to the application of pig slurry biofertilizer

that N, P and Zn concentrations in corn leaves increased up toan estimated rate o about 40 m 3 ertilizer ha-1. Te authors also

ound that K, Ca, Mg, and Cu concentrations in corn leavesremained unchanged with the application o organic ertilizer.

Pig slurry bio ertilizer had no signi icant (p > 0.05)effect on corn grain yield and yield components (ear length,ear diameter, number o kernels per ear and 1.000 grainweight) ( able 6), because the digester effluent induced noimprovements in soil ertility. Te average grain yield in theexperiment (9.656 kg ha -1) was clearly above the center-southaverage o Brazil, in the 2013/2014 growing season, or maizein the main season (6.230 kg ha -1) (CONAB, 2014). Grainyield was high due to the good soil ertility in the area and the

avorable weather conditions (temperature and precipitation)during the course o this experiment.Ceretta et al. (2005), Seidel et al. (2010) and Lourenzi et al.

(2014) reported increases in corn grain yield under pig slurryapplication. In these experiments, the maximum grain yields were,respectively, 15, 10 and 11.6 t ha -1, exceeding the yield o this study.Te different per ormance in grain yield with organic ertilizationin those experiments, compared to our study, is because pig slurrybio ertilizer has a higher water content and consequently lowernutrient content compared with liquid swine manure.

Cabral et al. (2011) observed no increase in dry matterproduction o elephant grass with application o up to 750 m 3

ha-1

o swine wastewater. Freitas et al. (2004) ound an increasein yield o silage corn using swine wastewater in irrigation.Orrico Júnior et al. (2012) ound that the application o pigslurry bio ertilizer at rates o up to 0.57 L pot-1, equivalent to up

to 300 kg N ha -1 linearly increased the dry matter productiono Brachiaria brizantha .

Te nutrient concentrations in maize kernels were notaffected either (p > 0.05) by pig slurry bio ertilization ( able 7).Tus, as the properties evaluated were not benetted, the chieadvantage o applying this effluent consisted in the water reuse.

C

1. Doses up to 240 m 3 ha-1 o pig slurry bio ertilizer appliedto soil with good ertility did not inuence soil chemicalproperties and did not affect corn yield.

2. Te use o pig slurry bio ertilizer did not affect nutrient

concentrations in corn leaves and kernels.

L C

Barbosa, J. C.; Maldonado Júnior, W. AgroEstat: Sistema para análisesestatísticas de ensaios agronômicos. Versão 1.0. Jaboticabal:FCAV/UNESP, 2011.

Cabral, J. R.; Freitas, P. S. L. de; Rezende, R.; Muniz, A. S.; Bertonha, A.Impacto da água residuária de suinocultura no solo e na produçãode capim-ele ante. Revista Brasileira de Engenharia Agrícolae Ambiental, v.15, p.823-831, 2011. http://dx.doi.org/10.1590/S1415-43662011000800009

Camargo, A. O.; Moniz, A. C.; Jorge, J. A.; Valadares, J. M. A. S.Métodos de análise química, mineralógica e ísica de solosdo Instituto Agronômico de Campinas. Campinas: InstitutoAgronômico, 2009. 77p. Boletim écnico, 106

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 47/96

47Soil chemical properties and maize yield under application of pig slurry biofertilizer

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.42–48, 2016.

Cantarella, H.; Raij, B. van; Camargo, C. E. O. Cereais. In: Raij,B. van; Cantarella, H.; Quaggio, J. A.; Furlani, A. M. C. (ed.).Recomendações de adubação e calagem para o Estado de SãoPaulo. 2.ed. Campinas: Instituto Agronômico, Fundação IAC,1997.p.45-71. Boletim écnico, 100

Caovilla, F. A.; Sampaio, S. C.; Smanhotto, A.; Nóbrega, L. H. P.;Queiroz, M. F. de; Gomes, B. M. Características químicas de solo

cultivado com soja e irrigado com água residuária da suinocultura.Revista Brasileira de Engenharia Agrícola e Ambiental, v.14,p.692-697, 2010.

Ceretta, C. A.; Basso, C. J.; Pavinato, P. S.; rentin, E. E.; Girotto, E.Produtividade de grãos de milho, produção de matéria seca eacúmulo de nitrogênio, ós oro e potássio na rotação aveia preta/milho/nabo orrageiro com aplicação de dejeto líquido de suínos.Ciência Rural, v.35, p.1287-1295, 2005. http://dx.doi.org/10.1590/S0103-84782005000600010

Ceretta, C. A.; Durigon, R.; Basso, C. J.; Barcellos, L. A. R.; Vieira, F.C. B. Características químicas de solo sob aplicação de estercolíquido de suínos em pastagem natural. Pesquisa AgropecuáriaBrasileira, v.38, p.729-735, 2003. http://dx.doi.org/10.1590/S0100-204X2003000600009

Ceretta, C. A.; Lorensini, F.; Brunetto, G.; Girotto, E.; Gatiboni,L. C.; Lourenzi, C. R.; iecher, . L.; de Conti, L.; rentin, G.;Miotto, A. Frações de ós oro no solo após sucessivas aplicaçõesde dejetos de suínos em plantio direto. Pesquisa AgropecuáriaBrasileira, v.45, p.593-602, 2010. http://dx.doi.org/10.1590/S0100-204X2010000600009

CFSEMG - Comissão de Fertilidade do Solo do Estado de MinasGerais -. Recomendações para o uso de corretivos e ertilizantesem Minas Gerais: 5ª aproximação. Viçosa: UFV, 1999. 359p.

CONAB - Companhia Nacional de Abastecimento. Acompanhamentoda sa ra brasileira: grãos, décimo levantamento, julho/2014.Brasília: CONAB. em:<http://www.conab.gov.br/OlalaCMS/uploads/arquivos/14_07_09_09_36_57_10_levantamento_de_graos_julho_2014.pd >.Sa ra 2013/2014. 10 Ago. 2014.

Duarte, A. S.; Airoldi, R. P. S.; Folegatti, M. V.; Botrel, . A.; Soares, .M. E eitos da aplicação de euente tratado no solo: pH, matériaorgânica, ós oro e potássio. Revista Brasileira de EngenhariaAgrícola e Ambiental, v.12, p.302-310, 2008. http://dx.doi.org/10.1590/S1415-43662008000300012

Freitas, W. S.; Oliveira, R. A.; Pinto, F. A.; Cecon, P. R.; Galvão, J.C. C. E eito da aplicação de águas residuárias de suinoculturasobre a produção de milho para silagem. Revista Brasileira deEngenharia Agrícola e Ambiental, v.8, p.120-125, 2004. http://dx.doi.org/10.1590/S1415-43662004000100018

Giacomini, D. A.; Aita, C.; Pujol, S. B.; Giacomini, S. J.; Doneda,A.; Cantú, R. R.; Dessbesell, A.; Ludtke, R. C.; Silveira, C. A. P.Mitigação das emissões de amônia por zeólitas naturais durantea compostagem de dejetos de suínos. Pesquisa AgropecuáriaBrasileira, v.49, p.521-530, 2014. http://dx.doi.org/10.1590/S0100-204X2014000700004

Girotto, E.; Ceretta, C. A.; Brunetto, G.; Santos, D. R.; Silva, L. S.da; Lourenzi, C. R.; Lorensini, F.; Vieira, R. C. B.; Schmatz, R.

Acúmulo e ormas de cobre e zinco no solo após aplicaçõessucessivas de dejeto líquido de suínos. Revista Brasileira deCiência do Solo, v.34, p.955-965, 2010. http://dx.doi.org/10.1590/S0100-06832010000300037

Homem, B. G. C.; Almeida Neto, O. B. de; Condé, M. S.; Silva, M.D.; Ferreira, I. M. E eito do uso prolongado de água residuáriade suinocultura sobre as propriedades químicas e ísicas de umLatossolo Vermelho-Amarelo. Cientica, v.42, p.299-309, 2014.http://dx.doi.org/10.15361/1984-5529.2014v42n3p299-309

Lourenzi, C. R.; Ceretta, C. A.; Brunetto, G.; Girotto, E.; iecher, .L.; Vieira, R. C. B.; Cancian, A.; Ferreira, P. A. A. Pig slurry and

nutrient accumulation and dry matter and grain yield in variouscrops. Revista Brasileira de Ciência do Solo, v.38, p.949-958, 2014.http://dx.doi.org/10.1590/S0100-06832014000300027

Medeiros, S. S.; Gheyi, H. R.; Pérez-Marin, A. M.; Soares, F. A. L.;Fernandes, P. D. Características químicas do solo sob algodoeiroem área que recebeu água residuária da suinocultura. RevistaBrasileira de Ciência do Solo, v.35, p.1047-1055, 2011. http://dx.doi.org/10.1590/S0100-06832011000300038

Orrico Júnior, M. A. P.; Centurion, S. R.; Orrico, A. C. A.; Sunada, N.S. Effects o bio ertilizer rates on the structural, morphogeneticand productive characteristics o Piatã grass. Revista Brasileirade Zootecnia, v.41, p.1378-1384, 2012. http://dx.doi.org/10.1590/S1516-35982012000600009

Santos, M. R. dos; Sediyama, M. A. N.; Moreira, M. A.; Megguer, C.A.; Vidigal, S. M. Rendimento, qualidade e absorção de nutrientespelos rutos de abóbora em unção de doses de bio ertilizante.Horticultura Brasileira, v.30, p.160-167, 2012. http://dx.doi.org/10.1590/S0102-05362012000100027

Sartor, L. R.; Assmann, A. L.; Assmann, . S.; Bigolin, P. E.; Miyazawa,M.; Carvalho, P. C. F. Produtividade de milho, eijão, soja e trigoem resposta à aplicação de dejetos líquidos de suínos. RevistaBrasileira de Ciência do Solo, v.36, p.661-669, 2012. http://dx.doi.org/10.1590/S0100-06832012000200035

Scherer, E. E.; Nesi, C. N.; Massotti, Z. Atributos químicos do soloinuenciados por sucessivas aplicações de dejetos de suínos emáreas agrícolas de Santa Catarina. Revista Brasileira de Ciência doSolo, v.34, p.1375-1383, 2010. http://dx.doi.org/10.1590/S0100-06832010000400034

Sediyama, M. A. N.; Santos, M. R. dos; Vidigal, S. M.; Pinto, C. L.O.; Jacob, L. L. Nutrição e produtividade de plantas de pimentãocolorido, adubadas com bio ertilizante de suíno. Revista Brasileirade Engenharia Agrícola e Ambiental, v.18, p.588-594, 2014. http://dx.doi.org/10.1590/S1415-43662014000600004

Sediyama, M. A. N.; Santos, M. R. dos; Vidigal, S. M.; Salgado, L. .;Pedrosa, M. W.; Jacob, L. L. Produtividade e estado nutricionaldo quiabeiro em unção da densidade populacional e dobio ertilizante suíno. Bragantia, v.68, p.913-920, 2009. http://dx.doi.org/10.1590/S0006-87052009000400011

Seidel, E. P.; Gonçalves Junior, A. C.; Vanin, J. P.; Strey, L.; Schwantes,D.; Nacke, H. Aplicação de dejetos de suínos na cultura do milhocultivado em sistema plantio direto. Acta Scientiarum ecnology, v.32, p.113-117, 2010.

Silva, F. C. Manual de análises químicas de solos, plantas eertilizantes. Brasília: Embrapa Solos/Embrapa Comunicação

para rans erência de ecnologia, 1999. 270p.Silva, W. . L. da; Novaes, A. P. de; Kuroki, V.; Marteeli, L. F. A.;

Magnoni Júnior, C. Avaliação ísico-química de euente geradoem biodigestor anaeróbio para ns de avaliação de eciência eaplicação como ertilizante agrícola. Química Nova, v.35, p.35-40, 2012. http://dx.doi.org/10.1590/S0100-40422012000100007

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 48/96

48 Marcelo E. Bócoli et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.42–48, 2016.

Sousa, F. A.; Silva, E. B.; Campos, A. .; Gandini, A. M. M.; Corrêa, J.M.; Grazziotti, P. H. Atividade microbiana e produção da lavouraca eeira após adubação com dejetos líquidos de suínos. BioscienceJournal, v.30, p.1041-1049, 2014.

edesco, M. J.; Gianello, C.; Bissani, C. A.; Bohnen, H.; Volkweiss,S. J. Análises de solo, plantas e outros materiais. Porto Alegre:

UFRGS, 1995. 174p. Boletim écnico, 5

Veiga, M. da; Pandol o, C. M.; Balbinot Junior, A. A.; Spagnollo, E.Chemical attributes o a Hapludox soil afer nine years o pig slurryapplication. Pesquisa Agropecuária Brasileira, v.47, p.1766-1773,2012. http://dx.doi.org/10.1590/S0100-204X2012001200013

Vilela Júnior, L. V.; Araújo, J. A. C.; Factor, . I. Comportamento domeloeiro em cultivo sem solo com utilização de bio ertilizante.Horticultura Brasileira, v.21, p.153-157, 2003. http://dx.doi.

org/10.1590/S0102-05362003000200006

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 49/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.49–54, 2016

Swine arm wastewater and mineral ertilization in corn cultivationPâmela A. M. Pereira1, Silvio C. Sampaio1, Ralpho R. dos Reis1, Danielle M. Rosa1 & Marcus M. Correa2

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p49-54

A B S T R A C TIn the long run, swine wastewater can provide benets to the soil-plant relationship, wits use is planned and the potential environmental impacts are monitored. Te objectivo this study was to investigate the effects o continuous application o swine wasteassociated with mineral ertilization, afer six years o management in no-tillage androtation (14 production cycles), on the chemical conditions o the soil and the corn cTe doses o wastewater were 0, 100, 200, 300 m3 ha-1 during the cycle. Te effects o theassociation between mineral ertilization at sowing and swine wastewater were evalsimultaneously. Swine wastewater at the dose o 100 m3 ha-1 promoted availability andabsorption o P, K+, Mg2+ and Zn2+ without causing toxicity to plants or damage to thesoil, constituting a viable, low-cost alternative o water reuse and ertilization or Te nutrients N, P, K+ and B must be complemented with mineral ertilization. Speciaattention should be directed to the accumulation o Zn2+ in the soil along the time o swinewastewater application.

Água residuária de suinoculturae adubação mineral no cultivo do milhoR E S U M OEm longo prazo a água residuária da suinocultura pode o erecer bene ícios à relsolo-planta, quando planejado o uso e monitorados possíveis impactos ambientais.objetivo do trabalho oi investigar os e eitos da aplicação continuada de água residuásuinocultura associada com adubação mineral após seis anos de manejo em plantio die sucessão de culturas (14 ciclos de produção) acerca das condições químicas do soda cultura do milho. As doses de água residuária oram 0, 100, 200, 300 m3 ha-1 duranteo ciclo. Simultaneamente oram avaliados os e eitos da associação de adubação mna semeadura com água residuária de suinocultura. A água residuária da suinoculturadose de 100 m3 ha-1 proporcionou disponibilidade e absorção de P, K+, Mg2+ e Zn2+ semcausar toxicidade às plantas ou danos ao solo constituindo viabilidade de reúso de áe ertilização alternativa de baixo custo ao produtor. Os nutrientes N, P, K+ e B devem sercomplementados com adubação mineral. Atenção especial deve ser direcionada ao acúmde Zn2+ no solo, ao longo do tempo de aplicação de água residuária da suinocultura.

Key words:ertigationwater reuseswine waste

Palavras-chave:ertirrigação

reúso da águadejetos suínos

1 Universidade Estadual do Oeste do Paraná/Grupo de Pesquisa em Ciências Agro-Ambientais. Cascavel, PR. E-mail: [email protected]@unioeste.br (Corresponding author); [email protected]; [email protected]

2 Universidade Federal Rural de Pernambuco/Engenharia Ambiental. Reci e, PE. E-mail: [email protected] rpe.br

Protocolo 016-2015 – 05/04/2015 • Aprovado em 02/11/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 50/96

50 Pâmela A. M. Pereira et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.49–54, 2016.

I

Swine arm wastewater (SFW), although rich in organicmatter, macro and micronutrients (N, P, K+, Ca2+, B, Cu2+, Fe2+,Zn2+and others), is also rich in Na+, a non-essential nutrientto plants. Na+ excess in the soil can hamper water uptake byroots and be toxic to plants (Munns & ester, 2008); however,

under adequate planning, SFW is efficient or crop ertigation,allowing the reduction o the application o commercialertilizers (Cabral et al., 2011).

Te large amount o SFW daily produced ofen becomesexcessive, exposing soil and water to contamination i it is notproperly managed. Te eutrophication, the contamination byheavy metals and the residues o antibiotics present in swineexcreta (Condé et al., 2012; Regitano & Leal, 2010) are someo the impacts resulting rom its inadequate management.

Since nutrients are not totally assimilated by plants and,consequently, can accumulate and leach in high concentrationsalong the soil prole, the responses o the soil-plant relationship

to the addition o SFW require long-term monitoring studies.Many o these studies describe positive (Sampaio et al., 2010;Maggi et al., 2011; Kessler et al., 2013b; Kessler et al., 2014)and negative (Doblinski et al., 2010; Sampaio et al., 2010;Meneghetti et al., 2012; Smanhotto et al., 2013; essaro et al.,2013) inuences o SFW reuse on soil and its biota, plants,leachate and on runoff. Tere ore, the challenge in wastewatermanagement is to develop adequate application protocols,in order to minimize the polluting power o the activity andpotentiate its efficiency as a liquid ertilizer. Given the above, thisstudy aimed to investigate the effects o continuous applicationo SFW, associated with mineral ertilization, during six years

o uninterrupted cultivation under no-tillage management, onthe chemical conditions o the soil and the corn crop.

M M

Te experiment was carried out at the eld, in the city oCascavel-PR, Brazil (24° 48’ S; 53° 26’ W). Te soil in the regionis classied as typical distro erric Red Latosol, with clayeytexture (EMBRAPA, 2013). Rain alls and mean temperaturesduring the 2012/2013 agricultural year are shown in Figure 1.

In all the production cycles, SFW doses were applied at oncebe ore sowing, in the doses o 100, 200 and 300 m3 ha-1. Te SFWwas collected rom the outlet o a stabilization pond rom theto the 6° production cycle and rom the outlet o the biodigeste

rom the 7° to the 13° cycle. In the 14° cycle, re erring to tpresent study, the application o raw SFW started, which wacollected rom the channel be ore the inlet to the biodigesteand the stabilization ponds ( able 1). SFW collections wereper ormed always in the same arm and in all the productioncycles, minimizing the variations in its characteristics betweenthe studied years. he swine arm that provided SFW hasapproximately 500 sows or piglet production and is equippedwith a biodigester in an integrated system o treatment ponds.

Te doses were combined with the presence (P) and theabsence (A) o mineral ertilization (MF) (NPK ormulatio8:20:20). Tus, two actors (SFW and MF) were obtained, with4 doses o SFW and 2 doses o MF, totaling eight treatmentde ined as: 0-A (environmental control); 0-P (agronomiccontrol); 100-A; 100-P; 200-A; 200-P; 300-A and 300-P, eaco which evaluated in three replicates.

he production cycles rom 2006 to 2012 were: corn(1°), soybean (2°), oatmeal (3°), soybean (4°), oatmeal (5°)baby corn (6°), corn (7°), oatmeal (8°), soybean (9°), corn(10°), soybean (11°), corn (12°), oatmeal (13°) and corn(14°). Te amounts o nutrients rom SFW and MF, appliedin the experimental plots o the current and the previous 13production cycles, accumulated, were estimated in order tocharacterize the history o each experimental plot ( able 2).

Composite soil samples were collected at the end o thecycle in each experimental plot in the layer o 0-20 cm, usina Dutch auger. Ten, the samples were air-dried and analyzed

or the available contents o total N, Norg, Ninorg, NO3-, NO2

-,NH4

+, Mn2+, Cu2+, Zn2+, Fe2+, Ca2+, Mg2+, K+, Na+, P (Mehlich 1),organic matter (OM), aluminum (Al3+), total acidity (H++ Al3+),sum o bases (SB), base saturation (V), aluminum saturation(m), cation exchange capacity (CEC), pH water (1:2.5) andEC (1:5), according to the methodology o EMBRAPA (2009

Figure 1. Observed rainfall and mean monthly temperaturein 2012 at Cascavel, PR

*(APHA, 1998): pH - Hydrogen ionic potential; Norg

- Organic nitrogen; Ninorg

- Inorganic nitrogen;NH4

+: Ammonium; NO3

- - Nitrate; NO2- - Nitrite; TOC - Total organic carbon; Na+ - Sodium;

Ca2+ - Calcium; Mg2+ - Magnesium; Fe2+ - Iron; Mn2+ - Manganese; B - Boron; S - Sulfur; EC- Electrical conductivity; COD - Chemical oxygen demand; COD Filt - Filtered chemical oxygendemand; TS - Total solids; SF - Fixed solids; SV - Volatile solids; TDS - Total dissolved solids;FDS - Fixed dissolved solids; VDS - Volatile dissolved solids; SAR - Sodium adsorption ratio

Table 1. Physical-chemical characterization of the swinefarm wastewater* (SFW) applied in corn cultivation (14°production cycle)

SFW - swine farm wastewater

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 51/96

51Swine farm wastewater and mineral fertilization in corn cultivation

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.49–54, 2016.

Lea sampling and analysis or macro and micronutrientswere per ormed according to the methodology described byMalavolta et al. (1997).

Te experiment was set in a randomized block design,in a 4 x 2 actorial scheme with three replicates, totaling 24experimental plots, each one with area o 1.60 m2, three rowsand spacing o 0.40 x 0.50 m. Te data were initially subjected to

Shapiro-Wilk normality test and data trans ormation (√(x+1)),

when necessary, and then subjected to analysis o variance anukey test at 0.05 probability level.

R D

Te content o Ninorg in the soil afer corn cultivation waslower or the treatment 200 P in comparison to the others,since it was more absorbed by corn plants, as observed in

able 3, which shows that the highest contents o absorbed Noccurred or the presence (P) o mineral ertilization (MF). Tinorganic orm o N occurs in the soil as the orm assimilabby plants. Te low supply o this nutrient is considered as oneo the actors that limit crop yield (Kappes et al., 2009).

Te ollow-up analysis o the interaction or P shows thatthe absence and the presence o MF in the different treatmentspromoted increase o this nutrient directly to the SFW dosesexcept or the dose 200 P. Phosphorus is an important actor iplant nutrition, but its availability is low due to the mechanismo retention that acts under the presence o Fe2+ and Al3+oxides,as occurs in Latosols, in which the contents o Fe2+ oxides is very high, due to the type o the soil. P retention occurs whenthe adsorption sites are saturated with the phosphate ionin high-energy bonds. However, the maximum adsorptioncapacity o P causes more phosphate ions to be adsorbed withlower binding energy, which are more easily released to the soisolution (Santos et al., 2008). According to CQFSRS/SC (2004the content o P is equivalent to the maximum crop yield (6to 12 mg dm3) in the treatments 200 P and 300 A. It should bepointed out that the Brazilian legislation does not recognize

P as a chemical contaminant o the soil, but its excess pose

Table 2. Nutrients applied to the soil through swine farmwastewater (SFW) and mineral fertilization (MF) duringthe 14° production cycle and the total applied in theprevious cycles

# N Available; *Sum; N - Nitrogen; P - Phosphorus; K+ - Potassium; Cu2+ - Copper; Zn2+ - Zinc;A - Environmental control; P - Agronomic control

¶F value; *Signi cant at 0.05 by Tukey test; §Means followed by the same letters in the column do not differ statistically; # Means followed by the same lowercase letters in the row do nodiffer for the follow-up analysis of SFW inside MF and means followed by the same uppercase letters in the column do not differ for the follow-up analysis of MF inside SFW; SD – Standarddeviation; Transformed data (√(x+1)): Mn2+ , Zn2+ , NH4

+ , NO3- + NO2

-, pH, EC, CEC, V, m, Al3+ , H+ + Al3+ , Ninorg, Ca2+ , Cu2+ and P; ESP – Exchangeable sodium percentage; V, m and ESPexpressed in percentage (%); EC expressed in dS m-1; Al3+ , H+ +Al3+ , SB, CEC, Ca2+ , Mg2+ , K+ and Na+ expressed in mmolc dm-3; total N, NH4

+ , NO3- + NO 2

-, organic N, inorganic N, P, S,Cu2+ , Mn, B, Fe2+ and Zn2+ expressed in mg dm-3; OM expressed in g dm-3; A - Environmental control; P - Agronomic control

Table 3. Analysis of variance and means comparison test for soil chemical parameters (14° production cycle)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 52/96

52 Pâmela A. M. Pereira et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.49–54, 2016.

risks o eutrophication o water bodies (Lourenzi et al., 2013),as observed in the treatments 100 P and 300 P, which reachedlevels higher than the recommended ones.

In the absence o MF, the addition o SFW doses contributedto the increase o K+ in the soil in all the evaluated treatments.In the presence o MF, K+ contents also increased in thetreatments with 0, 100 and 200 m³ ha-¹ o SFW, decreasing in

the treatment with the addition o 300 m³ ha-¹ o SFW, whichmay have occurred in response to the competitive inhibitioncaused by Ca2+and Mg2+at this dose, added to the soil by theSFW. Te content o K+ in the soil is classied as medium (limitbetween 1.6 and 3.0 mmolc dm3) or the treatments 100 P, 200P, 300 A and 300 P, according to the agronomic thresholddescribed by Raij (2011), indicating that SFW used in isolationis sufficient to replenish this nutrient to the soil. In excess,K+ can result in competition with Ca2+ and Mg2+, and causedeciency to plants (Malavolta et al., 1997). Doblinski et al.(2010) and Kessler et al. (2013b), in experiments using SFWin soybean and oatmeal, respectively, also observed increaseo K+ in the soil.According to the statistical analysis, the contents oCa2+ and Mg2+in the presence o MF did not differ betweentreatments. However, these contents decreased in the absenceo MF, unlike K+ data, justi ying the competitive inhibitionbetween Ca2+/Mg2+ and K+. Te presence o MF in the treatment300 P resulted in the increase o these nutrients in the soil. Tecontents o Ca2+ and Mg2+in the soil are considered as high,above 7 mmolc dm3 and 8 mmolc dm3, respectively, accordingto Raij (2011). Despite the expressive contents o K+, Ca2+ andMg2+, the ESP was lower than 7%, which characterizes this soilas normal (Queiroz et al., 2010).

he metals Zn2+ and Cu2+, present in swine diet asgrowth promoters, are ound in signicant concentrationsin the manure and are directly trans erred to the soil during

ertigation, as observed in the behavior o Zn2+, whichincreased with the SFW doses. Cu2+ contents decreased inthe treatments with absence o MF. In the presence o MF, theopposite occurred and the treatments 100 P, 200 P and 300 Pwere statistically equal. Cu2+behavior in the presence o MF canbe explained by the adsorption induced by the P present in theMF (Lucas, 2011). In addition, these elements may have beenadsorbed due to the presence o iron oxides and OM, and to thepH reduction, actors that directly hamper its bioavailabilityand mobility in the system (Mellis et al., 2004). High Cu2+ contents can cause phytotoxic effects (Sodré et al., 2014) andcontaminate sur ace waters when transported through the

sediments (Girotto et al., 2010). According to CQFSRS/SC(2004), the contents o Zn2+ and Cu2+ in the soil are consideredas adequate or annual crops (> 0.5 mg dm3 and > 0.4 mg dm3,respectively). However, the accumulation o Zn2+ in the soilover the years not only can cause plant toxicity, but also changeit rom micronutrient to an environmental contaminant i itreaches 450 mg kg-1(CONAMA, 2009).

