82
1 Universidade Estadual de Montes Claros – Unimontes Programa de Pós-Graduação em Ciências da Saúde – PPGCS Mestrado Acadêmico em Ciências da Saúde Suelleng Maria Cunha Santos Cirurgiã Dentista Descrição de uma nova síndrome associada à fibromatose gengival e avaliação imunohistoquímica de miofibroblastos em fibromatose gengival idiopática. Dissertação de mestrado acadêmico, apresentada ao Programa de Pós Graduação em Ciências da Saúde, da Universidade Estadual de Montes Claros – Unimontes, como parte das exigências para a obtenção do Título de Mestre em Ciências da Saúde. Montes Claros – Minas Gerais – Brasil Maio de 2008

Universidade Estadual de Montes Claros – Unimontes ...livros01.livrosgratis.com.br/cp059713.pdf · histopathologically to HGF, just differing for the non existence of this condition

  • Upload
    ngonhi

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

1

Universidade Estadual de Montes Claros – Unimontes

Programa de Pós-Graduação em Ciências da Saúde – PPGCS

Mestrado Acadêmico em Ciências da Saúde

Suelleng Maria Cunha Santos

Cirurgiã Dentista

Descrição de uma nova síndrome associada à fibromatose gengival e avaliação

imunohistoquímica de miofibroblastos em fibromatose gengival idiopática.

Dissertação de mestrado acadêmico, apresentada ao Programa de Pós Graduação em Ciências da Saúde, da Universidade Estadual de Montes Claros – Unimontes, como parte das exigências para a obtenção do Título de Mestre em Ciências da Saúde.

Montes Claros – Minas Gerais – Brasil

Maio de 2008

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

2

Suelleng Maria Cunha Santos

Cirurgiã Dentista

Descrição de uma nova síndrome associada à fibromatose gengival e avaliação

imunohistoquímica de miofibroblastos em fibromatose gengival idiopática.

Dissertação de mestrado acadêmico, apresentada ao Programa de Pós Graduação em Ciências da Saúde, da Universidade Estadual de Montes Claros – Unimontes, como parte das exigências para a obtenção do Título de Mestre em Ciências da Saúde.

Orientador: Prof. Dr. Hercílio Martelli Júnior

Co-Orientador: Prof. Dr. André Luiz S. Guimarães

Banca examinadora:

Prof. Dr. Hercílio Martelli Júnior

Prof. Dr. Paulo Rogério Ferretti Bonan

Prof. Dr. Antônio Luiz Barbosa Pinheiro

Suplentes:

Profa. Dra Patrícia Furtado Gonçalves

Prof. Dr. Alfredo Maurício B. de Paula

Montes Claros – Minas Gerais – Brasil

Maio de 2008

3

Santos, Suelleng Maria Cunha.

S237d Descrição de uma nova síndrome associada à fibromatose gengival e avaliação imunohistoquímica de miofibroblastos em fibromatose gengival idiopática [Manuscrito] / Suelleng Maria Cunha Santos. – 2008.

79 f. : il. 30 cm.

Referências: f. 63-70.

Dissertação (Mestrado) - Universidade do Estado de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde, 2008.

Orientador: Prof. Dr. Hercílio Martelli Júnior.

1. Saúde Bucal - gengiva. 2. Fibromatose Gengival.

3. Fibromatose gengival idiopática. I. Universidade do Catalogação: Maria Dalva Ribeiro Lopes – CRB/6 – 2144 e Helena Maria da Silveira – CRB/6 - 1959

4

Substituir pela folha de aprovação

5

DEDICATÓRIA

D edico esta dissertação às pessoas que são para m im exem plos de

vida...aos m eus pais D enilson e L ena, à m inha irm ã Jordana e a

m eu noivo Janir, que sem pre m e estim ularam a dar este grande

passo. E stas pessoas estiveram ao m eu lado m e encorajando nas

horas difíceis e m e aplaudindo nos m om entos de glória. O brigada

por terem acreditado nos m eus sonhos e, ainda m ais, por terem m e

ajudado a transform á-los em realidade!!!

6

AGRADECIMENTOS

Considerando esta dissertação como resultado de uma caminhada que não começou na

Unimontes, agradecer pode não ser tarefa fácil, nem justa. Para não correr o risco da

injustiça, agradeço de antemão a todos que de alguma forma passaram pela minha vida

e contribuíram para a construção de quem sou hoje.

Aos meus pais Denilson e Lena, e a minha irmã Jordana, pelo carinho e força que me

dão, por estarmos sempre juntos nos momentos mais importantes, por "contar" com

vocês!

À Janir, por seu amor, generosidade e apoio irrestrito: emocional e afetivo, por sempre

me estimular a crescer cientifica, ética, profissional e pessoalmente e por estar comigo

desde o início à concretização deste sonho.

Aos amigos Shirlene, Renato, Nanda, Mary e Pedro, amigos que levarei em meu

coração, por terem tornado o período do mestrado tão agradável.

Gostaria de agradecer aos meus antigos professores, que me ensinaram com prazer e

dedicação parte do que sei.

E agradeço, particularmente, a algumas pessoas pela contribuição direta na construção

deste trabalho:

7

Ao Professor Hercílio Martelli Júnior, orientador deste trabalho, pela confiança,

compreensão e apoio demonstrados no seu decorrer. Pela oportunidade que tive de

compartilhar dos seus ensinamentos e dedicação.

Ao professor Paulo Rogério Ferreti Bonan, pelos inestimáveis ensinamentos

transmitidos e principalmente, pela eterna disposição em me atender.

Aos Professores André Luiz Sena Guimarães e Alfredo Maurício Batista de Paula, pela

paciência, dedicação e pelos primeiros contatos com o laboratório, pelo incentivo à

pesquisa científica, por todas as discussões nas reuniões de quarta-feira à noite e por

sempre estarem por perto quando precisei.

À Anamaria e aos colegas do Laboratório de Pesquisa em Saúde, principalmente a

Carlos, Marcos e Erivelton, pela amizade, paciência interminável e por sempre estarem

prontos a ajudar.

Às secretárias do PPGCS, Maria do Carmo Mendes Nobre e Kátia Silene Maia

Azevedo, pelos seus “sim” em todos os momentos de dificuldades, pela dedicação e

competência, pelos auxílios, conversas, pela amizade.

Aos coordenadores do Programa de Pós-Graduação em Ciências da Saúde (PPGCS),

pela oportunidade de crescimento, aprendizado, realização profissional e pessoal e pela

confiança em mim depositada.

8

Ao Reitor da Universidade Estadual de Montes Claros - UNIMONTES, Prof. Paulo

César Gonçalves de Almeida pela estrutura disponibilizada e alta qualidade dos cursos

oferecidos.

À Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG (processo:

2107), que me concedeu bolsa durante a realização deste mestrado.

E finalmente, a Deus, o maior responsável pela minha existência e por sua presença

constante em minha vida.

9

Resumo

Fibromatose gengival (FG) é um termo clínico comumente utilizado para se referir ao

crescimento gengival, decorrente do acúmulo excessivo de proteínas da matriz

extracelular, predominantemente colágeno tipo I e maior proliferação fibroblástica. A

FG pode ser inflamatória, neoplásica, genética e medicamentosa. Porém, em casos onde

a patogênese é desconhecida, o crescimento gengival é denominado FG idiopática

(FGI). A FG de origem genética é denominada fibromatose gengival hereditária (FGH).

A FGH é uma condição rara (1:750.000 nativivos), que manifesta clinicamente por

aumento gengival generalizado. A FGI assemelha-se clínica e histologicamente à FGH,

diferenciando-se apenas pela não existência desta condição em outros indivíduos da

família. Este estudo teve por objetivos: (1) descrever as características clínicas,

genéticas, imaginológicas e microscópicas de uma família portadora de FG associada a

outras alterações e (2) avaliar a presença de miofibroblastos na FGI. Para o primeiro

objetivo, foram realizados estudos clínicos, imaginológicos, microscópicos e genéticos

de portadores da FG associada a alterações dentais e neurológicas. As alterações dentais

foram observadas através de radiografias periapicais, panorâmicas e também por

microscopia eletrônica de varredura, enquanto o tecido gengival foi avaliado através de

imunohistoquímica (actina alfa de músculo liso (α-SMA) e citoqueratina 19) e

microscopia eletrônica de varredura. A análise genética foi feita após a confecção do

heredograma para caracterizar o padrão de herança genética envolvida na condição. Os

resultados demostraram a presença de 70 descendentes diretos, distribuídos em 4

gerações. Desse montante, 11 indivíduos foram afetados, sendo que 3 membros

apresentaram FG e alterações dentais (amelogênese imperfeita, calcificações

intrapulpares, retardo na erupção dentária, dentes impactados, radiolucidez

pericoronária, agenesia dental e dilacerações radiculares), 1 afetado apresentou FG

10

isolada, 1 apresentou FG, alterações dentais e deficiência mental e 6 membros

apresentaram deficiência mental isolada. Na presente família foi verificado a presença

de casamentos consangüíneos e um padrão de herança autossômica recessiva. Análise

histopatológica mostrou tecido gengival com epitélio hiperplásico, com longas e

delgadas cristas que se projetavam para o conjuntivo subjacente, que se apresentou

denso e fibroso. Na imunohistoquímica houve marcação positiva para citoqueratina 19 e

α-SMA, sugerindo, respectivamente, a presença de epitélio odontogênico e de

miofibroblastos. Esses resultados sugerem tratar-se de uma nova condição genética,

com presença simultânea de crescimento gengival, alterações dentais e deficiência

mental. Para o segundo objetivo, foram realizadas avaliações clínicas e microscópicas

da gengiva de portadores de FGI. O tecido gengival apresentava coloração normal, com

consistência firme e fibrosa, causando alterações na erupção e no posicionamento

dental. A história familiar dos pacientes afetados não evidenciou presença de outros

membros afetados na família. Em HE o tecido gengival mostrou moderada hiperplasia

epitelial, com longas e delgadas cristas em direção ao tecido conjuntivo que se mostrou

denso e fibroso. A coloração por Tricrômio de Masson revelou espessos feixes de fibras

colágenas coradas fortemente. A imunohistoquímica mostrou-se negativa para

miofibroblastos (α-SMA). Pelo fato de α-SMA ser um marcador específico de

miofibroblastos, estes resultados sugerem que estas células não estão envolvidas na

patogênese da FGI.

Plavras-chave: Fibromatose gengival, fibromatose gengival idiopática,

miofibroblastos, gengiva, amelogênese imperfeita.

11

Abstract

Gingival fibromatosis (GF) is commonly a clinical term used to refer to the growth

gingival due to the excessive accumulation of matrix extracellular proteins,

predominantly type I collagen and larger proliferation fibroblastic. The GF can be

inflammatory alterations, neoplasic, genetic and systemic drugs, however, in cases

where the pathogenese remains unknown, the growth gingival is denominated GF

idiopathic (IGF). The GF of origin genetic is denominated hereditary gingival

fibromatosis (HGF). The HGF is a rare condition (1:750.000 birth), that manifested

clinically by gingival generalized enlagerment. The IGF resembles each other clinic and

histopathologically to HGF, just differing for the non existence of this condition in other

individuals of the family. This study had for objectives: 1) to describe the clinical

characteristics, genetics, imaginologics and microscopic of a family presenting gingival

fibromatosis associated to other alterations and (2) to evaluate the myofibroblasts

presence in IGF. For the first objective, they were accomplished studies clinical,

imaginologics, microscopic and genetic of bearers of the gingival fibromatosis

associated to dental and neurological alterations. Were the dental alterations observed

through periapical and panoramic radiographs, and also for electronic microscopic of

sweeping, while the tissue gingival was evaluated through immunohistochemistry (α-

smooth muscle actin (α-SMA) and cytokeratin 19), and electronic microscopic of

sweeping. The genetic analysis was made after the making of the pedigree to

characterize the pattern of genetic inheritance involved in the condition. The results

demonstrated the presence of 70 descending direct, distributed in 4 generations. It gave

amount, 11 individuals were affected, and 3 members presented gingival fibromatosis

and dental alterations (imperfect amelogenesis, intrapulpal calcifications, delay on tooth

eruption, unerupted teeth, pericoronal radiolucencies, dental agenesis, and root

12

dilacerations), 1 affected presented GF isolated, 1 presented fibromatose gingival, tooth

alterations and mental deficiency and 6 members presented isolated mental deficiency.

In the present family it was verified the presence of consanguineous marriages and a

pattern of inheritance autosomal recessive. Analysis histopathological showed tissue

gingival with epithelium hyperplasic, with long and thin crests that were projected for

the underlying conjunctive tissue that was dense and fibrous. The coloration for

tricromio of Masson revealed thick bundles of fibers collagen strongly stain. In the

immunohistochemistry there was positive demarcation for cytokeratin 19 and α-SMA,

suggesting, respectively, the presence of epithelium odontogenic and of myofibroblasts.

Those results suggest to treat of a new genetic condition, with simultaneous presence of

growth gingival, dental alterations and mental deficiency. For the second objective,

were accomplished clinical and microscopic evaluations of the gingiva of bearers of

IGF. The tissue gingival presented normal coloration, with firm and fibrous consistence,

causing alterations in the eruption and in the dental positioning. The affected patients'

family history didn't evidence presence of other affected members in the family. In HE

the tissue gingival showed mild hyperplasia epithelial, with long and thin crests in

direction to the conjunctive tissue that was shown dense and fibrous. The coloration for

tricromio of Masson revealed thick bundles of fibers collagen stained strongly. The

immunohistochemistry was shown negative for myofibroblast (α-SMA). For the fact of

α-SMA to be a specific marker of myofibroblast, these results suggest that these cells

are not involved in the pathogenesis of IGF.

Key-words: Gingival fibromatosis, idiopathic gingival fibromatosis, myofibroblasts,

gingiva, imperfect amelogenesis.

