12
TRANSPORTES | ISSN: 2237-1346 130 Simulaon models for implementaon of lean producon concepts in earthmoving and paving Levy Sarmento de Matos 1 , Bruno de Athayde Prata 2 , Ernesto Ferreira Nobre Júnior 3 , Francisco Heber Lacerda de Oliveira 4 1 Universidade Federal do Ceará, [email protected] 2 Universidade Federal do Ceará, [email protected] 3 Universidade Federal do Ceará, [email protected] 4 Universidade Federal do Ceará, [email protected] Recebido: 18 de junho de 2016 Aceito para publicação: 12 de janeiro de 2018 Publicado: 30 de abril de 2018 Editor de área: Kamilla Vanconcelos ABSTRACT Studies show that, despite the resistance of professionals to new modes of producon, the applicaon of Lean Construcon philosophy improves the operaons producvity, reducing costs and improving the quality of the final product. However, methodologies which evaluate the impacts of the implementaon of this philosophy to road construc- on operaons are scarce. This study aims to verify the improvements that the applica- on of the Lean Construcon Philosophy can bring to earthwork and paving operaons in a ma7er of execuon me and overall cost by developing a computaonal model and simulang different applicaon scenarios and checking their benefits through a compar- ison of acvity duraons and equipment costs. A;er model development and data anal- ysis, it was found that the models that incorporated the guidelines of the Lean philoso- phy got faster (up to 30% reducon in runme) and cheaper (reducon of up to 28% on cost) results in terms of use of equipment’s. RESUMO Estudos mostram que, apesar da resistência de profissionais a novos modos de produ- ção, a aplicação da filosofia Construção Enxuta melhora a produvidade das operações, reduzindo custos e melhorando a qualidade do produto final. No entanto, metodologias que avaliam os impactos da implementação desta filosofia para a construção de estra- das são escassas. Este estudo tem como objevo verificar as melhorias que a aplicação da Filosofia Construção Enxuta pode trazer para terraplenagem e operações de pavi- mentação em matéria de tempo de execução e custo total pelo desenvolvimento de um modelo computacional e simulação de diferentes cenários de aplicação e verificação de seus beneGcios através de uma comparação de duração de avidades e custos de equi- pamentos. Após o desenvolvimento do modelo e análise dos dados, descobriu-se que os modelos que incorporavam as diretrizes da filosofia Enxuta ficaram mais rápidos (até 30% de redução na execução) e mais baratas (redução de até 28% nos custos), resulta- dos em termos de uso de equipamentos. Keywords: Lean construcon, Decision support systems, Earthmoving, Paving. Palavras-chaves: Construção enxuta, Sistema de suporte à decisão, Terraplenagem, Pavimentação. DOI:10.14295/transportes.v26i1.1405 1. INTRODUCTION Earthmoving and paving services are related to the movement of thousands of tons of materials, using a great amount of heavy machines and requiring a special attention from construction companies and contractors. Therefore, the rationalization in the selection of equipment, as well as the leet sizing, are actions of great importance, enabling the reduction of the related costs and times. Modeling a system allows a better comprehension of the real process, enabling the planners to forecast their behavior and to determine interventions for the mitigation of failures and losses. The operation of heavy machines in earthmoving and paving services can be represented

Simula on models for implementa on of lean produc on

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simula on models for implementa on of lean produc on

TRANSPORTES | ISSN: 2237-1346 130

Simula�on models for implementa�on of lean

produc�on concepts in earthmoving and paving Levy Sarmento de Matos1, Bruno de Athayde Prata2, Ernesto Ferreira Nobre Júnior3,

Francisco Heber Lacerda de Oliveira4

1Universidade Federal do Ceará, [email protected] 2Universidade Federal do Ceará, [email protected] 3Universidade Federal do Ceará, [email protected] 4Universidade Federal do Ceará, [email protected]

Recebido:

18 de junho de 2016

Aceito para publicação:

12 de janeiro de 2018

Publicado:

30 de abril de 2018

Editor de área:

Kamilla Vanconcelos

ABSTRACT

Studies show that, despite the resistance of professionals to new modes of produc�on,

the applica�on of Lean Construc�on philosophy improves the opera�ons produc�vity,

reducing costs and improving the quality of the final product. However, methodologies

which evaluate the impacts of the implementa�on of this philosophy to road construc-

�on opera�ons are scarce. This study aims to verify the improvements that the applica-

�on of the Lean Construc�on Philosophy can bring to earthwork and paving opera�ons

in a ma7er of execu�on �me and overall cost by developing a computa�onal model and

simula�ng different applica�on scenarios and checking their benefits through a compar-

ison of ac�vity dura�ons and equipment costs. A;er model development and data anal-

ysis, it was found that the models that incorporated the guidelines of the Lean philoso-

phy got faster (up to 30% reduc�on in run�me) and cheaper (reduc�on of up to 28% on

cost) results in terms of use of equipment’s.