Te values o N, Norg, NO3- + NO2-, NH4+, Mn2+, Fe2+, Al3+,H++Al3+, SB, V, m, CEC, pH and EC did not show signicantdifferences between the treatments composed o the actorSFW and MF.

Te behavior o lea N was inuenced by the presence oMF ( able 4), and corn requirements (27 – 35 g kg-1) duringits development (Malavolta et al., 1997) were only met in thetreatment o 300 m3 ha-1.

he supply o P rom the addition o SFW and,simultaneously, the presence o MF, was sufficient to providplants with at least 2 g kg-1. Likewise, K+ contents increased withthe SFW doses in the presence o MF, since the treatments 100200 and 300 m3 ha-1 were similar according to the statistical test,evidencing the minimum content required by the crop, which varies rom 17 to 35 g kg-1 (Raij, 2011). In a similar experiment,Kessler et al. (2014) also observed signicant values o P anK+ in corn lea diagnosis.

Mg2+ plays an important role in crop development andcontributes to biochemical activities and photosynthesis. Tedecrease in Mg2+can be due to the competition with Ca2+

or the same exchange sites, in the absorption by the roots(Salvador et al., 2011). Another possibility is that Mg2+mayhave been assimilated in lower proportion by plants, becauseo the higher K+ absorption, which can reduce the absorptiono other nutrients when assimilated in high concentrations. Inall the treatments supplied by SFW, Mg2+ contents are withinthe minimum limit required by corn plants, in the range o1.5-5 g kg-1 (Raij, 2011), and are consistent with the resultsobtained by Kessler et al. (2013a) in the cultivation o soybeawith SFW and MF.

Te contents o Zn2+ assimilated by corn showed signicantincrease as a unction o the SFW doses. Mn2+ contents werestimulated by the presence o MF. According to Raij (2011), iall the evaluated treatments, the contents o these micronutrientsmet the requirements o the crop during its development (20 –200 mg kg-1 and 15 – 100 mg kg-1, respectively).

Although SFW increases the accumulation o B in theleaves, its contents were insufficient or growth and productioonly in the treatment with addition o 100 m3 ha-1. Contents

§ Means followed by the same letters in the column do not differ statistically; Transformed data (√(x+1)): K+ , Mg2+ , Fe2+ and Cu2+ ; Macronutrients expressed in g kg-1 and micronutrientsin mg kg-1; A - Environmental control; P - Agronomic control; ¶F value.

Table 4. Leaf analysis of corn subjected to the application of swine farm wastewater (SFW) and mineral fertilization (MF)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 53/96

53Swine farm wastewater and mineral fertilization in corn cultivation

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.49–54, 2016.

considered as adequate are within the range o 10 – 25 mg kg-1.Considered as an essential micronutrient, its deciency cancause plant tillering, sharp decrease in size and bud dormancybreaking (Ferreira, 2012).

Te lea contents o Ca2+, S, Cu2+ and Fe2+ did not differbetween the treatments composed o the actors SFW and MF.According to the data, the application o 100 m3 ha-1 o SFW

is adequate, because it promoted minimum absorption o themain nutrients required during corn development, withoutcausing toxicity to plants or negative impacts on the soil. Tenutrients N, P, K+and B must be complemented with specic

ertilization.

C

1. Afer six years o successive applications in no-tillagesystem, swine arm wastewater showed good results withrespect to the supply o P, K+ and Ca2+ in the soil and P, K+,Mg2+ and Zn2+ in the plant.

2. Te dose o 100 m3 ha-1o swine arm wastewater wasconsidered as adequate or the supply o the nutrients P, K+,Mg2+, Zn2+ and Mn2+, required by corn during its developmentand production.

3. Swine arm wastewater proved to be a promising, low-cost alternative or soil ertilization, but it can increase Zn2+ contents in the soil to toxic levels.

4. Complementary ertilization must be adopted or thesupply o N, P, K+ and B.

L C

APHA - American Public Health Association 1998. Standard methodsor the examination o water and wastewater. Washington: APHA,AWWA, WEF, 1998.1193p.

Cabral, J. R.; Freitas, P. S. L.; Rezende, R. Munz, A. S.; Bertonha, A.Impacto da água residuária de suinocultura no solo e na produçãode capim-ele ante. Revista Brasileira de Engenharia Agrícolae Ambiental, v.15, p.823–831, 2011. http://dx.doi.org/10.1590/S1415-43662011000800009

CONAMA - Conselho Nacional do Meio Ambiente. Resolução n.420,de 28 de dezembro de 2009. Critérios e valores orientadores dequalidade do solo quanto à presença de substâncias químicas.Diário Ocial da União. Brasília, 20 de Dezembro de 2009.

Condé, M. S.; Homem, B. G. C.; Almeida Neto, O. B.; Magno, A.;Santiago, F. In luência da aplicação de águas residuárias decriatórios de animais no solo: Atributos químicos e ísicos. RevistaBrasileira de Agropecuária Sustentável, v.2, p.99-106, 2012.

CQFS/RS-SC - Comissão de Química e Fertilidade do Solo. Manualde adubação e calagem para os estados do Rio Grande do Sul eSanta Catarina. Porto Alegre: Sociedade Brasileira de Ciência doSolo/Núcleo Regional Sul, 2004. 400p.

Doblinski, A. F.; Sampaio, S. C.; Silva, V. R. da; Nóbrega, L. H. P.;Gomes, S. D.; Dal Bosco, . C. Nonpoint source pollution byswine arming wastewater in bean crop. Revista Brasileira deEngenharia Agrícola e Ambiental, v.14, p.87-93, 2010. http://

dx.doi.org/10.1590/S1415-43662010000100012EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária -. Manualde análises químicas de solo, plantas e ertilizantes. 2.ed. Brasília:Embrapa in ormações ecnológica, 2009. 627p.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária -. Sistembrasileiro de classicação de solos. 3.ed. Brasília: EMBRAPA2013. 353p.

Ferreira, M. M. M. Sintomas de deciência de macro e micronutrientesde plantas de milho híbrido BRS 1010. Agroambiente, v.6, p.74-83, 2012. http://dx.doi.org/10.18227/1982-8470ragro.v6i1.569

Girotto, E.; Ceretta, C. A.; Brunetto, G.; Dos Santos, D. R.; Silva, LS. da; Lourenzi, C. R.; Lorensini, F.; Vieira, R. C. B.; SchmatzR. Acúmulo e ormas de cobre e zinco no solo após aplicaçõessucessivas de dejeto líquido de suínos. Revista Brasileira deCiência do Solo, v.34, p.955-965, 2010. http://dx.doi.org/10.1590/S0100-06832010000300037

Kappes, C.; Carvalho, M. A. C.; Yamashita, O. M.; Silva, J. A. NInuência do nitrogênio no desempenho produtivo do milhocultivado na segunda sa ra em sucessão à soja. PesquisaAgropecuária ropical, v.39, p.251-259, 2009.

Kessler, N. C. H.; Sampaio, S. C.; Lucas, S. D. M.; Sorace, M.; CitolinC. Swine wastewater associated with mineral ertilization insoybean (Glycine max L.) cultures: 9th production cycle. Journalo Food, Agriculture & Environment, v.11, p.936-942, 2013a.

Kessler, N. C. H.; Sampaio, S. C.; Sorace, M.; Lucas, S. D.; Palma, Swine wastewater associated with mineral ertilization on corncrop (Zea mays). Engenharia Agrícola, v.34, p.554-566, 2014.http://dx.doi.org/10.1590/S0100-69162014000300018

Kessler, N. C. H.; Sampaio, S. C.; Sorace, M.; Prado, N. V. Do; PalmD., Cunha, E.; Andrade, L. H. Swine wastewater associated withmineral ertilization in black oat ( Avena sativa ) cultures: 8thproduction cycle. Journal o Food, Agriculture & Environment, v.11, p.1437-1443, 2013b.

Lourenzi, C. R.; Ceretta, C. A; Silva, L. S. da; Girotto, E.; Lorensini,

iecher, . L; De Conti, L.; rentin, G.; Brunetto, G. Nutrients insoil layers under no-tillage afer successive pig slurry applications.Revista Brasileira de Ciência do Solo, v.37, p.157-167, 2013. http:dx.doi.org/10.1590/S0100-06832013000100016

Lucas, S. D. M. Água residuária de suinocultura nos teores de cobree zinco em sistemas de plantio direto em longo prazo. Cascavel:UNIOES E, 2011. 240p. Dissertação Mestrado

Maggi, C. F.; Freitas, C. L. F.; Sampaio, S. C.; Dieter, J. Lixiviação nutrientes em solo cultivado com aplicação de água residuáriade suinocultura. Revista Brasileira de Engenharia Agrícola eAmbiental, v.15, p.170-177, 2011. http://dx.doi.org/10.1590/S1415-43662011000200010

Malavolta. E.; Vitti. G. C.; Oliveira. S. A. Avaliação do estadonutricional das plantas, princípios e aplicações. AssociaçãoBrasileira para a Pesquisa da Potássio e do Fos ato. 1997. 319p.

Mellis, E. V.; Cruz, M. C. P. da; Casagrande, J. C. Nickel adsorption bsoils in relation to pH, organic matter, and iron oxides. ScientiaAgricola, v.61, p.190-195, 2004. http://dx.doi.org/10.1590/S0103-90162004000200011

Meneghetti, A. M.; Nóbrega, L. H. P.; Sampaio, S. C.; Ferques, RG. Mineral composition and growth o baby corn under swinewastewater combined with chemical ertilization. RevistaBrasileira de Engenharia Agrícola e Ambiental, v.16, p.1198-1205

2012. http://dx.doi.org/10.1590/S1415-43662012001100008Munns, R.; ester, M. Mechanisms o salinity tolerance. AnnualReview o Plant Biology, v.59, p.651-681, 2008. http://dx.doiorg/10.1146/annurev.arplant.59.032607.092911

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 54/96

54 Pâmela A. M. Pereira et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.49–54, 2016.

Queiroz, J. E.; Gonçalves, A. C. A.; Souto, J. S.; Folegatti, M. V. Avaliaçãoe monitoramento da salinidade do solo. In: Gheyi, H. R.; Dias, N. daS.; Lacerda, C. F. de. Manejo da salinidade na agricultura: Estudosbásicos e aplicados. Fortaleza: INC Sal, 2010. p.63-81.

Raij, B. van. Fertilidade do solo e manejo de nutrientes. Piracicaba:International Plant Nutrition Institute, 2011. 420p.

Regitano, J. B.; Leal, R. M. P. Comportamento e impacto ambiental

de antibióticos usados na produção animal Brasileira. RevistaBrasileira de Ciência do Solo, v.34, p.601-616, 2010. http://dx.doi.org/10.1590/S0100-06832010000300002

Salvador, J. .; Carvalho, . C.; Lucchesi, L. A. C. Relações cálcio emagnésio presentes no solo e teores oliares de macronutrientes.Revista Acadêmica de Ciências Agrárias e Ambientais, v.9, p.27-32, 2011.

Sampaio, S. C.; Fiori, M. G. S.; Opazo, M. A. U.; Nóbrega, L. H. P.Comportamento das ormas de nitrogênio em solo cultivado com milhoirrigado com água residuária da suinocultura. Engenharia Agrícola, v.30,p.138-149, 2010. http://dx.doi.org/10.1590/S0100-69162010000100015

Santos, D. R. dos; Gatiboni, L. C.; Kaminski, J. Fatores quea etam a disponibilidade do ós oro e o manejo da adubação

os atada em solos sob sistema plantio direto. Ciência Rural v.38, p.576-586, 2008 . http:/ /dx.doi.org/10 .1590/S0103-84782008000200049

Smanhotto, A.; Sampaio, S. C.; Dal Bosco, . C.; Prior, M.; Soncela, Nutrients behavior rom the association pig slurry and chemical

ertilizers on soybean crop. Brazilian Archives o Biology anecnology, v.56, p.723-733, 2013. http://dx.doi.org/10.1590/S1516-89132013000500003

Sodré, F. F.; Costa, A. C. S. da; Almeida, V. C.; Lenzi, E. Variaçõena biodisponibilidade de cobre em solo tratado com lodo deesgoto enriquecido com o metal. Revista Virtual de Química, v.6, p.1237-1248, 2014.

essaro, D.; Sampaio, S. C.; Alves, L. F. A.; Dieter, J.; Cordovil, C. S.M. S.; Varennes, A.; Pansera, W. A. Macro auna o soil treated wiswine wastewater combined with chemical ertilization. A ricaJournal o Agricultural Research, v.8, p.86-92, 2013.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 55/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.55–61, 2016

Cultivation o cherry tomato under irrigationwith saline water and nitrogen ertilizationIanne G. S. Vieira1, Reginaldo G. Nobre2, Adaan S. Dias3 & Francisco W. A. Pinheiro2

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p55-61

A B S T R A C TTe study was carried out rom August 2013 to January 2014 to evaluate growth andproduction o cherry tomato cultivated under irrigation with water o different salinitylevels and ertilized with different nitrogen (N) doses, in experiment conducted in drainagelysimeters under greenhouse conditions, at the Center or Agri ood Science and echnologyo the Federal University o Campina Grande. Te statistical design was randomized blocksin a 5 x 4 actorial scheme, with three replicates, and the treatments consisted o ve levelso electrical conductivity o water (0.3, 1.5, 2.5, 3.5 and 4.5 dS m-1) and our N doses (60,

100, 140 and 180 mg kg-1

). Growth and production variables o cherry tomato decreaselinearly rom the irrigation water salinity o 0.3 dS m-1 on. Te longer exposure o plants tosalt stress caused the highest reductions, and the root dry matter, lea area and the numbero clusters are the most sensitive variables. Te highest value o plant height at 125 daysafer transplantation was obtained with the N dose o 139 mg kg-1 o soil. Increasing N dosesreduced the effect o salinity on cherry tomato growth at 125 days afer transplantation.

Cultivo do tomateiro cereja sob irrigaçãocom águas salinas e adubação nitrogenadaR E S U M OEste trabalho oi desenvolvido entre agosto de 2013 e janeiro de 2014 objetivando avaliar ocrescimento e a produção do tomateiro cereja cultivado sob irrigação com águas salinas eadubado com distintas doses de nitrogênio em ensaio conduzido em lisímetros de drenagemsob condições de casa de vegetação da UFCG, Pombal-PB. O delineamento estatísticoutilizado oi o de blocos ao acaso, em arranjo atorial 5 x 4, com três repetições cujostratamentos constaram de cinco níveis de condutividade elétrica da água (0,3; 1,5; 2,5; 3,5e 4,5 dS m-1) e quatro doses de N (60, 100, 140 e 180mg kg-1). As variáveis de crescimento eprodução do tomateiro cereja decrescem de orma linear a partir da salinidade da água deirrigação 0,3 dS m-1; o maior tempo de exposição das plantas ao estresse salino ocasionou asmaiores reduções sendo a massa das raízes, a área oliar e o número de cachos as variáveismais sensíveis; a maior altura de planta aos 125 dias após o transplantio oi obtida com dosede N de 139 mg kg-1 de solo; doses crescentes de nitrogênio reduziram o e eito da salinidade

sobre o crescimento do tomateiro cereja, aos 125 dias após o transplantio.

Key words:Lycopersicon esculentumMill.salt stressmineral nutritiongrowth

Palavras-chave:Lycopersicon esculentumMill.estresse salinonutrição mineral

crescimento

1 Universidade Federal de Campina Grande/Centro de Ciências e ecnologia Agroalimentar/Programa de Pós-Graduação em Horticultura ropical.Pombal, PB. E-mail: [email protected] (Corresponding author)

2 Universidade Federal de Campina Grande/Centro de Ciências e ecnologia Agroalimentar/Unidade Acadêmica de Ciências Agrárias. Pombal, PB.E-mail: [email protected]; [email protected]

3

Universidade Federal de Campina Grande/Centro de ecnologia e Recursos Naturais/Programa de Pós-Graduação em Engenharia Agrícola.Campina Grande, PB. E-mail: [email protected]

Protocolo 018-2015 – 05/04/2015 • Aprovado em 02/11/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 56/96

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 57/96

57Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.55–61, 2016.

the method o capillary saturation, ollowed by ree drainage,using the waters with different saline levels.

Phosphorus was applied all at once in the basal ertilizationand potassium was applied in three periods (¼ as basal

ertilization and ¾ divided into three top-dressing applications),in 4-cm deep holes, 8 cm distant rom plant stem.

From sowing to 45 DAS, irrigation was daily per ormedin each cell, rom 7 to 17 h, using water rom the local supplysystem; a ter transplantation, irrigations were per ormedaccording to the treatments. Te soil was kept at eld capacityand the applied water depth was measured through the waterbalance in the root zone, by subtracting the volume drained inthe previous irrigation rom the applied volume, thus obtainingthe consumed volume, and adding a leaching raction o 0.10.

omato growth was evaluated at 54 and 125 days afertransplantation (DA ) through the determination o thenumber o leaves (NL), plant height (PH), stem diameter (SD)and lea area (LA). Dry matters o stem (SDM), leaves (LDM)and roots (RDM) were determined at 125 DA at the end othe experiment. Te number o clusters (NC) was evaluatedat 104 DA .

In the quantication o NL, only leaves with at least 50%o photosynthetically active area and minimum length o 3cm were considered. PH (cm) was obtained by measuring thedistance rom the base to the apical meristem o the plants.SD (mm) was determined at 5 cm rom plant base using adigital caliper, and LA (cm2) was obtained according to themethodology o Reis et al. (2013), as LA = L * W * ; where “L”is the length (cm) and “W” is the width (cm) o all the leaves

rom the marked plants and “ ” is the shape actor, which was

equal to 0.59. Te length was dened as the distance rom thepetiole insertion in the lea blade to the opposite lea tip, whilewidth was dened as the longest dimension perpendicular tothe length axis.

For the determination o stem, lea and root dry matters,the material was placed in paper bags, dried in an oven at 60 ºCuntil constant weight and then weighed. Te number o clusterswas manually counted considering only the ones with owers.

he obtained data were evaluated through analysis o variance by F test at 0.05 and 0.01 probability levels or the

actors water salinity and N doses. When signicant, linearand quadratic polynomial regressions were per ormed usingthe statistical program SISVAR-ESAL (Ferreira, 2003).

R D

Based on the analysis o variance ( able 2), there wassignicant inuence o the levels o irrigation water salinity(S) on all the studied variables, except or stem diameter (SD),

or which no signicant effect was observed at 54 DA . As tothe actor N doses, there was signicant effect only or plant

height (PH) and lea area (LA) at 125 DA ; on the other hand,the interaction between the actors (S x N) had signicant effectonly on LA, at 125 DA .

he NL o cherry tomato decreased linearly with theincrease in irrigation water salinity and, according to theregression analysis (Figure 1A), there were NL reductions o

ns, **, *Respectively, not signi cant and signi cant by F test at p < 0.01 and p < 0.05; 1Statistical analysis performed after data transformation to √x

Table 2. Summary of the analysis of variance for number of leaves (NL), stem diameter (SD), plant height (PH) and leafarea (LA) of cherry tomato under different levels of irrigation water salinity and nitrogen (N) doses at 54 and 125 daysafter transplantation (DAT)

Figure 1. Number of leaves (NL) (A) and stem diameter(SD) (B) of cherry tomato as a function of the electricalconductivity of the irrigation water (ECw), at 54 and 125days after transplantation (DAT)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 58/96

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 59/96

59Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.55–61, 2016.

Similarly, Medeiros et al. (2011), studying cherry tomatosubjected to ertilization based on different cattle manurebio ertilizers (with and without the addition o molasses,milk and agricultural gypsum) and irrigated with saline water,observed that there was positive effect o bio ertilizers on shootdry matter with the increase in irrigation water salinity, butwith superiority or the enriched bio ertilizer.

In the evaluation o SDM at 125 DA (Figure 4B), therewas signicant effect o the interaction between actors (S xN) and, according to the regression equations, plants under

ertilization with N doses o 60, 100, 140 and 180 mg kg-1 o soilsuffered linear decreases o 18.43, 18.41, 19.92 and 19.83% perunit increase in ECw, i.e., reductions o 77.41, 77.33, 83.67 and83.27% in the SDM o plants irrigated with water o 4.5 dS m-1 in comparison to those under ECw o 0.3 dS m-1. According tothe results or LDM and SDM, the increment in ECw increasedsoil salinity and reduced the osmotic potential (Garcia et al.,2010), thus increasing the resistance to water absorption byplants and, consequently, leading to the reduction in phytomassproduction.

Pessarakll & ucker (1988) also observed reduction indry matter production in cherry tomato with the increase inirrigation water salinity, indicating the sensitivity o the cropto saline stress.

RDM o cherry tomato plants decreased with the increase

in ECw and, according to the regression equations (Figure 5A),the data tted best to a quadratic model, with the highest RDM(69.4 g) obtained in plants irrigated with water o 0.3 dS m-1,i.e., there was a RDM reduction o 90.5% in plants irrigated

Figure 3. Leaf area (LA) of cherry tomato as a function ofthe electrical conductivity of the irrigation water (ECw) at54 days after transplantation (DAT) (A) and as a function ofthe interaction between the factors irrigation water salinityand nitrogen (N) doses at 125 DAT (B)

Table 3. Summary of the analysis of variance for stem drymatter (SDM), leaf dry matter (LDM) and root dry matter(RDM) at 125 days after transplantation (DAT) and numberof clusters (NC) in cherry tomato under different levels ofirrigation water salinity and nitrogen (N) doses at 104 DAT

ns, **, *Respectively, not signi cant and signi cant by F test at p < 0.01 and p < 0.05;

1Statistical analysis performed after data transformation to √x

interaction between actors (S x N), there was signicant effector LDM (p < 0.05) and SDM (p < 0.05) at 125 DA .

At 125 DA (Figure 4A), there was signicant effect o theinteraction between actors (S x N) on LDM and, accordingto the regression equations, cherry tomato plants, whensubjected to ertilization with N doses o 60, 100, 140 and 180mg kg-1 o soil, showed decreases o 12.28, 12.96, 14.80 and

13.90% per unit increase in ECw, i.e., there were reductionso approximately 51.57, 54.43, 62.18 and 58.37% in the LDMo plants irrigated with water o 4.5 dS m-1, in comparison tothose under ECw o 0.3 dS m-1.

Figure 4. Leaf dry matter (LDM) (A) and stem dry matter(SDM) (B) of cherry tomato as a function of the interactionbetween the factors irrigation water salinity (ECw) andnitrogen (N) doses at 125 days after transplantation (DAT)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 60/96

60 Ianne G. S. Vieira et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.55–61, 2016.

the number o clusters o cherry tomato decreased rom theirrigation water salinity o 0.3 dS m-1 on.

2. Te longer exposure o plants to saline stress promotedthe highest reductions in growth and production variables,and root dry matter, lea area and the number o clusters perplant are the most sensitive variables.

3. he highest value o plant height at 125 days a ter

transplantation was obtained with the N dose o 139 mg kg-1 o soil.

4. Nitrogen ertilization reduces the effect o salinity on leaarea, lea dry matter and stem dry matter o cherry tomato at125 days afer transplantation.

L C

Ayers, R. S.; Westcot, D. W. A qualidade da água na agricultura.Campina Grande: UFPB. 1991, 218p. Estudos FAO Irrigação eDrenagem, 29

Badr, M. A; alaab A. S. Response o tomatoes to nitrogen supplythrough drip irrigation system under salt stress ConditionsAustralian. Journal o Basic and Applied Sciences, v.2, p.149-156, 2008.

Blanco, F. F.; Folegatti, M. V. Doses de N e K no tomateiro sob estressesalino: III. Produção e qualidade de rutos. Revista Brasileira deEngenharia Agrícola e Ambiental, v.12, p.122–127, 2008. http://dx.doi.org/10.1590/S1415-43662008000200003

Claessen, M. E. C. (org.). Manual de métodos de análise de solo.2.ed. Rio de Janeiro: Embrapa CNPS, 1997. 212p. Documentos,1.

CQFSRS/SC - Comissão de Química e Fertilidade do Solo – Manualde recomendações de adubação e calagem para os estados do RioGrande do Sul e Santa Catarina. Porto Alegre: SBCS – NúcleoRegional Sul, 2004. 394p.

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. CentroNacional de Pesquisa de Solos. Sistema brasileiro de classicaçãode solos. 3.ed., Brasília: Embrapa Solos, 2013. 353p.

Ferreira, D. F. SISVAR 4.6 - Programa de análise estatística. Universidade Federal de Lavras, 2003. CD-Rom

Flores, P.; Botella, M. A.; Martinez, V. Cerda, A. Response to salinityo tomato seedlings with a split-root system: Nitrate uptake andreduction. Journal o Plant Nutrition, v.25, p.177-187, 2002. http://dx.doi.org/10.1081/PLN-100108789

Freire, A. L. de O.; Saraiva, V. P.; Miranda, J. R. P. de; Bruno, G. B.Crescimento, acúmulo de íons e produção de tomateiro irrigadocom água salina. Semina: Ciências Agrárias, v.31, p.1133-1144,2010. http://dx.doi.org/10.5433/1679-0359.2010v31n4Sup1p1133

Garcia, G. de O.; Nazário, A. A.; Moraes, W. B.; Gonçalves, I. Z.;Madalão, J. C. Respostas de genótipos de eijoeiro à salinidade.Engenharia na Agricultura, v.18, p.330-338, 2010.