13

LISTA DE SIGLAS E ABREVIATURAS

ABC Complexo avidina biotina-peroxidase

AI Amelogênese imperfeita

BSA Albumina de soro bovino

CK19 Citoqueratina 19

CTGF Fator de crescimento do tecido conjuntivo

DA Alterações dentais

EDTA Ácido etilenodiaminotetracético

EGF Fator de crescimento epidérmico

EGF-r Receptor do fator de crescimento epidérmico

ELISA Enzyme Linked Immuno Sorbent Assay

FAS Sintase ácida gordurosa

FG Fibromatose gengival

FGH Fibromatose gengival hereditária

FGI Fibromatose gengival idiopática

GN Gengiva normal

H2O2 Peróxido de Hidrogênio

HE Hematoxilina-eosina

Hsp47 Proteína de choque térmico 47

IL-6 Interleucina 6

INF-γ Interferon-gama

MMP Metaloproteinase da matriz

MR Retardo mental

P4Hs Prolina-quatro hidroxilases

PBS Solução salina tamponada com fosfato

RT-PCR Reação em cadeia polimerase - transcriptase reversa

SOS Son of sevenless

TGF-β Fator de crescimento transformante – beta

TIMP Inibidor tecidual das metaloproteinases

α-SMA Actina alfa de músculo liso

14

SUMÁRIO

1. Introdução 15

1.1. Características clínicas da fibromatose gengival 15

1.2. Características histopatológicas e moleculares da fibromatose gengiva

hereditária

16

1.3. Condições genéticas e síndromes 20

1.4. Alterações dentais relacionadas com a fibromatose gengival 23

1.5. Tratamento da fibromatose gengival 25

1.6. Miofibroblastos 25

2. Proposição 28

2.1. Objetivo Geral 28

2.2. Objetivos Específicos 28

3. Metodologia 29

4. Resultados 30

4.1. Artigo Científico 1 30

4.2. Artigo Científico 2 49

5. Conclusões 62

6. Referências 63

7. Anexos 71

7.1. Figuras do artigo científico 1 71

7.2. Figuras do artigo científico 2 76

15

1. Introdução

1.1. Características clínicas da fibromatose gengival

Fibromatose gengival é um termo clinicamente utilizado para referir-se ao

aumento de volume da gengiva, decorrente do excessivo acúmulo de colágeno e maior

proliferação fibroblástica no tecido gengival (Takagi et al., 1991; Coletta et al., 1998;

Martelli-Júnior et al., 2000). As fibromatoses gengivais podem resultar de condições

locais (inflamatória e neoplásica), medicações sistêmicas e alterações genéticas

(Hakkinen e Csiszar, 2007). Porém, existem casos de aumento gengival, cuja

patogênese permanece desconhecida, sendo a mesma classificada como idiopática e o

crescimento por ela proporcionado, denominado fibromatose gengival idiopática (FGI)

(Gagliano et al. 2005). A fibromatose com etiologia genética é denominada fibromatose

gengival hereditária (FGH) e foi primeiramente descrita por Gross em 1856, tendo o seu

primeiro heredograma elaborado por Nasse em 1895. Posteriormente várias

terminologias foram usadas para esta condição, sendo que em 1961, Zackin e

Weisberger (1961), usaram o termo fibromatose gengival hereditária e desde então o

termo FGH tem sido o mais comumente usado na literatura científica. Essa condição

pode ocorrer como fenótipo isolado, associada às alterações locais e sistêmicas ou como

componente de diversas síndromes (Gorlin et al., 1990; Hakkinen e Csiszar, 2007).

FGH é uma condição bucal rara, 1:750.000 nativivos (Singer et al., 1993), sem

predileção por sexo ou raça (Rushton, 1957), que pode envolver a maxila e a mandíbula.

A manifestação clínica da FGH é bastante heterogênea (Martelli-Júnior et al., 2005). O

crescimento gengival é contínuo, generalizado ou mais raramente localizado, sem

regressão espontânea, podendo resultar na cobertura parcial ou total das coroas clínicas

dentais. A gengiva apresenta-se firme, indolor, não hemorrágica, com coloração rosa e

pontilhado superficial característico (Sciubba e Niebloom, 1986; Bozzo et al., 1992;

16

Bozzo et al., 1994; Martelli-Júnior et al., 2005). Normalmente o crescimento gengival

inicia-se no período de erupção da dentição permanente, podendo também desenvolver-

se durante a dentição decídua, e mais raramente, estar presente antes da erupção dental,

verificando espessamento da mucosa do rebordo alveolar (Singer et al., 1993; Bozzo et

al., 2000).

FGI refere-se ao crescimento gengival cujas características clínicas e

histopatológicas se assemelham bastante à FGH, sendo a não existência de outros casos

na família o fator diferencial. Não obstante, alguns autores como Clocheret et al. (2003)

preferem classificar como FGH, as alterações cujo locus genético já se encontra bem

definido, devendo todos os outros crescimentos gengivais sem causas conhecidas serem

denominados de FGI, até mesmo se o crescimento é observado em mais de um membro

da mesma família, na ausência de qualquer outro sinal ou sintoma.

O aumento gengival resulta em alterações funcionais e estéticas, como

diastemas, retardo na erupção dental, má posicionamento dos dentes, dificuldade na

higiene bucal e no vedamento labial (Bozzo et al., 2000). Pode ainda levar à retenção da

dentição decídua, dificuldades na mastigação, fonação e problemas psicológicos

(Martelli-Júnior et al., 2005; Coletta e Graner, 2006). Embora não afete diretamente o

osso alveolar, o aumento tecidual pode favorecer o acúmulo de placa bacteriana,

induzindo a periodontite e conseqüentemente a reabsorção dental e halitose (Coletta e

Graner, 2006).

1.2. Características histopatológicas e moleculares da fibromatose gengival

hereditária

A FGH foi descrita em microscopia óptica, pela primeira vez, por Tomes em

1879. Esta condição é caracterizada histologicamente por epitélio pavimentoso

17

estratificado queratinizado, mostrando áreas de acantose (Johnson et al., 1986; Andrade,

2001) e longas e delgadas projeções epiteliais que se estendem em direção ao tecido

conjuntivo subjacente (Singer et al., 1993). O tecido conjuntivo apresenta densos e

espessos feixes de fibras colágenas entremeadas por fibroblastos e discreto infiltrado

inflamatório nas áreas perivasculares (Redman et al., 1985). Pequenos e múltiplos focos

de calcificação distrófica, ilhas de metaplasia óssea, áreas de ulceração e focos de

células inflamatórias também foram descritos (Gunhan et al., 1995). Através de análises

de microscopia eletrônica e de ultra-estrutura do tecido conjuntivo da FGH, observou-se

presença de fibrilas colágenas, com estruturas anormais, incluindo variações de

diâmetro, assim como aumento na presença de fibras oxitalânicas e diminuição das

fibras elásticas (Barros et al., 2001).

Embora diversos estudos tenham sido realizados sobre o tecido conjuntivo da

FGH, poucos estudos avaliaram o comportamento do tecido epitelial (Coletta e Graner,

2006). O tecido epitelial da FGH apresenta-se bem estruturado, com longas e delgadas

cristas que se projetam em direção ao conjuntivo subjacente (Araújo et al., 2003).

Farrer-Brown et al. (1972) relataram presença de hiperplasia epitelial na FGH, porém,

em estudos utilizando espécimes de FGH associados com inflamação crônica. Raeste et

al. (1978) encontraram hiperplasia epitelial e papilas proeminentes em áreas com

intenso infiltrado inflamatório crônico. Araújo et al. (2003) demonstraram que as áreas

do epitélio da FGH (sem infiltrado inflamatório) e da gengiva clinicamente normal

foram similares. Análises histopatológicas de tecidos provenientes da FGI revelam

moderada hiperplasia epitelial, e uma quantidade aumentada de feixes de fibras

colágenas no tecido conjuntivo (Clocheret et al., 2003; Gagliano et al., 2005),

características que se assemelham às da FGH.

18

É interessante verificar que em aumentos gengivais medicamentosos, a

hiperplasia epitelial observada é provavelmente decorrente da resposta inflamatória

desencadeada pelos efeitos do medicamento (Brown et al., 1991).

Os mecanismos bioquímicos e moleculares que levam à formação excessiva de

tecido gengival são desconhecidos e os estudos enfocando os principais eventos em

cultura de células são controversos. Johnson et al. (1986) estudando fibroblastos

gengivais em cultura, obtidos de uma criança de 13 anos de idade, portadora de aumento

gengival acentuado, sem que qualquer outro membro da família apresentasse a

condição, demonstraram uma taxa de crescimento menor que as células obtidas de um

adulto jovem normal e uma quantidade de colágeno menor que as células controle.

Araújo et al. (2003), mostraram que a proliferação de células epiteliais da FGH é

significantemente maior, comparado à gengiva normal. Observaram ainda a presença de

cristas epiteliais profundas que se dirigem para o tecido conjuntivo, sendo que os

padrões de expressão do fator de crescimento epidérmico (EGF) e o receptor

correspondente (EGF-r) foram correlatos com o potencial proliferativo das células

epiteliais na região das cristas epiteliais.

Morfologicamente, em condições de subconfluência celular, os fibroblastos da

FGH foram similares aos da gengiva normal (GN). Exibiram formato fusiforme com

núcleo central e típicos prolongamentos citoplasmáticos. Porém, em condições de

confluência celular, os fibroblastos da FGH demonstraram tamanhos e largura menores

que os fibroblastos da GN (Martelli-Júnior et al., 2000). A coloração das células pela

técnica convencional de HE e análise de microscopia de luz demonstrou que, a redução

no volume celular dos fibroblastos da FGH em condições de confluência celular é

resultado da redução do volume citoplasmático e não do volume nuclear. Embora,

alguns aspectos da FGH sejam descritos em estudos com cultura de células e

19

microscopia de luz, poucos estudos têm sido realizados utilizando-se imunomarcadores

para FGH (Martelli-Júnior et al., 2000; 2003; Wright et al., 2001).

O aumento na capacidade proliferativa de fibroblastos pode contribuir para o

aumento gengival observado na FGH, devido a uma maior atividade sintética de maior

número de células no tecido (Coletta et al., 1999). Resultados obtidos por diferentes

ensaios bioquímicos demonstraram uma produção e expressão reduzida de MMP-1 e

MMP-2 em fibroblastos de FGH, comparado a fibroblastos de gengiva clinicamente

normal (Coletta et al., 1999). Tipton et al. (1997), mostraram uma proliferação mais

rápida dos fibroblastos e uma síntese aumentada de colágeno e fibronectina em células

de FGH, comparadas a células de gengiva normal, o que foi ratificado num estudo com

quatro diferentes linhagens de fibroblastos de FGH, utilizando diferentes marcadores de

proliferação celular (Coletta et al., 1998). Contudo, em um estudo analisando os

aspectos morfológicos e moleculares da FGI, Gagliano et al., (2005) observaram maior

expressão de colágeno tipo I, assim como maiores taxas de MMP-1 e MMP-9 na FGI

quando comparada com tecido gengival normal. Estes resultados parecem sugerir que

neste caso o acúmulo de colágeno no tecido conjuntivo não estava associado com

aumento da síntese ou diminuição da degradação. Já Martelli-Júnior et al. (2003),

estudando uma família autossômica dominante portadora de FGH (Bozzo et al., 1994),

mostraram utilizando diferentes ensaios de RT-PCR, ELISA, Western blot e

enzimografia, maior expressão e produção de colágeno tipo I e Hsp47 em fibroblastos

de FGH comparado a fibroblastos de gengiva normal (GN), enquanto a expressão e

produção de MMP-1 e MMP-2 foram menores em fibroblastos de FGH comparado a

GN. Adicionalmente, quando do condicionamento de fibroblastos de FGH com

diferentes citocinas, verificou-se que TGF-β1 e IL-6 estimularam aumento na expressão

de colágeno tipo I e Hsp47, enquanto INF-γ reduziu a expressão e produção de colágeno

20

tipo I e Hsp47, tendo pouco efeito na expressão de MMP-1 e MMP-2. Sobral et al.

(2007) verificaram os efeitos do TGF-β1 e INF-γ na transdiferenciação de

miofibroblastos em culturas de células humanas e demonstraram que o TGF-β1 foi

capaz de induzir, dose e tempo-dependente, a expressão de α-SMA, enquanto o INF-γ

além de inibir a transdiferenciação fibroblastos-miofibroblastos, via TGF-β1 e a

expressão de α-SMA e colágeno tipo I em culturas gengivais normais (GN), também

alterou o metabolismo dos miofibroblastos FGH, ocasionando uma diminuição da

expressão de α-SMA e colágeno tipo I e estimulando a expressão de SMAD7, inibindo

assim, o fator de crescimento do tecido conjuntivo (CTGF), que tem sido considerado

molécula chave na transdiferenciação via ativação de TGF-β1.

Vários trabalhos têm procurado elucidar os eventos biomoleculares envolvidos

na etiopatogênese da FGH. Almeida et al. (2005) avaliaram o papel da sintase ácida

gordurosa (FAS), enzima anabólica que tem sido relacionada à patogênese de várias

neoplasias malignas, na FGH e GN e, observaram que esta enzima era produzida em

maior quantidade por fibroblastos da FGH comparada a gengiva normal.

Meng et al. (2007) investigando as P4Hs, MMP-1, MMP-3 e TIMP-1 na

patogênese da FGH, mostraram que não houve diferenças no padrão de proliferação

fibroblástica entre os fibroblastos FGH e de GN. Porém, ao verificarem a expressão de

colágeno tipo I e dos subtipos de P4Hs, observaram que além das taxas de colágeno

somente as taxas da enzima P4Hα (I) foram maiores para fibroblastos FGH em relação à

GN.

1.3. Condições genéticas e síndromes

Na maioria dos casos, a FGH é transmitida como herança autossômica

dominante, embora padrões recessivos tenham sido descritos (Singer et al., 1993). Os

21

relatos de fenótipos autossômicos recessivos, que são minoria em relação ao fenótipo

dominante, segundo Nevin et al. (1971), provém de casamentos cosangüíneos. Porém, a

cosangüinidade não é a única e nem a explicação mais aceita. Descendente de pessoas

não aparentadas, cada qual portadora de um gene mutante, parece ser responsável pela

maioria dos casos de doenças autossômicas recessivas, principalmente se o caráter

recessivo apresentar alta freqüência na população (Coletta et al., 1998).

A FGH pode ocorrer como fenótipo clínico isolado ou mais raramente como

componente de variadas síndromes (Gorlin et al., 1990). Nesse caso, as associações

mais comuns são: múltiplos fibromas e infecções recorrentes (síndrome de Murray-

Puretic-Drescher), retardo na erupção dental e opacidade da córnea (síndrome de

Rutheford), displasia do nariz, orelhas e unhas, hepatoesplenomegalia e

hiperflexibilidade das articulações (síndrome de Zimmerman-Laband), perda

progressiva da audição (síndrome de Jones), querubismo, retardo mental, hipertricose e

epilepsia (síndrome de Ramon) e microftalmia e hipopigmentação (síndrome de Cross)

(Bakeen e Scully, 1991; Coletta e Graner, 2006).

