Transistor MOS - Instituto de Informática da UFRGS · 15 Gilson Wirth Diode hole diffusion...

Preview:

Citation preview

Transistor MOS

Gilson Wirth Eng Elétrica - UFRGS

2/xx SIM/EMICRO 2013 Porto Alegre, Brasil - Abril/2013

Conteúdo

o Semicondutor o Junção PN o Capacitor MOS o Transistor MOS o Modelos Elétricos

3 Gilson Wirth

Níveis de Abstração

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

4 Gilson Wirth

Elétrons e Lacunas

Banda de Valência

Banda de Condução

p.n = ni2

pi = ni = 1.45*1010/cm3 @ 27 C

5 Gilson Wirth

Condutor, Semicondutor e Isolante

Al Si

SiO2

Eg=1.2eV Eg=8eV

~ 10-5 Ω *cm ~105 Ω *cm ~1015 Ω *cm

6 Gilson Wirth

Material tipo n

Banda de Valência

Banda de Condução

7 Gilson Wirth

Material tipo p

Banda de Valência

Banda de Condução

8 Gilson Wirth

Elétrons e Lacunas: Condutividade do Material

Condutividade: σ = q * (mn*n + mp*p) (S/cm)

Resistividade: ρ = 1/ σ (Ω*cm) Onde q = carga do elétron mn = mobilidade do elétron (~ 1500 cm2/V para Si) mn = mobilidade da lacuna (~ 500 cm2/V para Si) n = concentração de elétrons p = concentração de lacunas

9 Gilson Wirth

Dopagem

10 Gilson Wirth

Elétrons e Lacunas, Campo Elétrico, Drift Current

Campo Elétrico E

F ≈ E -> I ≈ µ*V

11 Gilson Wirth

Diffusion

12 Gilson Wirth

PN-Junction

n

p

p

n

B A SiO 2 Al

A

B

Al

A

B

Cross-section of pn -junction in an IC process

One-dimensional representation diode symbol

13 Gilson Wirth

PN-Junction

14 Gilson Wirth

Creation of Depletion Regions in Unbiased Junction

15 Gilson Wirth

Diode

hole diffusionelectron diffusion

p n

hole driftelectron drift

ChargeDensity

Distancex+

-

ElectricalxField

x

PotentialV

ξ

ρ

W2-W1

ψ0

(a) Current flow.

(b) Charge density.

(c) Electric field.

(d) Electrostaticpotential.

16 Gilson Wirth

PN-Junction: Forward Bias

17 Gilson Wirth

Diode: Forward Bias

18 Gilson Wirth

PN-Junction: Reverse Bias

19 Gilson Wirth

PN-Junction: I x V

20 Gilson Wirth

DC (Quasi Static, Large Signal) Models

21 Gilson Wirth

AC (Small Signal, High-Frequency) Model

C R

22 Gilson Wirth

Diode: Junction Capacitance

23 Gilson Wirth

pn - Junction

24/xx SIM/EMICRO 2013 Porto Alegre, Brasil - Abril/2013

Capacitor MOS

Capacitor MOS

Porta de Poly ou Metal

Isolante (SiO2)

Substrato (Silício-p)

Capacitor MOS

Silicio p

+ + + +

Vg < 0

Silicio p

+ ++

0<Vg < Vt

Silicio p

Vg > Vt

+ - - -

+ + + + + +

- - -

+

_ _ _ _

_ _ _ _ _

Legenda: - Aceitador Ionizado - Elétron Livre + Lacuna (móvel)

27/xx SIM/EMICRO 2013 Porto Alegre, Brasil - Abril/2013

MOSFET

MOSFET

MOSFET

n+ n+

p

Valência

Condução

MOSFET

VG > 0

n+ n+

+ + + +

- - - -

MOSFET

VG > 0

n+ n+

+ + + +

- - - -

MOSFET

Fonte (S) Porta (G)

Dreno (D)

VS = 0 VG = 0 VD = 0

MOSFET

Fonte (S) Porta (G)

Dreno (D)

VS = 0 VD = 0 VG = VT

MOSFET

Fonte (S) Porta (G)

Dreno (D)

VS = 0 VD = 0 VG > VT

MOSFET

Fonte (S) Porta (G)

Dreno (D)

VS = 0 VD > 0 VG > VT

MOSFET

Fonte (S) Porta (G)

Dreno (D)

VS = 0 VD = (VG-VT) VG > VT

MOSFET

Fonte (S) Porta (G)

Dreno (D)

VS = 0 VD > (VG-VT) VG > VT

MOSFET: Curva ID x VD

VD

ID

VG - VT

MOSFET

MOSFET

MOSFET

VG > VT

VS = 0

n+

VD ≈ 0

n+

substrato tipo-pCarga de Inversão (Qi)

xx=0 x=L

MOSFET – Threshold Voltage

MOSFET

VG = 5 V

VS = 0 V

n+

VD = 4 V

n+

substrato tipo-pCarga de Inversão (Qi)

xV(x=0)=0 V V(x=L)=4V

∆V=1V∆V=5V

• Carga de inversão (densidade)

