33
Tratamiento de pulpas para su aplicación en materiales cementícios Holmer Savastano Junior FZEA USP Brasil

Tratamiento de pulpas para su aplicación en materiales ...personales.upv.es/~vamigo/Holmer/03-tratamientos/03-Tratamientos pulpas.pdfTratamiento de pulpas para su aplicación en materiales

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • Tratamiento de pulpas para suaplicación en materiales

    cementícios

    Holmer Savastano Junior

    FZEA USP Brasil

  • Preparación de la pulpacelulosica

  • Algunos tipos de tratamientos

    • Modificação mecânica das fibras celulósicas (refino / fibrilação das fibras)

    • Branqueamento das fibras celulósicas• Modificação por configurações de micelas• Modificação superficial com silanos• Modificação superficial com isocianatos• Modificações com ácidos e anidridos

  • Ensaio de flotacão - Fibras modificadas com n-octadecil-isocianato

  • • Modificação por descargas elétricas e técnicas de irradiação– Descargas tipo corona, descargas de plasma e,

    mais recentemente, laser, raios-gama e irradiação ultra-violeta (UV) em vácuo

    • Modificação via polimerização por abertura de anéis– Oxipropilação parcial das fibras celulósicas

  • • Modificação via deposição de nanopartículasinorgânicas/poliméricas– Uso de nanocristais semi-condutores de sulfeto

    de cádmio (CdS) e nanopartículas catiônicas poliméricas na superfície de fibras celulósicas para torná-las fotoluminescentes;

    – Precipitação de nanopartículas de dióxido de titânio na superfície de fibras para melhorar as propriedades ópticas da celulose

  • Cement based composites - Problem addressed

    The need for low cost fiber-cement with acceptable performance under aggressive climates (durability of the products).

    Availability of the raw-materials commonly used in the manufacture of the asbestos-free fiber-cement.

    Demand for alternative raw-materials, as appropriate fibers and binders and inert fillers, to substitute traditional ones (high cost and large consumption of energy).

  • Short x long pulp fibers

  • Eucalyptus x Pine pulp

    Eucalyptus pulp fibres0.83 ± 0.01 mm

    Pinus pulp 2.40 ± 0.09 mmless heterogeneous in length

    Short fibresHigher number of fibres per volumeor weight

    The smaller the fibre length, the easier the fibre dispersion

    Effect on flocullation

    0369

    1215

    0.2

    - 0.3

    0.9

    - 1.0

    1.6

    - 1.7

    2.3

    - 2.4

    3.0

    - 3.1

    3.7

    - 3.8

    4.4

    - 4.5

    5.1

    - 5.2

    5.8

    - 5.9

    6.5

    - 6.6

    Length ranges (mm)

    Frac

    tion

    (%) Eucalyptus pulp

    Pinus pulp

    05

    10152025

    20 30 40 50 60Median chord size (�m)

    Num

    ber f

    ibre

    s (10

    6 /g)

    increasing refining

    Eucalyptus

    Pinus

  • Results – BSEI SEM

    The short Eucalyptusbetter distributed

    The higher number of bridging fibers

    Increasing MOR and toughness of the composite.

    Eucalyptus

    Pinus

  • Summary of different treatmentsto the fibres

    Bleaching

  • Bleaching

    Eucalyptus bleachedEucalyptus unbleached

    Effect of pulp bleaching

    Bleaching extract the fibre components (lignin and extractives from fibre cell wall).

    1 m 1 m

  • Mechanical results

    After 28 days of cure Cement composite with Pinuspulp higher mechanical performance

    After 200 accelerated ageing cyclesCement composite with Eucalyptus pulp significantly highermechanical performance

    0.00 0.02 0.04 0.06 0.08 0.10

    0

    2

    4

    6

    8

    10

    12

    (MPa

    )

    (mm/mm)

    Eucalyptus unbleached Eucalyptus bleached Pinus unbleached Pinus bleached

    28 days

    0.00 0.02 0.04 0.06 0.08 0.10

    0

    2

    4

    6

    8

    10

    12

    (M

    Pa)

    (mm/mm)

    Eucalyptus unbleached Eucalyptus bleached Pinus unbleached Pinus bleached

    200 cycles

  • Mineralization of the fibre

    Eucalyptus bleached

    Eucalyptus unbleached

    Extensive fibre mineralization

    Decrease in mechanical properties after accelerated ageing.