A FGH pode ainda ocorrer como nova mutação. Nesses casos, os indivíduos são

classificados como portadores de fibromatose gengival idiopática, pelo fato de não se

verificar história de envolvimento familial e evidências de transmissão genética (Coletta

e Graner, 2006). A síndrome de Prune-Belly, caracterizada por ser uma condição

autossômica recessiva, ligada ao sexo, foi descrita como apresentando fibromatose

gengival, dismorfismo facial, defeitos na musculatura abdominal e dilatação no trato

urinário (Ramasamy et al., 2005).

Bozzo et al. (1994) mostraram em uma família portadora de FGH da região de

Piracicaba (SP), que a penetrância da FGH é completa, pois em nenhuma ocasião

indivíduos não afetados, tiveram filhos afetados. Além disso, há evidências de

22

expressão variável, sendo que irmãos de uma mesma família apresentavam graus

variados de aumento gengival. Recentemente, Martelli-Júnior et al. (2007) comparando

características clínicas e biológicas de duas famílias distintas portadoras de FGH

isolada, observaram haver diferenças quanto à manifestação clínica, penetrância e no

padrão de proliferação celular, demonstrando assim, heterogeneidade clínica e genética

desta condição.

Embora fatores genéticos tenham uma efetiva participação na FGH, os

mecanismos bioquímicos e os genes responsáveis por esta alteração são pouco

conhecidos (Shashi et al., 1999). Hart et al. (1998), estudando uma família de 32

pessoas, sendo 12 membros afetados para FGH, mostrou relação da FGH com o

cromossomo 2p21, entre os locus D2S1788 e D2S441. Entretanto, técnicas de

alinhamento genético, similares àquelas realizadas por Hart et al. (1998), na família

descrita por Bozzo et al. (1994) não confirmaram os mesmos achados (Hart et al.,

2000). A identificação das bases genéticas da FGH proverá uma melhor compreensão

dos mecanismos envolvidos e possibilitarão perspectivas para terapias mais eficientes

nestes pacientes.

Embora a FGH tenha sido descrita há mais de um século (Gross, 1856), as

primeiras análises genéticas foram feitas há poucos anos. Foram descritos 4 diferentes

locus associados com a forma isolada da FGH; 2 mapeados no cromossomo 2 (2p21-22

e 2p22.3-p23.3) (Hart et al., 1998; Xiao et al., 2000; Ye et al., 2005), 1 no cromossomo

5 (5q13-q22) (Xiao et al., 2000) e recentemente uma alteração no cromossomo 11

(11p15) (Zhu et al., 2007). Hart et al. (2002), identificaram no cromossomo 2p21-p22

uma alteração no domínio carboxila-terminal da proteína SOS1 em indivíduos afetados

pela FGH, sugerindo assim, que este gene seria responsável pela FGH. Alterações nesta

23

proteína conduzem a uma prolongada ativação de sinalizadores, como o Ras/MAPK,

envolvidos no processo de controle e diferenciação celular (Jang et al., 2007).

Quando da avaliação genética da FGH associada a outras alterações, poucos

estudos foram realizados e com resultados bastante variados. Alterações

cromossômicas, incluindo duplicações, deleções e/ou outras anormalidades dos

cromossomos 2p13-16, 4q, 14q, 19p e 19q foram relatadas (Macias-Flores et al., 1984;

Fryns, 1996; Hart et al., 2000; Stefanova et al., 2003). Mangino et al. (2003),

descreveram uma família italiana com FGH associada com hipertricose e excluíram à

ligação aos locus nos cromossomos 2 e 5, sugerindo assim que a FGH associada à

hipertricose é geneticamente distinta da FGH isolada. Esses achados genéticos sugerem

que as formas de FGH são heterogêneas e que provavelmente diversos mecanismos

biológicos estão envolvidos na sua etiologia (Coletta e Graner, 2006). Zhu et al. (2007),

estudando duas famílias chinesas, portadoras de FGH isolada, identificaram um novo

locus no cromossomo 11p15, associado à FGH, ratificando o conceito de

heterogeneidade genética da doença. Alterações nessa região cromossômica descrita

têm sido também associadas com tumor de Wilms, rabdomiosarcoma (Falls et al., 1999)

e carcinoma adrenocortical (Henry et al., 1989).

1.4. Alterações dentais relacionadas com a fibromatose gengival

Dentre as alterações dentais relacionadas com a FG encontra-se a amelogênese

imperfeita (AI). Esta condição representa um grupo genético e clinicamente

heterogêneo de desordens hereditárias que afetam a formação do esmalte dentário

(Nusier et al., 2004). Defeitos de esmalte em AI são variáveis, desde deficiência na

formação a defeitos na mineralização e conteúdos protéicos. Normalmente, as AI

24

podem se apresentar como herança autossômica dominante, autossômica recessiva ou

ligada ao cromossomo X (Crawford et al., 2007).

Alguns trabalhos têm descrito casos de várias alterações dentais em combinação

com os defeitos de esmalte, incluindo, não erupção dentária, calcificações pulpares,

reabsorções radiculares e coronárias, hipercementose e taurodontismo. Estudo realizado

por Collins et al. (1999) estabeleceram que a prevalência de anormalidades dentárias

como ausência dental congênita, demora na erupção dental, reabsorção coronária,

reabsorção radicular e calcificações pulpares, assim como densidade quantitativamente

reduzida do esmalte dental foi mais comumente observado nos grupos de indivíduos

com AI comparado aos não afetados.

Aumento gengival também tem sido descrito em associação com AI em poucos

e isolados relatos de casos. Macedo et al. (2005) descreveram um caso de associação

entre AI hipoplásica e hiperplasia gengival. Clinicamente eles observaram vários dentes

apresentando alterações na superfície do esmalte e um aumento gengival generalizado

em ambos os arcos. Histopatologicamente visualizaram um epitélio de revestimento

escamoso estratificado paraceratinizado e um tecido conjuntivo denso, fibroso vascular,

apresentando moderado infiltrado inflamatório, corpos calcificados e ilhas de epitélio

odontogênico. Esses achados não são muito comuns em hiperplasia gengival, o que leva

a se pensar que poderiam estar presentes pela associação desta com a AI. Gunhan et al.

(1995) relataram a ocorrência de numerosas calcificações, depósitos amilóides e ilhas de

epitélio odontogênico na gengiva de três irmãos com FGH, características

microscópicas até então não relatadas em pacientes com esta condição. Recentemente,

Feller et al. (2006) relataram um caso isolado com uma combinação de displasia do

esmalte, múltiplos dentes não erupcionados com extensas lesões pericoronárias,

maloclusão com mordida aberta anterior e pequeno aumento gengival.

25

1.5. Tratamento da fibromatose gengival

Embora, o tratamento realizado para portadores de FGH seja consenso, existem

controvérsias entre os autores com relação ao período exato para se iniciar o tratamento

(Coletta e Graner, 2006). De maneira geral, acredita-se que o melhor momento para se

iniciar os procedimentos cirúrgicos para redução do crescimento gengival, seja após a

completa erupção da dentição permanente (Cuestas-Carnero e Bornancini, 1988).

Contudo, em muitos casos, a não realização do procedimento cirúrgico prévio a erupção

da dentição permanente, pode gerar diversas conseqüências, como retenção da dentição,

dificuldades de fonação e mastigação, estética e má posicionamento dental, além de

dificuldade na higiene bucal (Bozzo et al., 2000).

O tratamento da FGH depende da extensão de envolvimento propiciado pelo

crescimento gengival. Quando o aumento gengival é discreto, a efetiva higiene bucal

profissional e doméstica é suficiente para manter a boa aparência do tecido gengival.

Em crescimentos gengivais moderados e graves, o tratamento atual recomendado é a

combinação de técnicas cirúrgicas periodontais, de gengivectomia e gengivoplastia,

sendo no passado preconizado a extração de todos os dentes para redução do aumento

gengival (Coletta e Graner, 2006).

Tem sido demonstrado que a taxa de recorrência do aumento gengival, após

procedimentos cirúrgicos é mais freqüente em crianças e adolescentes, comparado com

adultos e idosos e também mais comuns em áreas com acúmulo de placa bacteriana

(Kavvadia et al., 2005).

1.6. Miofibroblastos

Miofibroblastos são células mesenquimais que exibem fenótipo híbrido com

características de fibroblastos e de células musculares lisas e caracterizam-se pela

26

elevada expressão de isoformas de α-actina (α-SMA) (Gabbiani, 1992). Essas células

foram primeiramente observadas em tecido de granulação durante os processos de

cicatrização e, posteriormente, em numerosos processos patológicos, incluindo

quelóides e fibromatoses (Desmouliere et al., 2005).

Os miofibroblastos se formam a partir da diferenciação de células

indiferenciadas ou da transdiferenciação de fibroblastos, processo que se inicia com a

aquisição de fibras do estresse composta por actina citoplasmática e a produção de

fibronectina celular; uma variante da fibronectina que está presente durante o

desenvolvimento de muitos órgãos e, com raras exceções, não é encontrada em tecidos

adultos (Desmouliere et al., 2003). Os miofibroblastos quando ativados sintetizam

níveis elevados de proteínas da matriz extracelular, particularmente colágeno, e

reduzidos níveis de metaloproteinases da matriz. Morfologicamente, os miofibroblastos

são caracterizados pela presença de intenso aparato contrátil, contendo um

empacotamento de actina, principalmente α-SMA, associado às proteínas como miosina

e fibras do estresse (Desmouliere et al., 2005).

Diversos estudos demonstraram a presença de células com características de

miofibroblastos em tecidos normais especializados e em uma variedade de condições

alteradas, como na doença de Dupuytren, na pancreatite fibrosa induzida por

ciclosporina A e nas fibroses pulmonar, renal e hepática (Vaquero et al., 1999; Qi et al.,

2005 e Willis et al., 2006). A doença de Dupuytren é uma alteração miofibroblástica

proliferativa caracterizada pelo espessamento de bandas fibrosas da superfície palmar

das mãos e dedos, onde os efeitos proliferativos e fibrinogênicos de TGF-β1 se

apresentam exacerbados (Tomasek et al., 2002). Existem evidências de que a produção

de colágeno por fibroblastos, estimulados por TGF-β1, seja conseqüência da

27

diferenciação em miofibroblastos, que é a aquisição fenotípica necessária para o

aumento da produção de colágeno (Petrov et al. 2002).

Os mecanismos que desencadeiam a transdiferenciação dos miofibroblastos

permanecem desconhecidos, porém estudos demonstraram importante papel para TGF-

β1 neste processo (Fan et al., 1999; Smith et al., 2006). Fan et al. (1999), demonstraram

que TGF-β1 é capaz de promover a transdiferenciação de linhagens celulares de células

epiteliais tubulares de ratos em miofibroblastos. Esses autores demonstraram ainda que

o tratamento com TGF-β1 é acompanhado pela expressão do marcador específico de

miofibroblastos (α-SMA) e uma diminuição na expressão do marcador epitelial E-

caderina. Métodos de bloqueio da síntese de TGF-β1 vêm sendo testados como forma

de tratamento de doenças causadas por fibroses intersticiais (Gressner et al., 2002).

Assim, a maioria dos estudos tem focado nos aspectos da sinalização do TGF-β

que dá origem ao fenótipo diferenciado, com interesse central na expressão do gene

marcador, α-actina de músculo liso (Phan et al. 2008).

28

2. Proposição

2.1. Objetivo Geral

Avaliar as características clínicas, genéticas, imaginológicas e microscópicas da

fibromatose gengival associada a alterações dentais e deficiência mental e a presença de

miofibroblastos na fibromatose gengival idiopática.

2.2. Objetivos Específicos

1. Avaliar as características clínicas da fibromatose gengival associada a alterações

dentais e deficiência mental;

2. Avaliar o padrão de herança genética, por meio da confecção do heredograma da

família em estudo;

3. Avaliar as características imaginológicas da fibromatose gengival associada a

alterações dentais e deficiência mental;

4. Avaliar as características microscópicas da fibromatose gengival associada a

alterações dentais e deficiência mental;

5. Avaliar imunohistoquimicamente a presença de miofibroblastos no tecido gengival de

portadores de fibromatose gengival idiopática.

29

3. Metodologia

O capítulo de “Metodologia” apresenta-se suprimido aqui, pois a presente

dissertação foi confeccionada com a inserção de artigos científicos. Os aspectos

metodológicos encontram-se nos próprios artigos científicos.

O 1º artigo científico intitula-se: “Case reports of a new syndrome associating

gingival fibromatosis and dental abnormalities in a consanguineous family”, enquanto o

2º artigo intitula-se “Idiopathic gingival fibromatosis: clinical features and

immunohistochemical evaluation of myofibroblasts”.

30

4. Resultados

4.1 – Artigo Científico 1

Case reports of a new syndrome associating gingival fibromatosis and dental

abnormalities in a consanguineous family

Key findings

This case series describes a new autosomal recessive syndrome characterized by

gingival fibromatosis, hypoplastic amelogenesis imperfecta, intrapulpal calcifications,

and pericoronal radiolucencies in unerupted teeth.

Abstract

Background/Aim: Gingival fibromatosis (GF) is characterized by fibrotic enlargement

of the gingiva that can be inherited as an isolated trait (named hereditary gingival

fibromatosis) or as component of a syndrome. This article reports one kindred affected

by a syndrome characterized by GF associated with dental abnormalities (DA),

including generalized thin hypoplastic amelogenesis imperfecta (AI).

Methods: To characterize the pattern of inheritance and the clinical features, 70 family

members were examined. Hematoxylin and eosin stain, immunohistochemistry, and

scanning electronic microscopy (SEM) were performed to identify the alterations on

gingiva, teeth and dental follicles.

Results: Examination of the family pedigree demonstrated multiple consanguineous

first cousin marriages and an autosomal recessive trait of inheritance. Four members

demonstrated mild GF in association with DA, including generalized thin hypoplastic

AI, intrapulpal calcifications, delay on tooth eruption, and pericoronal radiolucencies

31

involving unerupted teeth. One out of those 4 patients also had mental retardation (MR).

MR as an isolated feature was observed in 6 members, whereas isolated GF was found

in 1 individual. Combination of gingivectomy and gingivoplasty followed by regular

dental procedures were performed in these patients. Histological examination of the

gingival enlargement revealed a dense connective tissue containing myofibroblasts,

islands of odontogenic epithelium, and calcified psammomatous deposits that by SEM

resembling cementicle-like structures. Pericoronal lesions also showed calcified

psammomatous deposits in association with islands of odontogenic epithelium. Enamel

ultrastructure analysis revealed normal surface alternated by irregular and porous areas.