RESUMO

Estudos mostram que, apesar da resistência de profissionais a novos modos de produ-

ção, a aplicação da filosofia Construção Enxuta melhora a produ�vidade das operações,

reduzindo custos e melhorando a qualidade do produto final. No entanto, metodologias

que avaliam os impactos da implementação desta filosofia para a construção de estra-

das são escassas. Este estudo tem como obje�vo verificar as melhorias que a aplicação

da Filosofia Construção Enxuta pode trazer para terraplenagem e operações de pavi-

mentação em matéria de tempo de execução e custo total pelo desenvolvimento de um

modelo computacional e simulação de diferentes cenários de aplicação e verificação de

seus beneGcios através de uma comparação de duração de a�vidades e custos de equi-

pamentos. Após o desenvolvimento do modelo e análise dos dados, descobriu-se que

os modelos que incorporavam as diretrizes da filosofia Enxuta ficaram mais rápidos (até

30% de redução na execução) e mais baratas (redução de até 28% nos custos), resulta-

dos em termos de uso de equipamentos.

Keywords:

Lean construc�on,

Decision support systems,

Earthmoving,

Paving.

Palavras-chaves:

Construção enxuta,

Sistema de suporte à decisão,

Terraplenagem,

Pavimentação.

DOI:10.14295/transportes.v26i1.1405

1. INTRODUCTION

Earthmovingandpavingservicesarerelatedtothemovementofthousandsoftonsofmaterials,

usingagreatamountofheavymachinesandrequiringaspecialattentionfromconstruction

companiesandcontractors.Therefore,therationalizationintheselectionofequipment,aswell

asthe�leetsizing,areactionsofgreatimportance,enablingthereductionoftherelatedcosts

andtimes.

Modelingasystemallowsabettercomprehensionoftherealprocess,enablingtheplanners

to forecast their behavior and to determine interventions for themitigation of failures and

losses.Theoperationofheavymachinesinearthmovingandpavingservicescanberepresented

Page 2: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 131

byDiscreteEventSystemsTheory,allowingsomecomputationalmodelinglikethesimulation,

forinstance.

TheLeanConstructionphilosophyisbasedonthestudyoftheprocesses,aimingthemitiga-

tionofthediscontinuitiesandremovingtheactivitieswhichdonotaddvaluetothe�inalprod-

uct. Insomesituations, themanagers canproposea rebuildingof theproductiveprocesses,

modifyingcompletely theoriginalprocess(Koskela,1992).Heavycivilconstruction,suchas

earthmovingandpavingservices,isaprominentareaforapplicationofleanconcepts.

Regardingthediscreteeventsimulationinearthmovingprojects,severalworkshavebeen

reportedintheliterature.SeveralsimulationapproachesarepresentedbyJayawardane&Price

(1994a,1994b),MarzoukandMoselhi(2000),Marzouk(2002),Alkassetal.(2003),Yangetal.

(2003),Bargstadt&Blickling(2005),Moselhi&Alshibani(2007),Prataetal.(2008),Zhang

(2008)andChengetal.(2011).Concerningtheapplicationofsimulationmodelsforimplement-

ingleanconcepts,somepapershavebeenreportedintheliterature:Tommelein(1998),Al-Su-

dairietal.(1999),Halpin&Kueckmann(2002),Farraretal.(2004),Hosseinietal.(2012)and

Hosseinietal.(2014).

Althoughtheliteratureonearthmovingsimulationisvast,thepropositionofmodelsforim-

plementation of lean concepts in earthmoving and paving is very limited. Farrar et al.

(2004)wastheonlystudyinthespecializedliteraturetoapproachtheimplementationofLean

Constructionphilosophyinearthmovingandpavingservices.Theseauthorsdonotconsider

theconstructioncosts,onlytheactivitiesdurations.Inaddition,suchauthorsconsideravaria-

bleproductivitythatismeasuredthroughthesimulations.

ThispaperaimsatpresentingdiscreteeventsimulationmodelsforimplementationofLean

Constructionconceptsinearthmovingandpavingservices,inanintegratedmodel.