Gulzar, S.; Khan, M. A.; Ungar, I. A. Salt tolerance o a coastal saltmarsh grass. Soil Science and Plant Analysis, v.34, p.2595-2605,2003. http://dx.doi.org/10.1081/CSS-120024787

ISLA Sementes. omateiro cereja. http://isla.com.br/cgi-bin/detalhe.cgi?id=261. 5 Mar. 2013.

Leite, E. M.; Cavalcante, L. F.; Diniz, A. A.; Santos, R. V.; Alves, G.S.; Cavalcante, I. H. L. Correção da sodicidade de dois solosirrigados em resposta à aplicação de gesso agrícola. Irriga, v.12,p.168-176, 2007.

Figure 5. Root dry matter (RDM) at 125 days aftertransplantation (DAT) (A) and number of clusters (NC) at104 DAT (B) of cherry tomato as a function of the electricalconductivity of the irrigation water (ECw)

with water o 4.5 dS m-1 compared with plants under ECw o

0.3 dS m-1

.he saline stress caused changes in root growth anddevelopment, thus inter ering with water and ion absorptionby plants and hampering crop development, since a well-developed root system can promote better conditions to meetplant requirements or water and nutrients, especially in the

irst weeks, when adverse conditions can compromise itssurvival (Soares et al., 2011).

he NC o cherry tomato decreased linearly with theincrease in irrigation water salinity and, according to theregression equations (Figure 5B), there was a decrease in NCo 16.36% at 104 DA per unit increase in ECw, i.e., a reduction

o 76.7 clusters in plants irrigated with water o 4.5 dS m-1

compared with plants under ECw o 0.3 dS m-1. Different resultswere reported by Blanco & Folegatti (2008), in evaluations at52 and 76 days afer sowing, with tomato plants irrigated usingsaline water. On the other hand, Freire et al. (2010), studyingthe effect o irrigation with water o different ECw levels ontomato cultivars in a protected environment, observed aproduction decrease o 10% or the cultivar ‘Santa Adélia’ and6.8% or the cultivar ‘Meia Estaca’, when plants under ECw o6.0 dS m-1 were compared with those under ECw o 0.4 dS m-1 along the crop cycle.

C1. Te number o leaves, plant height, stem diameter, lea

area, lea dry matter, stem dry matter, root dry matter and

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 61/96

61Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.55–61, 2016.

Leithya, S.; Gaballah, M. S.; Gomaa, A. M. Associative impact o bio andorganic ertilizers on geranium plants grown under saline conditions.International Journal o Academic Research, v.1, p.17-23, 2009.

Lima, A. L.; Oliveira, F. A.; Alves, R. C.; Linhares, P. S. F.; Medeiros, A.M. A; Bezerra, F. M. S. olerância da berinjela à água de irrigação.Revista Agroambiente, v.9, p.27-34, 2015.

Lima C. B.; Santos Filho, S. V.; Santos, M. A. dos; Oliveira, M. de.

Desenvolvimento da mamoneira, cultivada em vasos, sob níveisde salinidade da água em Latossolo Vermelho-amarelo eutróco.Revista Caatinga, v.21, p.50-56, 2008.

Malavolta, E. Manual de nutrição mineral de plantas. 2.ed. Piracicaba,Ceres, 2006. 631p.

Medeiros, R. F.; Cavalcante, L. F.; Mesquita, F. O.; Rodrigues, R. M.;Sousa, G. G.; Diniz, A. A. Crescimento inicial do tomateiro-cerejasob irrigação com águas salinas em solo com bio ertilizantesbovino. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p.505-511, 2011.

Munns, R.; ester, M. Mechanisms o salinity tolerance. AnnualReview o Plant Biology, v.59, p.651-681, 2008. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911

Nobre, R. G.; Gheyi, H. R.; Soares, F. A. L.; Cardoso, J. A. F. Produçãode girassol sob estresse salino e adubação nitrogenada. RevistaBrasileira de Ciência do Solo, v.35, p. 929-937, 2011. http://dx.doi.org/10.1590/S0100-06832011000300027

Novais, R. F.; Neves, J. C. L.; Barros, N. F. Ensaio em ambientecontrolado. In: Oliveira, A. J.; Garrido, W.E.; Araújo, J.D.;Lourenço, S. (ed.). Métodos de pesquisa em ertilidade do solo.3.ed. Brasília: Embrapa SEA, 1991. 392p.

Oliveira, B. C.; Cardoso, A. A.; Oliveira, J. C.; Oliveira, F. A.;Cavalcante, L. F. Características produtivas do tomateirosubmetido a di erentes níveis de sais, na água de irrigação. RevistaBrasileira de Engenharia Agrícola e Ambiental, v.11, p.11-16,2007. http://dx.doi.org/10.1590/S1415-43662007000100002

Pessarakli, M.; ucker, . C. Dry matter yield and nitrogen-15uptake by tomatoes under sodium chloride stress. Soil Science,Society American Journal, v.52, p.698-700, 1988. http://dx.doi.org/10.2136/sssaj1988.03615995005200030019x

Prado, S. D.; Bosi, M. L. M.; Carvalho, M. C. V. S.; Gugelmim, S. A.;Mattos, R. A.; Camargo Junior, K. R.; Silva, J. K.; Delmaschio, K.L.; Martins, M. R. Alimentação e nutrição como campo cientícoautônomo no Brasil: conceitos, domínios e projetos políticos.Revista Nutrição, v.24, p.927-937, 2011. http://dx.doi.org/10.1590/S1415-52732011000600013

Reis, L. S.; Azevedo, C. A. V. de; Albuquerque, A. W.; Silva Júnior, J. F.Índice de área oliar e produtividade do tomateiro sob condiçõesde ambiente protegido. Revista Brasileira de Engenharia Agrícolae Ambiental, v.17, p.386-391, 2013. http://dx.doi.org/10.1590/S1415-43662013000400005

Rhoades, J. D.; Kandiah, A.; Mashali, A. M. Uso de águas salinas paraprodução agrícola. Campina Grande: UFPB, 1992. 117p. Estudosda FAO, Irrigação e Drenagem, 48.

Silva, E. C.; Nogueira, R. J. M. C.; Araújo, F. P.; Melo, N. F.; AzevedoNeto, A. D. Physiological responses to salt stress in young umbuplants. Environmental and Experimental Botany, v.63, p.147-157,2008. http://dx.doi.org/10.1016/j.envexpbot.2007.11.010

Silva, I. N. Qualidade de água na irrigação. Agricultura Cientíca noSemiárido, v.7, p.1-15, 2011.

Soares, L. A. A.; Lima, G. S.; Brito, M. E. B.; Araújo, . .; Sá, F. V.S. axas de crescimento do tomateiro sob lâmina de irrigaçãoem ambiente protegido. Revista Verde de Agricultura eDesenvolvimento Sustentável, v.6, p.210-217, 2011.

ester, M.; Davenport, R. Na+ tolerance and Na+ transport in higherplants. Annals o Botany, v.91, p.503-527, 2003. http://dx.doi.org/10.1093/aob/mcg058

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 62/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.62–66, 2016

Beet cultivation with saline effluent rom sh armingWelson L. Simões1, Jony E. Yuri1, Miguel J. M. Guimarães2, José E. dos Santos3 & Emanoel F. J. Araújo3

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p62-66

A B S T R A C TTis study aimed to evaluate the distribution o salts along the soil prole, the biometricparameters and the yield o beet cultivars under different leaching ractions using salineeffluent rom sh arming, under the conditions o the Sub-middle São Francisco Valley. Anexperiment was conducted at the Caatinga Experimental Field o the Embrapa Semi-Arid, in2013. Te treatments were arranged in split plots composed o our leaching ractions (0, 5, 10and 15%) in the plots, with saline effluent rom sh arming, and three table beet cultivars inthe subplots: Scarlet Super, Early Wonder 200 and Fortuna. Te analysed parameters were: saltdistribution along the soil prole, number o leaves, length and width o leaves and petioles,total and commercial yields. Te application o leaching ractions o 10 and 15% promotedbetter salt distribution along the soil prole. Te beet cultivar Fortuna showed the highestcommercial yield or a lower leaching raction.

Cultivo de beterraba com euente salino da pisciculturaR E S U M ORealizou-se este trabalho com o objetivo de avaliar a distribuição de sais no perl do solo, osparâmetros biométricos e a produtividade de cultivares de beterraba submetidas a di erentes

rações de lixiviação com euente salino da piscicultura nas condições do Submédio doVale do São Francisco. Foi conduzido um experimento no Campo Experimental Caatingapertencente à Embrapa Semiárido no ano de 2013. Os tratamentos oram dispostos emparcelas subdivididas compostas por quatro rações de lixiviação: 0; 5; 10 e 15%, de euentesalino da piscicultura e as subparcelas por três cultivares de beterraba de mesa: Scarlet Super,

Early Wonder 200 e Fortuna. Foram avaliados os parâmetros: distribuição dos sais no perldo solo, número de olhas, comprimento e largura das olhas e do talo, produtividade total ecomercial. A utilização de rações de lixiviação de 10 e 15% proporcionou uma distribuiçãomelhor dos sais no perl do solo. A cultivar de beterraba Fortuna oi a que apresentou maiorprodutividade comercial para uma ração menor de lixiviação.

Key words:salinity salt distributionleaching raction

Palavras-chave:salinidadedistribuição de sais

ração de lixiviação

1 Embrapa Semiárido. Petrolina, PE. E-mail: [email protected] (Corresponding author); [email protected] Universidade Federal Rural de Pernambuco/Departamento de Engenharia Agrícola. Reci e, PE. E-mail: [email protected] Universidade de Pernambuco. Petrolina, PE. E-mail: [email protected]; emanoel [email protected]

Protocolo 021-2015 – 05/04/2015 • Aprovado em 02/11/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 63/96

63Beet cultivation with saline ef uent from sh farming

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.62–66, 2016.

I

For promoting multiple use o waters, the agriculture-aquaculture integration can be a sustainable strategy or theutilization o water resources, as in the employment o salinewater rom sh arm effluent or the production o cropsmoderately tolerant to salinity, in areas where the availability

o good-quality water or irrigation is limited.Many studies have been developed with vegetable(Castellani et al., 2009) and orage crops (Carvalho Júnior et al.,2010; Gurgel et al., 2012) and saline water, in which the correctirrigation management is one o the undamental parameters

or the sustainability o the cultivation, since the increase in saltcontents in the soil solution can reduce its osmotic potentialand decrease water availability, intensi ying the toxicity ocertain ions to plants (Silva, 2014).

In this context, the beet crop (Beta vulgaris L.) presentsitsel as an alternative or the production under salineconditions, because it is considered as one o the salt-tolerant vegetable crops (Dias & Blanco, 2010; Silva et al., 2013b). Inaddition, it stands out or the nutritional quality, especially dueto the presence o sugars and betalains, which are importantsubstances in the diet or having nutraceutical properties(Marques et al., 2010; Zabotti & Genena, 2013).

Given the above, this study aimed to evaluate thedistribution o salts along the soil pro ile, the biometricparameters and the yield o beet cultivars subjected to differentleaching ractions with saline effluent rom sh arming, underthe conditions o the Sub-middle São Francisco Valley.

M Mhe experiment was carried out at the Caatinga

Experimental Field, which belongs to the Embrapa Semi-arid, in Petrolina-PE, Brazil, in the Sub-middle region o theSão Francisco Valley (9° 8´ 8.9´´ S; 40° 18´ 33.6´´ W; 373 m),

rom April to August 2013. Te soil in the experimental areawas classied as Red Yellow Argisol (EMBRAPA, 2006) withmedium texture, located on a at relie . Te climate in theregion is classied as semi-arid, BSwh’, with the ollowing meanannual values o the climatological variables: air temperature= 26.5 ºC, rain all = 541.1 mm, relative air humidity = 65.9%,

Class-A pan evaporation = 2,500 mm year-1

and wind speed = 2.3m s-1. Rain alls are irregularly distributed in space and time,concentrating rom April to December; the annual insolationis higher than 3,000 h (Azevedo et al., 2006).

During the experiment, the mean relative air humidity was69.6% and the temperature was around 24.7 °C. Te maximumdaily evapotranspiration was 6.97 mm, with mean o 5.35mm. Rain all events totalized 32.7 mm during the cycle. Teelectrical conductivity (EC) o the irrigation water, rom sh

arm effluent, showed stable behavior, with mean o 2.5 dS m-1.A randomized block design was adopted, with our blocks,

in split plots composed o our leaching ractions (LF): 0, 5, 10and 15% o saline effluent rom sh arming, in the plots, andthree table beet cultivars in the subplot: Scarlet Super, EarlyWonder 200 and Fortuna. Each experimental unit (subplot)consisted o two double rows with length o 1.5 m and widtho 1.0 m. Te ollowing spacings were adopted: 0.2 betweenrows, 0.1 m between plants and 0.4 m between double rows,totaling 40 plants m-2.

Te experimental area was prepared according to cropneeds, with plowing, harrowing and the construction o ridges.Basal ertilization was based on the previously per ormed soilanalysis ( able 1), with the application o 40 kg ha-1 o nitrogen,180 kg ha-1 o phosphorus and 30 kg ha-1 o potassium. op-dressing ertilizations were per ormed at 25 days afer planting(DAP), using 20 kg ha-1 o nitrogen as urea and 30 kg ha-1 opotassium as potassium chloride; at 45 DAP, a top-dressing

ertilization was per ormed using 20 kg ha-1 o nitrogen as urea,according to the recommendations or the crop in the state oPernambuco (Cavalcanti, 2008).

he beet cultivars were sown in polystyrene trayscontaining 200 cells, which were lled with the commercialsubstrate Plantmax®. Te seedlings were grown in a greenhouseand, afer 25 days, were transplanted to the eld. Among the

cultural practices during the crop cycle, manual weedings andpreventive sprayings or phytosanitary control were per ormed.Irrigations were daily per ormed using a sur ace drip

system, consisting o a drip tube with emitters with ow rateo 1.6 L h-1, spaced by 0.3 m. In order to minimize problemswith emitter clogging, a disc lter (mesh: 120) was used. Teirrigation system was supplied by water rom sh arm tankswith capacity or 5 m³, containing black tilapias at a populationdensity o 40 sh m-³. In the management o the tanks, 50%o the water was daily changed and made available or theirrigation management. Te chemical characteristics o theirrigation water rom sh arming were determined in weekly

evaluations during the experiment, and the mean values areshown in able 2.Te water depths applied through irrigation were calculated

based on the crop evapotranspiration (E c) measured

EC – Electrical conductivity in the saturation extract; OM – Organic matter; P – Available phosphorus extracted with Mehlich; Ca – Exchangeable calcium; Mg – Exchangeable magnesium; Na –Exchangeable sodium; K – Exchangeable potassium; Al – Exchangeable aluminum; H + Al – Potential ac idity; SB – Sum of bases; CEC – Cation exchange capac ity at pH 7.0; V – Base saturation

Table 1. Chemical and physical characteristics of the soil in the experimental area

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 64/96

64 Welson L. Simões et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.62–66, 2016.

between irrigations, according to the tested leaching ractions.Re erence evapotranspiration (E o) was estimated through theFAO-56 Penman-Monteith model (Allen et al., 1998), based onmeteorological data collected in an automatic weather stationlocated beside the experimental area. Te crop coefficient (Kc) values described by Silva et al. (2014) or beet under salinestress were used.

Harvest was per ormed at 85 days afer transplantation,when the ollowing variables were measured: number o leaves,mean lea length and width, length and diameter o the leapetiole and total and commercial yield.

Immediately afer harvest, soil samples were collected orthe determination o EC at the depths o 0, 0.10, 0.20, 0.30and 0.40 m, and distances o 0, 0.15, 0.30 and 0.45 m rom thecenter o the ridges outwards. EC was measured through thesaturation paste extract o each sample. Te Kriging methodwas used to make the EC distribution maps, in the programSur er®.

Te obtained data were subjected to analysis o variance(ANOVA) using the program Sisvar 5.0. For the comparisonbetween leaching ractions, rst- and second-order regressionmodels were evaluated, when signi icant, at 0.01 or 0.05probability levels. ukey test at 0.05 probability level wasadopted or the comparison o beet cultivars.

R DIrregular EC distribution along the soil prole can be

observed or the treatment with LF o 0% (Figure 1). Te

salinity level in the layer o 0-0.20 m, in which most o theroot system is ound (Draycott, 2006), was higher than 3 dSm-1, reaching values above 5 dS m-1.

Te increase in LF caused lower EC values in the studiedsoil prole, promoting better distribution o salts (Figure1D), thus proving to be an alternative to control the gradualincrement o salts in the zone o distribution o the root system(Sharma & Rao, 1998; Ayers & Westcot, 1999).

Te highest salt concentrations were observed in the layero 0-0.1 m and in the center o the ridges. Tese results agreewith those reported by Ferreira et al. (2006), who evaluatedthe e ects o leaching on a salinized soil cultivated withbeet and observed higher EC values in the supercial soillayers. Te accumulation o salts in the center o the ridgeswas also expected, due to the irrigation system used in theexperiment, which promotes higher salt concentration in thisarea, corresponding to the edges o the wet bulbs, and theevaporation losses (Hanson & May, 2011).

In addition, the application o leaching ractions o 0, 5 and10% (Figure 1) promoted poor EC distribution along the soilprole, compared with the treatment with leaching o 15%,since, or this raction, soil EC was maintained around 3 dS m-1 in approximately 70% o the studied prole, with some pointso higher values in the central region o the prole, as predictedby Hanson & May (2011).

Irrigation management using leaching ractions isrecommended by many authors or the use o waters withhigh salt contents. Carvalho et al. (2011), evaluating irrigationmanagement in soil cultivated with cabbage irrigated with

Table 2. Chemical characteristics of the irrigation water from sh farming*

*Mean values; EC – Electrical conductivity; Ca - Calcium; Mg - Magnesium; Na - Sodium; K - Potassium; Cl- - Chloride; SAR – Sodium adsorption ratio

Figure 1. Electrical conductivity of saturation extract (EC) distribution along the pro le of a soil cultivated with tablebeet cultivars subjected to leaching fractions of 0 (A), 5 (B), 10 (C) and 15% (D)

dS m -1

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 65/96

65Beet cultivation with saline ef uent from sh farming

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.62–66, 2016.

saline water (1.89 dS m-1), observed satis actory productions ora LF o 20%. Oliveira et al. (2005), evaluating bean cultivationsubjected to leaching ractions, also observed that the increasein LF promoted decrease in the mean EC o the soil prole.Assis Júnior et al. (2007), evaluating salinity effects on cowpeayield, observed that the effects o salinity were minimized withthe increase in LF.

No signicant interactions were observed or the evaluatedbiometric parameters. LF application did not inter eresignicantly with the biometric characteristics o the evaluatedplants. For the comparison between cultivars, no signicantdifferences were observed or the characteristics o the leapetiole, which showed mean values o 8.51 and 4.47 cm orlength and diameter, respectively. Te cultivar Scarlet Supershowed the highest number o leaves (12.9); however, thelargest leaves were observed in the cultivars Early Wonder 200and Fortuna ( able 3).

Te studied cultivars had different behaviors or total andcommercial yields as a unction o the tested leaching ractions,which showed signicant interaction at 0.01 probability level.Tere were no signicant differences in the yields betweenthe cultivars, or the application o leaching ractions o 0and 15%. Te cultivar Fortuna showed the highest total andcommercial yields when subjected to the LF o 5%, 30.12and 29.4 t ha-1, respectively. For the LF o 10%, there was nosignicant difference in the total yield o the cultivars; however,higher commercial yields were observed or the cultivars EarlyWonder 200 and Fortuna ( able 4).

According to Figure 2, the yield data were representedby linear and quadratic regression models. he total andcommercial yields o the cultivar Scarlet Super tted best to alinear model, with maximum values o 26.77 and 25.52 t ha-1,respectively (Figure 1A). Te cultivars Early Wonder 200 andFortuna tted best to quadratic models or the commercial

Means followed by equal letters in the column do not differ by Tukey test at 0.05 probability level

Table 4. Total and commercial yields of beet cultivarsirrigated with saline water from sh farming, subjected todifferent leaching fractions

Means followed by equal letters in the column do not differ by Tukey test at 0.05 probabilitylevel; NL – Number of leaves; LL – Leaf length; LW – Leaf width; PL – Petiole length; PD –Petiole diameter

Table 3. Comparison between beet cultivars with respectto shoot biometric variables: number of leaves, lengthand width of the largest leaf and length and diameter ofleaf petiole

Figure 2. Total and commercial yields of beet cultivarsirrigated with saline water from sh farming, subjected todifferent leaching fractions: Scarlet Super (A), Early Wonder200 (B) and Fortuna (C)

A.

B.

C.

Y i e l d ( t h a - 1

)

Leaching fraction (%)

yield. From these behaviors, it was possible to nd the pointo maximum commercial yield as a unction o the leaching

raction using the derivative o the equation. Te maximumcommercial yield o the cultivar Fortuna (30.07 t ha-1) wasobtained with a LF o 7.9%, ollowed by Early Wonder 200(25.23 t ha-1) with a LF o 9.6%.

Tese results are consistent with those reported by manyauthors (Assis Júnior et al., 2007; Oliveira et al., 2005; Santos etal., 2012), who evaluated the effects o the application o salinewater with leaching ractions, in various crops and in different

environments, and observed signicant increases in crop yieldwith the increment in the leaching ractions.Te values o commercial yield corroborate those reported

by Resende & Cordeiro (2007), who evaluated the yield o

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 66/96

66 Welson L. Simões et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.62–66, 2016.

beet plants irrigated with water o different salinity levels andobserved commercial yields o about 29 t ha-1 when irrigatedwith salinity o 4 dS m-1, and Silva et al. (2013a), who evaluatedthe production o beet irrigated with saline water and observedsignicant reductions in crop yield with the increase in thesalinity levels.

C

1. Te use o leaching ractions o 10 and 15% promotedbetter distribution o salts along the soil prole.

2. Among the studied cultivars, Fortuna showed the highestcommercial yield or a lower leaching raction.

L C

Allen R. G.; Pereira L. S.; Raes D.; Smith M. Crop evapotranspirationguidelines or computing crop water requirements. Rome: FAO,

1998. 300p. Irrigation and Drainage Paper 56Assis Júnior, J. O.; Lacerda, C. F. de; Silva, C. F.; Silva, F. L. B.; Bezerra,M. A.; Gheyi, H. R. Produtividade do eijão-de-corda e acúmulode sais no solo em unção da ração de lixiviação e da salinidadeda água de Irrigação. Engenharia Agrícola, v.27, p.702-713, 2007.http://dx.doi.org/10.1590/S0100-69162007000400013

Ayers, R. S.; Westcot, D. W. A qualidade da água na agricultura.Campina Grande: UFPB, 1999. 153p.

Azevedo, P. V. de; Sousa I. F.; Silva, B. B. da; Silva V. de P. R. da. Water-use efficiency o dwar -green coconut (Cocos nucifera L.) orchardsin Northeast Brazil. Agricultural Water Management, v.84, p.259-264, 2006. http://dx.doi.org/10.1016/j.agwat.2006.03.001

Carvalho, J. F.; Montenegro, A. A. A.; Soares, . M.; Silva, E. F. F.;Montenegro, S. M. G. L. Produtividade do repolho utilizandocobertura morta e di erentes intervalos de irrigação com águamoderadamente salina. Revista Brasileira de Engenharia Agrícolae Ambiental, v.15, p.256-263, 2011. http://dx.doi.org/10.1590/S1415-43662011000300006

Carvalho Júnior, S. B. de; Furtado, D. A.; Silva, V. R. da; Dantas, R. .;Lima, I. S. P.; Lima, V. L. A. de. Produção e avaliação bromatológicade espécies orrageiras irrigadas com água salina. RevistaBrasileira de Engenharia Agrícola e Ambiental, v.14, p.1045-1051,2010. http://dx.doi.org/10.1590/S1415-43662010001000004

Castellani, D.; Camargo, A. F. M.; Abimorad, E. G. Aquaponia:Aproveitamento do euente do berçário secundário do Camarão-da-Amazônia ( Macrobrachium amazonicum ) para produção deal ace (Lactuca sativa ) e agrião (R orippa nasturtium aquaticum )hidropônicos. Bioikos, v.23, p.67-75, 2009.

Cavalcanti, F. J. de A. Recomendações de adubação para o estado dePernambuco. 2ª Apr. 3.ed., Reci e: IPA, 2008. 212p.

Dias, N.da S.; Blanco, F. F. E eitos dos sais no solo e na planta. In:Gheyi, H. R.; Dias, N. da S.; Lacerda, C. F. de (ed.). Manejo dasalinidade na agricultura: Estudo básico e aplicados. Fortaleza:INC Sal, 2010. p.129-140.

Draycott, A. P. Sugar beet: World agriculture series. Ox ord: BlackwellPublishing. 2006. 465p. http://dx.doi.org/10.1002/9780470751114

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. CentroNacional de Pesquisa de Solos. Sistema brasileiro de classicaçãode solos. 2.ed. Rio de Janeiro: EMBRAPA, 2006. 306p.

Ferreira, P. A.; Moura, R. F.; Santos, D. B.; Fontes, P. C. R.; Melo, R. F.E eitos da lixiviação e salinidade da água sobre um solo salinizado

cultivado com beterraba. Revista Brasileira de Engenharia Agrícolae Ambiental, v.10, p.570-578, 2006. http://dx.doi.org/10.1590/S1415-43662006000300006

Gurgel, G. C. S.; Santos, W. O.; Bezerra, F. G.; Barreto, H. B. F.; Lima,C. B. Produção de milho verde cultivado irrigado por gotejamentocom água do euente de aquicultura. Enciclopédia Bios era, v.8,p.771-777, 2012.

Hanson, B.; May, D. Drip irrigation salinity management or row crops.Richmond: University o Cali ornia. 2011. 13p.

Marques, L. F.; Medeiros, D. C.; Coutinho, O. L.; Marques, L. F.;Medeiros, C. B.; Vale, L. S. Produção e qualidade da beterrabaem unção da adubação com esterco bovino. Revista Brasileira

de Agroecologia, v.5, p.24-31, 2010.Oliveira, F. G.; Ferreira, P. A.; Santos, D. B.; Garcia, G. O. Índicediário de estresse hídrico do eijoeiro irrigado com água salina.Revista Brasileira de Engenharia Agrícola e Ambiental, v.9 (sup),p.6-10, 2005.