    0369

    121518

    28 days 200 cycles

    MO

    R (M

    Pa)

    a

    0

    2

    4

    6

    8

    28 days 200 cycles

    Toug

    hnes

    s (kJ

    /m2 )

    c

  • • Alkali treatment– dissolves hemicellulose and lignin by hydrolyzing

    acetic acid esters and by swelling cellulose

    • Acid treatment– The lignin in hardwood species is partly dissolved

    by sulfuric acid during the acid hydrolysis

  • • Pyrolysis treatments– The pyrolysis of lignin occurs in inert atmospheres

    at high temperatures

    – The thermal decomposition of the lignin is also affected by the acid pretreatment

  • Refining

  • Fiber microstructure

    Individual filaments

    Original sliver

    Bunch of individual fibres

  • Results - AFM

    Eucalyptus fibres: more fibrillarstructure.

    Pinus fibres: the typical surface structure was granular.

    The fibrillar surface structures of the Eucalyptus fibres higher roughness(RMS = 74 ± 18 nm) than Pinus fibres(RMS = 52 ± 10 nm).

    Indicative of the higher potential of the Eucalyptus fibres to anchorage in the cement matrix.

    Eucalyptus

    Pinus

  • Drainage Parameters

    050100150200250

    0200400600800

    Pulp freeness (CSF mL)

    Dra

    inag

    e ra

    te (g

    /s)bincreasing

    refining

    40

    60

    80

    100

    32 34 36 38 40Water retention (%)

    Solid

    s ret

    entio

    n (%

    )

    increasing refining

    Pinus

    Eucalyptusc

    Higher number of fibres did not prejudice the drainage rate of the fibre-cement suspensions.

    Significant improvement of the solids retention during the dewatering of the suspension (18 mesh = 0.9 mm).

    Possible to improve the solids retention of the Pinuspulp increasing the refining.

  • Refining

    Effect of refining

    Increase in fibre-matrix anchorage after 28 days of cure;

    Decay in toughness after accelerated ageing.

    0.00 0.02 0.04 0.06 0.08 0.10 0.120

    2

    4

    6

    8

    10

    12

    (M

    Pa)

    (mm/mm)

    200 cycles

    Euc unbleached (unrefined) Euc unbleached (CSF 250 mL)

    0.00 0.02 0.04 0.06 0.08 0.10 0.120

    2

    4

    6

    8

    10

    12

    (mm/mm)

    (M

    Pa)

    Euc unbleached (unrefined) Euc unbleached (CSF 250 mL)

    28 days

  • Surface treatments

  • Surface treatments

    Effect of surface modification of the pulp fibreswith silanes

    Decrease mineralization of fibers

    Small improvement in the mechanical properties.

    Fibretreatment

    ConditionLOP (MPa)

    MOR (MPa) TE (kJ/m2)

    Unmodified 28 days

    6.9 ± 1.1 9.9 ± 1.4 0.86 ±

    0.25

    Modified 6.5 ± 1.0 10.7 ±

    1.30.83 ±

    0.46

    Unmodified 200 cycles

    6.3 ± 0.9 7.5 ± 0.5 0.13 ±

    0.07

    Modified 7.2 ± 0.9 8.0 ± 1.00.30 ±

    0.12

    Unmodified

    Modified

  • Fibras após modificação com metacriloxipropiltri-metoxisilano (MPTS) e

    aminopropiltri-etoxisilano (APTS)

  • Tratamento das macrofibrasvegetais

    • Propriedades das fibras vegetais• Tipos de tratamento• Alterações nas caraterísticas das fibras

  • Nature of the fiber

    Chemical composition (%)

    [ ± Cumulative standard deviation]

    Elemental composition (%)

    Moisture Lignin Cellulose Hemicellulose Extractives C O H N Ash

    Coconut coir

    13.68

    [±0.05]

    46.48

    [±1.73]

    21.46

    [±1.44]

    12.36

    [±2.34]

    8.77

    [±0.39]

    46.22

    [±0.03]

    40.47

    [±0.03]

    5.44

    [±0.03]

    0.36

    [±0.002]

    1.05

    [±0.05]

    Coconut sheath

    5.90

    [±1.84]

    29.7

    [±4.36]

    31.05

    [±2.88]

    19.22

    [±3.46]

    1.74

    [±0.71]

    42.23

    [±0.21]

    45.57

    [±0.23]

    5.69

    [±0.03]

    0.44

    [±0.002]

    8.39

    [±0.03]

    Bagasse 5.64

    [±1.60]

    22.56

    [±2.26]

    39.45

    [±2.41]

    26.97

    [±2.52]

    4.33

    [±0.74]

    48.6*

    **

    45.1*

    **

    6.3*

    **

    **

    **

    3.5*

    **Banana trunk

    (Guad.)