Conclusion: We propose that these cases represent a new syndrome within the

spectrum of those including GF.

Key words: Gingival fibromatosis; dental abnormalities; generalized thin hypoplastic

amelogenesis imperfecta; autosomal recessive.

Running title: Gingival fibromatosis and dental abnormalities syndrome.

32

Introduction

Gingival fibromatosis (GF) is the overgrowth of the gingiva characterized by na

expansion and accumulation of the connective tissue with occasional presence of

increased number of cells.1 It is induced as a side-effect of systemic drugs, including the

anti-seizure drug phenytoin, the immunesuppressor cyclosporine, and the calcium-

channel-blocker with anti-hypertensive activity nifedipine, or it is hereditary.2,3 As an

inherited disorder, GF may be isolated, in which it is referred as hereditary gingival

fibromatosis (HGF), or part of a genetic syndrome.4 HGF is traditionally considered an

autosomal dominant disease, whereas pedigree analyses of GF syndromic forms are

consistent with either dominant or recessive Mendelian transmission pattern.3 GF as

part of a syndrome is related to hyperthricosis and/or metal retardation syndrome,

Zimmermann-Laband syndrome, Murray-Puretic-Drescher syndrome (juvenile hyaline

fibromatosis), Rutherfurd syndrome, GF with distinctive fácies syndrome, Ramon

syndrome, Cross syndrome, Jones syndrome, and Pune Belly syndrome.3 GF in

association with growth hormone deficiency,5,6 hypothyroidism,7 hearing loss and

supernumerary teeth,8 and more recently, generalized aggressive periodontitis9 were

also described. Amelogenesis imperfecta (AI) is a general term for a number of

conditions that affects enamel formation and/or calcification.10 In most of the cases, an

autosomal dominant mode of inheritance is involved, however, the disease is frequently

found as an autosomal recessive or X-linked disorder.11 Enamel defects in AI are highly

variables, ranging from deficiency on enamel formation to defects in the mineral and

protein content.12 Furthermore, some case reports have described numerous dental

alterations in combination with AI, including unerupted teeth, pulpal calcifications, root

and crown resorption, hypercementosis, and taurodontism.13-15 Gingival enlargement

has also been described in association with AI in few and isolated case reports.16-18

33

Recently, Feller et al.19 reported a single case showing enamel dysplasia, multiple

unerupted teeth with large pericoronal lesions, anterior open bite malocclusion and mild

gingival overgrowth. The present study reports a family spanning 3 generation with

members from consanguineous marriage manifesting a new autosomal recessive

syndrome characterized by GF associated with dental abnormalities (DA), including

generalized thin hypoplastic AI, intrapulpal calcifications, delay of tooth eruption,

pericoronal radiolucencies in unerupted teeth, dental agenesis, and root dilacerations.

Interestingly, 1 individual showed GF and DA in combination with mental retardation

(MR).

Report of cases

The pedigree of the kindred could be reliably constructed for the 3 latest generations

and is depicted in Figure 1. All members were clinically examined, and photographs

and family histories permitted the diagnosis of 4 deceased individuals. The clinical

examination of the 70 descendants revealed that 1 (male) was affected by isolated GF, 3

(1 male and 2 females) showed GF associated with DA, and 1 (female) member had GF

and DA in association with MR. Six members (1 male and 5 females) presented with

isolated MR. All affected members came from consanguineous marriage, except for the

member with isolated GF. The member with isolated GF is married with a first cousin

and has 5 daughters (1 with MR) without signs of GF. Pedigree analysis provides ample

evidence that GF and DA were transmitted together by an autosomal recessive gene.

Patients described in this study are numbered in Figure 1, and a summary of the clinical

features is depicted in Table 1.

34

Patient 1: The proband, a 19-year-old female, was referred to the University of Montes

Claros Dental Clinic for complete dental treatment. Her mother stated that she has never

seen a dentist before. She is the second of 5 siblings (3 affected by MR) of a first cousin

marriage (Fig. 1). She was born at full term after normal pregnancy, and there were no

perinatal complications. She was hypotonic as an infant and showed a delay in

acquiring developmental milestones. Her speech was significantly delayed. She has

MR, but her social development and bonding skills are satisfactory. She had never

experienced seizures or suffered from deafness. There were no signs of hypertricosis or

history of renal problems. Intraoral examination detected a generalized enlargement of

the gingival tissue and the absence of several permanent teeth. The gingival overgrowth

was mild without significant degree of inflammation, and was most evident in the molar

region. Her mother informed that the gingiva started to overgrowth after eruption of the

permanent dentition. The erupted teeth showed a yellow discoloration with thin enamel

of normal hardness. The erupted teeth were spaced and the molars showed a significant

reduction in size. The upper central incisors presented a semi-lunar shaped defect. The

radiographic examination showed upper right third molar agenesis, microdontia of the

other third molars, and delayed eruption of several teeth. No density differences

between enamel and dentin was observed. Intrapulpal calcifications in both erupted and

unerupted teeth were evident. Unerupted teeth had large and well-defined pericoronal

radiolucencies. The roots of the lower left premolars appeared dilacerated, and the lower

second molars showed distorted and poorly developed roots.

Patient 2: The patient 2 is a 13-year-old young woman cousin of the patient 1, who was

born with 32 weeks of gestational development via cesarean. There were no perinatal

complications. She has a twin sister and 1 brother similarly affected, 2 healthy twin

35

brothers, and 1 deceased (undetermined) brother (Fig. 1). The systemic exploration was

normal, and her parents were first degree cousin. Her medical history was unremarkable

and she never taken any medication associated with gingival overgrowth. She did not

present with any mental impairment or hypertrichosis. Intraoral examination showed a

dentition with yellow discolored teeth with diasthemas and thin enamel of normal

hardness. The gingiva was enlarged in both arches, and the posterior áreas were more

severely affected (Fig. 2). Radiographically, it was impossible to visualize enamel or

differentiate it from dentin. Obvious coronal and radicular pulpal calcifications were

present in numerous teeth. The upper and lower second molars had pericoronal

radiolucent zones delineated by sclerotic borders. Periapical radiograph of the posterior

lower left area demonstrated a calcificated material in the gingiva located between the

second pre-molar and the first molar.

Patient 3: Patient 3 is twin sister of the patient 2 and cousin of the patient 1. Her mother

described the pregnancy as normal, without risk of fetal loss or use of medications. Her

weight and height were considered to be within normal limits for a 32-week girl. Her

medical history was unremarkable. She did not show any mental impairment. Clinical

examination revealed generalized, but mild gingival overgrowth involving both the

maxillary and mandibular arches, with morphologically altered teeth. Gingival

enlargement had normal color, fibrous consistency, and was most evident in the anterior

region. The permanent dentition showed yellow color, thin enamel and large inter-

proximal spaces. Radiographic examination revealed no density difference between

enamel and dentin, but the dentin showed normal radiodensity. Periapical radiographs

demonstrated coronal and radicular intrapulpal calcifications, which were needle-shaped

36

in the anterior teeth. Left upper third molar was absent, and lower second molars had

radiolucent pericoronal lesions with partially sclerotic margins.

Patient 4: This patient is an 18-year-old man, the older brother of the patient 2 and 3.

He was born at full term by a normal spontaneous vertex delivery. There were no

perinatal complications. All physical findings were within normal limits, and he denied

to have taken any medication associated with gingival overgrowth. He has previous

history of several dental extractions. Clinical examination revealed a mild generalized

gingival overgrowth and a disturbed eruption pattern, with retention of deciduous teeth.

Both deciduous and permanent teeth that were visible had a distinct yellow color and

their surfaces were thin but hard. The teeth were widely spaced without contact points.

The lower left first molar crown was partially destroyed and a periapical lesion was

evident (Fig. 3). Similar to the other cases, it was impossible to differentiate enamel

from dentin, coronal and radicular pulpal calcifications were observed, and some

unerupted teeth had pericoronal radiolucent areas delineated by sclerotic borders.

Treatment

The initial treatment consisted of oral hygiene orientation and plaque control. An

improvement in oral hygiene was observed for all patients with the exception of patient

1, whose mental and motor impairment contributed to continued plaque accumulation.

The conservative surgical treatment consists of quadrant-byquadrant internal bevel

gingivectomy in association with gingivoplasty, followed by 0.12% chlorhexidine oral

rinses twice a day for 2 weeks after each surgery. The interval between surgeries was of

2-3 months. After the last gingivectomy and post-surgical follow-up visit, the patient

returned periodically for observation and regular dental treatment, including dental

37

filling, dental extractions and prosthesis rehabilitation. Implant therapy is under

consideration for patient 4. Scaling and prophylaxis are performed every six months.

There was no recurrence of the gingival enlargement after 18 months. Genetic

counseling was given to all affected family members and their parents. Information

regarding the pattern of gene transmission, possible ways of expression, and

consequences of phenotypes were emphasized.

Histopathological and ultrastructural features

The tissues removed during the surgical procedures, gingiva and hyperplastic dental

follicles, were fixed in formalin, embedded in paraffin, and sections used for

hematoxylin and eosin (HE) stain or immunostaining as previously described.20 Teeth

were cut sagittally in two halves in a mesio-distal direction with a low-speed saw

microtome. One half was decalcified in 5% nitric acid prior paraffin embedded, and the

other half was analyzed by scanning electron microscopy (SEM) at 15 kV*. The

histological features of the overgrowth gingiva were very similar among affected

members. The microscopic analysis showed a well-structured epithelium with elongated

and thin papillae inserted in fibrous connective tissue. Areas with mild chronic

inflammatory infiltrates were observed in the subepithelial connective tissue. The

connective tissue showed an increased amount of collagen fiber bundles running in all

directions (Fig. 4A). Immunohistochemical analysis against α-SMA showed a broadly

presence of myofibroblasts in the lesional connective tissue (Fig. 4D). Large numbers of

spherical and laminated calcified structures resembling dysplastic enamel or

cementicles, and nests of epithelium resembling odontogenic epithelium rests were

observed (Fig. 4B). The nest cells were strongly reactive for the monotypic antibody

anti-CK19, confirming the odontogenic origin (Fig. 4C). We also performed a SEM

38

examination using 5 µm paraffin section etched or not with 2% EDTA as previously

described by Kodaka & Debari.21 Untreated calcified structures demonstrated a globular

outside surface and a glass-like aspect with several cracks in the inside portion (Fig. 5A

and B). After EDTA etching, the calcified structures demonstrated appositional

laminations with an increased porosity in the center, revealing a cementoid origin for

the calcifications (Fig. 5C and D). The histopathological analysis of the hyperplastic

follicles of the impacted teeth showed mature fibrous connective tissue containing

various odontogenic epithelial islands associated with psammomatus calcifications.

Those features were quite similar to those observed in the gingival tissue. Three teeth

were selected for histological and SEM examination. One tooth was extracted due to a

carious lesion, whereas the other two were unerupted ones. In all teeth, HE staining of

the decalcified halves revealed normal dentin and cementum, and an obliteration of the

pulpal chambers. The pulpal chamber of the decay tooth was filled in part by reparative

dentin and in part by abnormal dentin, characterized by few and irregular tubules and

áreas of globular appearance (Fig. 6A and B). The unerupted teeth showed the pulpal

chambers only obliterated by amorphous dentin (Fig. 6C and D). Enamel ultrastructure

of the unerupted teeth revealed a thin irregular enamel layer with normal structure

alternated by rough areas with severe porosity and irregularly shaped empty spaces (Fig.

7A and B). The irregular areas of enamel have a laminated and shedding appearance

with unrecognizable ultrastructure (Fig. 7C). Enamel was present only at the cervical

area of the erupted tooth.

* Scanning electron microscope Jeol JSM 5600 LV, Japan.

39

Discussion

This report documents a large family affected by an undescribed syndrome

characterized by GF and DA with thin generalized hypoplastic AI as the main dental

feature. Other variant features included pulpal calcifications, root dilacerations,

hypodontia, delay of tooth eruption, and pericoronal radiolucencies in unerupted teeth.

In this family, there was no presence of DA in family members without GF, while 1

subject was diagnosed with isolated GF. The presence of GF in association with DA, in

particular hypoplastic amelogenesis imperfecta, intrapulpal calcifications and

pericoronal radiolucencies in unerupted teeth, in 4 family members suggests that these

traits are segregating together and represent the expression of a single condition. It is

known that isolated GF may result from a single gene mutation, whereas syndromic

forms may result from alterations of multiple genes or single gene dosage effect.22 On

the other hand, MR was superimposed with GF and DA in 1 patient, and was detected

as an isolated feature in 6 descendants, suggesting that the coexistence of MR and GF

plus DA may represent a coincidence of 2 conditions in the same family with multiple

consanguineous marriages. MR in the offspring is a common feature in consanguineous

marriages.23 GF as an inheritance disorder shows a heterogeneous pattern of

transmission. Chromosomal abnormalities reported for syndromes with GF include

duplications, deletions, and/or other anomalies of chromosomes 2p13-16, 4q, 8, 14q,

19p, 19q, and Xq.24-28 Mangino et al.29 described an Italian family affected by GF in

association with hypertrichosis, and linkage genetic analysis excluded a connection to

previously mapped HGF loci on chromosomes 2 (GINGF on 2p21-22 and GINGF3 on

2p22.3-p23.3) and 5 (GINGF2 on 5q13-q22), suggesting that syndromes with GF are

genetically different from isolated GF which are traditionally transmitted by an

autosomal dominant gene.30 The family described here is consistent with an autosomal

40

recessive mode of inheritance of GF and DA with history of consanguinity in all

affected members. The clinical findings of the patients described here were consistent

with genetic GF. GF can vary from focal sites of gingival enlargement to generalized

involvement, and the degree of overgrowth may vary from slight to severe.31 The

gingival enlargement may result in both esthetic and functional problems for affected

individuals.3 The patients exhibited a generalized but mild gingival overgrowth, and the

posterior region of both maxilla and mandible were severely affected in patients 1 and

2, while that in patients 3 and 4 was mainly evident in the anterior region. None of the

affected patients show functional discomforts, but they were unhappy with the

appearance of their gingiva, particularly the twins. In all 4 examined cases, their

mothers stated that the gingival enlargement was seen during eruption of the permanent

teeth. It is known from previous reported cases that the condition usually begins at the

time of eruption of the permanent dentition 32, but can develop with the eruption of the

deciduous dentition and rarely is seen at birth.33 The histological features of the gingiva

were also consistent with previous reported cases.34 The gingival tissues were composed

of fibrous connective tissue with collagen fiber bundles running in all directions, and all

samples contained a significant proportion of myofibroblasts as revealed by α-SMA

immunohistochemical staining. We have previous demonstrated that myofibroblasts, the

main cellular type involved in extracellular matrix deposition in fibrotic diseases, is

associated with HGF etiopathology.35,36 We have also observed a broadly distribution of

calcified psammomatous structures associated with odontogenic epithelial remnants in

the overgrown gingiva. There is only one case report describing the occurrence of

numerous calcifications and islands of odontogenic epithelium in the gingiva of patients

affected by isolated GF.37 SEM examination of the calcified structures revealed

appositional laminations with a globular and porous central core which is often

41

observed in cementicles in the root furcations.21 Regarding the formation of these

cementicle-like structures, it is presumed that they were formed by the activity of the

odontogenic epithelial cells, which were in close contact with the calcifications. Other

possible origin would be bone metaplasia or dystrophic calcifications, but no necrotic

tissue was observed in these cases. Farrer-Brown et al.38 described the presence of

numerous trabeculae of metaplastic bone and few small calcified particles in the gingiva

of 4 members from one family affected by HGF. Enamel alterations were compatible

with generalized thin hypoplastic autosomal recessive AI.12 Affected members showed

teeth with yellow color, smooth surface, lack of contact points, no enamel apparent

radiographically, and thin enamel layer with normal structure alternated by rough areas

with severe porosity and irregularly shaped empty spaces. AI has been described to

occur as part of several syndromes,10 but there are only few reports in the literature

demonstrating the association between AI and gingival overgrowth.16-18 However, those

were isolated cases and inflammation caused by plaque accumulation seems to be the

inductor of the gingival enlargement in most of the cases. Generalized gingival

overgrowth has also been described in a patient affected by the syndrome associating AI

with nephrocalcinosis.39 None of our patients had any history of renal impairment, and

all of them had normal renal ultrasound scans and normal calcium levels in the serum.