( )Q x C V V V xi ox GS T( ) ( )≅ − −

Modelo I-V quadrático básico

• Corrente total no canal

I WQ xdV x

dxDS i= µ ( )( )

( )I C W V V V xdV x

dxDS ox GS T= − −µ ( )( )

Modelo I-V quadrático básico

• Corrente total no canal e “beta”

( )I dx C W V V V x dVDS

L

ox GS T

VDS

0 0∫ ∫= − −µ ( )

( )I V V VV

DS GS T DSDS= − −

β.

2

2

β µ≡ CWLox

Modelo I-V quadrático básico

( )

−−=

2.

2DS

DSTGSDSVVVVI β

Zona Linear (Triodo)

Corrente ID MOSFET

( )[ ]DSTGSDS VVVI −= .β

Zona de Saturação ( )I V VDS GS T= −β2

2.

Características Transistor MOS

00

Saturação

IDS/β

Zona linear

VDS=VGS -VT

VGS < VT

real

ideal

interseção VDS= -1/ λ

VGS3

VGS2

VGS1

VGS1 < VGS2 < VGS3

VDS

Para VGS >= VT VDS >= VGS –VT

( )I V VDS GS T= −β2

2.

( )I V V VDS GS T DS= − +β

λ2

12

. .( )

• Parâmetro “lambda”

Zona de saturação

Características Transistor MOS

Características Transistor MOS: Saturação

Características Transistor MOS: Saturação

Características Transistor MOS: Saturação

Características Transistor MOS: Saturação

Características Transistor MOS: Pequenos Sinais

Características Transistor MOS: Pequenos Sinais

Características Transistor MOS: Pequenos Sinais

Características Transistor MOS: Alta Freq

Características Transistor MOS: Alta Freq

Características Transistor MOS: Alta Freq

Características Transistor MOS: Alta Freq

Resistência Parasita

W

LD

Drain

Draincontact

Polysilicon gate

DS

G

RS RD

VGS,eff

MOSFET: SPICE Simulation

Forma Geral:

Exemplo:

MOSFET: SPICE Simulation

MOSFET: SPICE Simulation

As Capacitâncias de Junção são Independentes da Tensão de Operação?

Digital MOSFET Circuits

Digital MOSFET Circuits

VGS ≥ VT

RonS D

A Switch!

|V GS |

An MOS Transistor

Digital MOSFET Circuits

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Interconexão

Interconexão: Capacitância

Dielectric

Substrate

L

W

H

tdi

Electrical-field lines

Current flow

WLt

cdi

diint

ε=

Interconexão: Capacitância

fringing parallel

Interconexão: Resistência

W

LH

R = ρH W

L

Sheet ResistanceRo

R1 R2

Interconexão: Resistência

Scaling

- W e L decrease by a factor α - Depletion Width decreases by a factor α

→ All capacitances decreases by a factor α Razavi, pp. 581

Scaling

- tox decreases by a factor α → Cox decreases by a factor α

- W and L decrease by a factor α

- Supply voltage and VTH are decreased by a factor α

→ Transconductance remains constant Obs.: If doping scales, output resistance r0 is kept constant However, dynamic range decreases.

76/xx SIM/EMICRO 2013 Porto Alegre, Brasil - Abril/2013

Traditional Scaling

IDsat ≈ ½ Coxµ(W/Lg)(VG – VT)2

Fmax = IDSAT / (VDDCox) Power = (Vdd)2CoxFmax

=εoεs/Tox

Reduce Gate Oxide Thickness

Reduce Operating Voltage (Vdd)

Reduce Physical Gate Length (Lg) Reduce Threshold

Voltage (VT)

77/xx SIM/EMICRO 2013 Porto Alegre, Brasil - Abril/2013

MOS: Traditional Scaling Limitations

Mobility: Decreasing mobility due to higher channel doping (Lowers IDsat)

Floating body: Increasing body-factor due to charge build-up (VT instability) Parasitic: Increasing junction resistance and capacitance (decreases performance)

Leakage current: Increasing off-state leakage Ig, IPT, IJ (increases stand-by power)

78/xx SIM/EMICRO 2013 Porto Alegre, Brasil - Abril/2013 Device 78

IDsat ≈ ½ Coxµ(W/Lg)(VG – VT)2

Equivalent Scaling

Reduce parasitic capacitance and resistance

New Dev. Topology

=εoεs/Tox

Increase Gate Dielectric Constant (K) New Material

Increase Mobility (µ) Strain

3D (FinFET) New Dev.

Topology

79/xx SIM/EMICRO 2013 Porto Alegre, Brasil - Abril/2013

Perguntas?

Recommended