Resende, G. M. de; Cordeiro, G. G. Uso da água salina e condicionadorde solo na produtividade de beterraba e cenoura no semi-áridodo Submédio São Francisco. Petrolina: Embrapa Semiárido. 2007.4p. Comunicado écnico, 128.

Santos, D. B. dos; Ferreira, P. A.; Oliveira, F. G.; Batista, R. O.; Costa,A. C.; Cano, M. A. O. Produção e parâmetros siológicos doamendoim em unção do estresse salino. Idesia, v.30, p.69-74.

2012. http://dx.doi.org/10.4067/S0718-34292012000200009Sharma, D. P.; Rao, K. V. G. K. Strategy or long term use o salinedrainage water or irrigation in semi-arid regions. Soil & illageResearch, v.48, p.287-295, 1998. http://dx.doi.org/10.1016/S0167-1987(98)00135-4

Silva, A. O. A ertirrigação e o processo de salinização de solos emambiente protegido. Nativa, v.2, p.180-186, 2014. http://dx.doi.org/10.14583/2318-7670.v02n03a10

Silva, A. O.; Klar, A. E.; Silva, E. F. F. Produção da cultura da beterrabairrigada com água salina. Engenharia na Agricultura, v.21 p.271-279, 2013a. http://dx.doi.org/10.13083/1414-3984.v21n03a06

Silva, A. O.; Klar, A. E.; Silva, E. F. F.; Cunha, A. R. Evapotranspiraçãoe coeciente de cultivo para a beterraba sob estresse salino emambiente protegido. Irriga, v.19, p.375-389, 2014. http://dx.doi.org/10.15809/irriga.2014v19n3p375

Silva, A. O.; Klar, A. E.; Silva, E. F. F.; anaka, A. A. Silva Júnior, J. F.Relações hídricas em cultivares de beterraba em di erentes níveisde salinidade do solo. Revista Brasileira de Engenharia Agrícola eAmbiental, v.17, p.1143-1151, 2013b. http://dx.doi.org/10.1590/S1415-43662013001100003

Zabotti, C.; Genena, A. K. Avaliação do potencial antioxidante doextrato obtido a partir da beterraba vermelha (Beta vulgaris L.)por meio do uso da água como solvente de extração. Cultivandoo Saber, v.6, p.195-200, 2013.

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 67/96

Revista Brasileira de Engenharia Agrícola e Ambiental

Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.67–71, 2016

Spatial variability of air temperature in a free-stallin the Northeastern semi-arid region of BrazilIndira C. M. Gonçalves 1, Silvia H. N. urco1 & Clóvis M. C. Ramos1

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p67-71

A B S T R A C TTe knowledge on the spatial variability of climatic attributes and the building of Kriging mapscan assist in the design and management of conned animal facilities, by allowing a spatial visualization that is helpful for the planning and control of information from the productionenvironment. Te study aimed to characterize the spatial variability of air temperature in afree-stall barn used for dairy cattle connement located in Petrolina-PE, Brazil, in differentseasons and at different times. Te variable air temperature was recorded at 136 pointsdistributed in the areas under the shed and the shade cloth for the study of spatial variabilityand the construction of maps by Kriging. Air temperature data was collected in the winter andin the summer, in the months of July and August (2013) and January and February (2014),at different times (9 and 15 h). According to the results, the use of geostatistics enabled todene areas with different spatial variabilities in air temperature and specic areas in thefree-stall with values higher than the recommended levels for thermal comfort. In addition,the central part of the facility is the region with the lowest values of air temperatures, due tothe presence of a ridge vent.

Variabilidade espacial da temperatura do arde um free-stall na região semiárida nordestina do BrasilR E S U M OO conhecimento da variabilidade espacial de atributos climáticos e a construção de mapasde krigagem podem auxiliar no projeto e no manejo de instalações para animais connados,

ao permitir uma visão espacial útil ao planejamento e ao controle das informações doambiente de produção. O trabalho teve, como objetivo principal, caracterizar a variabilidadeespacial da temperatura do ar de um galpão free-stall utilizado para connamento debovinos leiteiros, localizado na cidade de Petrolina, PE, em diferentes estações e horários.A variável temperatura do ar foi registrada em 136 pontos distribuídos na área do galpãoe sombrite, para o estudo da variabilidade espacial e a construção de mapas por krigagem.As coletas dos dados de temperatura do ar foram realizadas nas estações de inverno e verão,nos meses de julho e agosto (2013), janeiro e fevereiro (2014) em diferentes horários (9 e 15h). Por meio dos resultados obtidos foi possível denir áreas com diferentes variabilidadesespaciais para temperatura do ar e áreas especícas no free-stall que apresentaram valoresacima do recomendado para o conforto térmico animal. Notou-se também que a partecentral da instalação é a região que apresentou os menores valores de temperatura do ar

devido à presença de um lanternim.

Key words:dairy cattlethermal comfortgeostatisticsanimal production systemsprecision animal production

Palavras-chave:bovinos leiteirosconforto térmicogeoestatísticasistemas de produção animalzootecnia de precisão

1 Universidade Federal do Vale do São Francisco/Colegiado de Pós Graduação em Engenharia Agrícola. Juazeiro, BA. E-mail: [email protected](Corresponding author); [email protected]; [email protected]

Protocolo 376-2014 – 23/10/2014 • Aprovado em 26/06/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 68/96

68 Indira C. M. Gonçalves et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.67–71, 2016.

I

Livestock farming is an activity highly dependenton climatic factors, which can affect animal yield andmanagement (Oliveira et al., 2013). Te effect of climaticconditions on the development of dairy cows is expressive,especially in tropical and subtropical regions. Tus, the

knowledge on the functional relationships between animalsand the environment allows adopting procedures that increasethe efficiency of dairy farming (Marcheto et al., 2002).

Te optimal temperature for milk production depends onthe species, breed and degree of tolerance to heat and cold. ForHolstein-Friesian cows, great milk-producers, the thermalneutrality zone in lactation, in terms of air temperature,generally occurs in the interval between 4 and 26 ºC, whichimpairs the raising of these animals under tropical climateconditions (Perissinotto & Moura, 2007).

One way of minimizing the undesirable climaticconditions is the use of facilities, which must provide comfort

for the animals, allowing them to express their productionpotential. Facilities must be built and planned with the mainobjective of reducing the action of stress agents, which cancause undesirable effects on the animals. Environmental variables are controlled with different building materials,dimensioning of the physical space, density and climatizationsystems (Almeida et al., 2010)

Te management of the microclimate inside animalproduction facilities has been widely used in the search forthe adjustment of thermal comfort conditions for the housedanimals, due to the inuence of meteorological elementsthat favor or hamper their development. Tis management

encompasses the strategies used to reduce the negative effectsof stress agents on the animal-environment relationship(Silva et al., 2012).

In order to better evaluate the animal productionenvironment, innovative methods, computational evaluationtools and the help in decision-making have been used in thecontrol of the welfare of the conned animals (Borges et al.,2010).

In this context, this study aimed to characterize the spatial variability of air temperature in a free-stall located in theBrazilian semiarid region, in the winter and summer, usinggeostatistical tools.

M M

Te study was carried out on the Campus of AgriculturalSciences of the Federal University of the São FranciscoValley, where the data were collected in a free-stall of thearea destined to rural constructions, in the municipality ofPetrolina-PE, Brazil, 721 km distant from the state capitaland located at the geographical coordinates of 9º 09' S 40º 22'W, with mean altitude of 365 m and mean annual rainfall of450 mm. According to the Köppen-Geiger classication, theclimate in the city is BshW, semi-arid tropical, dry and hot.

Te facility was built for the connement of Holstein-Friesian cows, which remained in the area during theexperiment. Te connement facility has a 1.20-m-wide ridge vent, with North-South orientation. Te shed is supported by

pre-cast concrete pillars, covered with ceramic tiles, and hasceiling height of 2.60 m, eaves of 1.50 m and open sides. Teoor is made of grooved concrete in order to facilitate thedrainage of wastewater.

Besides the covered area in the free-stall, the facility hasa shaded area, with width of 7.8 m and length of 60.0 m. Partof this area is covered with shade cloth, in order to reduce

the incidence of solar radiation on the animals. Te designscheme of the free-stall is shown in Figure 1.

Te study was conducted in two seasons: Winter –reatment 1 (WIN) and Summer – reatment 2 (SUM), when

air temperature data were collected in the free-stall, in themonths of July and August 2013 and January and February2014, twice a day, at 9:00 h and at 15:00 h. According to theLaboratory of Meteorology of the UNIVASF, the mean valuesof relative air humidity in the city of Petrolina, at the time ofthe collections (9:00 and 15:00 h) were 54.7 and 30.2% forthe months of July and August 2013, and 60.4 and 39.3% forJanuary and February 2014, respectively.

Geostatistical analysis was performed for the airtemperature in the areas of the free-stall under the shed andthe shade cloth. Te data were collected at 136 equidistantpoints inside the facility, spaced by 3 m. Te measurementswere performed at a height of 1.5 m from the oor, in eachposition of the regular grid of points.

Air temperature data were recorded using a portablethermal anemometer (Instruterm ® – AD 500), withtemperature recording range from -15 to 50 °C, and subjectedto geostatistical analysis. Data variability was evaluated usingdescriptive statistical analysis, through the parameters mean,median and coefficient of variation (CV).

Te spatial dependence was veried through adjustmentsof semivariograms (Vieira, 2000), based on the assumption ofintrinsic stationary process, which is estimated by:

Figure 1. Design scheme of the free-stall

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 69/96

69Spatial variability of air temperature in a free-stall in the Northeastern semi-arid region of Brazil

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.67–71, 2016.

where:N (h) - number of experimental pairs of observations

Z(xi) and Z(x i + h) separated by a distance h.

Te semivariogram is represented by the graph y(h) versus h. From the adjustment of a mathematical model tothe calculated y(h) values, the coefficients of the theoreticalmodel are calculated for the semivariogram (nugget effect,C0; sill, C0 + C1; and the range, a). Te selection of the bestmodel was based on the residual sum of squares and on thecoefficient of multiple determination (R 2).

According to rangmar et al. (1985), the nugget effect isthe value of the semivariance for the distance zero (h = 0) andrepresents the analytical error, i.e., it indicates the variabilitythat cannot be explained; the range represents the distancebetween the origin and the sill. From this point on, it isconsidered that spatial dependence no longer occurs betweenthe samples.

Te degree of spatial dependence of the studied attributeswas analyzed using the classication of Cambardella et al.(1994), in which the spatial dependence is considered strongfor semivariograms with nugget effect < 25% of the sill,moderate when it is between 25 and 75% and weak when itis > 75%.

Te theoretical semivariogram models considered inthe study were: spherical, exponential, linear and Gaussian,

which were adjusted through the program GS + 7.0. Ten,these models were used for the estimation of air temperaturedata in non-measured points, using the interpolation methodknown as ordinary Kriging. Ten, the maps were formattedand edited using the program SURFER 8.0.

R D

Te values of means, medians and coefficients of variationfor air temperature data are shown in able 1. Tese resultscorrespond to the descriptive statistics performed in thecollected data.

Based on the mean values obtained from the spatialdistribution data, air temperature remained within thecomfort range only in WIN at 9 h; according to Perissinottoet al. (2007), these values must be between 4 and 26 ºC forHolstein-Friesian cows. For both treatments, at the otherobservation times, the parameter air temperature was higherthan the maximum limit recommended for lactating cows.

Mean and median values are similar in both studiedtreatments, indicating that the data do not show expressiveasymmetry. According to Little & Hills (1978), when mean,median and mode values are similar, the data have or areclose to normal distribution. Tis can be an indication thatmeasurements of central tendency are not dominated byatypical values in the distribution (Cambardella et al., 1994).Similar results were reported by Faria et al. (2008), whoobtained normality for the attribute air temperature in aclimatized free-stall for milk cattle.

High values of the coefficient of variation (CV) canbe considered the rst indication of data heterogeneity.

Considering the classication criteria of Warrick & Nielsen(1980), which establishes low variability for CV < 12%,medium variability for 12% < CV < 62% high variability forCV > 62%, the variable air temperature showed low variability(CV < 12%) at the different times and in the differenttreatments. Tese results agree with those reported by Silva etal. (2012), who obtained low variability for temperature datain a non-climatized free-stall.

Te parameters of the geostatistical analysis, such as theadjusted semivariogram model, nugget effect, sill, range anddegree of spatial dependence, are shown in able 2.

he results of the geostatistical analysis showed spatialdependence of air temperature in both treatments ( able2). he analysis of the semivariograms for the climaticattributes did not indicate any preferential direction, i.e., asclaimed by Vieira (2000), in this case, the data do not haveanisotropy and the spatial variability occurs in the same wayin all directions.

Te studied variable tted to the spherical semivariogrammodel, except for the treatment WIN, which tted to theGaussian model at 9 h, and for the treatment SUM, whichtted to the exponential model at 15 h.

According to Isaaks & Srivastava (1989), these models aretransitory, because they have sill, i.e., from a certain value

( )( )

( ) ( )( ) N h

2

i ii 1

1h Z x Z x h

2N h =γ = − + ∑

(1) Tair – Mean air temperature (°C);(2) Treat. – Treatment;(3) C0 – Nugget effect;(4) C0 + C 1 – Sill;(5) DSD – Degree of spatial dependence; R² - Coef cient of determination obtained through the cross-val idation method ; WIN – Winte r; SUM – Summer

Table 2. Parameters of the experimental semivariograms of air temperature (°C) at 9 and at 15 h

Tair – Mean air temperature; CV – Coef cient of variation; WIN – Winter; SUM – Summer

Table 1. Descriptive statistical analysis of air temperature (°C) at 9 and 15 h

(1)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 70/96

70 Indira C. M. Gonçalves et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.67–71, 2016.

of distance between samples, spatial dependence no longeroccurs. Tis distance is referred to as range.

According to able 2, the highest range occurred in thetreatment WIN at 15 h, for which the tted model managedto verify spatial dependence of air temperature beyond thefacility limits, which was not observed at the other times.

Te nugget effect reects the non-explained variabilityas a function of the distance of the sampling used, such aslocal variations, analysis errors, sampling errors etc. Since itis impossible to quantify the individual contribution of theseerrors, the nugget effect can be expressed as percentage of thesill, thus facilitating the comparison of the degree of spatialdependence of the studied variables ( rangmar et al., 1985).

As to the degree of spatial dependence (DSD), it showedthat there was weak spatial dependence for all the studiedtimes in both treatments.

he Kriging maps of air temperature are shown inFigure 2. According to the maps, air temperature values at9 h showed higher variability inside the facility than at 15h. At 15 h, the high homogeneity of air temperature dataoccurred because the facility has open sides and a ridge vent. In addition, at this time, the facil ity has been exposedto a longer period of solar radiation, compared with 9 h,

which favors the heating of the air inside the free-stall and,through heat exchange mechanisms such as conduction,convection and radiation, it causes air temperature valuesto be more homogeneous.

Air temperatures were lower in the covered area of thefree-stall, especially in its center. his can be explained bythe presence of the ridge vent, an opening on the top of the

roof, which is highly recommendable for proper ventilation,since it allows a continuous renewing of air, resulting in anadequate environment for the animals. he highest valueswere observed at the edges of the free-stall, in the solarium,indicating a possible heat stress for the animals when theyare in this region, which can affect the yields of milkingcows.

Te lowest values of air temperature occurred at 9 h,in both treatments; however, only in the winter (WIN), in virtually the entire facility, air temperature values were withinthe thermal comfort zone of Holstein-Friesian cows (between4 and 26 ºC). For the other times, both in winter and summer,air temperature values were above the thermal comfort zonefor these animals.

Since the facility has no cooling system, it is advisable thatduring the winter, at 15 h, and during the summer, at all times,the animals stay conned close to the beds, in the central partof the facility, since it provides lower temperatures for theanimals and a consequent lower thermal stress.

Due to the higher solar radiation at 15 h, air temperaturedata were higher in both seasons and the maps showed higherhomogeneity of these values at this time. All temperatures inthe free-stall, in the areas under the shed and the shade cloth,at 9 and 15 h in the summer and at 15 h in the winter, wereabove the recommended value for the thermal comfort ofthe animals. In other words, regardless of the location of theanimals inside the facility, at this time they are susceptibleto thermal stress, which can cause reduction in milkproduction. Tis is consistent with Silva et al. (2008), whoobserved losses in milk production of about 0.85, 1.82, 2.78,3.75, 4.71 and 5.70 kg of milk animal -1 d-1 for animals withProduction Level (PL) of 10, 15, 20, 25, 30 and 35 kg animal -1 d-1,during the hotter months of the year, in various regions ofthe state of Pernambuco. Tese authors also claim that in thesemi-arid region of Pernambuco, the best climatic conditions

for animals with PL of 20 and 25 kg animal-1

d-1

occur in themicro-regions of Garanhuns, Brejo and the Valleys of Ipojucaand Ipanema.

Due to the spatial variability of air temperature inside thefacility, the animals will be susceptible to some areas hotterthan others, at the same times, possibly causing irregularitiesin the production of milk by the conned cows. Tus, thechronical exposure to solar radiation and environmentswith high temperatures must be reduced, providing animalswith additional opportunities to lose heat, such as systems of ventilation, sprinkler and evaporative cooling. Many of thesestrategies can be implemented at low direct costs and other

alternatives can still be used based on cattle yield (Ferreiraet al., 2006).

Barbosa et al. (2004) observed that providing shade tolactating Holstein-Friesian cows during the summer is an

Figure 2. Kriging maps of mean air temperature (°C) at 9h in the winter - WIN (A), 15 h in the WIN (B), 9 h in thesummer - SUM (C) and 15 h in the SUM (D)

D i s t a n c e Y ( m )

Distance X (m)

C. D.SUM

A. B.WIN

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 71/96

71Spatial variability of air temperature in a free-stall in the Northeastern semi-arid region of Brazil

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.67–71, 2016.

efficient way to improve their comfort, as well as the use ofwater spray on the animals. Tese authors also claim that, inthe productive aspect, the use of water spray on the animalsproved to be efficient and can be recommended under certaintechnical and economic criteria, since the results are notalways positive.

Araújo et al. (2010) also found positive results regarding the

increase in yield of Holstein-Friesian dairy cows, using mistingand ventilation simultaneously. Tis management maintainedthe animals in a safe zone, out of the thermal stress all the time,providing conditions for maximum milk yield.

Tus, it is evident the need for the installation of coolingmechanisms in the free-stall located in Petrolina, in the semi-arid region of Pernambuco, especially on the sides of the facility,in order to provide optimal and homogeneous conditions of airtemperature for the cows, collaborating to avoid thermal stressand, consequently, increasing animal yield.

C

1. Tere was spatial variability for the variable airtemperature, and specic areas were identied in the free-stall, where temperatures were above the recommended levelfor the thermal comfort of the animals.

2. In the morning, for the reatment 1, winter, almost theentire facility has temperatures within the zone of thermalneutrality of the animals, and the lowest temperatures aremainly concentrated in its center, due to the presence of aridge vent.

3. At 15 h in the winter and at 9 and 15 h in the summer,the entire facility has temperatures above the thermal comfortzone of the animals and can cause heat stress.

L C

Almeida, G. L. P.; Pandor, H.; Guiselini, C.; Almeida, G. A. P.;Morril, W. B. B. Investimento em climatização na pré-ordenhade vacas girolando e seus efeitos na produção de leite. RevistaBrasileira de Engenharia Agrícola, v.14, p.1337-1344, 2010.

Araújo, H. B.; inôco, I. F. F.; Baêta, F. C.; Santos, J. H. .; Souza, C. F.Avaliação de sistemas de resfriamento do ar para vacas com altaprodutividade, em free-stalls. Engenharia na Agricultura, v.18,p.77-83, 2010. http://dx.doi.org/10.13083/1414-3984.v18n01a08

Barbosa, O. R; Boza, P. R.; Santos, G. .; Sakagushi, E. S.; Ribas, N.P. Efeitos da sombra e da aspersão de água na produção de leitede vacas da raça Holandesa durante o verão. Acta Scientiarum.Animal Sciences, v.26, p.115-122, 2004.

Borges, G.; Miranda, K. O. S.; Rodrigues, V. C.; Risi, N. Uso dageoestatística para avaliar a captação automática dos níveis depressão sonora em instalações de creche para suínos. EngenhariaAgrícola, v.30, p.377-385, 2010. http://dx.doi.org/10.1590/s0100-69162010000300002

Cambardella, C. A; Moorman, . B.; Novak, I. M.; Parkin, . B.;Karlen, D. L.; urco, R. F.; Konopka, A. E. Field scale variabilityof soil properties in Central Iowa soils. Soil Science SocietyAmerica Journal, v.58, p.1501-1511, 1994. http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x

Faria, F. F.; Moura, D. J.; Souza, Z. M.; Matarazzo, S. V. Variabilidadeespacial do microclima de um galpão utilizado para connamentode bovinos de leite. Ciência Rural, v.38, p.2498-2505, 2008.http://dx.doi.org/10.1590/S0103-84782008000900013

Ferreira, F.; Pires, M. F. A.; Martinez, M. L.; Coelho, S. G.; Carvalho,A. U.; Ferreira, P. M.; Facury Filho, E. J.; Campos, W. E.Parâmetros siológicos de bovinos cruzados submetidos aoestresse calórico. Arquivo Brasileiro de Medicina Veterináriae Zootecnia, v.58, p.732-738, 2006. http://dx.doi.org/10.1590/S0102-09352006000500005

Isaaks, E. H.; Srivastava, R. M. An introduction to appliedgeoestatist ics. New York: Oxford University, 1989. 561p.

Little, . M.; Hills, F. J. Agricultural experimentation. New York:John Wiley & Sons, 1978. 350p.

Marcheto, F. G.; Nääs, I. A., Salgado, D. Efeito das temperaturasde bulbo seco e de globo negro e do índice de temperatura eumidade, em vacas em produção alojadas em sistema de free-stall. Brazilian Journal of Veterinary Research and Animal

Science, v.39, p.320-323, 2002. http://dx.doi.org/10.1590/S1413-95962002000600008

Oliveira, E. C.; Delgado, R.C.; Rosa, S. R.; Souza, P. J. O. P.; Neves,L. O. Efeitos do estresse térmico sobre a produção de bovinos deleite no município de Marilândia – ES. Enciclopédia Biosfera, v.9, p.913-921, 2013.

Perissinotto, M.; Moura, D. J. Determinação do conforto térmicode vacas leiteiras utilizando a mineração de dados. RevistaBrasileira de Engenharia de Biossistemas, v.1, p.117-126, 2007.http://dx.doi.org/10.18011/bioeng2007v1n2p117-126

Perissinotto, M.; Moura, D. J.; Cruz, V. F. Avaliação da produção de

leite em bovinos utilizando diferentes sistemas de climatização.Revista Ciência Agrárias, v.30, p.135-142, 2007.

Silva, I. M.; Pandor, H.; Almeida, G. L. P.; Guiselini, C.; Caldas,A. M.; Jacob, A. L. Análise espacial das condições térmicasdo ambiente pré-ordenha de bovinos leiteiros sob regimesde climatização. Revista Brasileira de Engenharia Agrícola eAmbiental, v.16, p.903-909, 2012. http://dx.doi.org/10.1590/S1415-43662012000800013

Silva, . G. F.; urco, S. H. N; Zolnier, S.; Moura, M. S. B.; Sá, I. I.S. Variação regional do declínio na produção de leite duranteo verão no estado de Pernambuco. Engenharia na Agricultura, v.16, p.109-123, 2008.

rangmar, B. B.; Yost, R. S.; Wade, M. K.; Uehara, G. Applicationsof geostatistics to spatial studies of soil properties. Advancesin Agronomy, v.38, p.45-94, 1985. http://dx.doi.org/10.1016/S0065-2113(08)60673-2

Vieira, S. R. Geoestatística em estudos de variabilidade espacialdo solo. In: Novais, R. F. Alvarez V., V. H.; Schaefer, C. E. G. R.(ed.). ópicos em ciência do solo. Viçosa: Sociedade Brasileirade Ciência do Solo, v.1, p.1-53, 2000.

Warrick, A.W.; Nielsen, D. R. Spatial variability of soil physicalproperties in the eld. In: Hillel, D. (ed.). Applications of soilphysics. New York: Academic Press, 1980. p.319-344. http://dx.doi.org/10.1016/b978-0-12-348580-9.50018-3

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 72/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.72–77, 2016

Insecticide activity o clove essential oil on bean weevil and maize wCarlos F. Jairoce1, Cristiano M. eixeira2, Camila F. P. Nunes3,Adrise M. Nunes2, Claudio M. P. Pereira3 & Flávio R. M. Garcia4

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p72-77

A B S T R A C TBean weevil and maize weevil can cause considerable damage to stored grains. Tinsects are mainly controlled with synthetic chemical insecticides, which may bring seproblems to human and environmental health. Tere ore, this study aimed to evaluate efficiency o the essential oil o clove [Syzygium aromaticum (L.) Merrill & Perry (Myrtaceae)(origin: Bahia, season Sep.2014-Feb.2015)] in the control oS. zeamaisand A. obtectus underlaboratory conditions. Te essential oil was extracted through the classic hydrodistillatprocess and its chemical components were identied via gas chromatography. Oil effic

was tested at the doses o 35, 17.9, 8.9, 3.6, 1.8, 0.4 and 0.2 µL g-1

(derived rom a pilotstudy) or insect control and the LC50was determined. Te results showed that eugenolwas the major compound. Te essential oil caused mortality o 100% or both speciesafer treatment with the concentrations o 17.9 and 35 µL g-1. Te LC50 or A. obtectus was9.45 µL g-1, against 10.15 µL g-1 orS. zeamais. Te use o clove essential oil represents apromising alternative to be used under storage conditions or the integrated managemo stored grains pests.