Recently, Feller et al.19 reported a case quite similar to ours, affecting a 12-year-old

male who had enamel dysplasia, odontogenic fibroma-like hamartomas, teeth with

pulpal calcifications, and mild and generalized gingival overgrowth. The authors

reported that the patient has 5 siblings and the mother stated that none of them or any

other family member has any similar oral manifestations. Previous reports of this

association reported by Feller et al.19 have been described in the literature, but that was

the first one to identify gingival enlargement.15,40,41 Interestingly enough, all 5 reports of

42

this association are single cases originated from South Africa. The histopathological

features of the gingival tissue presented here were very similar to those reported by

Feller et al.19 with the exception of intense mixed acute and chronic inflammatory

infiltrate extending into the epithelium, which was associated with hyperplastic

changes, presented in their case. Previous evaluation of the morphological pattern of the

gingival epithelium of isolated GF tissues demonstrated that hyperplastic alterations are

only found in inflamed specimens, whereas áreas without inflammation showed only

long and deep epithelial papillae.34 Microscopic examination of the dental follicles of

the impacted te named as odontogenic fibroma-like hamartomas. The hyperplastic

dental follicles consisted of fibrous connective tissue with odontogenic remnants and

cementicle-like structures similar to that in the gingival overgrowth. Furthermore, the

presence of unerupted teeth in the affected patients is probably due to the obstruction

caused by the pericoronal lesions. Similar hyperplastic alterations in the dental follicles

were observed in AI, nephrocalcinosis and hypocalciuria syndrome.39 A notable feature

in our patients was the intrapulpal calcifications affecting most of the teeth, whether

erupted or unerupted. Most of the calcifications were limited to coronal pulpal chamber,

and presented a needleshaped. In erupted teeth, the pulpal chamber was filled by an

association of reparative dentin, caused probably by the enamel attrition, and abnormal

dentin, characterized by few and irregular tubules and areas of globular appearance,

whereas unerupted teeth were filled by this amorphous dentin only. Intrapulpal

calcification in AI patients is a common feature, although those are most likely caused

by reparative dentin deposition or pulpal degeneration due to vascular insufficiency

resulting from hypercementosis.13,19 In the examined teeth, dentin and cementum were

normal, and the presence of intrapulpal calcifications in unerupted teeth suggest that the

pulpal morphogenesis is also affected in this syndrome. However, further investigation

43

is needed to elucidate the mechanisms behind this phenotype. GF may result in both

esthetic and functional problems for affected individuals, and the only treatment

available is surgical resection of the overgrowth tissue, but recurrence is anticipated.3

Recently, we demonstrated in vitro that interferon gamma inhibits significantly HGF

myofibroblastic cell metabolism as revealed by the decreased synthesis of type I

collagen, supporting that locally delivery of this cytokine may be useful to prevent the

gingival overgrowth of affected patients.36 Our patients were unhappy with the

appearance of their gingiva and were surgically treated by a combination of

gingivectomy and gingivoplasty. Since it has been demonstrated that recurrence is faster

in areas with dental plaque accumulation,42,43 we put the patients in a combination of

monthly examination with professional cleaning and oral hygiene instructions, and

recurrence has not been seen after 18 months. Restorative and rehabilitation dentistry

are more complex and extensive in patients affected by AI. In conclusion, one previous

report of gingival overgrowth associated with enamel dysplasia, odontogenic fibroma-

like hamartomas and intrapulpal calcifications shows similarities to this family.

Nevertheless, it was a single case report. If so doing, we believe that the above-

mentioned features are sufficiently unique to characterize a new autosomal recessive

syndrome associating GF and DA, including generalized thin hypoplastic AI. MR

participation needs further analysis. Finally, genetic investigation is essential to clarify

the defect behind this syndrome.

44

References

1. Takagi M, Yamamoto H, Mega H, Hsieh KJ, Shioda S, Enomoto S. Heterogeneity in

the gingival fibromatoses. Cancer 1991;68:2202-2212.

2. Dongari-Bagtzoglou A. Drug-associated gingival enlargement. J Periodontol

2004;75:1424-1431.

3. Coletta RD, Graner E. Hereditary gingival fibromatosis: a systematic review. J

Periodontol 2006;77:753-764.

4. Gorlin R, Cohen M, Henekam R. Syndromes of the head and neck., ed. 4th. New

York: Oxford University Press (Oxford Monographs on Medical Genetics); 2001:847-

857.

5. Bhowmick SK, Gidvani VK, Rettig KR. Hereditary gingival fibromatosis and growth

retardation. Endocr Pract 2001;7:383-387.

6. Oikarinen K, Salo T, Kaar ML, Lahtela P, Altonen M. Hereditary gingival

fibromatosis associated with growth hormone deficiency. Br J Oral Maxillofac Surg

1990;28:335-339.

7. Chaikin BS. Report of a case of fibromatosis of the gingivae associated with a

hypothyroidism. Periodontics 1965;3:306-309.

8. Wynne SE, Aldred MJ, Bartold PM. Hereditary gingival fibromatosis associated with

hearing loss and supernumerary teeth--a new syndrome. J Periodontol 1995;66:75-79.

9. Casavecchia P, Uzel MI, Kantarci A, et al. Hereditary gingival fibromatosis

associated with generalized aggressive periodontitis: a case report. J Periodontol

2004;75:770-778.

10. Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J

Rare Dis 2007;2:1-11.

45

11. Aldred MJ, Savarirayan R, Crawford PJ. Amelogenesis imperfecta: a classification

and catalogue for the 21st century. Oral Dis 2003;9:19-23.

12. Nusier M, Yassin O, Hart TC, Samimi A, Wright JT. Phenotypic diversity and

revision of the nomenclature for autosomal recessive amelogenesis imperfecta. Oral

Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:220-230.

13. Lykogeorgos T, Duncan K, Crawford PJ, Aldred MJ. Unusual manifestations in X-

linked amelogenesis imperfecta. Int J Paediatr Dent 2003;13:356-361.

14. Collins MA, Mauriello SM, Tyndall DA, Wright JT. Dental anomalies associated

with amelogenesis imperfecta: a radiographic assessment. Oral Surg Oral Med Oral

Pathol Oral Radiol Endod 1999;88:358-364.

15. Peters E, Cohen M, Altini M. Rough hypoplastic amelogenesis imperfecta with

follicular hyperplasia. Oral Surg Oral Med Oral Pathol 1992;74:87-92.

16. Macedo GO, Tunes RS, Motta AC, et al. Amelogenesis imperfecta and unusual

gingival hyperplasia. J Periodontol 2005;76:1563-1566.

17. Atasu M, Biren S, Mumcu G. Hypocalcification type amelogenesis imperfecta in

permanent dentition in association with heavily worn primary teeth, gingival

hyperplasia, hypodontia and impacted teeth. J Clin Pediatr Dent 1999;23:117-121.

18. Brennan MT, O'Connell BC, Rams TE, O'Connell AC. Management of gingival

overgrowth associated with generalized enamel defects in a child. J Clin Pediatr Dent

1999;23:97-101.

19. Feller L, Jadwat Y, Bouckaert M, Buskin A, Raubenheimer EJ. Enamel dysplasia

with odontogenic fibroma-like hamartomas: review of the literature and report of a case.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:620-624.

46

20. Coletta RD, Cotrim P, Almeida OP, Alves VA, Wakamatsu A, Vargas PA. Basaloid

squamous carcinoma of oral cavity: a histologic and immunohistochemical study. Oral

Oncol 2002;38:723-729.

21. Kodaka T, Debari K. Scanning electron microscopy and energy-dispersive X-ray

microanalysis studies of afibrillar cementum and cementicle-like structures in human

teeth. J Electron Microsc (Tokyo) 2002;51:327-335.

22. Hart TC, Pallos D, Bozzo L, et al. Evidence of genetic heterogeneity for hereditary

gingival fibromatosis. J Dent Res 2000;79:1758-1764.

23. Abdulrazzaq YM, Bener A, al-Gazali LI, al-Khayat AI, Micallef R, Gaber T. A

study of possible deleterious effects of consanguinity. Clin Genet 1997;51:167-173.

24. Macias-Flores MA, Garcia-Cruz D, Rivera H, et al. A new form of hypertrichosis

inherited as an X-linked dominant trait. Hum Genet 1984;66:66-70.

25. Shashi V, Pallos D, Pettenati MJ, et al. Genetic heterogeneity of gingival

fibromatosis on chromosome 2p. J Med Genet 1999;36:683-686.

26. Hart TC, Zhang Y, Gorry MC, et al. A mutation in the SOS1 gene causes hereditary

gingival fibromatosis type 1. Am J Hum Genet 2002;70:943-954.

27. Fryns JP. Gingival fibromatosis and partial duplication of the short arm of

chromosome 2 (dup(2)(p13-->p21)). Ann Genet 1996;39:54-55.

28. Stefanova M, Atanassov D, Krastev T, Fuchs S, Kutsche K. Zimmermann-Laband

syndrome associated with a balanced reciprocal translocation t(3;8)(p21.2;q24.3) in

mother and daughter: molecular cytogenetic characterization of the breakpoint regions.

Am J Med Genet A 2003;117:289-294.

29. Mangino M, Pizzuti A, Dallapiccola B, Bonfante A, Saccilotto D, Cucchiara E.

Hereditary gingival fibromatosis (HGF) with hypertrichosis is unlinked to the HGF1

and HGF2 loci. Am J Med Genet A 2003;116:312-314.

47

30. Martelli-Junior H, Lemos DP, Silva CO, Graner E, Coletta RD. Hereditary gingival

fibromatosis: report of a five-generation family using cellular proliferation analysis. J

Periodontol 2005;76:2299-2305.

31. Bozzo L, Machado MA, de Almeida OP, Lopes MA, Coletta RD. Hereditary

gingival fibromatosis: report of three cases. J Clin Pediatr Dent 2000;25:41-46.

32. Baptista IP. Hereditary gingival fibromatosis: a case report. J Clin Periodontol

2002;29:871-874.

33. Bozzo L, de Almedia OP, Scully C, Aldred MJ. Hereditary gingival fibromatosis.

Report of an extensive four-generation pedigree. Oral Surg Oral Med Oral Pathol

1994;78:452-454.

34. Araujo CS, Graner E, Almeida OP, Sauk JJ, Coletta RD. Histomorphometric

characteristics and expression of epidermal growth factor and its receptor by epithelial

cells of normal gingiva and hereditary gingival fibromatosis. J Periodontal Res

2003;38:237-241.

35. Bitu CC, Sobral LM, Kellermann MG, et al. Heterogeneous presence of

myofibroblast in hereditary gingival fibromatosis. J Clin Periodontol 2005;33:393-400.

36. Sobral LM, Montan PF, Martelli-Junior H, Graner E, Coletta RD. Opposite effects

of TGF-beta1 and IFN-gamma on transdifferentiation of myofibroblast in human

gingival cell cultures. J Clin Periodontol 2007;34:397-406.

37. Gunhan O, Gardner DG, Bostanci H, Gunhan M. Familial gingival fibromatosis

with unusual histologic findings. J Periodontol 1995;66:1008-1011.

38. Farrer-Brown G, Lucas RB, Winstock D. Familial gingival fibromatosis: na unusual

pathology. J Oral Pathol 1972;1:76-83.

48

39. Paula LM, Melo NS, Silva Guerra EN, Mestrinho DH, Acevedo AC. Case report of

a rare syndrome associating amelogenesis imperfecta and nephrocalcinosis in a

consanguineous family. Arch Oral Biol 2005;50:237-242.

40. van Heerden WF, Raubenheimer EJ, Dreyer AF, Benn AM. Amelogenesis

imperfecta: multiple impactions associated with odontogenic fibromas (WHO) type. J

Dent Assoc S Afr 1990;45:467-471.

41. Raubenheimer EJ, Noffke CE. Central odontogenic fibroma-like tumors,

hypodontia, and enamel dysplasia: review of the literature and report of a case. Oral

Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:74-77.

42. Kavvadia K, Pepelassi E, Alexandridis C, Arkadopoulou A, Polyzois G, Tossios K.

Gingival fibromatosis and significant tooth eruption delay in an 11-year-old male: a 30-

month follow-up. Int J Paediatr Dent 2005;15:294-302.

43. Ramer M, Marrone J, Stahl B, Burakoff R. Hereditary gingival fibromatosis:

identification, treatment, control. J Am Dent Assoc 1996;127:493-495.