Threesimulationmodelswereproposed:onewithoutleanconceptsandtwoapplyinglean

concepts.Themodelsconsiderthefollowingactivities:earthmoving,sub-base,baseandasphalt

surfacing. Theproposedmodels inthispaperconsider:(i)a�ixedproductivitythat istaken

fromaservicecostelaboration;(ii)constructioncosts;and(iii)constructionduration.Realdata

wasgathered,enablingthevalidationoftheproposedapproachesaswellasthecomparison

betweentherealsystemandthesuggestedoperationalpolicies.

2. PROBLEM DESCRIPTION

EarthmovingandpavingactivitiesconsistinapromisingareafortheapplicationofLeanPro-

ductionconceptsbecausetheseoperationsarerelatedwithmovementandhandlingoflarge

amountsofmaterials,usingagreatquantityofexpensiveresources(Mitoso,2007).Theappli-

cationoftheLeanPhilosophyinheavycivilconstructioncanavoidseveralproblemssuchas

lossesofmaterials,reworksandtheratesofequipmentinactivity.

Theproblemunderstudyconsistsinthedevelopmentofamethodologywhichallowsthe

testingoftheimplementationofLeanProductionpoliciesinearthmovingandpavingservices,

aimingthequanti�icationoftheimpactsofthesepractices.IntheFigure1,onecanobservethe

operationsconsideredinthemodelingprocess.

Theproposedmodelsarecomposedoffourblocksofactivities,consideredinasequential

manner:Earthmoving,Sub-base,BaseandAsphaltSurfacing.Forthedevelopmentofthedis-

creteeventsimulationmodelforearthworks,itwasusedthesoftwareSimul8(HaugeePaige

(2004),Chwifetal.(2015)),whichisawell-knownsimulatorinthecorporatebusiness.With

theSimul8,onecanobtainseveralperformanceindicatorsofthemodeledsystem,suchascycle

Page 3: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 132

times,equipmentutilizationrates,resourceutilizationratesandqueuesformation,amongoth-

ers.

Figure 1. General scheme of the modeled activities

3. METHODOLOGY

Inthiswork,threemodelsareproposed:onemodeledtherealityandtheothersconsiderlean

concepts. In the �irstmodel (namedModel 1), the lean concepts arenot considered. In this

model,doesnotoccurtheoverlappingoftheactivities,thatis,theoperationsareperformedin

asequentialmanner.Forexample,thesub-baseoperationsstartaftertheendoftheearthmov-

ingoperations,andsoon.

Inthesecondmodel(namedModel2),someoperationsareconsideredwithoverlapping,

facilitatingtheexecutionoftheactivitiesaswellasmaximizingtheutilizationoftheloadersand

reducingtheidlenessofthedumptrucks.

Inthethirdmodel,itwasproposedanewschedulingfortheexecutionofthebaselayer.In

theproposedschedule,thebaseoperationsareperformedconcomitantlywiththeearthmoving

and sub-base operations. Thus, it is needed a secondwork front, increasing the amount of

equipment,butreducingsubstantiallytheconstructionstotalduration.

3.1 Lean concepts adopted in the models

Aimingtoverifytheef�iciencyimprovementofearthmovingandpavingservices,incomparison

withthecurrentoperationofthesesystems,somestrategieswereimplementedintheproposed

models.TheLeanConstructionconceptsutilizedinthemodelingaredescribedasfollow:

a) Specifyvalue:valuecanbeviewedbythedifferencebetweenthebene�itsandcosts

ofagivenprocess.Thevalueoftheprocessesneedstobespeci�ied,aimingtheirfur-

theroptimization.

b) Mapthevaluestream:Thismappingconsists in thedeterminationofall thesteps

performedinthevaluestream,removing,wheneverfeasible,thosestepsthatdonot

addvalue.

Page 4: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 133

c) Makevalue�low:Thisconceptconsistsinthemakingthevalue-additionstepsarise

innarrowsequencesothegoodswill�lowsmoothlyintheprocess.

d) Pullvalue:Theactivitiesmustpullvaluefromthenextstepintheprocess.

IntheFigures2and3,theleanconceptsadoptedintheModels2and3,whicharebasedin

theconceptualframeworkofLeanProductionTheoryproposedbyAl-Sudairietal.(1999)are

illustrated.