Atividade inseticida do óleo essencial de cravo-da-índiasobre o caruncho-do- eijão e o gorgulho-do-milhoR E S U M OO caruncho-do- eijão e o gorgulho do milho podem causar grandes prejuízos aos garmazenados. Entre as alternativas de controle está a utilização de óleos essenciais de plcom propriedades inseticidas; objetivou-se, assim, avaliar a eciência do óleo essende cravo-da-índia no controle deS. zeamais e A. obtectus em condições de laboratório.O óleo essencial oi extraído por processo clássico de hidrodestilação e seus constituquímicos oram identicados por cromatograa gasosa. A eciência deste óleo oi tnas doses 35; 17,9; 8,9; 3,6; 1,8; 0,4 e 0,2 µL g-1 (oriundas de um trabalho piloto) no controledos insetos e determinada a CL50. Os resultados mostraram que o eugenol oi o compostomajoritário. O óleo essencial causou 100% de mortalidade para as duas espécies 48 ho tratamento com as concentrações de 17,9 e 35 µL g-1. A CL50para A. obtectus oi 9,45µL g-1contra 10,15 µL g-1do S. zeamais. A utilização do óleo essencial de cravo-da-índiarepresenta uma alternativa promissora a ser usada em condições de armazenagem pamanejo integrado de pragas de grãos armazenados.

Key words:control strategiesinsect in estationsgrain storage

Palavras-chave:estratégias de controlein estação por insetosarmazenamento de grãos

1 Universidade Lurio/Faculdade de Ciências Agrárias/Departamento de Protecção de Plantas. Sanga, Moçambique. E-mail: jairoce09@gma2 Universidade Federal de Pelotas/Instituto de Biologia/Programa de Pós-Graduação em Entomologia. Pelotas, RS. E-mail: crisakst@[email protected]

3 Universidade Federal de Pelotas/Centro de Ciências Químicas, Farmacêuticas e de Alimentos/Programa de Pós-Graduação em Bioquímica e BPelotas, RS. E-mail: camila [email protected]; [email protected]

4 Universidade Federal de Pelotas/Instituto de Biologia/Departamento de Ecologia, Zoologia e Genética. Pelotas, RS. E-mail: aviormg@(Corresponding author)

Protocolo 394-2014 – 09/11/2014 • Aprovado em 26/06/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 73/96

73Insecticide activity of clove essential oil on bean weevil and maize weevil

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.72–77, 2016.

I

Many internal and external actors can compromisequalitative and quantitative characteristics o stored grainseven afer drying. Among these actors, pest insects stand out,which, besides attacking many crop development stages at theeld, also damage the stored grains, thus being considered as

cross-in estation pests (Scheepens et al., 2011). Among thesepests, the bean weevil [ Acanthoscelides obtectus (Say, 1831)(Coleoptera: Chrysomelidae)] and the maize weevil [Sitophiluszeamais Motschulsky, 1885 (Coleoptera: Curculionidae)] standout. Tey open galleries in the grains causing commercialdepreciation, which is due to a series o characteristics o theseinsects, such as high biotic potential, capacity to attack grainsboth at the eld and in deposits and capacity to survive atgreat depths inside the mass o grains (Faroni, 1992; Martins& Oliveira, 2009). Te mean quantitative losses caused bypests in Brazil are estimated at approximately 10.0% o thetotal produced annually. Tis represents about 9.8 milliontons per year, according to FAO and the Brazilian Ministry oAgriculture, Livestock and Supply (Lorini, 2005).

For the control o insects in stored grains, synthetic chemicalproducts belonging to different toxicological classes are used.Despite the relative efficiency o these products, the intensive usecan cause many problems, such as the occurrence o resistance inthe insects, accumulation o residues in oods, damage to humanhealth, environmental contamination, besides the increasein production costs (Campos et al., 2013). One alternative tothe conventional control is the use o plants with insecticideproperties, whose parts can be prepared and applied as powders,extracts and oils. Tese products have the advantages o lowcost, easy acquisition and use, their application does not requirequalied personnel and they do not have impacts on humanhealth and the environment (Hernández & Vendramim, 1997;Mazzonetto & Vendramim, 2003).

Essential oils have multiple action mechanisms on theinsects, such as acute toxicity, repellence, eeding reduction(deterrence), growth inhibition and limitations in developmentand reproduction (Coast, 1994). Te essential oils o plantspecies belonging to the amilies o Asteraceae, Ranunculaceae,Myrtaceae, Brassicaceae, Apiaceae, Piperaceae, Lamiaceae,Lauraceae and Verbenaceae have shown repellence against

insects o the order Coleoptera (Nerio et al., 2009). Clove[Syzygium aromaticum (L.) Merrill & Perry (Myrtaceae)]stands out among the plant species producing essential oilswith insecticide potential or pest control (Ho et al., 1994;Paranhos et al., 2006; Correa, 2011; A onso et al., 2012). Teimportance o the composition o clove essential oil must behighlighted and it varies according to the plant part where it isextracted rom: sun-dried leaves, oven-dried leaves, peduncleand dried ower buds (Oliveira et al., 2009).

Although the previously mentioned species produceessential oils and their compositions have compounds withinsecticide properties, little is known with respect to the

effectiveness o these products in the control o pest insects ostored goods. Tus, this study aimed to evaluate the efficiencyo clove essential oil in the control oS. zeamaisand A. obtectus,under laboratory conditions.

M M

Te experiment was conducted in the Laboratory o InsectEcology, at the Federal University o Pelotas (UFPel) (PelotaRS) in 2014. Te insects used in the experiment,S. zeamais and A. obtectus, were obtained rom the insect rearing maintainedby this laboratory. Te experiment was set in a completely

randomized design, with eight treatments and our replicatesTe specimens oS. zeamaisand A. obtectus were maintainedin laboratory in grains o maize (Zea mays) and bean (Phaseolusvulgaris), respectively stored in glass pots with capacity or 1 kgwrapped with voile abric and xed with a rubber band. For thinsect rearing, 20 unsexed adult insects were placed in recipientcontaining grains or 15 days. Ten, the insects were removedand only the eggs were lef. Tis procedure allowed obtaininginsects with the same age or the tests.

Clove essential oil was extracted at the Laboratory oLipidomics and Bioorganic (LLipidomicsBio) o the UFPethrough hydrodistillation using a Clevenger extractionapparatus, attached to a 2000-mL volumetric ask, and a heatingmantle was used as the heat source. Clove ower buds wereobtained rom a local market specialized in spices in Pelotas-RTe material was identied and taken to the LlipidomicsBio othe Center o Chemical, Pharmaceutical and Food Scienceswhere the samples were ground, dried and the oil was extractedTe material came rom the state o Bahia (season o Sept. 201Feb. 2014). 100 g o the sample (dried ower buds), grounin a kni e mill, were weighed and 1500 mL o distilled watwere added. Ten, the temperature o the electric mantle wasadjusted to 100 ºC and, afer 4 h o distillation, the essential oiwas collected, centri uged and stored in re rigeration to avoiprobable losses o volatile constituents (Brasil, 2010).

Clove essential oil components were characterized throughgas chromatography with lame ionization detector (GC/FID) and gas chromatography attached to mass spectrometry(GC/MS). Te sample o clove essential oil was diluted inacetonitrile in the proportion o 1:9 (oil:acetonitrile) or latechromatographic injection.

Volatile molecules o the sample were identied throughGC/MS (Model QP2010 SE) using an auto-injector Shimadzu(Kyoto, Japan). A column o used silica (Rtx-5MS®) with leno 30 cm, internal lm width o 0.25 µm and diameter o 0.

mm was used or the injection 1 µL o volume in the split mo(1:50). Ultrapure helium was used as the carrier gas at a owrate o 1.22 mL min-1. Te temperature o the injector and thetrans er line was 280 °C. Te temperature ramp started at 50°C, maintained or 1 min, and then increased at a rate o 1°C min-1 until 280 °C, maintaining this value or 11 min. Tetotal run time was 35 min. Te mass spectrometer operated inthe scan mode in a range o 35-700 m/z or the identicatioo the substances.

For the quantication, a GC/FID device (Model GC-2010,Shimadzu® - Kyoto, Japan) was used, with a HP1 column (3m x 0.32 mm i.d. x 0.25 µm dimethylpolysiloxane). Hydrogen

was used as the carrier gas at a ow rate o 1 mL min-1

. Tetemperature ramp started at 40 °C; then, it was graduallyincreased at a rate o 10 °C min-1 until reaching 300 °C,maintaining this temperature or 10 min. Te temperature

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 74/96

74 Carlos F. Jairoce et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.72–77, 2016.

o the injector and the detector was 280 °C. Te total time oanalysis o close essential oil through GC/FID was 36 min.

Te tests to evaluate the insecticide activity were carriedout in Petri dishes (90 x 15 mm), by mixing 20 g o beans to thedoses (dened in a pilot study) o 35, 17.9, 8.9, 3.6, 1.8, 0.4 and0.2 µL g-1o clove essential oil diluted in ween® (Polysorbate 20,hydrophilic tensioactive) at 0.2% or 2 min. Te experiment had

a control treatment, which consisted o only non-treated beangrains. en unsexed adults o A. obtectus were added to eachplot, with ages between 15 and 20 days. Te same procedurewas per ormed orS. zeamais in 20 g o maize. Te dishes weresealed with a transparent tape and maintained in a climatizedB.O.D. (biochemical oxygen demand) chamber at 25 ± 3 ºC, withRU (relative air humidity) o 70 ± 10% and photophase o 12 h.Te evaluations o susceptibility were per ormed 24 and 48 hafer the treatments. Insects that did no move or two minuteswere considered as dead (Antunes et al., 2013).

Te efficiency o control (EC %) was calculated throughthe equation o Abbott (1925):

T Tr EC 100

T

−= ×

where: - number o insects alive in the control; andr - number o insects alive in the treatment.

Mortality data were subjected to analysis o variance andthe means trans ormed into √x + 0.5 were compared by ukeytest at 0.05 probability level (p ≤ 0.05), using the program SAS®(SAS Institute Inc., 2000). Te mean lethal concentration,su icient to kill 50% o the population (LC50), was alsocalculated through the correlation between the concentrationsand cumulative mortalities o A. obtectus and S. zeamais 48 hafer treatment. Te LC50 was calculated using the statisticalprogram GraphPad Prism Demo (version 5.0).

R D

Te results re erring to the identication o components otheS. aromaticum essential oil are shown in Figure 1.

According to able 1, the analysis o the essential oil o dried

ower buds oS. aromaticum allowed the characterizationo our components, with identication above 99%, amongwhich eugenol was identi ied as the major component atthe concentration o 62.72% (peak 1), then caryophyllene(18.46%), α-caryophyllene (2.84%) and eugenol acetate(15.97%). Tese values can vary depending on plant part andthe condition in which the extraction is per ormed, such assun-dried leaves, oven-dried leaves, peduncle and dried owerbuds (Oliveira et al., 2009).

Te results o clove essential oil composition characterizedby gas chromatography, in this study, indicated eugenol asthe major component, which was also observed in the study

o Cunha et al. (2012). Te literature points to caryophyllene,α-caryophyllene and eugenol acetate as molecules with relativeabundancy in this type o matrix. Other compounds are alsopresent, but not in signicant proportions (Santos et al., 2007).

1) Eugenol; 2) Caryophyllene; 3)α -caryophyllene; 4) Eugenol acetate

Figure 1. Chromatogram of the eugenol sample.

Characterization of eugenol and derivatives of clove(Syzygium aromaticum ) essential oil (dried ower budsobtained from the market in Pelotas-RS) performedthrough GC/FID

Table 1. Percentage of components in the essential oilof clove ( Syzygium aromaticum ) (dried ower buds) asa function of the retention time, performed through gaschromatography

As observed in able 2, there were no signicant differencesbetween the concentrations o 35 and 17.9 µL g-1 o cloveessential oil, with respect to its insecticide activity 24 h afertreatment application. In other words, both were differentcompared with the other concentrations and the control,reaching mean cumulative mortalities or A. obtectus o 67.5and 62.5%, respectively.

A. obtectus mortality 48 h afer the treatments was higher atthe concentrations o 17.9 and 35 µL g-1 with cumulative valueso 95 and 100%; at the third concentration (8.9 µL g-1), thecumulative mortality 48 h afer treatment was 45% and therewas a signicant difference in relation to the other treatments.Te results show that A. obtectus mortality increases with theincrement in the period o exposure to clove essential oil; thussince there is a response to the increase in concentration, thisis perceptible because the concentration o 0.2 µL g-1does notcause mortality when evaluated or the same period o exposuo the others ( able 2).

Te cumulative mortality oS. zeamais was similar to that

o A. obtectus ( able 2), reaching 67.5 and 62.5%, 24 h afertreatment, and 100 and 82.5%, 48 h afer treatment, or theconcentrations o 35 and 17.9 µL g-1, respectively. For bothspecies, clove essential oil caused mortality o up to 100% a

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 75/96

75Insecticide activity of clove essential oil on bean weevil and maize weevil

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.72–77, 2016.

the maximum concentration (35 µL g-1), 48 h afer applyingthe product; however, there was no signicant difference at theconcentration o 17.9 µL g-1.

Te insecticide activity o clove oil was conrmed by Paranhoset al. (2006) in a study testing the e ect o clove essentialoil onZabrotes subfasciatus (Boheman, 1833) (Coleoptera:Chrysomelidae). Tese authors observed high insect mortality anddecrease o oviposition by emales when treated with this oil. Tiseffect can be due to the characteristics o the chemical compoundspresent in the composition o this oil, especially eugenol, one othe main compounds in clove essential oil (Huang et al., 2000).

Te umigation and contact effects o essential oils and theirchemical constituents are still little studied with respect to theimmature stages oS. zeamais and there are more studies withother pests. Rajendran & Sriranjini (2008), in a study withCallosobruchus maculatus (Coleoptera: Chrysomelidae) and A. obtectus, Fabricius (1975) observed that the active stages(adults and non-diapausing larvae) are more susceptible than

the sedentary stages (eggs and pupae), due to the differencesin respiratory rates.Immediately afer treatment application on the populations

o A. obtectus andS. zeamais on the Petri dish, there wasan intense agitation o the insects, which moved randomlyaround the recipient. Afer 5 min, the insects tried to escapethrough the sur ace o the dish. Four hours later, almost allthe insects were motionless and apparently dead and, afer48 h o exposure, a mortality o 100% was observed or thehighest concentrations in both populations. Tis behaviorwas probably avored by the effects o umigation and contacto clove essential oil. According to El-Nahal et al. (1989), the

period o exposure to the essential oil is more important thanthe applied dose; however, according to the results obtainedunder the conditions o this study, the period o exposure

ollows the applied dose in terms o efficiency ( able 2).

Rahman & Schmidt (1999), in study with Acorus calamus(L.) (Acoraceae) essential oil in the orm o vapor, observed ththe highest mortality oCallosobruchus phaseoli (Gyllenhal,1833) (Coleoptera: Chrysomelidae) was related to the increasein the period o exposure to the oil. Campos et al. (2013)evaluated the repellent and insecticide activity o the essentiaoil o Baccharis articulata (Lam.) Pers. on the bean weevil ( A.

obtectus) and observed that the dose o 52 μL caused insectmortality o 90% with exposure time o 32 h. Smaniotto et a(2010) observed the bioactivity oCabralea canjerana (Vell.)Mart. (Meliaceae) on A. obtectus and observed efficiency o100% or the raw extract (concentration o 1%), ollowed the hexane extraction (concentration o 1%), with efficiency o84.2%. Te ractions o ethyl acetate, chloro orm and essentioil showed the lowest efficiencies in the control o this insec

Some essential oils cause mortality, repellence, growtheffects and reductions in oviposition and emergence. In anotherstudy, Savaris et al. (2014) observed efficiency o 100% oessential oil oCunila angustifolia Benth (Lamiales: Lamiaceae)in the control oS. zeamais, and the major component waspulegone with participation o 56.1% in the composition o ioil. Tis was also observed in a study conducted by Savaris etal. (2012), in which all the doses oC . angustifolia essential oilshowed efficiency o 100% or the mortality o A.obtectus afer24 h; the other treatments showed low efficiency, comparedwith the effect o this essential oil.

In this experiment, 100% mortality was observed at theconcentration o 35 µL g-1 o clove essential oil. A similarstudy was per ormed by Prado et al. (2013), testing theinsecticide effect o the essential oil oC. angustifolia in thecontrol o Alphitobius diaperinus (Panzer, 1797) (Coleoptera:

enebrionidae), besides an efficiency o 100% or the mortalo larvae and adults, at the concentrations o 5 and 10%.

A onso et al. (2012) conrmed the effects o methanol anhexane extracts oS. aromaticum on the repellence o maizeweevil in rice grains, and eugenol had effect on the adults.In another study, Ho et al. (1994) reduced signicantly theemergence o this insect in rice grains treated with hexaneand methanol clove extracts at the dose o 1 mL 100 g-1 o rice.

In addition, in other studies (Nerio et al., 2009; Correa,2011) showing the potential o use o clove essential oiwhether by contact, repellence or umigation, the authors

observed that clove essential oils can become an alternative tothe conventional insecticides or the mortality o populationo A. obtectus and S. zeamais. However, or the application othe essential oil, it is necessary to develop technologies thatallow greater permanence o the compounds close to the masso grains, increasing control efficiency and grain preservation

Te results show that, afer 48 h, the lethal concentrationssufficient to kill 50% o the individuals o A. obtectus and S.zeamais were equal to 9.45 and 10.15 µL g-1, respectively. Teobtained LC50 results conrmed the hypothesis that there aredifferences in the response to the composition o the cloveessential oil used in this study between the different species.

According to able 3, the LC50 to control the population o A. obtectus (9.45 µL g-1) was lower compared with the LC50 tocontrolS. zeamais (10.15 µL g-1), demonstrating that A. obtectus is more susceptible to clove essential oil thanS. zeamais. Te

CV – Coef cient of variation; Means followed by the same letter in the columns do not differsigni cantly by Tukey test at 0.05 probability level

Table 2. Cumulative mortality ± Standard error (SD) of Acanthoscelides obtectus and Sitophilus zeamais , as afunction of concentrations of the essential oil of Syzygiumaromaticum applied to bean and maize grains, 24 and 48h after the treatment

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 76/96

76 Carlos F. Jairoce et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.72–77, 2016.

lower susceptibility oS. zeamais can be associated with theresistance observed in maize weevil populations to insecticides,which has been pointed as one o the actors responsible orthe occurrence o ailures in the control o this pest (Ribeiroet al., 2003; Fragoso et al., 2007).

Estrela et al. (2006) observed that oils oPiper aduncum (Linnaeus, 1753) (Piperaceae) andPiper hispidinervum C.D.C.(Piperaceae) were also toxic to adults oS. zeamais, showingLC50 o 0.56 and 1.32 µL 20 g-1 o maize grains, respectively.Negahban & Moharramipour (2007) observed that essentialoils oEucalyptus intertexta R. . Baker (Myrtaceae),Eucalyptussargentii Maiden andEucalyptus camaldulensis Dehnh have

umigation effect in adults oSitophilus oryzae (Linnaeus,1763) (Coleoptera: Curculionidae), with LC50 o 6.93, 12.91 and12.06 µL L-1 o air, respectively, afer 24 h o exposure. In thepresent study, the concentrations o 17.9 and 35 µL g-1 o cloveessential oil were not signicantly different with respect to themortality o both insect populations; thus, the concentrationo 17.9 µL g-1 can be considered as the best one or the controlo both populations.

In this context, the results obtained in the present studyshow the possibility o use o essential oils, such as clove oil, asalternatives or the management oS. zeamaisand A. obtectus inthe storage o maize and bean grains, especially or organic and

amily agriculture products, because the release o this productis easier to be obtained compared with synthetic insecticides.

Other eugenol sources, such as clove basil (Ocimum gratissimum L.) can be used; or being a bushy plant with astgrowth, it can be used or the industrial extraction o eugenol,reaching contents o up to 67% (Cortez et al., 1998).

C

1. Eugenol is the compound responsible or the insecticide

action o clove essential oil, applied or the control oS. zeamais and A. obtectus.2. Clove essential oil is an efficient alternative method or

the control oS. zeamais and A. obtectus.

3. Te acute lethal concentrations o clove essential oil tokill 50% o the insect population are 9.45 µL g-1 or A. obtectus and 10.15 µL g-1 orS. zeamais.

A

o the World Bank, or the master’s scholarship grantedto the rst author and to the National Council or Scienticand echnological Development (CNPq) or the researchproductivity grants to the authors Claudio Martin P. Pereira

and Flávio Roberto M. Garcia.

L C

Abbott, W. S. A method o computing the e ectiveness o ainsecticide. Journal o Economic Entomology, v.18, p.265-2661925. http://dx.doi.org/10.1093/jee/18.2.265a

A onso, R. S.; Rennó, M. N.; Gláucia, B. C. A.; Slana, G. B. C. A.; Fra. C. C. Aspectos químicos e biológicos do óleo essencial de cravo-

da-índia. Revista Virtual de Química, v.4, p.146-161, 2012.Antunes, L. E. G.; Ferrari Filho, E. F.; Gottardi, R.; Sant Ana, J.

Dionello, R; G.; E eito da dose e exposição à terra de diatomácede di erentes insetos em milho armazenado. Arquivo do InstitutoBiológico, v.80, p.169-176, 2013. http://dx.doi.org/10.1590/S180816572013000200005

Brasil. Farmacopeia Brasileira, 5.ed. volume 1. Brasília: Anvisa, 201546p.

Campos, A. C. .; Radunz, L. L.; Radunz, A. L.; Scariot, M. AReichert, F. J.; Ecker, Scheila, L.; Mossi, A. J. Bioatividade de óleessencial deBaccharis articulata sobre Acantoscelides obtectus

em grãos de eijão. Cadernos de Agroecologia, v.8, p.1-5, 2013.Coast, J. R. Risks rom natural versus synthetic insecticides. AnuaReview o Entomology, v.39, p.489-515, 1994. http://dx.doiorg/10.1146/annurev.en.39.010194.002421

Correa, Y. D. C. G. Resposta de populações deSitophilus zeamais a exposição dos óleos essenciais de cravo-da-índia e de canela.Viçosa: UFV, 2011. 49p. Dissertação Mestrado

Cortez, D. A. G.; Cortez, L. E. R.; Pessini, G. L.; Doro, D. L.; NakamuC. V. Análise do óleo essencial da al avacaOcimum gratissimumL. (Labiatae). Arquivos de Ciências da Saúde Unipar, v.2, p.125-127, 1998.

Cunha, S.; Lustosa, D. M.; Conceição, N. D. Biomassa em aula práticde química orgânica verde: cravo-da-índia como onte simultâneade óleo essencial e de ur ural. Quimica Nova, v.35, p.638-642012. http://dx.doi.org/10.1590/S0100-40422012000300035

El-Nahal, A. K. M.; Schmidt, G. H.; Risha, E. M. Vapour o Acoruscalamus oil a space treatment or stored-product insects. Journalo Stored Products Research, v.35, p.211-216, 1989. http://dx.doiorg/10.1016/0022-474X(89)90026-X

Estrela, J. L. V.; Fazolin, M.; Catani, V.; Alecio, M. R.; Lima, MS. oxicidade de óleos essenciais dePiper aduncum e Piperhispidinervum em Sitophilus zeamais. Pesquisa AgropecuáriaBrasileira, v.41, p.217-222, 2006. http://dx.doi.org/10.1590/S0100

204X2006000200005Faroni, L. R. D. Manejo das pragas dos grãos armazenados e suainuência na qualidade do produto nal. Revista Brasileira deArmazenamento, v.17, p.36-43, 1992.

Table 3. Lethal concentration of clove essential oilnecessary to kill 50% of adults of Acanthoscelides obtectusand Sitophilus zeamais applied to bean and maize grains,and its slope 48 h after the treatment

CI – Con dence interval

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 77/96

77Insecticide activity of clove essential oil on bean weevil and maize weevil

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.72–77, 2016.

Fragoso, D. B.; Guedes, R. N. C.; Oliveira, M. G. A. Partialcharacterization o glutathione Strans erases in pyrethroidresistant and susceptible populations o the maize weevil,Sitophilus zeamais. Journal o Stored Products Research, v.43,p.167-170, 2007. http://dx.doi.org/10.1016/j.jspr.2006.04.002

Hernández, C. R.; Vendramim, J. D. Avaliação da bioatividade deextratos aquosos de Meliaceae sobreSpodoptera frugiperda.

Revista de Agricultura, v.72, p.305-317, 1997.Ho, S. H.; Cheng, L. P. L.; Sim, K. Y.; an, H. . W. Potential o cloves

(Syzygium aromaticum (L.) Merr and Perry) as a grain protectantagainstTribolium castaneum (Herbst) andSitophilus zeamais Motsch. Postharvest Biology and echnology, v.4, p.179-183, 1994.http://dx.doi.org/10.1016/0925-5214(94)90019-1

Huang, Y; Chen, S. X.; Ho, S. H. Bioactivities o methyl allyl disulde anddiallyl trisulde rom essential oil o garlic to two species o stored-product pests,Sitophilus zeamais (Coleoptera: Curculionidae)andTribolium castaneum (Coleoptera: enebrionidae). Journalo Economic Entomology, v.93, p.537-543, 2000. http://dx.doi.org/10.1603/0022-0493-93.2.537

Lorini, I. Manual técnico para o manejo integrado de pragas de grãosde cereais armazenados. Passo Fundo: Embrapa rigo, 2005. 80p

Martins, A. L.; Oliveira, N. C. Eciência da terra de diatomácea nocontrole do caruncho-do- eijão Acanthoscelides obtectuse o e eitona germinação do eijão. Revista Brasileira de Agroecologia, v.4,p.917-920, 2009.