49

4.2 – Artigo Científico 2

Idiopathic gingival fibromatosis: clinical features and immunohistochemical

evaluation of myofibroblasts

Abstract

Backgroung/Aim: Gingival fibromatosis is an enlargement of the gingival tissue

characterized by an excessive accumulation of extracellular matrix, predominantly type

I collagen. It is induced as a side-effect of systemic drugs, including the anti-seizure

drug phenytoin, the immunesuppressor cyclosporine, and the calcium-channel-blocker

with anti-hypertensive activity nifedipine, or it is hereditary. However, in some cases,

the overgrowth of the gingival is idiopathic; these cases its pathogenesis remains

unknown. Myofibroblasts are cells related to fibroblasts and exhibit a hybrid phenotype

between fibroblasts and smooth muscle cells. These cells are characterized by

expression of the specific smooth muscle isoform of α-actin (α-SMA) and, when

activated, synthesize high levels of extracellular matrix proteins, particularly collagen.

This paper reports two cases of idiophatic gingival fibromatosis, and discusses the

diagnosis, histopathological features, treatment and immunohistochemical evaluation of

myofibroblasts this condition.

Materials and Methods: Two patients (one children and one adult) was diagnosed as

having idiophatic gingival fibromatosis because her medical and family histories were

unremarkable, her medical history was not indicative of drug-induced gingival

enlargement or hormonal changes and there was no evidence of history of consanguinity

to suggest autosomal recessive inheritance or genetic transmission. Both were referred

to the Stomatology Clinic at State University of Montes Claros, Dental School, Montes

50

Claros – Minas Gerais, due to fibrous gingival overgrowth. The treatment of patients

consisted of quadrant-by-quadrant gingivectomy/gingivoplasty technique, followed by

0.25% chlorhexidine oral rinses twice a day for two weeks after each surgery. The

tissues removed during surgical procedures were fixed in formalin, embedded in

paraffin, and sections used for hematoxylin and eosin and Mason tricromic stain. To

determine the presence of myofibroblasts in the overgrowth tissues we performed

immunohistochemistry against α-SMA protein.

Results: The histological examination of the gingival tissues from both cases revealed

mild epithelial hyperplasia with long rete pegs and marked increase in the dense fibrous

connective tissue. The Mason tricromic technique revealed wide bundles of collagen

strongly stained. These analysis of immunohistochemistry revealed that idiophatic

gingival fibromatosis tissue samples were negative for α-SMA in the connective tissue,

except in the smooth muscle of the blood vessel walls (internal positive control).

Conclusions: In all two cases, we trended toward a more conservative approach. In

both cases, there no recurrence of gingival enlargement. The first case postsurgical

follow-up is of 4 years and second case the follow-up is of 1 year. Recently, we

demonstrated that the presence of myofibroblasts is heterogeneous in two families with

hereditary gingival fibromatosis. In our two cases of idiophatic gingival fibromatosis

gingival tissues as revealed by immunohistochemical were negative for α-SMA in the

connective tissue, except in the smooth muscle of the blood vessel walls (internal

positive control). Such variations may be attributed to subsets of fibroblasts that exist in

the gingival and periodontum. Given the fact that α-SMA is the specific marker of

myofibroblasts, these results strongly suggest that myofibroblasts are involved not in

gingival overgrowth in two cases reported here of idiophatic gingival fibromatosis.

51

Keywords: Idiopathic gingival fibromatosis; gingival overgrowth;

immunohistochemistry, myofibroblasts.

52

Introduction

Gingival fibromatosis (GF) is the overgrowth of the gingival characterized by an

expansion and accumulation of the connective tissue with occasional presence of

increased number cells.24 It is induced as a side-effect of systemic drugs, including the

anti-seizure drug phenytoin, the immunesuppressor cyclosporine, and the calcium-

channel-blocker with anti-hypertensive activity nifedipine, or it is hereditary.11

However, in some cases, the overgrowth of the gingival is idiopathic; this cases its

pathogenesis remains unknown.23

Most idiopathic hyperplasias are probably caused by a genetic disorder and

should, therefore, not be called idiopathic, as the cause is “a genetic disorder”.

However, for the moment it has not been proven on which gene this genetic disorder is

located, so all hyperplasia without cause should still be described as idiopathic, even if

the hyperplasia is seen in the same family without any other symptoms.7

Myofibroblasts are cells related to fibroblasts and exhibit a hybrid phenotype

between fibroblasts and smooth muscle cells. 12 These cells are characterized by

expression of the specific smooth muscle isoform of α-actin (α-SMA) and, when

activated, synthesize high levels of extracellular matrix proteins, particularly collagen.12

Several reports have shown the presence of cells with myofibroblastic features in

specialized normal tissues and in a variety of pathological situations, such as

Dupuytren’s disease, cyclosporine-induced pancreatic fibrosis, and pulmonary, renal

and hepatic fibrosis.1,4,13 Recently, we showed for first time the presence of

myofibroblasts in hereditary gingival fibromatosis (HGF) and sindromic gingival

fibromatosis (SGF).5,19

Many studies have shown increased transcriptional and translational levels of

type I collagen in both tissue and fibroblasts cultures derived from of HGF patients.8,20

53

Furthermore, HGF fibroblasts produce excessive amounts of TGF-β120 which is, in

association with an elevated synthesis of collagen, an intrinsic characteristic of

myofibroblasts.12 As overgrowth of the gingival tissue provides an excellent model for

study of connective tissue fibrosis. This paper reports two cases of idiophatic gingival

fibromatosis, and discusses the diagnosis, histopathological features, treatment and

immunohistochemical evaluation of myofibroblasts this condition.

Case report 1

A ten-year-old brown boy was referred to the Stomatology Clinic at State

University of Montes Claros, Dental School, Montes Claros – Minas Gerais, due to

pronounced fibrous gingival overgrowth. Clinical examination revealed generalized and

severe gingival overgrowth involving both the maxillary and mandibular arches, with

morphologically normal teeth (Fig. 1). The gingiva was pink, and its firm, dense,

fibrous consistency caused difficulty in tooth eruption and inadequate position dental.

The patient had difficulty maintaining adequate oral self care hygiene. Gingival

enlargement had first been noticed months after birth, but it was evident during the

period of deciduous dentition. Panoramic radiograph did not reveal any bone alteration.

He had a marked open and cross bite with dramatic flaring prevented normal lip closure

(Fig. 2).

The systemic exploration the patient was normal. The mother described the

pregnancy as normal, without risk of fetal loss or use of medications. He denied taking

any medications associated with gingival overgrowth and his weight and height were

considered to be within normal limits. He did not appear to have any mental

impairment. The patient was unhappy with the appearance of his gingiva. His mother

54

and father had absence of a relevant medical history. The patient has two brothers and

without gingival alteration presence in both.

The treatment of boy consisted of quadrant-by-quadrant

gingivectomy/gingivoplasty technique with periodontal, followed by 0.25%

chlorhexidine oral rinses twice a day for two weeks after each surgery. After the last

gingivectomy and post-surgical follow-up visit, the patient returned periodically for

observation. Scaling and prophylaxis are performed every six months.

Case report 2

A thirty-year-old caucasian man was referred for evaluation in Service due to

gingival fibrous enlargement varying from mild to moderate. The overgrowth tissue

affected buccal and lingual/palatal aspects, involving both the maxilla and mandible

(Fig 3). The mucosa was pink and firm to probing. The gingival hyperplasia caused

difficulties to dental biofilm removal and in these areas was observed signals of

inflammation. The patient had difficulty maintaining adequate oral self care hygiene.

The panoramic radiographic does not show any misformed teeth and anodontia. The

systemic exploration was normal. His medical history was unremarkable and he never

taken any medication associated with gingival overgrowth. He did not appear to have

any mental impairment or hypertrichosis. He has three brothers any without alteration

gingival. The mother and father not have history of consanguineous wedding. The

treatment was similar patient case 1.

Histopathological features

The tissues removed during gingivectomy/gingivoplasty surgical procedures

were fixed in formalin, embedded in paraffin, and sections used for hematoxylin and

55

eosin (H&E) stain. The histological examination of gingival overgrowth tissue

specimens revealed mild epithelial hyperplasia with longs rete pegs and marked

increase in the dense fibrous connective tissue in both cases (Fig 4). The Mason

Tricromic technique revealed wide bundles of collagen strongly stained in blue (Fig 5).

To determine the presence or not of myofibroblasts in IGF tissue specimens, we

performed immunohistochemistry against α-SMA protein. Immunostaining was

performed using 3-µm sections from 10% formalin-fixed, paraffin-embedded

specimens. After dewaxing and hydration in graded alcohol solutions, the sections were

treated with 3% H2O2, followed by incubation with 10 mM citric acid, pH 6.0, in a

microwave for 24 min., divided into two cycles for antigen retrieval. After washing with

phosphate-buffered saline (PBS), the sections were treated with 1% bovine serum

albumin (BSA) in PBS for 1 h and then incubated with monoclonal mouse anti-α-SMA

diluted 1:200, followed by the ABC method (Dako Corp.). Reactions were developed

by incubating the sections with 0.6 mg/ml 3,3”-diaminobenzidine tetrahydrochloride

(Sigma, St. Louis, MO, USA) containing 0.01% H2O2. Control reactions performed by

the omission of the primary antibodies did not show any staining. This analysis of

immunohistochemistry revealed that IGF tissue samples (n=2) were negative for α-

SMA in the connective tissue, except in the smooth muscle of the blood vessel walls

(internal positive control) (Fig 6).

Discussion

Although the underlying mechanisms of the gingival fibrosis that characterize

HGF and IFG remain unclear, it been proposed that gingival overgrowth develops

through activation or selection of resident tissue fibroblasts, phenotypically

characterized by increased proliferation, low levels of extracellular matrix-degrading

56

metalloproteinases l (MMP-1 and MMP-2), and abnormally high collagen

production.9,10 Futhermore, the autocrine stimulation by excessive amounts of TGF-β1

produced by HGF cells seems to contribute to these phenotypes.2,20 Morphologic and

quantitative analysis of the IGF biopsies showed a higher collagen content in the

gingival connective compartment in IGF than normal gingival. This finding may

account for the enlargement of the gingival tissue.15 Recently, Kather et al. (17)

indicated that there is a significant increase in the area fraction of collagen in 3 HGF

families. However, the relative numbers of gingival fibroblasts differ in the different

HGF types. These differences may reflect different forms of HGF, consistent with the

genetic heterogeneity that characterizes HGF conditions.17

Myofibroblasts are very specialized cells with a hybrid phenotype between

fibroblasts and smooth muscle cells, and are characterized by expression of the specific

smooth muscle isoform of α-actin (α-SMA).14 Those cells are present transiently during

wound healing, where they play essential roles in wound contraction and connective

tissue restoration.12 In contrast, they are persistent in fibrotic lesions leading for the

excessive collagen accumulation.13 As summarized above, myofibroblasts could play a

role in HGF, because HGF fibroblasts display several features that are intrinsic of

myofibroblasts including activated phenotype in the presence of elevated levels of TGF-

β1.

Recently, we demonstrated that the presence of myofibroblasts is heterogeneous

in two families with HGF.5 Interestingly, α-SMA was detected in low levels in vitro in

cultures from HGF family 1 and normal gingival but not in vivo, which is probably due

to the stress fiber induction associated with cellular cultures. In family 2, all HGF

gingival tissues as revealed by immunohistochemical staining against α-SMA and was

detected in high levels in vitro in cultures from HGF family 2. In our two cases of IGF

57

gingival tissues as revealed by immunohistochemical were negative for α-SMA in the

connective tissue, except in the smooth muscle of the blood vessel walls (internal

positive control). Such variations may be attributed to subsets of fibroblasts that exist in

the gingival and periodontum.21 Given the fact that α-SMA is the specific marker of

myofibroblasts, these results strongly suggest that myofibroblasts are involved not in

gingival overgrowth in two cases reported here of IGF.

Two patients (one children and one adult) was diagnosed as having “idiophatic”

gingival fibromatosis because her medical and family histories were unremarkable, her

medical history was not indicative of drug-induced gingival enlargement or hormonal

changes and there was no evidence of history of consanguinity to suggest autosomal

recessive inheritance or genetic transmission.

Nevertheless, the features clinical and microscopic observed were similar in

every way to those described by other authors.3,6 GF, particularly HGF may occur as an

isolated feature or rarely as part of a syndrome.11 The syndromic characteristic most

commonly seen in association with HGF is hypertricosis, which is occasionally

associated with mental retardation. This association of extreme hirsutism with gingival

fibromatosis follows a dominant pattern of inheritance.11 Association of gingival

fibromatosis, ear, nose, bone, and nail defects and hepatosplenomegaly characterizes the

Zimmermann-Laband syndrome.18 Jones et al. (16) described a family with gingival

fibromatosis associated with progressive deafness in five generation. This association is

described as Jones syndrome.16 Murray-Peretic-Drescher syndrome (juvenile hyaline

fibromatosis) is characterized by gingival fibromatosis, multiple hyaline fibromas,

osteolysis of terminal phalanges, recurrent infections stunted growth, and premature

death.22 Recently, we describe gingival fibromatosis associated with dental

abnormalities in a consanguineous family.19

58

The gingival enlargement results in both esthetic and functional problems for

affected individuals. The most common effects are diastemas, malpositioning of teeth,

prolonged retention of primary dentition, delayed eruption, cross and open bites,

prominent lips, and open lip posture.3,6 Although the gingival enlargement does not

directly affect the alveolar bone, the gingival swelling increases the biofilm

accumulation, inducing periodontitis, bone resorption and halitosis.11 The gingival

enlargement usually begins at the time of eruption of the permanent dentition or, less

frequently, with the eruption of the deciduous dentition.11 The first case here, the

mother’s patients noticed gingival enlargement after birth, but it was evident during the

period of deciduous dentition. The second case, the patient only noted the enlargement

in the last 5-6 years. GF can't be cured but can be controlled with varying degrees of

success. When the enlargement is minimal, good scaling of teeth and oral homecare

may be all that is required to maintain good appearance.11 When the excess tissue

increases and appearance and function were compromised, there are indicated the

surgical intervention. Several authors have reported the recurrence of hyperplasic tissue

in HGF following gingivectomy, however, the psychological benefits of even temporary

cosmetic improvement must not be underestimated and may outweigh the probability of

recurrences in such a severe case.11 In all two cases, we trended toward a more

conservative approach. In both cases reported here, there no recurrence of gingival

enlargement. The first case postsurgical follow-up is of 4 years and second case the

follow-up is of 1 year.

In conclusion, this study evaluated for first time the presence of myofibroblasts

in IGF. Although we results were obtained from two cases clinical only, may contribute

to identification of biological mechanisms leading to gingival overgrowth, particularly

IGF. Future studies will be necessary to determine the pathogenesis of IGF.