Figure 2. Lean concepts considered in the Model 2

Figure 3. Lean concepts considered in the Model 3

3.2 Ac7vi7es considered in the models

Thedevelopedmodelshavefourdistinctandindependentblocksofactivities,whichcanbeop-

timizedinrelationtotheequipment�leetandthesimultaneityofoperations.The�irstblock

representstheearthmovingactivities,consideringcut,�ill,haulingandcompaction,intheana-

lyzedarea.Thesecondrepresentsthesub-baseoperations,inwhicharemodeledcut,�ill,haul-

ing,compactionandleveling.TheabovementionedprocessesareillustratedinFigure4.

Page 5: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 134

Figure 4. Simplified cycle for Earthmoving and Sub-base

In thethirdblockof themodel,arerepresentedthe inherentoperationsto thepavement

base.Intheproposedmodels,thebaseisasand-gravelmixcomposedof70%ofsoiland30%

ofgravel.Therefore,themodelconsidersthehaulageofmaterialsfromtheborrowpitstothe

soilmixers,inwhichisassumedthatathird-partycompanyhastransportedtherocks.Afterthe

crushingandmixingofthematerials, thestabilizedsoil istransportedtothecentroidofthe

consideredsection,wherethematerialisunloadedandcompacted.Thebaseprocessisillus-

tratedintheFigure5.

Figure 5. Simplified cycle for Base

Finally,thelastblockofthesimulationmodelconsistsintheapplicationofalayerofHotMix

Asphalt(HMA),withathicknessof5cm.Subsequentlyisperformedthespreading,�inishingand

compactingofthelayer.ItcanbeobservedthattheHMAproductionisadmittedasperformed

byathird-partycompany,beingthematerialreceivedonthetrack.Theasphaltsurfacingpro-

cessisillustratedintheFigure6.

Figure 6. Simplified cycle for asphalt surfacing

Page 6: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 135

3.3 Proposed simula7on models

Theabovementionedsubsystemsweremodeled in theSimul8, an importantdiscreteevent

simulatorintheengineeringsector.Simul8hasagraphicalinterfacethatenablestheuserto

constructmodelsinasimpleway.Theprocessesofdatainputanalysis,aswellasofsimulation

analysisarefacilitatedbytherobustinterfaceofSimul8.

Theearthmovingprocess is illustrated in theFigure7. In thismodel, thebackhoe -dump

truckcycle isrepresented likeadiscreteeventsystem,withthisdynamicnature.Firstly, the

backhoegetsmaterialinanembankmentandloadsthedumptruckwhileitscapacityisavaila-

ble.Afterthat,thedumptruckperformsthetransportationofthematerialstothe�ill,perform-

ing theunloadingoperation. Inaddition, theoperationsof levelingandcompactionareper-

formedfortheconclusionofearthmovingprocess.

Figure 7. Earthmoving model in Simul8

Thesub-baseprocessisillustratedintheFigure8.Ingeneralterms,thesub-baseprocessis

roughlyequaltotheearthmovingprocess.Thekeydistinctionbetweenthemisthatinthesub-

baseprocess,thematerialsmusthaverollingresistancecharacteristics,whichisnotthecase

withearthmovingprocess.

Figure 8. Sub-base model in Simul8

Page 7: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 136

ThebaseprocessisillustratedintheFigure9.Intheproposedmodelisconsideredthefol-

lowingcombinationofparameters:thebaseiscomposedby70percentgraveland30percent

soil.Thedumptrucktransportsthematerialfromdeposittothesoilmixer.Itisconsideredthat

theoutsourcedcompanyhasalreadydeliveredthestones.Afterstonecrushing,thesoilissta-

bilized,deposited,distributedandcompacted.

Figure 9. Base model in Simul8

Finally,thelaststageofthesimulationistheasphaltsurfacingmodel,asillustratedinthe

Figure10.Inthissubsystem,theactivitiesareperformedinalinearwayfortheapplicationof

HMA,withathicknessof5cm.Firstly,theHMAisproduced.Itisimportanttoobservethatin

presentmodel this production is consideredoutsourced and thematerial is received in the

track.After,theHMAisspreadand�inished.Finally,themixturereceivesthe�inalcompaction.

Figure 10. Asphalt surfacing model in Simul8

Fortheveri�icationofthebene�itsoftheproposedapproachincomparisonwiththerealoper-

ation,itwasproposedacostfunction,whichwasbasedonthecycletimeobtainedbythesim-

ulationmodel.Theunitcostsofearthmovingandpavingservicesaremultipliedbythecycle

time,givingthecostofeachscenario.Havingthecostsoftheproposedscenarios,onecancom-

parethebene�itsoftheleanstrategieswiththecurrentoperationofthemodeledsystem.