Mazzonetto, F.; Vendramim, J. D. E eito de pós de origem vegetal sobre Acanthoscelides obtectus(Say) (Coleoptera: Bruchidae) em eijãoarmazenado. Neotropical Entomology, v.32, p.145-149, 2003.http://dx.doi.org/10.1590/S1519-566X2003000100022

Negahban, M.; Moharramipour, S. Fumigant toxicity oEucalyptus intertexta , Eucalyptus sargentii andEucalyptus camaldulensis against stored product beetles. Journal o Applied Entomology, v.131, p.256-261, 2007. http: //dx.doi.org/10.1111/j.1439-0418.2007.01152.x

Nerio, L. S.; Olivero-Verbel, J.; Stashenko, E. E. Repellent activityo essential oils rom seven aromatic plants grown in ColombiaagainstSitophilus zeamais Motschulsky (Coleoptera). Journal oStored Products Research, v.45, p.212-214, 2009. http://dx.doi.org/10.1016/j.jspr.2009.01.002

Oliveira, R. A.; Reis, . V.; do Sacramento, C. K.; Duarte, L. P.; Oliveira,F. F. Constituintes químicos voláteis de especiarias ricas emeugenol. Brazilian Journal o Pharmacognosy, v.19, p.771-775,

2009. http://dx.doi.org/10.1590/s0102-695x2009000500020

Paranhos, B. A. J.; Custódio, C. C.; Machado Neto, N. B., RodriguesA. S. Extrato de neem e cravo-da-índia no controle deZabrotessubfasciatus (Boheman) (Coleoptera: Bruchidae) em sementes de

eijão armazenado. Colloquium Agrariae, v.1, p.1-7, 2006. http://dx.doi.org/10.5747/ca.2005.v01.n1.a001

Prado, G. P.; Ste ani, L. M.; da Silva, A. S.; Smaniotto, L. F.; GarcF. R. M.; de Moura, N. F. Alphitobius diaperinus (Coleoptera:

enebrionidae) Susceptibility toCunila angustifolia essential oil.Journal o Medical Entomology, v.50, p.1040-1045, 2013. http:/dx.doi.org/10.1603/ME12277

Rahman, M. M.; Schmidt, G. H. E ect o Acorus calamus (L.)(Araceae) essential oil vapours rom various origins onCallosobruchus phaseoli (Gyllenhal) (Coleoptera: Bruchidae).Journal o Stored Products Research, v.35, p.285-295, 1999. http:/dx.doi.org/10.1016/S0022-474X(99)00012-0

Rajendran, S.; Sriranjini, V. Plant products as umigants or storedproduct insect control. Journal o Stored Products Research, v.44,p.126-135, 2008. http://dx.doi.org/10.1016/j.jspr.2007.08.003

Ribeiro, B. M.; Guedes, R. N. C.; Oliveira, E. E.; Santos, J. P. Insectic

resistance and synergism in Brazilian populations oSitophiluszeamais (Coleoptera: Curculionidae). Journal o Stored ProductsResearch, v.39, p.21-31, 2003. http://dx.doi.org/10.1016/S0022-474X(02)00014-0

Santos, L. G. M. dos; Cardoso, M. das G.; Lima, R. K. de; Sousa, P. EGuimarães, L. G. de L.; Andrade, M. A. Avaliação do potencial

ungitóxico do óleo essencial deSyzygium aromaticum (L.) Merr &Perry (cravo-da-índia). ecno-Lógica, v.11, p.11-14, 2007.

SAS Institute Inc., SYS EM 2000® Sofware: Product support manua version 1, First Edition, Cary: SAS Institute Inc., 2000.

Savaris, M.; Lampert, S.; García, F. R. M.; Sabedot-Bordin, S. MMoura, N. F. de. Atividade Inseticida deCunila angustifolia sobre

adultos de Acanthoscelides obtectus em Laboratório. Ciencia yecnología, v.5, p.1-5, 2012.Savaris, M.; Sabedot-Bordin, S. M.; Mendes, C. E.; Moura, N. F.; eixei

C. M.; Garcia, F. R. M. Evaluation o extracts and essential oil roCunila angustifolia (Lamiales: Lamiaceae) leaves to control adultso maize weevil,Sitophilus zeamais (Coleoptera: Curculionidae).International Journal o Entomological Research, v.2, p.22-28, 2014

Scheepens, P.; Hoevers, R.; Arulappan, F. X.; Pesch, G. Storage oagricultural products. Wageningen: C A, 2011. 85p.

Smaniotto, L.; Moura, N. F. de; Denardin, R. B. N.; Garcia, F. R. MBioatividade daCabralea canjerana (Vell.) Mart. (Meliaceae)no controle de adultos de Acanthoscelides obtectus (Coleoptera:

Bruchidae) em laboratório. Revista Biotemas, v.23, p.31-35, 2010

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 78/96

Revista Brasileira de Engenharia Agrícola e AmbientalCampina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.78–84, 2016

Spatialization o soil quality index in the Sub-Basino Posses, Extrema, Minas GeraisGabriela C. Lima1, Marx L. N. Silva1, Diego A. F. de Freitas2,Bernardo M. Cândido3, 4, Nilton Curi1 & Marcelo S. de Oliveira5

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p78-84

A B S T R A C TTis study aimed to determine and spatialize the soil quality index (SQI), in relation to chemicaland physical attributes, and evaluate its use in the payment or environmental services inthe Sub-Basin o Posses, Extrema-MG, Brazil, which represents the Atlantic Forest Biome.SQI values were inuenced by both the replacement o native orests by stands o eucalyptusand by pastures and annual crops, reecting in the reduction o soil quality in the sampledlayer in the evaluated systems. Te spatialization o SQI showed values ranging rom 0.40to 0.80, with some specic areas with high values and others with values above 1.00 (native

orest). Te re orestation with eucalyptus conditioned most o the soils with low chemical andphysical deterioration, due to accumulation o litter. Te lowest SQI values are associated withpastures. SQI adjusted to the exponential model, which allowed the use o ordinary Kriging.Te SQI has a great potential o use in the payment to armers who provide services o soiland water conservation.

Espacialização do índice de qualidade do solona Sub-Bacia das Posses, Extrema, Minas GeraisR E S U M O

Objetivou-se, com este estudo, determinar o índice de qualidade do solo (IQS), em relaçãoa atributos químicos e ísicos, e espacializá-lo, além de avaliar a utilização deste índice nopagamento por serviços ambientais na Sub-Bacia Hidrográca das Posses, Extrema, MinasGerais, representativa do Bioma Mata Atlântica. Os valores do IQS oram inuenciadostanto pela substituição da mata nativa por povoamento de eucalipto, quanto por pastagense culturas anuais, reetindo na redução da qualidade do solo na pro undidade amostradanos sistemas avaliados. A espacialização do IQS apresentou valores variando de 0,40 a 0,80,ocorrendo algumas áreas pontuais com elevados índices e algumas com índices superiores a1,00 (mata nativa). O reorestamento com eucalipto condicionou solos, em sua maioria, combaixas deteriorações ísicas e químicas devido ao acúmulo de serrapilheira. Já os menores valores do IQS estão associados às pastagens. O modelo pelo qual o IQS se ajustou oi oexponencial, possibilitando a krigagem ordinária. O IQS apresenta grande potencial parauso no pagamento de agricultores que prestam serviços de conservação do solo e água.

Key words:KrigingSQIAtlantic Forest

Palavras-chave:KrigagemIQSMata Atlântica

1 Universidade Federal de Lavras/Departamento de Ciência do Solo. Lavras, MG. E-mail: [email protected]; [email protected]; [email protected] Universidade Federal de Viçosa. Florestal, MG. E-mail: [email protected] Universidade Federal de Lavras. Lavras, MG. E-mail: [email protected] (Corresponding author)4 Lancaster University. Lancaster, UK5 Universidade Federal de Lavras/Departamento de Ciências Exatas. Lavras, MG. E-mail: [email protected]

Protocolo 379-2014 – 25/10/2014 • Aprovado em 17/07/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 79/96

79Spatialization of soil quality index in the Sub-Basin of Posses, Extrema, Minas Gerais

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.78–84, 2016.

I

According to Doran & Parkin (1994), soil quality is denedas the capacity o the soil to unction within the limits o theecosystem, managed or natural, in order to sustain biologicalproduction and maintain environmental quality and the healtho plants and animals. Tere ore, it is the capacity o the soil to

per orm its unctions in nature, acting as a medium or plantdevelopment; regulation and compartmentalization o waterow in the environment; stock and promotion o cycling oelements in the biosphere and as an environmental buffer inthe ormation, attenuation and degradation o compounds thatare harm ul to the environment (Vezzani & Mielniczuk, 2009).

However, soil quality cannot be directly evaluated; itmust be in erred rom soil quality indicators that are used by

armers and scientists (Mairura et al., 2007). Tus, soil physical,chemical and biological attributes can be used as qualityindicators, allowing the measurement o the capacity o thesoil to per orm its essential unctions in avor o a sustainable

management.In this perspective, it is essential to select a minimum seto indicators that have characteristics such as easy evaluation,applicability on di erent scales, capacity o integration,adequacy to the research analysis level, utilization in thehighest possible number o situations, sensitivity to variationsin management and climate, and possibility o measurementsthrough quantitative and/or qualitative methods.

Studies developed by Swanepoel et al. (2014) veried theimportance o the evaluation o the soil quality index (SQI),in relation to the sustainability o agricultural systems, andconrmed low SQI values inadequately managed soils.

In the evaluation o different systems o planted orest andnative cerrado, in different regions o the state o Minas Gerais,Freitas et al. (2012) obtained SQI values that prove that these

orest management areas suffer a reduction in the indicescompared with the evaluated native systems.

Some research lines have proposed, as soil qualityindicators, the evaluation o soil physical, chemical andbiological attributes (Lima, 2013; Nesbitt & Adl, 2014). Organicmatter has also been included, or its importance in nutrientavailability, soil structure and erosion control, water retentionand the transport and immobilization o pollutants (Barrios etal., 2006; Fließbach et al., 2007).

According to Hazarika et al. (2014), soil quality can alsobe evaluated through the soil deterioration index, or whichthe deviations o soil chemical and physical properties o anarea under anthropic action are compared with the baselineo an adjacent natural area or an area with similar conditionso soil and climate.

By establishing the indices in geore erenced points, it ispossible to spatialize them using geostatistical tools, whichprovide better understanding on their variation and behavior inthe environment. Studies on spatial variability o soil attributesare important not only in samplings or data interpretation, butalso in soil survey and classication (Lima et al., 2010; Grego

et al., 2011).Tere ore, the evaluation o soil quality in ragile biomes,such as the Atlantic Forest, is o great importance, becauseit concentrates a large portion o the Brazilian population

(70%) and with percentage o conserved orest remnants oonly 7.26% (Brasil, 2007). Tus, SQI determination in areaswith orest remnants, especially in the areas o water rechargeo the Cantareira System, which supplies the state o SãoPaulo, constitutes a relevant tool in the implementation oadequate management practices that promote environmentalsustainability.

In this context, this study aimed to determine and spatializeSQI and evaluate its use in the payment or environmentalservices in areas under agricultural use, orests, pastures andremnants o the Atlantic Forest in the Sub-Basin o Posses,Extrema-MG, Brazil.

M M

Te studied area is located in the municipality o Extrema-MG, Brazil, in the Sub-Basin o Posses, at the U M coordinates374500 and 371500 E and 7468200 and 7474800 S (DatumSAD 69, Zona 23S) (Figure 1). Te climate in the region is

mesothermal, with mild summers and dry winters, Cwb,according to Köppen’s climate classication.Te predominant vegetation is in the biome o the Atlantic

Forest (ANA, 2008). Te sub-basin is located in the JaguariRiver Basin, one o the rivers that supply the reservoir o theCantareira System in the state o São Paulo.

According to the classication o EMBRAPA (2013), the soilclasses in the sub-basin are: Litholic Neosol (RL), Fluvic Neosol(RY), Red Yellow Argisol (PVA), Haplic Cambisol (CX) andHumic Cambisol (CH) (Figure 2A). Undulating and stronglyundulating relie phases prevail in the studied area (Figure 2B).

Currently, the main soil use is pasture and most areas

have been poorly managed; in addition, there are stands oeucalyptus, annual crops and native orest (Silva et al., 2013)(Figure 3 and able 1).

Prior to sample collection, a stratied soil sampling grid wasgenerated, with 150 points, spaced by 350 m and distributed inan area o approximately 1,200 ha (Figure 4), using the programArcGIS 9.3. In areas with higher variability on the landscape, alarger number o sampling points was used, in order to increasetheir representativeness.

he samples were collected in order to represent theive soil classes prevailing in the sub-basin and the main

Figure 1. Sub-Basin of Posses in the municipality ofExtrema-MG, Brazil. Adapted from Silva (2013)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 80/96

80 Gabriela C. Lima et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.78–84, 2016.

Figure 2. Map of soil classes (A) and relief phases (B) of the Sub-Basin of Posses, in municipality of Extrema-MG, Brazil.Adapted from Silva (2013)

A. B.

Figure 3. Current soil uses in the Sub-Basin of Posses,Extrema-MG, Brazil. Adapted from Silva (2013)

Table 1. Characterization of the native reference systemsand other evaluated systems in the Sub-Basin of Posses,Extrema-MG, Brazil. Adapted from Silva (2013)

NF - native forest; EUC - stand of eucalyptus; P - planted pasture; SCS - soil covered withcorn straw; SPP - soil prepared for potato planting; PVA - Red Yellow Argisol; CH - HumicCambisol; CX - Haplic Cambisol; RL - Litholic Neosol; RY - Fluvic Neosol

soil uses. he GARMIN e rex Vista global positioning

system (GPS) was used to mark the points at the ield.Soil samples were collected in each point, in the layer o0-0.20 m, according to Lemos & Santos et al. (2005), andthe soils were classi ied according to EMBRAPA (2013).

Representative soil pro iles were dug, considering the classand current use o the soil or the collection o disturbedand undisturbed samples.

Te evaluation o soil quality was per ormed throughthe SQI, using the model suggested by Islam & Weil (2000).According to Araújo et al. (2007), or the application o themodel, a ew basic assumptions must be made: the natural

ecosystems, characterized by minimum anthropic interventionand expected equilibrium, are considered as a re erence; twocategories o soil quality attributes (chemical and physical)contribute equitably to soil quality and the same weighted value

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 81/96

81Spatialization of soil quality index in the Sub-Basin of Posses, Extrema, Minas Gerais

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.78–84, 2016.

Figure 4. Sampling points in the Sub-Basin of Posses,Extrema-MG, Brazil

is attributed to each category; their respective indicators havethe same relative importance.

For SQI determination, the attributes involved in the mainunctions per ormed by the soil ( able 2) were considered. Te

analysis o soil chemical and physical attributes were per ormedby Lima et al. (2014).

where:Qa - mean o the deviations o the indicators o each

attribute in relation to the re erence;w - value o the indicator measured in the studied systems;k - value o the indicator measured in the re erence system;n - number o indicators constituting each set o attributes;Qca - mean o the deviations o soil chemical attributes; andQpa - mean o the deviations o soil physical attributes.

Afer one SQI was generated or each sampled point, thedeterioration indices o soil chemical and physical attributesand the SQI corresponding to each soil class and main useswere determined. he deterioration is considered as thechemical and physical variations o the managed areas incomparison to the native ones. Te R program (R Core eam,2014) was used or the descriptive analysis or each soil class,which provided: mean, standard deviation, coe icient o variation and asymmetry.

Te adjustment parameters o the experimental semiva-riogram or SQI, as well as the geostatistical analysis, wereobtained using the R program (R Core eam, 2014), in the GeoRpackage (Ribeiro Júnior & Diggle, 2001), per ormed throughthe analysis o semivariograms based on the assumptions ointrinsic hypothesis, in which the spatial dependence ratiois the same at any “h” position inside a certain range o thespatial continuity.

For each soil attribute, the semivariancesg(h) were

calculated in all directions, meeting the hypothesis o isotropy.A ter adjusting the mathematical model, the ollowingparameters were dened: nugget effect (C0),g value when h iszero; range (a), value o h wheng stabilizes close to a constant value; (C1), structural variance and sill (C1 + C0), value og when a constant value is obtained close to the variance o thedata. Te spatial dependence ratio (SDR) between samples wasdetermined according to Cambardella et al. (1994).

Afer obtaining the data necessary or Kriging, the mapswere constructed using the R program (R Core eam, 2014).

R D

Te deterioration suffered by soil chemical and physicalattributes or each soil use and each soil class, and the respectivesoil quality indices, are shown in able 3.

he SQI values calculated rom the deviations o soilproperties in the systems o re orestation, annual crops andpastures, compared with the re erence natural system (native

orest), were inuenced by both the replacement o nativeorest by the stand o eucalyptus and pasture and annual crops,

reecting in the reduction o soil quality in the sampled layerin the evaluated systems.

Cardoso et al. (2011) observed, in the supercial soil layer,

the highest contents o organic matter, which mainly came romthe deposition o organic substrate in the litter, where the effecto animal trampling was more pronounced and the activity osoil microbiota on the decomposition and mineralization o

Table 2. Soil functions and quality indicator attributes

SQI was calculated in two steps:

a

w1 k1 w2 k2 w3 k3 wn knk1 k2 k3 kn

Qn

− − − − + + + =

Qca QpaSQI 1

2+ = −

(1)

(2)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 82/96

82 Gabriela C. Lima et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.78–84, 2016.

the organic matter was more intense. Tere ore, in this layer,soil chemical and physical attributes were more sensitive tothe alterations imposed by anthropic action.

Te alterations in the chemical attributes consisted odeteriorations in relation to the re erence (NF) or all soilclasses and uses, except or the chemical attributes in the useso annual crops in area o CX and re orestation in area o RY.

Te preparation o the soil or potato cultivation involvesertilization with nutrients that promote better soil ertility;

in this case, soil quality improved 0.1% in relation to NF.However, or soil physical attributes, potato cultivation inthe CX promoted a deterioration o 1.7% in relation to NF,certainly due to the management during harvest, which mayhave affected soil structure.

Potato cultivation is requently per ormed in soils withmoderate to high declivity, as the situation in the Sub-Basino Posses, and the soil is intensively prepared and susceptibleto losses by water erosion, compaction, reduction in waterinltration rates and a consequent decrease in water table

recharge, which damage the environment and even make itdifficult to obtain high yields.he area with eucalyptus re orestation in RY showed

improvement o 3.39% in soil chemical attributes, in relationto NF; this is due to the soil correction per ormed be oreeucalyptus was planted and the signicant CEC variationsin soils under eucalyptus cultivation (Effgen et al., 2012).Studies have shown the accumulation o N, P, K, Ca and Mgin leaves, branches and barks, contributing to the increase olitter, nutrient cycling and organic residues (Stape et al., 2010).

As to the physical attributes, a deterioration o approximately15% occurred or the eucalyptus re orestation in RY. Te

eucalyptus plantations in the Sub-Basin o Posses generallyoccur in areas o degraded pastures and this previous soiluse can inuence the deterioration o soil physical attributes,especially in RY areas.

Te soil use with pasture, which represents more than 70%o the Sub-Basin o Posses, showed the lowest SQI comparedwith NF and the other uses, in all the evaluated soil classes,showing the highest deteriorations in both chemical andphysical attributes. Te lowest SQI value (0.276) correspondsto the use under pasture in PVA. In this situation, areas withdegraded pasture were ound, i.e., areas with occurrence olaminar erosion, usually in areas with undulating to stronglyundulating landscape.

One o the main causes o pasture degradation is thereduction o soil ertility due to the loss o nutrients throughthe production process (animal eeding), erosion, leachingand volatilization (Fonte et al., 2014). In addition, one o themain e ects caused by the animals on pastures is compaction,which increases soil density and decreases macroporosity,hampering soil water movement and root growth (Swanepoelet al., 2014).

Tere ore, SQI can become an instrument to be used bythe authorities in the payment or environmental services.Areas that maintain better SQI have lower degradation degreeo soil chemical and physical attributes, and armers must be valued. Tus, the index has the potential to reect the state oconservation or deterioration o a small arm, allowing the useo rewards or penalties according to its value.

Based on the adjustment parameters o the semivariogram( able 4), the obtained value o SDR indicates a moderate spatialdependence o SQI, according to Cambardella et al. (1994).Tus, it was possible to interpolate values in any position othe studied area, constructing maps through ordinary Krigingand using structural properties o the semivariogram o the

sampled sites (Figure 5).

Table 3. Deterioration of soil chemical and physicalattributes in relation to the reference native systems andsoil quality indices for different systems of soil use andmanagement in the Sub-Basin of Posses, Extrema-MG,Brazil

SQI - Soil quality index; NF - Native forest; EUC - Stand of eucalyptus; P - Planted pasture;SCS - Soil covered with corn straw; SPP - Soil prepared for potato planting; PVA - Red YellowArgisol; CH - Humic Cambisol; CX - Haplic Cambisol; RL - Litholic Neosol; RY - Fluvic Neosol

Figure 5. Semivariogram of the soil quality index (SQI) inthe Sub-Basin of Posses, Extrema-MG, Brazil

SQI - Soil quality index; C0 - Nugget effect; C1 - Structural variance; (C0 + C 1) - Sill; a - Range;SDR - Spatial dependence ratio

Table 4. Adjustment parameters of the semivariogram forthe soil quality index (SQI) of the Sub-Basin of Posses,Extrema-MG, Brazil

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 83/96

83Spatialization of soil quality index in the Sub-Basin of Posses, Extrema, Minas Gerais

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.78–84, 2016.

Te spatial distribution o the indices in the sampled areacan be observed in the map o distribution obtained throughdata interpolation by the Kriging method (Figure 6).

Values rom 0.40 to 0.80 prevailed in the distribution o SQIin the Sub-Basin o Posses. Some areas showed high indices,even higher than 1.00, as in native orest areas, while the lowestSQI values re er to the soil use with pasture.

Te map indicated areas with low SQI in the Sub-Basincompared with NF, mainly due to the management. Becausethe region has more than 70% o the area occupied by pasture,intermediate soil quality indices prevailed.

here ore, since the Sub-Basin o Posses is located inarea with remnants o the Atlantic Forest and is part o theCantareira System, the improvement o its soil quality is ogreat importance to protect ecosystems and recover degradedareas, contributing to the sustainability o the local activitiesin avor o soil and water conservation.

employee Benedito Arlindo Cortes, or helping in theieldwork.

L C

ANA - Agência Nacional das Águas. Programa produtor de águasuperintendência de usos múltiplos. Brasília: Ministério do MeioAmbiente, 2008. 60p.

Araújo, R.; Goedert, W. J.; Lacerda, M. P. C. Qualidade de um solo sobdi erentes usos e sob cerrado nativo. Revista Brasileira de Ciênciado Solo, v.31, p.1099-1108, 2007. http://dx.doi.org/10.1590/S0100-06832007000500025

Barrios, E.; Delve, R. J.; Bekunda, M.; Mowo, J.; Agunda, J.; Ramisch,J.; rejo, M. .; Tomas, R. J. Indicators o soil quality: A South-South development o a methodological guide or linking localand technical knowledge. Geoderma, v.135, p.248-259, 2006.http://dx.doi.org/10.1016/j.geoderma.2005.12.007

Brasil. Levantamento da cobertura vegetal nativa do bioma MataAtlântica. Rio de Janeiro: Ministério do Meio Ambiente, 2007. 84p.

Cambardella, C. A.; Moorman, . B.; Novak, J. M.; Parkin, . B.;Karlen, D. L.; urco, R. F.; Konopka, A. E. Field-scale variabilityo soil properties in Central Iowa Soils. Soil Science Societyo America Journal, v.58, p.1501-1511, 1994. http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x

Cardoso, E. L.; Silva, M. L. N.; Curi, N.; Ferreira, M. M.; Freitas,D. A. F. de. Qualidade química e ísica do solo sob vegetaçãoarbórea nativa e pastagens do Pantanal sul-matogrossense. RevistaBrasileira de Ciência do Solo, v.35, p.612-622, 2011. http://dx.doi.org/10.1590/S0100-06832011000200030

Doran, J. W.; Parkin, . B. Dening and assessing soil quality. In:

Doran, J. W.; Coleman, D. C.; Bezdicek, D. F.; Stewart, B. A.Dening soil quality or a sustainable environment. Madison:Soil Science Society o America, 1994. cap.1, p.3-21. http://dx.doi.org/10.2136/sssaspecpub35.c1

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistemabrasileiro de classicação de solos. 3.ed. Brasília, DF: EMBRAPA,2013. 353p.

Effgen, E. M.; Nappo, M. E.; Cecílio, R. A.; Mendonça, A. R. de;Manzole, R.; Bocarte, M. Atributos químicos de um LatossoloVermelho-Amarelo distróco sob cultivo de eucalipto e pastagemno sul do Espírito Santo. Scientia Forestalis, v.40, p.375-381, 2012.

Fließbach, A.; Oberholzer, H.; Gunst, L.; Mader, P. Soil organicmatter and biological soil quality indicators afer 21 years oorganic and conventional arming. Agriculture, Ecosystems andEnvironment, v.118, p.273-284, 2007. http://dx.doi.org/10.1016/j.agee.2006.05.022

Fonte, S. J.; Nesper, M.; Hegglin, D.; Velásquez, J. E.; Ramirez, B.;Rao, I. M.; Bernasconi, S. M.; Bünemann, E. K.; Frossard, E.;Oberson, A. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highlyweathered tropical soils. Soil Biology & Biochemistry, v.68, p.150-157, 2014. http://dx.doi.org/10.1016/j.soilbio.2013.09.025

Freitas, D. A. F. de; Silva, M. L. N.; Cardoso, E. L.; Curi, N. Índice

de qualidade do solo sob di erentes sistemas de uso e manejoorestal e cerrado nativo adjacente. Revista Ciência Agronômica, v.43, p.417-428, 2012 . ht tp :/ /dx.doi. org/10 .1590/S1806-66902012000300002

Figure 6. Map of distribution of the soil quality index (SQI)in the Sub-Basin of Posses, Extrema-MG, Brazil

C

1. Te spatialization o soil physical and chemical attributesin the Sub-Basin o Posses showed that the lowest soil qualityindices are related to pasture areas.

2; Te re orestation with eucalyptus conditioned most o thesoils with low physical and chemical deterioration, probablydue to the accumulation o litter.

3. Te soil quality index adjusted to the exponential model,allowing the use o ordinary Kriging.

A

o the Coordination or the Improvement o HigherEducation Personnel (CAPES) and the National Council

or Scienti ic and echnological Development (CNPq),or granting the scholarship to the authors and co-authors

o this study; to the Minas Gerais Research Foundation(FAPEMIG), or the inancial support to part o the project

(CAG-APQ-01423-11 and CAG-PPM-00422-11); to CNPq,or unding the Project 471522/2012 and to the City Hall oExtrema-MG, represented by the Secretary o Environment,Paulo Henrique Pereira, or the logistic support, and the

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 84/96

84 Gabriela C. Lima et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.78–84, 2016.

Grego, C. R.; Coelho, R. M.; Vieira, S. R. Critérios mor ológicos etaxonômicos de Latossolo e Nitossolo validados por propriedades

ísicas mensuráveis analisadas em parte pela geoestatística. RevistaBrasileira de Ciência do Solo, v.35, p.337-350, 2011. http://dx.doi.org/10.1590/S0100-06832011000200005

Hazarika, S.; hakuria, D.; Ganeshamurthy, A. N.; Sakthivel, .Soil quality as inuenced by land use history o orchards in

humid subtropics. Catena, v.123, p.37-44, 2014. http://dx.doi.org/10.1016/j.catena.2014.07.006Islam, K. R.; Weil, R. R. Soil quality indicator properties in mid-

Atlantic soils as inuenced by conservation management. Journalo Soil and Water Conservation, v.55, p.69-79, 2000.