    9.74

    [±1.42]

    15.07

    [±0.66]

    31.48

    [±3.61]

    14.98

    [±2.03]

    4.46

    [±0.11]

    36.83

    [±0.18]

    43.62

    [±0.22]

    5.19

    [±0.02]

    0.93

    [±0.005]

    8.65

    [±0.03]

    Banana trunk

    (Brazil)

    ** 5 63 - 64 19 ** ** ** ** ** **

    Banana leaf

    11.69

    [±0.03]

    24.84

    [±1.32]

    25.65

    [±1.42]

    17.04

    [±1.11]

    9.84

    [±0.11]

    44.01

    [±0.22]

    38.84

    [±0.19]

    6.10

    [±0.03]

    1.36

    [±0.007]

    7.02

    [±0.03]

    Arrow Root D1

    10.68 26.96 37.73 31.70 2.51 ** ** ** ** **

    Arrow Root D2

    11.36 22.50 39.99 31.19 3.77 ** ** ** ** **

    Sisal ** 7.6 – 9.2 43 – 56 21 – 24 ** ** ** ** ** **

    Softwood ** 26-34 40-45 7-14 ** ** ** ** ** **

  • Fiber Untreated fiber dimensions [st. dev.] Aspect ratio L/wLength (mm) Width (µm) Thickness (µm)

    Untreated Pyrolysis Acid Alkaline Silane

    Arrow Root (D1)

    5.77

    [±3.35]

    140.48

    [±86.14]

    83.03

    [±38.6]41-70 41 – 82 nd nd nd

    Arrow Root (D2)

    5.45

    [±2.01]

    104.17

    [±46.98]

    64.58

    [±29.61]52-85 43 – 59 nd nd nd

    Bagasse (B) 3.69

    ±2.15]

    567 .5

    [±329.4]

    161.25

    [±90.75]6,5-23 6 – 23 6-13 4-15 8

    Banana Trunk (BT)

    1.9

    [±0.64]

    820.24

    [±264.49]

    150.29

    [±86 .94]2,3-12,6 6 - 23 8-19 10-27 nd

    Banana Leaf (BL)

    1.70

    [±0.91]

    834.52

    [±245.94]

    160.42

    [±55 .26]2-11 2 - 16 nd nd nd

    Coconut Coir (CC1)

    29.35

    [±8.17]

    331.78

    [±198.72]

    273.57

    [±150.94]88-107 84 - 103 nd nd nd

    Coconut Coir (CC2)

    2.7

    [±2.46]

    683.21

    [±279.42]

    215

    [±98.67]4-13 3 -10 nd Nd nd

    Coconut Sheath (CT)

    5.47

    [±3.08]

    338.09

    ±258.23]

    177.68

    [±134.76]16-31 20 - 35 nd Nd nd

  • SEM images of pyrolyzed banana fibers

    Banana leaf fiberleft x 200right x 5000

    Banana trunk fiberleft x 200right x 5000

  • Tensile strength of treated and untreated fibers

    0

    100

    200

    300

    400

    500

    600

    700

    Acidic treatment Basic treatment Pyrolysis No treatment Treatment of the Fibers

    Ten

    sile

    Str

    engt

    h (M

    Pa)

    Bagasse Banana trunk

  • • Scanning electron micrography of bagasse fibers

    •a) Unpyrolyzed fiber b) Pyrolyzed fiber c) Unpyrolyzed fiber treated with silane S1 d) Pyrolyzed fiber treated with silane S1 e) Unpyrolyzed fiber treated with silane S2 f) Pyrolyzed fiber treated with silane S2

  • Comentários adicionais

    • Importância do preparo da fibra.• Destaque para o tratamento de

    branqueamento x não branqueamento no caso do Eucalipto.

    • Importância do refino para o processo no casoda fibra de Pinus.

    • Interesse no processo de pirólise ematmosfera inerte.

  • Lectura complementar

    • G.H.D. Tonoli, H. Savastano Jr., E. Fuente, C. Negro, A. Blanco, F.A. Rocco Lahr. Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Industrial Crops and Products, 31 (2010) 225–232.

    • G.H.D. Tonoli , U.P. Rodrigues Filho, H. Savastano Jr., J. Bras, M.N. Belgacem, F.A. Rocco Lahr. Cellulose modified fibres in cement based composites. Composites: Part A 40 (2009) 2046–2053.

    • M.-A. Arsène, K. Bilba, H. Savastano Jr., K. Ghavami. Treatments of non-wood plant fibers used as reinforcement in composite materials. In preparation.