4. CASE STUDY

Aimingtoperformavalidationofthedevelopedmodelaswellasmeasurethebene�itsofthe

proposedapproach,realdatawasgatheredformarealcase.Thecasestudyisrelatedtoahigh-

wayconstruction,locatedintheNortheastregionofBrazil,withatotalextensionof32,1Km.

Forthepavingexecution,itwasconsideredasub-basewithnaturalmaterialofborrowpits

nearthetrack.Inthebaseexecution,itwasusedmaterialfromaborrowpitlocated6.6kmaway

fromtheaxisofthetrack,withamixtureof30%ofgravel.Theexecutionofthemixturemust

beperformedinasoilmixer.Thepavementlayershavethefollowingthickness:surfaceof5cm

(HMA),baseof15cmandsub-baseof20cm.Themaindatausedinthemodelingispresented

intheTable1.

Page 8: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 137

Table 1: Main volumes and distances adopted in the models

Project data Adopted value

Volume of materials (earthmoving) 3.602 m³

Volume of materials (sub-base) 1770,42 m³

Volume of materials (base) 1.142 m³

Volume of HMA (paving) 209,86 m³

Average transporta�on distance (earthmoving) 4,63 km

Distance between the borrow pit and the soil mixer 17,06 km

Distance between the soil mixer and the track 6,65 km

Inthesesimulations,someassumptionsweremade.Takingintoconsiderationthattheactiv-

ityofprocessingthematerialsinthesoilmixeriscontinuous,the�irstassumptionisthatatthe

momentatruckneedstobeloaded,thematerialisavailable.TheproductionofHMAisconsid-

eredcontinuousforthesamereason,thereforethesecondassumptionisthattheHMAisalways

availableforagiventruck.Thethirdassumptionisregardingtheloaders.Itisconsideredthat

theloadersaregoverningtheproduction,inordertoverifyifthereisthequeuesformationof

thetrucks.

Aimingtoevaluatethesystemperformance,weproposedsixindicators,whicharedescribed

asfollows:

a) Totalcost(R$):totalcostforearthmovingandpavingservices.

b) Totaltime(days):totalworktimerequiredfortheexecutionofearthmovingandpav-

ingservices;

c) T1:minimumwaittimeinthequeues;

d) T2:averagewaittimeinthequeues;

e) T3:maximumwaittimeinthequeues.

f) Totaltime(h):totaltimefortheexecutionofsurfacingservices.Itcanbeobserved

thatU$1,00isapproximatelyR$2,20(base-year2014).

Afterthedevelopmentofthemodelforthecurrentsystem,wereappliedsomeconceptsof

leanconstruction,suchasprocessoptimizationandminimizationoftheset-upactivities.The

initialmodelhasperformedtheactivitiesinalinearmanner,sothattheblockofactivitiesfor

the�illcompactiononlycouldbestartedwhenthetransportofmaterialshavebeen�inished.

Similarly,theblockofactivitiesoftransportofsub-basematerialsonlycouldbestartedwhen

the�illcompactionhasbeen�inishedandsoon.

Thesimultaneityoftheactivitieswasmodeledinthefollowingmanner:theblockofactivities

forthesub-basesystemsonlycanbeginwhentheearthmovingblockis�inished.Inthemodel,

itwasenabledthatsubsequentactivitiescanbeperformedinparallelwhenagivenpercentage

valueofthepredecessoractivitywasperformed.Reducingthesedelaysbetweentheactivities,

thecycletimecouldbereducedwiththemaintenanceofthesamepoolofmachines.

IntheTable2and3arepresentedtheminimum,averageandmaximalwaitingtimesforthe

dumptrucks in thequeues,aswellasthedurationofeachstageconsidered in themodeled

processes,inthemodels2and3,respectively.Themodelswererun20timesfortheobtaining

ofthepresentedresults.Themaindifferencebetweenmodels2and3consistsinthefactthat

inthemodel3thebaseactivitywasdividedintotwoindependentparts.Therefore,itispossible

theexecutionofapartofthebaseconcomitantlywithotherprocesses,reducingthetotalexe-

cutiontime.