Lemos, R. C.; Santos, R. D.; Santos, H. G.; Ker, J. C.; Anjos, L. H. C.Manual de descrição e coleta de solos no campo . 5. ed. Viçosa,MG: SBCS, 2005. 92p.

Lima, A. C. R.; Brussaard, L.; otola, M. R.; Hoogmoed, W. B.; Goede,R. G. M. de. A unctional evaluation o three indicator sets orassessing soil quality. Applied Soil Ecology, v.64, p.194-200, 2013.

Lima, G. C.; Silva, M. L. N.; Oliveira, M. S. de; Curi, N.; Silva, M. A.da; Oliveira, A. H. Variabilidade de atributos do solo sob pastagense mata atlântica na escala de microbacia hidrográca. RevistaBrasileira de Engenharia Agrícola e Ambiental, v.18, p.517-526,2014. http://dx.doi.org/10.1590/S1415-43662014000500008

Lima, J. S. de S.; Souza, G. S. de; Silva, S. A. Amostragem e variabilidade espacial de atributos químicos do solo, em área de vegetação natural em regeneração. Revista Árvore, v.34, p.127-136, 2010. http://dx.doi.org/10.1590/S0100-67622010000100014

Mairura, F. S.; Mugendi, D. N.; Mwanje, J. I.; Ramisch, J. J.; Mbugua, P.K.; Chianu, J. N. Integrating scientic and armers' evaluation osoil quality indicators in Central Kenya. Geoderma, v.139, p.134-143, 2007. http://dx.doi.org/10.1016/j.geoderma.2007.01.019

Nesbitt, J. E.; Adl, S. M. Differences in soil quality indicators betweenorganic and sustainably managed potato elds in Eastern Canada.Ecological Indicators, v.37, p.119-130, 2014. http://dx.doi.org/10.1016/j.ecolind.2013.10.002

R Core eam. R: A language and environment or statisticalcomputing. R Foundation or Statistical Computing, Vienna,Austria, 2014. http://www.R-project.org.15 Nov 2013

Ribeiro Júnior, P. J.; Diggle, P. P. GeoR: A package or geostatisticalanalysis. R. News, v.1, p.15-18, 2001.

Silva, M. A.; Freitas, D. A. F. de; Silva, M. L. N.; Oliveira, A. H.; Lima, G.C.; Curi, N. Sistema de in ormações geográcas no planejamento deuso do solo. Revista Brasileira de Ciências Agrárias, v.8, p.316-323,2013. http://dx.doi.org/10.5039/agraria.v8i2a2289

Stape, J. L.; Binkley, D.; Ryan, M. G.; Fonseca, S.; Loos, R. A.;akahashi, E. N.; Silva, C. R.; Silva, S. R.; Hakamada, R. E.;

Ferreira, J. M. de A.; Lima, A. M. N.; Gava, J. L.; Leite, F. P.;Andrade, H. B.; Alves, J. M.; Silva, G. G. C.; Azevedo, M. R. TeBrazil eucalyptus potential productivity project: Inuence owater, nutrients and stand uni ormity on wood production. ForestEcology and Management, v.259, p.1684-1694, 2010. http://dx.doi.org/10.1016/j. oreco.2010.01.012

Swanepoel, P. A.; Preez, C. C. du; Botha, P. R.; Snyman, H. A.; Habig,J. Soil quality characteristics o kikuyu-ryegrass pastures in SouthA rica. Geoderma, v.232-234, p.589-599, 2014. http://dx.doi.org/10.1016/j.geoderma.2014.06.018

Vezzani, F. M.; Mielniczuk, J. Uma visão sobre qualidade do solo.Revista Brasileira de Ciência do Solo, v.33, p.743-755, 2009. http://dx.doi.org/10.1590/S0100-06832009000400001

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 85/96

Revista Brasileira de Engenharia Agrícola e Ambiental

Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.85–91, 2016

Carbon stocks o an Oxisol afer thirty-eight yearsunder different tillage systemsSulamirtes S. de A. Magalhaes1, Fabricio . Ramos 2 & Oscarlina L. dos S. Weber2

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p85-91

A B S T R A C TSoil carbon (C) stock determination can subsidize discussions on the continuity o anagricultural management. Tis study aimed to evaluate the stocks o total organic C(S OC) and labile C (SLC), and the indices o C lability (CLI), C compartment (CCI) and Cmanagement (CMI), and correlate them with chemical and physical attributes o a RedYellow Latosol (Oxisol) managed or 38 years with different tillage systems in a Cerradoregion o Mato Grosso, Brazil. Disturbed and undisturbed soil samples were collected inthree layers (0-0.05, 0.05-0.10 and 0.10-0.20 m). Te CMI (CLI x CCI) showed higher S OC possibly as the tillage depth decreased, because none o the tillage systems conserved S OC and SLC in the layers o 0-0.05 and 0.05-0.10 m, compared with the Native Cerrado, i.e., soilC conservation only occurred in the layer o 0.10-0.20 m. Although the percentage o SLC in S OC was lower, only SLC was correlated with soil chemical and physical attributes and,based on the multiple linear regression analysis, S LC was explained in 54% (R 2) by the cationexchange capacity and soil micropores. Tere ore, or monitoring purposes, the S LCestimated can be use ul to evaluate soil C storage.

Estoques de carbono em Latossolo após trintae oito anos sob di erentes sistemas de cultivoR E S U M OA determinação do estoque de carbono do solo pode subsidiar discussões sobre manejos

agropecuários. Objetivou-se determinar os estoques de carbono orgânico total (E CO )e lábil (ECL) além dos índices de labilidade (IL), de compartimento (ICC) e de manejodo carbono (IMC) e correlacioná-los com atributos químicos e ísicos de um LatossoloVermelho-Amarelo manejado por 38 anos em di erentes sistemas de cultivo em biomaCerrado. Coletaram-se amostras de ormadas e inde ormadas de solo nas camadas de 0-0,05;0,05-0,10 e 0,10-0,20 m. Vericou-se que: o IMC (IL x ICC) acusou maior E CO à medidaque diminuiu possivelmente a pro undidade de revolvimento do solo pois nas camadasde 0-0,05 e 0,05-0,10 m nenhum sistema de cultivo conservou os E CO e ECL comparadoao Cerrado nativo, isto é, apenas de 0,10-0,20 m ocorreu conservação do carbono no solo;embora a porcentagem do E CL sobre o ECO osse menor, apenas o ECLse correlacionou comatributos químicos e ísicos do solo e, com base na análise de regressão linear múltipla, oECL oi explicado em 54% (R 2) pela capacidade de troca de cátions e os microporos do solo.Portanto, para ns de monitoramento a E

CL estimada pode ser útil para avaliar a estocagem

de carbono no solo.

Key words:soil conservationcrop rotationsoil organic matter

Palavras-chave:conservação do solorotação de culturasmatéria orgânica do solo

1 Universidade Federal de Mato Grosso/Instituto de Biociências. Cuiabá, M . E-mail: [email protected] Universidade Federal de Mato Grosso/Faculdade de Agronomia, Medicina Veterinária e Zootecnia. Cuiabá, M . E-mail; [email protected]

(Corresponding author); [email protected]

Protocolo 023-2015 – 05/04/2015 • Aprovado em 02/11/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 86/96

86 Sulamirtes S. de A. Magalhaes et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.85–91, 2016.

I

Tere has been a general concern about water limitationsand the conservation o non-renewable natural resources.Despite being a renewable resource, the soil is consideredas one o the ocuses o attention, since it can be degradedphysically, chemically and biologically, depending on use

and management. In addition, it is known that in the processo substitution o native environments or agriculturalactivities, changes in the soil are inevitable and, dependingon management and the local edaphoclimatic potential, inot adequate or a certain production system, the soil canbe economically and environmentally hampered (Silva &Mendonça, 2007). Additionally, there are problems related tothe ew options o economically viable, large-scale crops orcrop rotation in the Cerrado region.

Among the attributes o the soil, which is sensitive to variations in use and management, soil organic matter(SOM) has been the most studied one, because there is a

close dependence between various chemical, physical andbiological processes in terrestrial ecosystems (Strickland &Rousk, 2010). Many authors have pointed out its importance

or soil quality, because it inuences, among other properties:aggregate stability and soil structure (Hickmann et al. 2012);water inltration rate and soil water holding capacity (Rawlset al., 2003); biological activity (Matoso et al., 2012); cationexchange capacity, nutrient cycling and availability to plants(Silva & Mendonça, 2007); ion complexation (Botero et al.,2010); and the release o CO2 and other gases (Lal & Bruce,1999).

SOM comprises plant residues at different decompositionstages, besides edaphic organisms involved in this process, andcan be associated with mineral matter in different proportions(Santos et al., 2013). It is mainly composed o carbon (C), whichis the reason why it is expressed in content o soil organic C(g kg-1) or mass per unit area (g m -2) or a certain soil layer.However, its mineralization and release o gas in the ormo CO2 vary according to the degree o alterations caused inthe biophysical environment o the soil (Izaurralde & Cerri,2006). Tere ore, C can be use ul as an indicator o changesin the amount (C stock) and quality (labile and non-labile C

ractions) o organic matter in cultivated soils.In addition, while the mineralization o labile constituents

occurs in a ew weeks or months, C in the non-labileraction is more stable and re ers to humic substances and

macromolecules o difficult decomposition by microorganisms,showing a slower cycling compared with C labile. Tus, SOM

ractionation based on the decomposition rate can allowbetter understanding o its dynamic in the soil (Blair et al.,1995; Silva & Mendonça, 2007). Tere ore, the evaluation oSOM amount and quality can subsidize discussions on thecontinuity o a management, revealing its strong and weakpoints that can enhance the researches on the importance obiodiversity in production systems, besides contributing to the

readjustment o cultural practices that aim at the homeostasiso the production system.Given the above, this study aimed to evaluate the stocks o

Ctotal and C labile o a Red Yellow Latosol managed or 38 years

with different tillage systems, in the Cerrado region o MatoGrosso, Brazil.

M M

Te study was carried out in the municipality o CampoVerde-M , Brazil (BR 070, km 349), at the geographicalcoordinates o 15° 28’ 41.79’’ S and 54° 54’ 17.20’’ W, in theMourão Farm, at 694 m o altitude. Te climate in the region isAw, according to Köppen’s classication. Rain all regime is welldened, with a dry period rom May to September and a rainyperiod rom October to April. Te mean annual precipitation is1,670 mm and the mean annual temperature is 24 °C. Te soilin the experimental area was classied as typical dystrophicRed Yellow Latosol, with clayey texture and moderate texture inthe A horizon, located in a Semi-deciduous ropical Cerrado,on a at relie (Santos et al., 2013). Te tillage history o theevaluated soil is described in able 1.

In May 2010, in each soil tillage system (environments), a300 x 300 m central area was delimited and six soil pits werelongitudinally dug, in the orm o steps, or the collectiono disturbed and undisturbed soil samples in the layers o0-0.05, 0.05-0.10 and 0.10-0.20 m. Undisturbed soil sampleswere collected using a Kopeck sampler or the determinationo microporosity and soil density (Donagema et al., 2011).In the disturbed soil samples, the ollowing parameterswere determined: particle density, or the calculation ototal porosity and then macroporosity (Ma = P - Mi); thepercentage o sand, silt and clay, through the pipette methodusing a reciprocal shaker at 100 RPM (revolutions per minute)

or 16 h to accelerate particle dispersion; contents o P and Kextracted with 0.05 mol L-1 HCl + 0.0125 mol L-1 H2SO4 andCa, Mg and Al extracted with 0.1 mol L -1 KCl; pH in waterand CaCl 2 (Donagema et al., 2011); content o total organicC (Yeomans & Bremner, 1988); content o labile organic Cthrough oxidation with KMnO 4 (333 mmol L-1), according tothe methodology described in Blair et al. (1995) and modiedby Shang & iessen (1997); non-labile C, equivalent to the Cnot oxidized by KMnO 4, determined by difference, consideringthe total organic C.

Te total C stock was calculated or each managementsystem, according to Eq. 1, which was then standardized with

the values o soil density o the Native Cerrado, the controlarea, or each evaluated soil layer, according to Fernandes &Fernandes (2013), Eq. 2:

TOC

TOC Ds HS

10⋅ ⋅=

control

TOC

DsTOC Ds H

DsS

10

⋅ ⋅ ⋅ =

where:S OC - stock o total carbon in the evaluated soil layer, Mg ha-1;OC - content o total organic carbon, g kg -1;

Ds - soil density, Mg dm -3; and

(1)

(2)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 87/96

87Carbon stocks of an Oxisol after thirty-eight years under different tillage systems

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.85–91, 2016.

Table 1. Soil use systems and their respective tillage histories

H - thickness o the evaluated soil layer, cm.

Ten, based on the quantications o C orms in the soil,the ollowing parameters were calculated: (i) stock o labile C(SLC, Mg ha-1), Eq. 3; (ii) C lability index (CLI), Eq. 4; (iii) Ccompartment index (CCI), Eq. 5 and (iv) C management index(CMI), according to Blair et al. (1995), Eq. 6:

was per ormed by F test (Fischer) and treatment means werecompared by ukey test (P < 0.05) or S OC and SLC. Ten,bivariate correlation analysis was per ormed using Pearsoncoefficient and t-test (α = 0.05), between the analyzed variablesin order to dene the regression variable, i.e., the independent variable(s) that best predict(s) the dependent variable, whichwas the soil carbon stock. For this, a multiple linear regressionanalysis (Best Subset Regression) was per ormed, whichestimates all the probable regression models with one, two,three and n independent variables, identi ying the model(s)with the best combinations capable o predicting the dependent variable using the program SigmaPlot Versão 12.5, Eq. 7:

LC TOC NLCS S S= −

cultivated

control

SLCCLI

SLC=

cultivated

control

STOCCCI

STOC=

( )CMI CCI CLI 100= ⋅ ⋅

All data showed normal distribution according to theShapiro-Wilk test (P > 0.05). Tus, the analysis o variance

i 0 1 i1 2 i2 p 1 i,p 1 iY X X X− −= β +β +β + + β + ε

where:Yi - response in the i-th test X i1, Xi2; and

Xi,p-1 - values o the n predicting variables in the i-th test.

Te parameters o the model are β 0, β1, β2, β2p-1 and the errorterm is ε i, which are independent with distribution N(0, σ 2).

(3)

(4)

(5)

(6)

(7)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 88/96

88 Sulamirtes S. de A. Magalhaes et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.85–91, 2016.

Yi is the dependent metric variable “carbon stock” (Mg ha -1) andX1, X2, X3,...,Xn are independent metric variables o soil chemicaland physical attributes.

Te criteria used to select the best multiple linear regressionmodel were the adjusted coe icient o determination (R 2 Adj.) and the signicance level o the beta coefficient (β), astandardized regression coefficient that allows comparing the

prediction capacity o each independent variable (Hair Júnioret al., 2009).

R D

In the layers o 0-0.05 and 0.05-0.10 m, the mean value othe stock o total organic carbon (S OC) between the NativeCerrado (NC) and the Intensive Pasture (IP) were equal,while a reduction was observed or the other tillage systems.In the layer o 0.10-0.20 m, the anthropized systems stockedmore C than the Native Cerrado (Figure 1). It is knownthat the impacts o mechanical operations tend to be morepronounced in the supercial soil layer and, there ore, soil usesthat prioritize the absence o disturbance can conserve moreorganic C in sur ace, as veried or the pasture. Tis benecialeffect o the lack o soil disturbance has been reported in

other edaphoclimatic conditions. Leite et al. (2010) observedprogressive increment o S OC over time, under no-tillage o2, 4 and 6 years; even higher than under Cerrado native orestand under conventional tillage, in a Red Yellow Latosol.

he bene icial e ect o the lack o soil disturbace iscorroborated by other studies, which show higher conservationo the soil under pasture, no-tillage and minimum tillage,

compared with the conventional tillage (Hickmann et al., 2012;Matoso et al., 2012). According to Leite et al. (2013), pasture isimportant or intercropping, because it increases soil erti litylevels and C stocks, avoring the improvement o soil qualityunder Cerrado conditions. Tere ore, the lower the requencyo soil disturbance and the maturity o the conservationaltillage, the higher is the probability o organic C storage. Tus,the increase o total C stock in the layer o 0.10-0.20 m or the

our evaluated minimum cultivation systems was possiblydue to the lower soil disturbance by mechanical operationsin this layer (Figure 1C). In addition, the removal o chemical(limestone and gypsum applications) and physical (subsoiling)impediments, according to Arantes et al. (2007) and Pupin etal. (2009), respectively, avors root growth in subsur ace and,consequently, C accumulation.

As to the stock o labile C (SLC), its participation in S OC was low. SLC mean values in the layers o 0-0.05 and 0.05-0.10m were higher under Native Cerrado. In the layer o 0.10-0.20m, except or the Minimum illage III (M III), which showedlower SLC, the other tillage systems showed intermediate Cstocks compared with the Cerrado. Te soil disturbance inM III was more requent than in M I and II, and milletwas not cultivated independently; however, regardless o theevaluated management system, there were higher stocks o totalorganic C (Figure 1C) and labile C (Figure 1F) in the deepestlayer (0.10-0.20 m), compared with the more supercial ones(0-0.05 and 0.05-0.10 m).

Tere ore, the results are consistent with other studies on Cstock, because the inverse o SLC is characterized by the stock onon-labile C (S NLC), proportionally higher than S LC (Figure 1C,1D and 1E). While labile C is composed o plant and animalresidues in decomposition and thus an important sourceo labile nutrients to plants, the non-labile C is composedo organic residues in high degree o decomposition andspecic density; thus, the heavy raction is important or the

sequestration o C-CO2(g) (Blair et al., 1995; Silva & Mendonça,2007).Since the non-labile raction is dependent on the

continuous supply o the labile raction, it is possible to in erabout the equilibrium between these ractions promoted by acertain management, due to changes in quality and quantity othe supplied organic matter. Tese results can be important torethink the current management and plan techniques capableo reducing the losses o soil organic matter. Te highest valueso C lability index (CLI) and C compartment index (CCI) wereobserved in the layer o 0.10-0.20 m (Figure 2A, 2B); there ore,among the evaluated layers, the layer o 0.10-0.20 m was the

most similar to the Native Cerrado with respect to C stock.In addition, the multiplication o CLI by CCI results in the Cmanagement index (CMI) and, while an increase o 66% wasobserved or the Intensive Pasture (IP), 41% or Minimum

Figure 1. Stocks of total organic carbon (S TOC) in the layers

of 0-0.05 (A), 0.05-0.10 (B) and 0.10-0.20 m (C) and labilecarbon (S LC) in the layers of 0-0.05 (D), 0.05-0.10 (E) and0.10-0.20 m (F), under different management systems(Table 1)

Different letters indicate differences between systems by Tukey test (P < 0.05); LSD = leastsigni cant difference; CV = coef cient of variation

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 89/96

89Carbon stocks of an Oxisol after thirty-eight years under different tillage systems

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.85–91, 2016.

Since SLC was correlated with SNLC and the latter waspositively correlated with S OC, the ormer was selected as theindependent variable, applying the Best-Subset Regressionanalysis to de ine the independent variable(s) that bestpredict(s) SLC. Tus, it was veried that the chemical attributeswere negatively correlated with SLC and that cation exchangecapacity (CEC) showed the highest Pearson coe icient.According to Hair Júnior et al. (2009), the occurrence oimplicit collinearity must be avoided, because it decreases theunique variance provided by each predicting variable. Tus,CEC was selected among the chemical attributes, because itwas correlated with pH, P, Ca, Mg, SB and V% (P < 0.05).

Among soil physical attributes, the data o sand, clay,macropores and micropores were the ones correlated with S LC,but since micropores were correlated with sand, the variablesclay and macropores (P < 0.05) were selected, because theyshowed the highest Pearson coe icients, and the SLC wasexplained in almost 54% (R 2) based on the multiple linearmodel ( able 3). Te assumptions inherent to the regressionanalysis, i.e., linearity based on Pearson coefficient o ≈ 74% andresidual independence (P > 0.05) were maintained. In addition,the statistical model was signicant by F test, with interceptand coefficient different rom zero and estimate standard erroro at most 0.962 Mg ha-1. Tus, it is possible to estimate S LC asa unction o the cation exchange capacity and the volume omicropores in the soil ( able 3).

In the comparison between data pairs o S LCestimated andSLCobserved, it is possible to visualize the equivalence o SLCestimated

Figure 2. Indices of carbon lability (A); carbon compartment(B) and carbon management (C) in different managementsystems: intensive pasture (IP), minimum tillage I (MT I);minimum tillage II (MT II) and minimum tillage III (MT III)

illage I, 28% or Minimum illage II, there was a reductiono approximately 37% or the Minimum illage III. Accordingto Blair et al. (1995), there is no ideal value or CMI, but this

index provides a sensitive measurement o soil C dynamics inrelation to a more stable re erence system, indicating whethera certain management system is degrading or conserving soilC. Tere ore, in the layers o 0-0.5 and 0.5-0.10 m, none o themanagement systems was able to conserve C stocks, comparedwith the Native Cerrado, only IP, M I and M II in the layero 0.10-0.20 m.

In the correlation o the stocks o total C (S OC), labile C(SLC) and non-labile C (S NLC) with soil chemical and physicalattributes, S OC was positively correlated with SLC and SNLC ( able2). Although SNLC was not correlated with any variable, S LC wascorrelated with most o the analyzed chemical and physical

attributes ( able 2). According to Blair et al. (1995), althoughlabile C degrades aster than non-labile C, it is restored morerapidly and only then it will be a more sensitive indicator toevaluate C dynamics. According to Silva et al. (2011), althoughthe OC analysis is sensitive to detect differences betweensoil management systems, the degree o alteration is higherin labile ractions o SOM; or these reasons, SLC can be usedas an indicator to evaluate soil tillage systems with respect tothe stock o soil organic carbon.

Table 2. Correlation of the stocks of total organic carbon(STOC), labile carbon (S LC) and non-labile carbon (S NLC) withsoil chemical and physical attributes

(1)*** P < 0.0001; **P < 0.01: Signi cant at 0.05 probability level by t-test;nsNot signi cant

(1)N - Number of data pairs used in the adjustment;(2) r - Pearson coef cient (P < 0.0001); (3) R2 - Coef cient of determination;(4) ESE - Estimate standard error;(5) TRN - Test of residualnormality through Kolmogorov-Smirnov with correction of Lilliefors (P > 0.05);*** (P < 0.0001): Signi cant at 0.05 probability level by t-test

Table 3. Regression between data pairs of labile carbon stock (S LC) versus cation exchange capacity (CEC) and soilmicropores (Mi)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 90/96

90 Sulamirtes S. de A. Magalhaes et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.85–91, 2016.

based on the bisector (1:1); there ore, an intermediateagreement was observed in the estimate o SLCobserved bySLCestimated, based on the angular coefficient, which was equal to0.536 (Figure 3A). Tus, the agreement would only be per ecti the angular coefficient were equal to one (1), consistentwith the identity line (1:1). However, given the agreementbetween SLCestimated and SLCobserved through the Bland-Altman

method, which evaluates the agreement between two variables,according to Ramos et al. (2014), it was possible to veri ythat the bias was not different rom zero and, statistically, itmeans a valid agreement. Tus, there is no tendency in thedata around the zero value, because the expected behavior isa random distribution o the differences around the mean othe methods (Figure 3B).

Tere ore, although the S LCobserved is averagely estimated bycation exchange capacity and soil micropores, or monitoringpurposes, the S LCestimated can be use ul to evaluate soil C stocks.

C

1. In the layers o 0-0.05 and 0.05-0.10 m, none o the

management systems was able to conserve stocks o totalcarbon (S OC) and labile carbon (S LC), compared with the NativeCerrado; however, in the layer o 0.10-0.20 m, these carbonstocks were conserved in the Pasture and the Minimum illagesystems I and II.

2. Although the percentage o SLC in the S OC was lower, onlySLC was correlated with soil chemical and physical attributes.

3. Based on the multiple linear regression analysis, S LC wasexplained in 54% (R 2) by the cation exchange capacity and soilmicropores.

L C

Arantes, S. A. C. M.; Lavorenti, A.; ornisielo, V. L. E eito da calageme do gli osato na atividade microbiana de di erentes classes desolo. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, v.17, p.19-28, 2007.

Blair, G. J.; Le roy, R. D. B. E.; Lisle, L. Soil carbon ractions basedon their degree o oxidation, and development o a carbonmanagement index or agricultural systems. Australian Journalo Agricultural Research, v.46, p.1459-1466, 1995. http://dx.doi.org/10.1071/AR9951459

Botero, W. G.; Oliveira, L. C.; Rocha, J. C.; Rosa, A. H.; Santos, A.Peat humic substances enriched with nutrients or agricultural

applications: Competition between nutrients and non-essentialmetals present in tropical soils. Journal o Hazardous Materials, v.177,p.307-311, 2010. http://dx.doi.org/10.1016/j.jhazmat.2009.12.033

Donagema, G. K.; Campos, D. V. B.; Calderano, S. B.; eixeira, W.G.; Viana, J. H. M. (org.). Manual de métodos de análise de solo.2.ed. Rio de Janeiro: Embrapa Solos, 2011. 230p.

Fernandes, F. A.; Fernandes, A. H. B. M. Atualização dos métodos decálculo dos estoques de carbono do solo sob di erentes condiçõesde manejo. Corumbá: Embrapa Pantanal, 2013. 5p. Comunicado

écnico, 95.Hair Júnior, J. F.; Black, W. C.; Babin, B. J.; Anderson, R. E.; atham,

R. L. Análise multivariada de dados. 6.ed. São Paulo: Bookman,

2009. 688p.Hickmann, C.; Costa, L. M.; Schae er, C. E. G. R.; Fernandes, R. B.

A.; Andrade, C. L. . Atributos ísico-hídricos e carbono orgânicode um argissolo após 23 anos de di erentes manejos. RevistaCaatinga, v.25, p.128-136, 2012.

Izaurralde, R. C.; Cerri, C. C. Organic matter management. Encyclo-pedia o Soil Science. New York: Dekker, 2006. p.1189-1195.