59

References

1. Ahmed A, Huang L, Raftery A, Ahmed AK, Fahmy H, El Nahas AM, Haylor JL.

Cyclosporine A sensitizes the kidney to tubulointerstitial fibrosis induced by renal warm

ischemia. Transplant 77: 686-692, 2004.

2. Andrade CR, Cotrim P, Graner E, Almeida OP, Sauk JJ, Coletta RD. Transforming

growth factor beta 1, autocrine stimulation regulates fibroblast proliferation in

hereditary gingival fibromatosis. J Periodontol 72: 1726-1733, 2001.

3. Baptista IP. Hereditary gingival fibromatosis: a case report. J Clin Periodontol 29:

871-874, 2002.

4. Bisson MA, McGrouther DA, Mudera V, Grobbelaar DA. The different

characteristics of Dupuytren’s disease fibroblasts derived from either nodule or cord:

expression of alpha-smooth muscle actin and the response to stimulation by TGF-beta1.

J Hand Surg 28: 351-356, 2003.

5. Bitu CC, Sobral LM, Kelemann MG, Martelli-Júnior H, Zecckin KG, Graner E,

Coletta RD. Heterogeneous presence of myofibroblasts in hereditary gingival

fibromatosis. J Clin Periodontol 33: 393-400, 2006.

6. Bozzo L, Machado MAN, Almeida OP, Lopes MA, Coletta RD. Hereditary gingival

fibromatosis: report of three cases. J Clin Pediatr Dent 25: 41-46, 2000.

7. Clocheret K, Dekeyser C, Carels C, Willens G. Idiophatic gingival hyperplasia and

orthodontic treatment: a case report. J O 30: 13-19, 2003.

8. Coletta RD, Almeida OP, Ferreira LR, Reynolds MA, Sauk JJ. Increase in expression

of Hsp47 and collagen in hereditary gingival fibromatosis is modulated by stress and

terminal procollagen N-propeptides. Conn Tis Res 40: 237-249, 1999.

60

9. Coletta RD, Almeida OP, Graner E, Page RC, Bozzo L. Differential proliferation of

fibroblasts cultured from hereditary gingival fibromatosis and normal gingiva. J

Periodont Res 33: 469-475, 1998.

10. Coletta RD, Almeida OP, Reynolds MA, Sauk JJ. Alteration in expression of MMP-

1 and MMP-2 but not TIMP-1 and TIMP-2 in hereditary gingival fibromatosis is

mediated by TGF-β1 autocrine stimulation. J Periodont Res 34: 1-7, 1999.

11. Coletta RD, Graner E. Hereditary gingival fibromatosis: a systematic review. J

Periodontol 77:753-764, 2006.

12. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and

myofibroblasts. Wound Repair Regen 13: 7-12, 2005

13. Desmouliere A, Darby IA, Gabbiani G. Normal and pathology soft tissue

remodeling: role of the myofibroblasts, with special emphasis on liver and kidney

fibrosis. Lab Invest 33: 393-400, 2003.

14. Gabbiani G. The biology of the myofibroblasts. Kidney International 41: 530-532,

1992.

15. Gagliano N, Moscheni C, Dellavia C, Masiero S, Torri C, Grizzi F, Stabellini G,

Giola M. Morphological and molecular analysis of idiophatic gingival fibromatosis: a

case report. J Clin Periodontol 32: 1116-1121, 2005.

16. Jones G, Wilroy RS, McHaney V. Familial gingival fibromatosis associated with

progressive deafness in five generations of a family. Birth Defects Orig Artic Ser 13:

195-201, 1977.

17. Kather J, Salgado MAC, Salgado UFL, Cortelli JR, Pallos D. Clinical and

histomorphometric characteristics of three different families with hereditary gingival

fibromatosis. Oral Surg Oral Med Oral Pathol, 105: 348-352, 2008.

61

18. Laband PF, Habib G, Humphreys GS. Hereditary gingival fibromatosis. Report of

an affected family with associated splenomegaly and skeletal and soft-tissue

abnormalities. Oral Surg Oral Med Oral Pathol 17: 339-351, 1964.

19. Martelli-Júnior H, Bonan PRF, Santos LAN, Santos SM, Cavalcanti MG, Coletta

RD. Case reports of a new syndrome associating gingival fibromatosis and dental

abnormalities in a consanguineous family. J Periodontol, in press.

20. Martelli-Júnior H, Cotrim P, Graner E, Sauk JJ, Coletta RD. Effect of transforming

growth factor beta 1, interleukin-6, and interferon-γ on the expression of type I collagen,

heat shock protein 47, matrix metaloproteinase (MMP-1) and MMP-2 by fibroblasts

from normal gingival and hereditary gingival fibromatosis. J Periodontol 74: 296-306,

2003.

21. Phipps RP, Borrelo MA, Blieden TM. Fibroblasts heterogeneity in the periodontium

and other tissues. J Periodont Res 32: 159-165, 1997.

22. Puretic S, Puretic B, Fiser-Herman M, Adamcic M. A unique form of mesenchymal

dysplasia. Br J Dermatol 74: 8-19, 1962.

23. Sakamoto R, Nitta T, Kamikawa Y, Kono S, Kamikawa Y, Sugihara K, Tsuyama S,

Murata F. Histochemical, immunohistochemical, and ultrastructural studies of gingival

fibromatosis: a case report. Med Elec Microsc 35: 248-254, 2002.

24. Takagi M, Yamamoto H, Mega H, Hsieh KJ, Shioda S. Heterogeinity in gingival

fibromatosis. Cancer 68: 2202-2212, 1991.

62

5. Conclusões

Após a realização dos dois objetivos propostos no presente estudo concluiu-se

que:

1. Pela primeira vez foi observada na literatura científica a associação da fibromatose

gengival com alterações dentais e deficiência mental, aspectos estes compatíveis com a

descrição de uma nova condição genética.

2. Em nenhuma geração do heredograma analisado, observou-se indivíduos com

alterações dentais sem a presença da fibromatose gengival simultaneamente.

3. Análise imunohistoquímica para miofibroblastos (α-SMA) mostrou-se negativa em

portadores de fibromatose gengival idiopática, sugerindo que estas células não

participam da patogênese deste crescimento gengival.

63

6. Referências

1. Almeida JP, Coletta RD, Silva SD, Agostini M, Vargas PA, Bozzo L, Graner E.

(2005) Proliferation of fibroblasts cultured from normal gingiva and hereditary gingival

fibromatosis is dependent on fatty acid synthase activity. J Periodontol 76: 272-278.

2. Andrade CR. (2001) Análise do efeito autócrino do fator de crescimento

transformante beta 1 na proliferação celular de fibroblastos gengivais em pacientes com

fibromatose gengival hereditária. Dissertação de Mestrado. Faculdade de Odontologia –

Universidade Estadual de Campinas – Unicamp.

3. Araújo CS, Graner E, Almeida OP, Sauk JJ, Coletta RD. (2003) Histomorphometric

characteristics and expression of epidermal growth factors and its receptor by epithelial

cells of normal gingival and hereditary gingival fibromatosis. J Periodontal Res 38: 237-

241.

4. Bakeen G, Scully C. (1991) Hereditary gingival fibromatosis in a family with the

Zimmermann-Laband syndrome. J Oral Pathol Med 20: 457-459.

5. Barros SP, Merzel J, Araújo VC, Almeida OP, Bozzo L. (2001) Ultrastructural

aspects of connective tissue in hereditary gingival fibromatosis. Oral Surg Oral Med

Oral Pathol Oral Radiol Endod 92: 78-82.

6. Bozzo L, Almeida OP, Scully C, Aldred MJ. (1994) Hereditary gingival fibromatosis:

report of an extensive four generation pedigree. Oral Surg Oral Med Oral Pathol 78:

452-454.

7. Bozzo L, Almeida OP, Scully C. (1992) Familial gingival hyperplasia: a case of

pseudo-Laband syndrome. Periodont Clin Invest 14: 23-24.

8. Bozzo L, Machado MA, Almeida OP, Lopes MA, Coletta RD. (2000) Hereditary

gingival fibromatosis: report of three cases. J Clin Pediatr Dent 25: 41-46.

64

9. Brown RS, Beaver WT, Bottomley WK. (1991) On mechanism of drug-induced

gingival hyperplasia. J Oral Pathol Med 20: 201-209.

10. Clocheret K, Dekeyser C, Carels C, Willems G. (2003). Idiopathic gingival

hyperplasia and orthodontic treatment: a case report. Journal of Orthodontics 30: 13-19.

11. Coletta RD, Almeida OP, Graner E, Page RC, Bozzo L. (1998) Differential

proliferation of fibroblasts cultured from hereditary gingival fibromatosis and normal

gingiva. J Period Res 33: 469-475.

12. Coletta RD, Almeida OP, Reynolds MA, Sauk JJ. (1999) Alteration in expression of

MMP-1 and TIMP-2 in hereditary gingival fibromatosis is mediated by TGF-β1

autocrine stimulation. J Periodont Res 34: 457-463.

13. Coletta RD, Graner E. (2006) Hereditary gingival fibromatosis. J Periodontol 33:

469-475.

14. Collins MA, Mauriello SM, Tyndall DA, Wright JT. (1999) Dental anomalies

associated with amelogenesis imperfecta. A radiographic assessment. Oral Surg Oral

Med Oral Pathol Oral Radiol Endod 88: 358-364.

15. Crawford PJM, Aldred M, Bloch-Zupan A. (2007) Amelogenesis imperfecta.

Orphanet Journal of Rare Diseases 2:1-11.

16. Cuestas-Carnero R, Bornancini CA. (1988) Hereditary generalized gengival

fibromatosis associated with hypertricosis: report of five cases in one family. J Oral

Maxillofac Surg 46: 415-442.

17. Desmouliere A, Chaponnier C, Gabbiani G. (2005) Tissue repair, contraction, and

myofibroblasts. Wound Repair Regen 13: 7-12.

18. Desmouliere A, Darby IA, Gabbiani G. (2003) Normal and pathology soft tissue

remodeling: role of the myofibroblasts, with special emphasis on liver and kidney

fibrosis. Lab Invest 33: 393-400.

65

19. Falls JG, Pulford DJ, Wylie AA, Jirtle RL. (1999) Genomic imprinting: implications

for human disease. Am J Pathol 154: 635-647.

20. Fan JM, Ng YY, Hill PA, Mu W, Atkins RC. (1999) Transforming growth factor

beta regulates tubular ephitelial-myofibroblast transdifferentiation in vitro. Kidney Int

56: 1455-1467.

21. Farrer-Brown G, Lucas RB, Winstock D. (1972) Familial gingival fibromatosis: an

unusual pathology. J Oral Pathol 1: 76-83.

22. Feller L, Jadwat Y, Bouckaert M, Buskin A, Raubenheimer EJ. (2006) Enamel

dysplasia with odontogenic fibroma-like hamartomas: review of the literature and report

of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(5):620-624.

23. Fryns JP. (1996) Gingival fibromatosis and partial duplication of the short arm of

chromosome 2 (dup(2)(p13-p21)). Ann Genet 39: 54-55.

24. Gabbiani G. (1992) The biology of the myofibroblasts. Kidney Int 41: 530-532.

25. Gagliano N, Moscheni C, Dellavia C, Masiero S, Torri C, Grizzi F, Stabellini G,

Gioia M. (2005) Morphological and molecular analysis of idiopathic gingival

fibromatosis: a case report. J. Clin. Periodontol 32: 1116-1121.

26. Gorlin RJ, Cohen MMJ, Levin LS. (1990) Syndromes of the head and neck. 1a ed.,

p.977.

27. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. (2002) Roles of TGF-beta in

hepatic fibrosis. Front Biosci 7: 793-807.

28. Gross (1856). apud Takagi M, Yamamoto H, Mega H, Hsieh KJ, Shioda S. (1991)

Heterogeneity in gingival fibromatosis. Cancer 68: 2202-2212.

29. Gunhan O, Gardner DG, Bostanci H, Gunhan M. (1995) Familial gingival

fibromatosis with unusual histologic findings. J Periodontol 66: 1008-1011.

66

30. Hakkinen L, Csiszar A. (2007) Hereditary gingival fibromatosis: characteristics and

novel putative pathogenic mechanisms. J Dent Res 86: 25-34.

31. Hart TC, Pallos D, Bowden DW, Bolyard J, Pettenati MJ, Cortelli JR. (1998)

Genetic linkage of hereditary gingival fibromatosis to chromosome 2p21. Am J Hum

Genet 62: 876-883.

32. Hart TC, Pallos D, Bozzo L, Almeida OP, Marazita ML, O’Connell JR, Cortelli JR.

(2000) Evidence of genetic heterogeneity for hereditary gingival fibromatosis. J Dent

Res 79: 1758-1764.

33. Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML, Marks JM,

Cortelli JR, Pallos D. (2002) A Mutation in the SOS1 gene causes hereditary gingival

fibromatosis type 1. Am J Hum Genet 70: 943-954.

34. Henry I, Grandjouan S, Couillin P, Barichard F, Huerre-Jeanpierre C, Glaser T,

Philip T, Lenoir G, Chaussain JL, Junien C. (1989) Tumor-specific loss of 11p15.5

allels in del11p13 Wilms tumor and in familial adrenocortical carcinoma. Proc Natl

Acad Sci USA 86: 3247-3251.

35. Jang SY, Lee EJ, Hart PS, Ramaswami M, Pallos D, Hart TC. (2007) Germline

gain-of-function with SOS1 mutation in hereditary gingival fibromatosis. Biol Chem

282: 20245-20255.

36. Johnson BD, El-Guingy M, Ammons WF, Narayanan S, Page RC. (1986) A dectect

in fibroblasts from an unidentified syndrome with gingival hyperplasia as the

predominant feature. J Periodontol Res 21: 403-413.

37. Kavvadia K, Pepelassi E, Alexandridis C, Arkadopoulou A, Polyzois G, Tossios K.

(2005) Gingival fibromatosis and significant tooth eruption delay in an 11-year-old

male: a 30-month follow-up. Int J Paediatr Dent 15: 294-302.

67

38. Macedo GO, Tunes RS, Motta AC, Passador-Santos F, Grisi MM, Souza SL, et al.

(2005) Amelogenesis imperfecta and unusual gingival hyperplasia. J Periodontol

76(9):1563-6.

39. Macias-Flores MA, Garcia-Cruz D, Rivera H. (1984) A new form of hypertrichosis

inherited as an X-linked dominant trait. Hum Genet 66: 66-70.