Page 9: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 138

Table 2: Waiting times in the queues obtained by the Model 2

Ac7vity Dura7on

(h) Equipment

Minimum

wai7ng 7me in

the queues

(min)

Average wai7ng

7me in the

queues (min)

Maximum wai7ng

7me in the queues

(min)

Ea

rth

mo

vin

g Loading, hauling, unloading and

return. 85,61

Backhoe

6,71 16,44 30,23 Dump truck

Leveling and compac�on 16,08

Grader

- - - Sheep foot roller

Sub

-ba

se Loading, hauling, unloading and

return. 33,78

Backhoe 1,57 11,82 22,46

Dump truck

Leveling and compac�on 11,25 Grader

- - - Sheep foot roller

Ba

se

Cut from borrow pits and transport

for soil mixer 92,81

Backhoe 21,07 69 113,97

Dump truck

Aggregates distribu�on and

compac�on 11,67

Dump truck

- - - Tandem vibra�ng

roller

Surf

aci

ng

HMA produc�on, spreading and

finishing, final compac�on of the

mixture.

2,33

Pavers - - -

Tandem vibra�ng

roller - - -

Total �me with the overlapping of

the ac�vi�es 215,4 h 27 days

Total �me without the overlapping

of the ac�vi�es 253,5 h 32 days

Table 3: Waiting times in the queues obtained by the Model 3

Ac7vity Dura7on

(h) Equipment

Minimum

wai7ng 7me in

the queues

(min)

Average wai7ng

7me in the

queues (min)

Maximum wai7ng

7me in the queues

(min)

Ea

rth

mo

vin

g Loading, hauling, unloading and

return. 85,61

Backhoe

6,71 16,44 30,23 Dump truck

Leveling and compac�on 16,08 Grader

- - - Sheep foot roller

Sub

-ba

se Loading, hauling, unloading and

return. 33,78

Backhoe 1,57 11,82 22,46

Dump truck

Leveling and compac�on 11,25 Grader

- - - Sheep foot roller

Ba

se

Cut from borrow pits and transport

for soil mixer 93,03

Backhoe 21,07 69 113,97

Dump truck

Load in soil mixer, transport and

unload

49,70 Dump truck 0,7 15,29 30,58

Aggregates distribu�on and

compac�on 11,67

Dump truck

- - - Tandem vibra�ng

roller

Surf

aci

ng

HMA produc�on, spreading and

finishing, final compac�on of the

mixture.

2,33

Pavers - - -

Tandem vibra�ng

roller - - -

Total �me with the overlapping of

the ac�vi�es 137,7 h 22 days

Total �me without the overlapping

of the ac�vi�es 303,5 h 38 days

Page 10: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 139

ThesimulationresultsarepresentedinTable4.Analyzingtheabovementionedresults,one

canobservethatthereisaclearadvantageintheemploymentofrationalizationtools,suchas

theleanconcepts,inearthmovingandpavingservices.

Table 4: Simulation results

Model 1 Model 2 Model 3 ΔModel 2 (R$) ΔModel 3 (R$) ΔModel 2 (%) ΔModel 3 (%)

Total cost (R$) 359.127,84 257.621,78 277.445,47 101.506,07 -81.682,37 -28,3 -22,7

Total �me (days) 32,0 27,0 22,0 -5,0 -10,0 -15,6 -31,3

Ea

rth

mo

vin

g

T1(h) 25,71 6,71 6,71 -19 -19 -73,9 -73,9

T2(h) 42,28 16,44 16,44 -25,84 -25,84 -61,1 -61,1

T3(h) 59,81 30,23 30,23 -29,58 -29,58 -49,5 -49,5

Sub

-Ba

se T1(h) 19,71 1,57 1,57 -18,14 -18,14 -92,0 -92,0

T2(h) 32,77 11,82 11,82 -20,95 -20,95 -63,9 63,9

T3(h) 44,76 22,46 22,46 -22,3 -22,3 -49,8 -49,8

Ba

se T1(h) 45,93 21,07 21,07 -24,86 -24,86 -54,1 -54,1

T2(h) 124,23 69 69 -55,23 -55,23 -44,5 -44,5

T3(h) 191,84 113,97 113,97 -77,87 -77,87 -40,6 -40,6

Surf

aci

ng

Total

�me (h) 2,33 2,33 2,33 0,0 0,0 0,0 0,0

Takingintoaccounttheresultsobtainedinthesimulations,itshouldbehighlightedthedif-

ferencesbetweentheModel1(withoutleanconcepts)andtheModels2and3(withleancon-

cepts).TheModel2presentedareductionof15.6%intheconstructionexecutiontimeanda

reductionof28.3%inthetotalcost,incomparisonwiththeModel1.TheModel3presented

reductionof31.3%intheconstructionexecutiontimeandareductionof22.7%inthetotalcost,

incomparisonwiththeModel1.