Lal, R.; Bruce, J. P. Te potential o world cropland soils to sequesterC and mitigate the greenhouse effect. Environmental Science &Policy, v.2, p.177-185, 1999. http://dx.doi.org/10.1016/S1462-9011(99)00012-X

Leite, L. F. C.; Arruda, F. P.; Costa, C. N.; Ferreira, J. S.; Holanda

Neto, M. R. Qualidade química do solo e dinâmica de carbonosob monocultivo e consórcio de macaúba e pastagem. RevistaBrasileira de Engenharia Agrícola e Ambiental, v.17, p.1257-1263,2013. http://dx.doi.org/10.1590/S1415-43662013001200002

Figure 3. Comparison through the bisector between theobserved S LC data and S LC data estimated through theregression of CEC + Mi, F test (P < 0.0001), Kolmogorov-

Smirnov test for residual normality with correction ofLilliefors (P = 0.8757) (A) and analysis of residues throughthe Bland-Altman method (B): Bias = -6.0558E-17 (P =0.243 by t-test), standard deviation = 1.2984

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 91/96

91Carbon stocks of an Oxisol after thirty-eight years under different tillage systems

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.85–91, 2016.

Leite, L. F. C.; Galvão, S. R. S.; Holanda Neto, M. R.; Araújo, F. S.;Iwata, B. F. Atributos químicos e estoques de carbono em Latossolosob plantio direto no cerrado do Piauí. Revista Brasileira deEngenharia Agrícola e Ambiental, v.14, p.1273-1280, 2010. http://dx.doi.org/10.1590/S1415-43662010001200004

Matoso, S. C. G.; Silva, A. N.; Fiorelli-Pereira, E. C.; Colleta, Q.P.; Maia, E. Frações de carbono e nitrogênio de um LatossoloVermelho-Amarelo distróco sob di erentes usos na Amazôniabrasileira. Acta Amazônica , v.42, p.231-240, 2012. http://dx.doi.org/10.1590/S0044-59672012000200008

Pupin, B.; Freddi, O. S.; Nahas, E. Microbial alterations o the soilinuenced by induced compaction. Revista Brasileira de Ciênciado Solo, v.33, p.1207-1213, 2009. http://dx.doi.org/10.1590/S0100-06832009000500014

Ramos, F. .; Pivetta, F.; Mato, V. A. .; Seixas, G. B.; Campelo Júnior,J. H. Acurácia e calibração de uma sonda de capacitância em umNeossolo Quartzarênico cultivado com caju. Bioscience Journal, v.30, p.1631-1641, 2014.

Rawls, W. J.; Pachepsky, Y. A.; Ritchie, J. C.; Sobecki, . M.; Bloodworth,H. Effect o soil organic carbon on soil water retention. Geoderma, v,116, p.61-76, 2003.

Santos, H. G.; Jacomine, P. K. .; Anjos, L. H. C.; Oliveira, V. A.;Lumbreras, J. F.; Coelho, M. R.; Almeida, J. A.; Cunha, . J. F.;Oliveira, J. B. Sistema brasileiro de classicação do solo. 3.ed.Brasília: Embrapa Solos, 2013. 353p.

Shang, C.; iessen, H. Organic matter lability in a tropical Oxisol:Evidence rom shifing cultivation, chemical oxidation, particlesize, density, and magnetic ractionations. Soil Science, v.162,p.795-807, 1997. http://dx.doi.org/10.1097/00010694-199711000-00004

Silva, E. F.; Marchetti, M. E.; Mercante, F. M.; Ferreira, A. K. .; Fujii,G. C. Frações lábeis e recalcitrantes da matéria orgânica emsolos sob integração lavoura-pecuária. Pesquisa AgropecuáriaBrasileira, v.46, p.1321-1331, 2011. http://dx.doi.org/10.1590/S0100-204X2011001000028

Silva, I. R.; Mendonça, E. S. Matéria orgânica do solo. In: Novais, R.F.; Venegas, V. H. A.; Barros, N. F. de; Fontes, R. L. F.; Cantarutti,R. B.; Neves, J. C. L. (ed.) Fertilidade do solo. Viçosa: SociedadeBrasileira de Ciência do Solo, 2007. p.275-374.

Strickland, M. S.; Rousk, J. Considering ungal: Bacterial dominancein soils e Methods, controls, and ecosystem implications. SoilBiology & Biochemistry, v.42, p.1385-1395, 2010. http://dx.doi.org/10.1016/j.soilbio.2010.05.007

Yeomans, J. C.; Bremner, J. M. A. Rapid and precise method or routinedetermination o organic carbon in soil. Communications in SoilScience Plant Analysis, v.19, p.1467-1476, 1988. http://dx.doi.org/10.1080/00103628809368027

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 92/96

Revista Brasileira de Engenharia Agrícola e Ambiental

Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

ISSN 1807-1929

v.20, n.1, p.92–96, 2016

Droplets spectrum o air-assisted boom sprayersunder different environmental and operational conditionsRobson S. Sasaki1, Mauri M. eixeira2, Haroldo C. Fernandes2,Sérgio Zolnier2, Christiam F. S. Maciel2 & Cleyton B. de Alvarenga3

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p92-96

A B S T R A C TDuring pesticide spraying, the psychrometric conditions o the air may cause evaporationo the droplets along their trajectory rom the nozzle to the target. Tus, this study aimedto evaluate the effect o air psychrometric conditions and operating pressure on the dropletspectrum o air-assisted boom sprayers. Te test was per ormed using a prototype equippedwith an axial an, a ow homogenizer, temperature and relative air humidity sensors, aspray nozzle and a gas-heating system to warm up the airow. With the assembled systemand the aid o a particle analyser, the JSF 11002 spray nozzle was evaluated with respectto droplet spectrum in our air psychrometric conditions (7, 14, 21 and 28 hPa) and at

our operating pressures (200, 300, 400 and 500 kPa). At the end, evaporation losses wereobserved during the sprayings. For a given operating pressure and or each increment o1 hPa in vapor pressure decit, there was a diameter reduction o approximately 0.0759,0.518 and 1.514 µm or the parameters DV0.1, DV0.5 and DV0.9, respectively. Te diametero the droplets decreased as the operating pressure increased.

Espectro de gotas de pulverizadores hidráulicos assistidosa ar sob di erentes condições ambientais e operacionaisR E S U M O

Durante a aplicação de agrotóxicos as condições psicrométricas do ar podem acarretar aevaporação das gotas no seu trajeto entre a ponta e o alvo. Neste sentido objetivou-se, comeste trabalho, avaliar o e eito das condições psicrométricas do ar e a pressão de trabalho noespectro de gotas da pulverização hidráulica com assistência de ar na barra. O ensaio oirealizado empregando-se um protótipo dotado de um ventilador axial, homogeneizador deuxo, sensores conjugados de temperatura e umidade relativa, ponta hidráulica e sistemade aquecimento do ar a gás. Com o sistema montado e com o auxílio de um analisador departículas, avaliou-se a ponta hidráulica JSF 110-02 quanto ao espectro de gotas em quatrodi erentes condições psicrométricas do ar (7, 14, 21 e 28 hPa) e em quatro pressões detrabalho (200; 300; 400 e 500 kPa). Ao nal, observaram-se perdas por evaporação duranteas pulverizações. Para a pressão de trabalho a cada incremento de 1 hPa no valor do décitde pressão, ocorreu redução do diâmetro das gotas na ordem de 0,0759; 0,518 e 1,514 µmpara os parâmetros de DV

0,1, DV

0,5 e DV

0,9, respectivamente. O diâmetro das gotas reduziu

com a elevação da pressão de trabalho.

Key words:evaporationsprayingpesticides

Palavras-chave:evaporaçãopulverizaçãoagrotóxicos

1 Instituto Federal de Minas Gerais/Departamento de Engenharia e Computação. Bambuí, MG. E-mail: robsonu [email protected] (Corresponding author)2 Universidade Federal de Viçosa/Departamento de Engenharia Agrícola. Viçosa, MG. E-mail: mauri@u v.br; haroldo@u v.br; zolnier@u v.br;

christiam.maciel@u v.br3 Universidade Federal de Uberlândia. Monte Carmelo, MG. E-mail: [email protected] u.br

Protocolo 382-2014 – 26/10/2014 • Aprovado em 03/07/2015 • Publicado em 01/12/2015

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 93/96

93Droplets spectrum of air-assisted boom sprayers under different environmental and operational conditions

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.92–96, 2016.

I

Te correct application o pesticides is a complex activitythat involves the characteristics o the pest and/or disease,selection o the product, calibration and regulation o themachines, ability o the operator, besides the meteorologicalconditions at the moment o the application; taking into

consideration all o these parameters, it is possible to per orma good application.It can be said that the size o the droplets is one o the

main parameters or the efficiency o pesticide application.When small droplets are used, the coverage o the target tendsto increase, as observed by Wol et al. (2009) and Lenz et al.(2011). However, the raction o droplets smaller than 100 µmcan drif away (Arvidsson et al., 2011) and evaporate underconditions o low relative air humidity. In the case o very largedroplets, there is the concern about losses o the liquid as it allson the lea and runs down, thus reducing the efficiency o pestcontrol (Lešnik et al., 2005). In the regulation o the sprayer,

droplets with enough diameter to allow a good coverage o thetarget must be selected, suffering little inuence o climaticconditions at the moment o the spraying, especially withrespect to drif and evaporation.

Although the concept o droplet size is well consolidated, itis known that during pesticide application the meteorologicalconditions can alter the behavior o the droplet along itstrajectory between the hydraulic nozzle and the target. Ranz &Marshall (1952) proposed a model to describe the evaporationo drops and observed that the rate o reduction in dropletdiameter over time is a unction o vapor pressure decit (VPD)and its diameter. Te larger the VPD and smaller the droplet

diameter, the higher is the rate o reduction in its diameter.Yu et al. (2009) evaluated the effect o relative air humidityon the time o evaporation o droplets and observed that,as humidity increased, the evaporation time also increased.Te time necessary or one droplet o 343 µm to evaporate,in articial hydrophilic targets, was 116 and 51 s or relativehumidity conditions o 90 and 30%, respectively.

he psychrometric conditions o the air can lead toevaporation o the sprayed droplets and, consequently, losses othe product to the environment. Tere is the need or studies onthis area, using air-assisted sprayers. In this context, this studyaimed to evaluate the effect o air psychrometric conditions and

the operating pressure on droplet spectrum o an air-assistedboom sprayer.

M M

Te tests were per ormed in the Laboratory o AgrochemicalApplication echnology, at the Department o Agricultural

Engineering o the Federal University o Viçosa.In order to investigate the e ect o air psychrometric

conditions in sprayers equipped with ans on spray parameters,a prototype sprayer was developed and consisted o a windtunnel, a an, a ow homogenizer and coupled sensors otemperature and relative air humidity (model Humitter 50Y,Vaisala Inc., Woburn, MA, USA) (Figure 1).

Te prototype had a total length o 3.5 m, with a metallicpipe installed 1 m be ore the an and a PVC pipe with length o2.5 m installed afer the an. Te entire structure had a diametero 0.25 m. An axial an (Model 10, Rol es Manu acturing Co.,Iowa, EUA) with diameter o 0.25 m was used, which was

operated by a single-phase motor o 110 V and 5.6 A, withpower o 0.19 kW.

Initially, the an was tested or wind ow and speed, usingthe method established by the Air Moving and ConditionsAssociation (AMCA), and the respective results were35.15 m³ min-1 and 11.94 m s-1.

According to the developed prototype and aiming to veri ythe effect o air temperature on droplet spectrum, a hydraulicnozzle (model JSF 110-02) was installed at the outlet o thewind tunnel. Te hydraulic nozzle was operated through ahydraulic piston pump (Yamaho), with rotation o 70-900 rpmand maximum pressure o 3,516 kPa. Tis pump was operatedby an electrical motor (WEG), with rotation o 3,570 rpm andpower o 1.5 kW. A manometer, properly calibrated usingan A3-class standard manometer, was installed close to thehydraulic nozzle. Te manometer used showed high accuracyin relation to the standard manometer, with maximumdifference o 20 kPa between pressure readings.

With the aid o a real-time particle analyzer (Spraytech,Malvern Instruments Co), equipped with a 750-mm ocallens and set to count droplets rom 0.10 to 2,500 µm at theacquisition rate o 2.5 kHz and reading time o 1.5 s, dropletspectrum tests were per ormed, maintaining a distance o0.5 m between the laser beam and the hydraulic nozzle. Te

Figure 1. Prototype used in the experiment: Gas heater (A), Fan (B), Air homogenizer (C), Sensors of temperature andrelative air humidity (D) and Hydraulic nozzle (E)

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 94/96

94 Robson S. Sasaki et al.

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.92–96, 2016.

evaluated parameters were: DV0.1 (Droplet diameter when10% o the sprayed liquid volume consists o droplets withsize smaller than this value); DV0.5 (Droplet diameter when50% o the sprayed liquid volume consists o droplets withsize smaller than this value); DV0.9 (Droplet diameter when90% o the sprayed liquid volume consists o droplets with sizesmaller than this value); Span index; %V < 100; 100 < %V <

200; 200 < %V < 300; 300 < %V < 400; 400 < %V <5 00; 500< %V < 600; %V > 450 and %V > 600 µm, at the pressures o200, 300, 400 and 500 kPa.

Te air-heating system o the prototype was regulatedin order to change the environmental conditions. Airpsychrometric conditions were monitored by the sensors,which emitted an electrical signal proportional to thetemperature and relative air humidity at that moment. Ten,these signals were interpreted by the microcontroller and readby a computer. An algorithm was created to trans orm thesignals o temperature and relative air humidity automaticallyinto VPD, according to the equations proposed by etens

(1930), described by Vianello & Alves (2012). In order tominimize errors, the data were only collected two minutesafer stabilization o air psychrometric conditions.

When the entire system was assembled, an experimentwas conducted using a completely randomized design, in 4 x4 actorial scheme, with our vapor pressure decits (7, 14, 21and 28 hPa), our operating pressures (200, 300, 400 and 500kPa) and eight replicates.

Mean values o temperature and relative air humidity, inthe evaluation o VPD effect on spray parameters during thetests, are shown in able 1.

Te data were subjected to analysis o variance and a ollow-

up analysis o the interaction was per ormed regardless o F testsignicance. Ten, regression analyses were per ormed and themodels were selected according to the behavior o the obtaineddata. Te signicance o equation coefficients (β) was evaluatedby t-test at 0.01, 0.05 and 0.1 probability levels and coefficiento determination. Te data were analysed using the program

Sisvar v.5.3 and the regression curves were plotted using theprogram SigmaPlot v.12. Te graphs were shown only whenthe coefficient o determination (R²) was higher than 0.60.

R D

In the evaluation o droplet spectrum, except or %V >450 μm and %V > 600 μm, all the other parameters showedinteraction between operating pressure and VPD.

According to the interaction between the evaluated actors, ora certain condition o VPD, DV0.1decreased with the increment inthe operating pressure. At the pressure o 200 kPa, a value o 93.98μm was obtained, which decreased to 68.39 μm when the pressureincreased to 500 kPa. Tis effect o pressure was observed byBueno et al. (2013), working with an-type hydraulic nozzles (ADIA 110-02 and AD IA 110-04) and by Cunha (2007) or nozzleso the series API 110-02 and 110-04 and or low-drif nozzles othe series ADI 110-02. Likewise, as VPD increased or a certainoperating pressure, there was a reduction in this parameter oapproximately 0.08 μm per each hPa increase in VPD. Alvarenga etal. (2014), evaluating the effect o VPD on the deposition o liquidin articial targets and using a hydro-pneumatic sprayer equipped

with JA-1 hydraulic nozzles, observed DV0.1 reduction rom 89 to73 μm as VPD increased rom 7.6 to 17.6 hPa, corroborating theresults in the present study (Figure 2A).

Te adjusted regression equations or the different evaluatedparameters, with the respective coefficients o determination,are shown in able 2.

Figure 2. Estimate of spray parameters for the JSF 110-02 nozzle in different conditions of operating pressure andvapor pressure defcit (VPD). DV 0.1 (A), DV0.5 (B), DV0.9 (C), %V < 100 (D), 200 < %V < 300 (E), 300 < %V < 400(F) and 400 < %V < 500 (G)

E. F. G.

A. B. C. D.

Table 1. Mean values of temperature and relative airhumidity during the tests for the different vapor pressuredefcit (VPD) treatments

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 95/96

95Droplets spectrum of air-assisted boom sprayers under different environmental and operational conditions

R. Bras. Eng. Agríc. Ambiental, v.20, n.1, p.92–96, 2016.

As observed or the parameter DV0.1, there was a reductionin DV0.5 and DV0.9 with the increase o operating pressure andVPD (Figures 2B and 2C).

Under the evaluated conditions or a given operatingpressure, the results show the effect o VPD on spray parameters.Tere was a reduction in droplet diameter, as the VPD valuesincreased. Te reductions in droplet diameter show the effecto evaporation along the trajectory o the droplet rom thenozzle to the target. Alvarenga et al. (2014) also observed thisrelationship using a hydro-pneumatic system. Nascimento etal. (2013) evaluated different application times or the soybeancrop and observed that, depending on the hydraulic nozzleused, the density o the droplets deposited on the target candecrease, which shows the effect o droplet evaporation alongits trajectory. Yu et al. (2009), under laboratory conditions, withdroplets deposited on the target, observed shorter evaporationtime with the reduction in relative air humidity, conrming thephenomenon o evaporation with the psychrometric changes

in the air, which corroborates the results in the present study.Different results were reported by Maciel (2013), who observedincrease in droplet diameter with the increase in VPD; however,unlike the present study, hydraulic ragmentation systemwithout air assistance was used.

By correlating the parameters DV0.1, DV0.5 and DV0.9,the Span index is obtained, which allows estimating howhomogeneous the droplet spectrum is. Te adjusted equationshows that, or a given VPD, there was an increase o this indexas the pressure increased; or a xed condition o operatingpressure, the index tended to decrease with the increase inVPD ( able 2). Tis occurs because the spectrum range tends

to narrow with the removal o smaller droplets by evaporation,which is similar to the results obtained by Alvarenga et al.(2014).

Te Span index has been little mentioned in studies onpesticide application. However, this parameter should not beunderestimated, since it provides the notion o droplet sizedispersion, i.e., the parameter DV0.5 estimates the size o thedroplet used and, along with the Span index, it veries the degreeo homogeneity o the ormed droplets; values closer to zero orthe Span index indicate a more homogeneous spectrum.

Te values obtained or this parameter were consideredas satis actory, since Minguela & Cunha (2010) recommend

values lower than 1.4 or the hydraulic application.In addition, the effects o VPD were more pronounced atlower pressures, i.e., at the pressure o 200 kPa, as the operatingpressure increased, the effect o VPD was attenuated.

As to the percentage o the volume that makes up thespectrum, with the increase in the operating pressure, therewas a reduction in droplet diameter, thus increasing %V < 100μm. With the increase in VPD, there was a slight increase inthe percentage o volume o this class (Figure 2D). Te effect opressure on the percentage o volume o droplets with diametersmaller than 100 μm was also observed by Alvarenga et al.(2012) and Viana et al. (2010).

he percentage o volume o droplets with diametersmaller than 100 μm is one o the best parameters to predictthe potential risk o drif during the application o pesticides.Arvidsson et al. (2011) and Bueno et al. (2013) also agree withthis claim. Tere is no standard value indicative o risk o drifor sa e application; however, values below 15% o droplets withdiameter smaller than 100 μm are considered more adequate

or environmentally sa e applications, with lower risk o drif(Bueno et al., 2013).

Te increase in %V < 100 μm with the increment in VPD

increases the risk o drif. Arvidsson et al. (2011), studyingthe inuences o meteorological conditions on pesticide drif,reported an increase o 0.2% in the drif o droplets or eachdegree increase in temperature. Schampheleire et al. (2009),studying strategies or the reduction o drif, observed that hightemperatures (26.2 °C) and low relative air humidity (58.5%)contributed to higher drif o droplets, compared with otherconditions considered ideal, with temperature o 14.7 °C andrelative air humidity o 87.6%.

In the evaluation o the other percentages constituting thedroplet spectrum, as the operating pressure increased, at agiven air psychrometric condition, the percentage o droplets

in the class o diameter until 300 μm tended to increase; aferthis class, the pressure has the opposite effect, i.e., it reducesthe percentage o the volume. Tis also occurred or the effecto VPD ( able 2).

A displacement in droplet size classes was observed withthe increase in VPD. As temperatures increase and relative airhumidity decreases, the losses through evaporation increase,leading to the reduction in droplet diameter and causing thischange o class. Similar results were obtained by Maciel (2013),working with the LD 110-02 nozzle.

In a detailed evaluation o the entire spectrum, it isobserved that the air psychrometric conditions at the moment

o the application lead to losses through evaporation andimmediately change spray parameters.In a spraying at the ield, the negligence with the

meteorological conditions o the air at the moment o the

Table 2. Adjusted equations for spray parameters as a function of the operating pressure (P) and the vapor pressuredefcit (VPD)

**, *, ⁰ Signi cant at 0.01, 0.05 and 0.10 level of probability, respectively

8/18/2019 Revista Brasileira de Engenharia Agrícola e Ambiental - v20n1

http://slidepdf.com/reader/full/revista-brasileira-de-engenharia-agricola-e-ambiental-v20n1 96/96

96 Robson S. Sasaki et al.

application is requent, but it should be pointed out that theycan lead to losses through evaporation, thus reducing thecontrol efficiency and resulting in environmental pollution. Inorder to overcome the obstacles o meteorological conditions,

armers increase the spraying volume. In practice, it may seemlike a solution, but in reality, it leads to higher chances o lossesto the environment, residues in oods, increase in production

costs and reduction o the operation capacity o the machine.

C

1. Te air psychrometric conditions led to losses throughevaporation during the sprayings.

2. For the use o the JSF 110-02 nozzle, at a given operatingpressure, there was a reduction in the diameter o droplets withthe increment in VPD.

3. For each increment o 1 hPa in VPD, the magnitudes oreduction in droplet diameter were approximately 0.0759, 0.518 and1.514 µm or the parameters DV0.1, DV0.5 and DV0.9, respectively.

4. Tere was a reduction in droplet diameter with theincrease in the operating pressure.

A

o the National Council or Scientic and echnologicalDevelopment (CNPq) and Foundation or Research Support othe State o Minas Gerais (FAPEMIG) or the nancial support.

L C

Alvarenga, C. B.; eixeira, M. M.; Zolnier, S.; Cecon, P. R.; Siqueira, D.L.; Rodriguês, D. E.; Sasaki, R. S.; Rinaldi, P. C. N. E eito do decitde pressão de vapor d’água no ar na pulverização hidropneumáticaem alvos articiais. Bioscience Journal, v.30, p.182-193, 2014.

Alvarenga, C. B.; eixeira, M. M.; Zolnier, S.; Sasaki, R. S.; Rinaldi,P. C. N. Efficiency o the spray tip using hydraulic hollow cone

rom the spectral analysis o the droplets. Brasilian Journal oApplied echnology For Agricultural Science, v.5, p.41-50, 2012.

Arvidsson, .; Bergstrom, L.; Kreuger, J. Spray drif as inuencedby meteorological and technical actors. Pesticide ManagementScience, v.67, p.586-598, 2011. http://dx.doi.org/10.1002/ps.2114

Bueno, M. R.; Cunha, J. P. A. R.; Roman, R. A. A. amanho de gotasde pontas de pulverização em di erentes condições operacionais

Cunha, J. P. A. R. Análise da distribuição volumétrica de pontasde pulverização hidráulicas de jato plano. Revista de CiênciasAgrárias, v.31, p.233-239. 2007.

Lenz, G.; Balardin, R. S.; Minuzzi, S. G.; ormen, N. R.; Marques, L.N. Espectro de gotas e idade de tri ólios na taxa de absorção ee eito residual de ungicidas em soja. Ciência Rural, v.41, p.1702-1708, 2011. http://dx.doi.org/10.1590/S0103-84782011005000127

Lešnik, M.; Pintar, C.; Lobnik, A.; Kolar, M. Comparison o theeffectiveness o standard and drif‐reducing nozzles or control osome pests o apple. Crop Protection, v.24, p.93‐100, 2005. http://dx.doi.org/10.1016/j.cropro.2004.06.011

Maciel, C. F. S. Perda de agrotóxicos por evaporação em unçãodas condições psicrométricas do ar. Viçosa: UFV, 2013. 71p.Dissertação Mestrado

Minguela, J. V.; Cunha, J. P. A. R. Manual de aplicação de produtostossanitários. Viçosa: Aprenda Fácil, 2010. 588p.

Nascimento, J. M.; Gavassoni. W. L.; Souza, C. M. A.; Bacchi, L. M.A.; Serra, A. P.; Zaccaron, M. L. Pontas de pulverização e horários

de aplicação no controle químico de errugem asiática da soja.Semina: Ciências Agrárias, v.34, p.2037-2048, 2013. http://dx.doi.org/10.5433/1679-0359.2013v34n5p2037

Ranz, W. E.; Marshall, W. R. Evaporation rom drops. ChemicalEngineering Progress, v.48, p.141-146, 1952.

Schampheleire, M.; Baetens, K.; Nuyttens, D.; Spanoghe, P. Spray drifmeasurements to evaluate the Belgian drif mitigation measures inled crops. Crop Protection, v.27, p.577-589, 2009. http://dx.doi.org/10.1016/j.cropro.2007.08.017

etens, O. Uber cinige meteorologische Begri e. Journal oGeophysics, v.2, p.297-309, 1930.

Viana, R. G.; Ferreira, L. R.; Ferreira, M. C.; eixeira, M. M.; Rosell, J.R.; uffi Santos, L. D.; Machado, A. F. L. Distribuição volumétricae espectro de gotas de pontas de pulverização de baixa deriva.Planta Daninha, v.28, p.439-446, 2010. http://dx.doi.org/10.1590/S0100-83582010000200024

Vianello, R. L.; Alves, A. R. Meteorologia básica e aplicações. 2.ed.Viçosa: UFV, 2012. 460p.

Wol , R. E.; Friedli, C.; Lauer, B. Comparison o spray droplet size andcoverage or nozzles used or agronomic weed control. ASABEMeeting Presentation, v.9, p.1-8, 2009.

Yu, Y.; Zhu, H.; Ozkan, H. E.; Derksen, R. C.; Krause, C. R. Evaporationand deposition coverage area o droplets containing insecticides