40. Mangino M, Pizzuti A, Dallapiccola B, Bonfante A, Saccilotto D, Cucchiara E.

(2003) Hereditary gingival fibromatosis (HGF) with hypertrichosis is unlinked to the

HGF1 and HGF2 loci. Am J Med Genet 116: 312-314.

41. Martelli-Júnior H, Bolzani G, Graner E, Bozzo L, Coletta RD. (2000) Microscopic

and proliferative comparasion of gingival fibroblasts from patients with normal gingiva

and with hereditary gingival fibromatosis. Pesq Odont Bras 14: 123-129.

42. Martelli-Júnior H, Cotrim P, Graner E, Sauk JJ, Coletta RD. (2003) Effect of

transforming growth factor beta 1, interleukin-6, and interferon-γ on the expression of

type I collagen, heat shock protein 47, matrix metaloproteinase (MMP-1) and MMP-2

by fibroblasts from normal gingival and hereditary gingival fibromatosis. J Periodontol

74: 296-306.

43. Martelli-Júnior H, Lemos DP, Silva CO, Graner E, Coletta RD. (2005) Hereditary

gingival fibromatosis: report of a five generation family with cellular proliferation

analysis. J Periodontol 76: 2299-2305.

44. Martelli-Júnior H, Ferreira ST, Bonan PRF, Barbosa DR, Bitu CC, Coletta RD.

(2007) Comparação clínica, histopatológica e genética entre duas famílias afetadas por

fibromatose gengival hereditária. Rev Bras Odontol 64: 62-63.

45. Meng LY, Huang M, Ye XQ, Fan MW, Bian Z. (2007) Increased expression of

collagen prolyl 4-hydroxylases in chinese patients with hereditary gingival fibromatosis.

Archives of Oral Biology 52: 1209-1214.

68

46. Nasse (1895). apud Rushton MA. (1957) Hereditary or idiophatic hyperplasia of the

gums. Dent Pract 7: 136-146.

47. Nevin NC. (1971) Hereditary gingival fibromatosis. J Ment Defic Res 15: 130-135.

48. Nusier M, Yassin O, Hart TC, Samimi A, Wright T. (2004) Phenotypic diversity

and revision of the nomenclature for autosomal recessive amelogenesis imperfecta. Oral

Surg Oral Med Oral Pathol Oral Radiol Endod 97: 220-230.

49. Petrov VV, Fagard RH, Lijnen PJ. (2002). apud Phan SH. Biology of fibroblasts and

myofibroblasts. (2008) Proceedings of the American Thoracic Society 3: 334-337.

50. Pfeiffer P, Clausen PP, Andersen K, Rose C. (1996) Lack of prognostic significance

of epidermal growth factor receptor and the oncoprotein p185 in patients with

systemically untreated no-small-cell lung cancer: an immunohistochemical study on

cryosections. Br J Cancer 74: 86-91.

51. Phan SH. Biology of fibroblasts and myofibroblasts. (2008) Proceedings of the

American Thoracic Society 3: 334-337.

52. Qi W, Twigg S, Chen X, Polhill TS, Gilbert RE. (2005) Integrated actions of

transforming growth factor beta 1 and connective tissue growth factor in renal fibrosis.

Am J Physiol Renal Physiol 288: 800-809.

53. Raeste AM, Collan Y, Kipilen E. (1978) Hereditary fibrous hyperplasia of the

gingival with varying penetrance and expressivity. Scand J Dent Res 86: 357-365.

54. Ramasamy R, Haviland M, Woodard JR, Barone JG. (2005) Patters of inheritance in

familial prune belly syndrome. Urology 65: 1227.

55. Redman RS, Ward CC, Patterson RH. (1985) Focus of epithelial dysplasia arising in

hereditary gingival fibromatosis. J Periodontol 56: 158-162.

56. Rushton MA. (1957) Hereditary or idiopathic hyperplasia of the gums. Dent Pract 7:

136-146.

69

57. Sciubba JJ, Niebloom T. (1986) Juvenile hyaline fibromatosis (Murray-Puretic-

Drescher syndrome): oral and systemic findings in siblings. Oral Surg 62: 397-409.

58. Shashi V, Pallos D, Pettenati MJ, Cortelli JR, Fryns JP, von Kap-Herr C, Hart TC.

(1999) Genetic heterogeneity of gingival fibromatosis on chromosome 2p. J Med Genet

36: 683-686.

59. Singer SL, Goldblastt J, Hallam LA, Winters JC. (1993) Hereditary gingival

fibromatosis with a recessive mode of inheritance. Case reports. Austr Dental J 38: 427-

432.

60. Smith PC, Cáceres M, Martinez J. (2006) Induction of the myofibroblastic

phenotype in human gingival fibroblasts by transforming growth factor beta: role of

Rhoa-Rock and c-Jun N-terminal kinase signaling pathways. J Periodontal Res 41: 418-

425.

61. Sobral LM, Montan PF, Martelli-Junior H, Graner E, Coletta RD. (2007) Opposite

effects of TGF-β1 and IFN-γ on transdifferentiation of myofibroblast in human gingival

cell cultures. J Clin Periodontol 34: 397-406.

62. Stefanova M, Atanassov D, Krastev T, Fuchs S, Kutsche K. (2003) Zimmerman-

Laband syndrome associated with a balanced reciprocal translocation

t(3;8)(p21.2;q24.3) in mother and daughter: molecular cytogenetic characterization of

the breakpoint regions. Am J Med Genet A 117: 289-294.

63. Takagi M, Yamamoto H, Mega H, Hsieh KJ, Shioda S. (1991) Heterogeinity in

gingival fibromatosis. Cancer 68: 2202-2212.

64. Tipton DA, Howell KJ, Dabbous MK. (1997) Increased proliferation, collagen, and

fibronectin production by hereditary gingival fibromatosis fibroblasts. J Periodontol 68:

524-530.

70

65. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. (2002) Myofibroblast

and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:

349-363.

66. Vaquero E, Molero X, Tian X, Salas A, Malagelada JR. (1999) Myofibroblast

proliferation, fibrosis, and defective pancreatic repair by cyclosporine in rats. Gut 45:

269-277.

67. Willis BC, duBois RM, Borok Z. (2006) Ephitelial origin of myofibroblasts during

fibrosis in the lung. Proc Am Thorac Soc 3: 377-382.

68. Wise GE, Lin F, Fan W. (1992) Localization of EGF and its receptor in mandibular

molar of the rat prior to and during prefunctional tooth eruption. Dev Dyn 195: 121-

126.

69. Wrigth HJ, Chapple IL, Matthews JB. (2001) TGF-beta isoforms and TGF-beta

receptors in drug-induced and hereditary gingival overgrowth. J Oral Pathol Med 30:

281-289.

70. Xiao S, Wang X, Qu B. (2000) Refinement of the locus for autosomal dominant

hereditary gingival fibromatosis (GINGF) to a 3.8-cM region on 2p21. Genomics 68:

247-252.

71. Ye X, Shi L, Cheng Y. (2005) A novel locus for autosomal dominant hereditary

gingival fibromatosis, GINGF3, maps to chromosome 2p22.3-p23.3. Clin Genet 68:

239-244.

72. Zackin SJ, Weisberger D. (1961) Hereditary gingival fibromatosis: report of a

family. J Oral Pathol 14: 828-836.

73. Zhu Y, Zhang W, Huo Z, Xia Y, Li B, Kong X, Hu L. (2007) A novel locus for

maternally inherited human gingival fibromatosis at chromosome 11p15. Hum Genet

121: 113-123.

71

7. ANEXOS

7.1: Figuras e legendas referentes ao artigo 1: Case reports of a new syndrome

associating gingival fibromatosis and dental abnormalities in a consanguineous

family.

72

3 children

6 grandchildrenNo GF, DA and

MR cases

1 child

No GF, DA

and MR cases

5 children (1 MR)

7 grandchildren3 children

No GF, DA

and MR cases

3 children

No GF, DA

and MR cases

3 children

1 MR

2 children

No GF, DAand MR cases

1 child

No GF, DAand MR cases

No Affected

Gingival Fibromatosis (GF)

Dental Abnormalities (DA)

Mental Retardation (MR)

I

II

III

1

2 3 4

All Three features

1

?

Tabel 1. Summary of the clinical features of the patients of this study

GF AI Pericoronal radioluciences + unerupted

teeth

Intrapulpal calcifications

Retetion of

deciduous

Dental

agenesis

Root

dilaceration

Microdontia

Patient 1 Yes Yes Yes Yes No Yes (#1) Yes Yes (molars)

Patient 2 Yes Yes Yes Yes Yes No No No

Patient 3 Yes Yes Yes Yes Yes Yes (#16) No No

Patient 4 Yes Yes Yes Yes Yes No No No

GF: gingival fibromatosis, AI: generelized thin hypoplastic amelogenesis imperfecta.

73

Figure 2. Clinical photographs of the patient 2 of this study. Intraoral examination

revealed a permanent dentition with yellow discolored and teeth with large separation and loses of structure. The gingiva was enlarged in both arches, with the posterior areas being more severely affected. (A) Frontal view, (B) maxillary arch view, and (C and D)

mandibular arch views. 68x47mm (600 x 600 DPI)

Figure 3. Panoramic radiograph of the patient 4 of this study. Patient showed retention of several deciduous teeth due to the unerupted teeth with pericoronal radiolucent areas delineated by sclerotic borders. Similar to the other cases, enamel was impossible to

differentiate from dentin, and intrapulpal calcifications were observed in erupted and unerupted teeth. 85x48mm (600 x 600 DPI)

74

Figure 4. Histological and immunohistochemical features of the gingival overgrowth. (A) The epithelium displays an elongation of rete pegs, and the connective tissue is dense

with collagen fiber bundles running in all directions. (H&E, original magnification x50) (B) Numerous psammomatous calcifications (arrowhead) in close contact with the odontogenic epithelial rests (arrows) were observed in the connective tissue. (H&E,

original magnification x100) (C) Immunoreactivity for CK-19 in the odontogenic epithelial cells. (CK-19 immunostaining, original magnification x200) (D) Myofibroblasts (alpha-

SMA-positive cells) were broadly observed in the lesional connective tissue of the gingival overgrowth. As anticipated, alpha-SMA was also observe in the smooth muscle of the blood vessel walls (internal positive control). (alpha-SMA immunostaining, original

magnification x200) 111x82mm (600 x 600 DPI)

Figure 5. Scanning electron examination revealed a cementoid origin for the psammomatous calcifications found in the gingival overgrowth tissue. (A and B)

Untreated calcifications and (C and D) calcifications treated with 2% EDTA for 5 min. Untreated structures demonstrated a globular outside surface and a glass-like aspect

with several cracks in the inside portion, whereas EDTA etching structures demonstrated appositional laminations with an increased porosity in the center.

75x56mm (600 x 600 DPI)

75

Figure 6. Histological features of the intrapulpal calcification in an erupted tooth with decay (A and B) and in an unerupted tooth (C and D). (A) Pulpal chamber was filled in

part by reparative dentin and in part by amorphous dentin. (B) High power view of amorphous calcified tissue revealed few and irregular dentinal tubules and areas of

globular appearance (arrows). (C) Pulpal tissue was replaced by an amorphous calcified tissue resembling dentin. (D) High power view of the intrapulpal calcification showing areas of globular dentin (arrows) associated with areas containing few and irregular

dentinal tubules (arrowhead). D: dentin, RD: reparative dentin, and ACT: amorphous calcified tissue. (HE, original magnification in A x100, B x200, C x25, and D x400)

119x90mm (381 x 381 DPI)

Figure 7. Scanning electronic microscopy micrographs of an unerupted tooth affected by AI. (A) Enamel surface was thin and irregular in all extension of the crown. (B) Normal

areas of enamel were alternated by rough areas with severe porosity and irregularly shaped empty spaces (arrows). (C) Irregular areas of enamel have a laminated,

descamative and porous appearance. 24x6mm (600 x 600 DPI)

76

7.2: Figuras e legendas referentes ao artigo 2: Idiopathic gingival fibromatosis:

clinical features and immunohistochemical evaluation of myofibroblasts

77

Figure 1. Clinical photograph of maxillary and mandibular arches in an ten-year-old boy with IFG. Note the greatly t

hickened gingiva and the malpositioning of the teeth.

Figure 2. Marked cross bite with dramatic flaring caused by gingival overgrowth, preventing closure lip closure.

78

Figure 3. Clinical view showing a mild gingival hyperplasia affecting maxilla and mandible in a thirty-year-old-man.

Figure 4. Histologically, the IGF is characterized by a mucosa in which the epithelium contains slender rete pegs that extend

into a dense connective tissue that is rich in collagen fibers. (HE, x 40).

79

Figure 5. The Mason Tricromic technique revealed wide bundles of collagen strongly stained in blue (TM x 40).

Figure 6. Histological features of αααα-SMA immunohistochemical was negative for αααα-SMA in the connective tissue, except in the

smooth muscle of the blood vessel walls (internal positive control). (α-SMA x 40).

Livros Grátis( http://www.livrosgratis.com.br )

Milhares de Livros para Download: Baixar livros de AdministraçãoBaixar livros de AgronomiaBaixar livros de ArquiteturaBaixar livros de ArtesBaixar livros de AstronomiaBaixar livros de Biologia GeralBaixar livros de Ciência da ComputaçãoBaixar livros de Ciência da InformaçãoBaixar livros de Ciência PolíticaBaixar livros de Ciências da SaúdeBaixar livros de ComunicaçãoBaixar livros do Conselho Nacional de Educação - CNEBaixar livros de Defesa civilBaixar livros de DireitoBaixar livros de Direitos humanosBaixar livros de EconomiaBaixar livros de Economia DomésticaBaixar livros de EducaçãoBaixar livros de Educação - TrânsitoBaixar livros de Educação FísicaBaixar livros de Engenharia AeroespacialBaixar livros de FarmáciaBaixar livros de FilosofiaBaixar livros de FísicaBaixar livros de GeociênciasBaixar livros de GeografiaBaixar livros de HistóriaBaixar livros de Línguas

Baixar livros de LiteraturaBaixar livros de Literatura de CordelBaixar livros de Literatura InfantilBaixar livros de MatemáticaBaixar livros de MedicinaBaixar livros de Medicina VeterináriaBaixar livros de Meio AmbienteBaixar livros de MeteorologiaBaixar Monografias e TCCBaixar livros MultidisciplinarBaixar livros de MúsicaBaixar livros de PsicologiaBaixar livros de QuímicaBaixar livros de Saúde ColetivaBaixar livros de Serviço SocialBaixar livros de SociologiaBaixar livros de TeologiaBaixar livros de TrabalhoBaixar livros de Turismo