Regardingtheasphaltsurfacing,onecanobservethat theModels2and3donot incur in

improvementintermsofconstructiontimes.Thisisduetothefactthatthisprocessisessen-

tiallysequential,aswellasthefactthattheproductionofHMAwasnotmodeled.Thus,there

arenoinef�icienciesthatcouldbemitigatedbytheleanconcepts.

Itisclearthattheproposedapproachisapowerfuldecisionsupporttool,beingvaluablefor

theplannersinthedecision-makingprocess.Withthediscreteeventmodelsproposed,several

scenariosandoperationalpoliciescanbepreviously tested,enablingthedecisionmakersto

developef�icientstrategiesfortheearthmovingandpavingactivities.

5. CONCLUSIONS

Thesimulationmodeldescribedinthispaperisapowerfultechniqueforplanningtheopera-

tionsofearthmovingandpavingservices,enablingtheimplementationofleanconceptsinthe

productiveprocesses.Theproposedmodelallowstheobtainingofrationalizedoperationalpol-

icies, incurring inreductionsofcycle times,equipmentutilizationrates, resourceutilization

ratesandqueuesformation,amongothersperformanceindicators.

Itcanbehighlightedthat,althoughtheproposedapproachenablesoperationalstrategies

Page 11: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 140

withcostreductions,thesecostvaluesdoesnotrepresenttherealcostoftheconstruction,be-

causetheydonotconsiderthelaborcosts.Intheappliedunitcostsforeachservice,onlythe

equipmentcostsareconsidered.

Itisworthyofnotethatthestretchadoptedinthecasestudyisanalmostplainterrain,with

littlevariationinthecrosssection.Anotherfeatureofthecasestudyisregardingthedistance

betweentheanalyzedstretchandtheborrowpitsandsoilmixer,whicharevirtuallyidentical.

Thismeansthattheobtainedresultsarespeci�icforthissituation.Thereisnoguaranteethat

othertopographicalorgeotechnicalfeaturescanleadtoreductionsofthissamemagnitudeor

leadtoreductionsatall.Eachsituationneedstobemodeledandsimulated.

Alimitationofthestudyisthelackofrealdataontheperformedoperationaltimesinthe

studiedconstruction.Withoutthesedata,theauthorswerenotabletovalidatestatisticallythe

proposedmodel.However,accordingtoauthors’experience,theproposedmodelre�lectswell

therealsystem.

Intheproposedmodeling,couldbesimulateddifferentlocationsandsizesofthesoilmixer,

aswellasdifferentcuttingplacesforbasedependingofthesectionoftheroad.Otherservices

necessaryforthehighwayconstruction,suchasdrainage,specialartworksandhorizontalroad

markings,enablingabetterevaluationoftheimprovementsobtainedbytheleanconceptsap-

plication.

Intheproposedapproach,thereisnoconsiderationofqualityandsafetywhencomparing

theleanandnon-leanmodels.Otherperformanceindicatorswhichre�lecttheseaspectsneed

tobedevelopedandembeddedinthesimulationmodel.

Asafurtherdevelopmentoftheworkpresentedinthispaper,theauthorsarecurrentlywork-

ingintheintegrationofdiscreteeventsimulationmodelsandmixedintegerprogrammingmod-

els,aimingtheevaluationoftheleanpoliciesintegratedwiththeoptimaldistributionofmate-

rials,aswellasintheextensionoftheproposedapproachindrainageandmaintenanceser-

vices.Inaddition,theconsiderationoftanktruckandaeratorforcorrectingthesoilmoisture,

theapplicationofasphaltprimingonbaseandsub-base,aswellastheconsiderationofclimatic

aspectscouldbeaddedintheproposedmodel.

ACKNOWLEDGEMENTS

ThesupportoftheNationalCouncilforScienti�icandTechnologicalDevelopment(CNPq)isacknowledgedandappreciated.

REFERENCES

Al-Sudairi,A.A.;H.M.Brown;J.E.Diekmann;A.D.Songer(1999)SimulationofConstructionProcesses:TraditionalPractices

versusLeanPrinciples.ProceedingsIGLC-7.

Alkass,S.;K.El-Moslmani;M.AlHussein(2003)AComputerModelforSelectingEquipmentforEarthmovingOperationsUsing

QueuingTheory.CIBREPORT,vol.284,1–7.

Bargstadt,H.J.eA.Blickling(2005)ImplementationofLogicforEarthmovingProcesseswithaGameDevelopmentEngine.22nd.InternationalConferenceonInformationTechnologyinConstruction.Dresden,Germany.

Cheng,F.F.;Y.W.Wang;X.Z.ZingeY.Bai(2011)APetrinetsimulationmodelforvirtualconstructionofearthmovingopera-tions.AutomationinConstruction,v.20,N.2,p.181–188.DOI:10.1016/j.autcon.2010.09.015.

Chwif,L.;,A.C.Medina;,W.I.Pereira;D.R.VieiraeJ.E.PecoraJr(2015)IntroduçãoaoSimul8:umguiaprático.SaoPaulo:Ed.dosAutores.Disponıvelem:<http://livrosimulacao.eng.br/introducao-ao-simul8-download-gratuito/>.Acessoem<05nov2017>.

Farrar,J.M;S.M.Abourizk;X.Mao(2004)GenericImplementationofLeanConceptsinSimulationModels.LeanConstructionJournal,vol.1,n.1,p.1-23.

Halpin,D.W.;M.Kueckmann(2002)LeanConstructionandSimulation.Proceedingsofthe2002WinterSimulationConference.DOI:10.1109/WSC.2002.1166453.

Hauge,J.W.eK.N.Paige(2004)LearningSIMUL8:TheCompleteGuide.PlainVuPublishers;2ndedition.1013p.Boston.

Page 12: Simula on models for implementa on of lean produc on

Matos, L.S., Prata, B.A., Nobre Júnior, E.F., Oliveira, F.H.L. Volume 26 | Número 1 | 2018

TRANSPORTES | ISSN: 2237-1346 141

Hosseini,S.A.A.;A.NikakhtareP.Ghoddousi(2012)Flowproductionofconstructionprocessesthroughimplementingleanconstructionprinciplesandsimulations.InternationalJournalofEngineeringandTechnology,vol.4,n.4,p.475-479.DOI:10.7763/ijet.2012.v4.414.

Hosseini,S.A.A.;A.NikakhtareP.Ghoddousi(2014)Veri�icationofLeanConstructionbene�itsthroughsimulationmodeling:acasestudyofbricklayingprocess.KSCEJournalofCivilEngineering,vol.18,n.5,p.1248-1260.DOI:10.1007/s12205-014-0305-9.

Jayawardane,A.K.W.eA.D.F.Price(1994a)Anewapproachforoptimizingearthmovingoperations-PartI.ProceedingsofInstitutionofCivilEngineers-Transport,v.105,n.8,p.195-207.

Jayawardane,A.K.W.eA.D.F.Price(1994b)Anewapproachforoptimizingearthmovingoperations-PartII.ProceedingsofInstitutionofCivilEngineers-Transport,v.105,n.9,p.249-258.DOI:10.1680/itran.1994.27136.

Koskela,L.(1992)ApplicationoftheNewProductionPhilosophytoConstruction.TechnicalReport72,CIFE,StanfordUniver-sity,Stanford.

Marzouk,M.eO.Moselhi(2000)Optimizingearthmovingoperationusingobject-orientedsimulation.Proceedingsofthe2000WinterSimulationConference,Orlando.

Marzouk,M.(2002)OptimizingEarthmovingOperationsUsingComputerSimulation.DepartmentofBuilding,CivilandEnvi-ronmentalEngineering,ConcordiaUniversity,Montreal.DOI:10.1109/wsc.2000.899188.

Moselhi,O.eA.Alshibani(2007)Crewoptimizationinplanningandcontrolofearthmovingoperationusingspatialtechnolo-gies.JournalofInformationTechnologyinConstruction-ITcon,v.12,p.121–137.

Prata,B.A.;E.F.NobreJr;G.C.Barroso(2008)Astochasticcoloredpetrinetmodeltoallocateequipmentsforearthmovingoperations.JournalofInformationTechnologyinConstruction,v.13,p.476-490.

Tommelein,I.D.(1998)Pull-drivenschedulingforpipe-spoolinstallationsimulationofaleanconstructiontechnique.JournalofConstructionEngineeringandManagement,v.124,n.4,p.279–288.DOI:10.1061/(asce)0733-9364(1998)124:4(279).

Yang,J.;D.J.Edwardsa;P.E.D.Loveb(2003)Acomputationalintelligentfuzzymodelapproachforexcavatorcycletimesimu-lation.AutomationinConstruction,v.12,p.725-735.DOI:10.1016/s0926-5805(03)00056-6.

Zhang,H.(2008)Multi-objectivesimulation-optimizationforearthmovingoperations.AutomationinConstruction,v.18,p.79–86.DOI:10.1016/j.autcon.2008.05.002.