61
Análise Análise Combinatória Combinatória

Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Embed Size (px)

Citation preview

Page 1: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

AnáliseAnáliseCombinatóriaCombinatória

Page 2: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Introdução

Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de

azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática que estuda os

métodos de contagem. Esses estudos foram iniciados já no século XVI, pelo matemático

italiano Niccollo Fontana (1500-1557), conhecido como Tartaglia. Depois vieram os franceses Pierre de Fermat (1601-1665) e Blaise Pascal (1623-1662).A Análise Combinatória visa desenvolver métodos

que permitam contar - de uma forma indireta - o número de elementos de um conjunto, estando

esses elementos agrupados sob certas condições.

Page 3: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Fatorial Princípio fundamental da contagem - PFC Permutações simples Permutações com elementos repetidos Arranjos simples Combinações simples

ELEMENTOS DA COMBINATÓRIA

Page 4: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Seja n um número inteiro não negativo. Definimos o fatorial de n (indicado pelo símbolo n! ) como

sendo:n! = n .(n-1) . (n-2) . ... .4 . 3 . 2 . 1

Para n = 0 , teremos : 0! = 1.Para n = 1 , teremos : 1! = 1

Exemplos:a) 6! = 6 . 5 . 4 . 3 . 2 . 1 = 720b) 4! = 4 .3 . 2 . 1 = 24c) observe que 6! = 6 . 5 . 4!d) 10! = 10 . 9 . 8 . 7. 6 . 5 . 4 . 3 . 2 . 1e) 10! = 10 . 9 . 8 . 7 . 6 . 5!f ) 10! = 10 . 9 . 8!

Fatorial

Page 5: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Se determinado acontecimento ocorre em n etapas diferentes, e se a primeira etapa pode

ocorrer de k1 maneiras diferentes, a segunda de k2 maneiras diferentes, e assim sucessivamente, então o número total T de maneiras de ocorrer o

acontecimento é dado por:T = k1 . K2 . K3 . ... . kn

Princípio fundamental da contagem - PFC

Page 6: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Aplicação

Questão 1

De quantos modos distintos podemos colocar 3 livros juntos em uma estante de biblioteca?

Solução:

Page 7: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Exemplo:

O DETRAN decidiu que as placas dos veículos do Brasil

serão codificadas usando-se 3 letras do alfabeto e 4

algarismos. Qual o número máximo de veículos que

poderá ser licenciado?

Solução:

Page 8: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Solução:

Placa do tipo PWR-USTZ.Como o alfabeto possui 26 letras e nosso sistema numérico possui 10 algarismos (de 0 a 9), podemos concluir que:

para a 1ª posição, temos 26 alternativas, e como pode haver repetição, para a 2ª, e 3ª também teremos 26 alternativas.

Com relação aos algarismos, concluímos facilmente que temos 10 alternativas para cada um dos 4 lugares. Podemos então afirmar que o número total de veículos que podem ser licenciados será igual a:

26 . 26 . 26 . 10 . 10 . 10 . 10 que resulta em

175.760.000

Page 9: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Permutações simples de n elementos distintos são os agrupamentos formados com todos os n

elementos e que diferem uns dos outros pela ordem de seus elementos. 

Exemplo: com os elementos A,B,C são possíveis as seguintes permutações: ABC, ACB, BAC, BCA, CAB

e CBA.

Obs.: O número total de permutações simples de n elementos distintos é dado por n!, isto é  

Pn = n!    onde    n! = n (n-1) (n-2) ... .1 . 

Permutações simples

Page 10: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Exemplo:

Calcule o número de formas distintas de 5 pessoas

ocuparem os lugares de um banco retangular de

cinco lugares.Solução:

P5 = 5! = 5 . 4 . 3 . 2 . 1 = 120

Page 11: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

AnagramaDenomina-se ANAGRAMA o agrupamento formado

pelas letras de uma palavra, que podem ter ou não

significado na linguagem comum.

Os possíveis anagramas da palavra DEUS são:

DEUS

DESU

DUES

DUSE

DSEU

DSUE

EDUS

EDSU

EUDS

EUSD

ESDU

ESUD

UESD

UEDS

UDES

UDSE

USDE

USED

SEDU

SEUD

SDEU

SDUE

SUDE

SUED

Total: 24

Calculando temos:

4! . 3 . 2 . 1 = 24

Page 12: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Se entre os n elementos de um conjunto, existem a elementos repetidos, b elementos

repetidos, c elementos repetidos e assim sucessivamente , o número total de

permutações que podemos formar é dado por:

Permutações com elementos repetidos

Pn(a, b, c, ...)

a! b! c! ...= n!

Page 13: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Exemplo:Determine o número de anagramas da palavra

MATEMÁTICA.(não considere o acento)

Solução:

Temos 10 elementos, com

repetição. Observe que a

letra M está repetida duas

vezes, a letra A três , a letra T, duas vezes.

Pn(a, b, c, ...)

2! 3! 2! ...=

10!

2 . 1 . 3 . 2 . 1 . 2 . 110 . 9 . 8 . 7 . 5 . 4 . 3 . 2 . 1 Pn

(a, b, c, ...)=

Pn(a, b, c, ...)

=24

3628800 = 151 200

Page 14: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Dado um conjunto com n elementos , chama-se arranjo simples de taxa k , a todo agrupamento de k elementos distintos dispostos numa certa

ordem. Dois arranjos diferem entre si, pela ordem de colocação dos elementos. Assim, no conjunto

E = {a,b,c}, teremos:

a) arranjos de taxa 2: ab, ac, bc, ba, ca, cb.b) arranjos de taxa 3: abc, acb, bac, bca, cab, cba

ARRANJOS SIMPLES

Representando o número total de arranjos de n elementos

tomados k a k (taxa k) por An,k , teremos a seguinte fórmula:

An,k (n – k)!=

n!

Page 15: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Exemplo:Um cofre possui um disco marcado com os dígitos 0,1,2,...,9. O segredo do cofre é marcado por uma

sequência de 3 dígitos distintos. Se uma pessoa tentar abrir o cofre, quantas tentativas deverá fazer(no

máximo) para conseguir abri-lo?

Solução:

As sequências serão do tipo xyz. Para a primeira posição teremos 10 alternativas, para a segunda, 9 e

para a terceira, 8. Podemos aplicar a fórmula de arranjos, mas pelo princípio fundamental de contagem,

chegaremos ao mesmo resultado: 10 . 9 . 8 = 720. 

Observe que 720 = A10,3

Page 16: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Denominamos combinações simples de n elementos distintos tomados k a k (taxa k) aos subconjuntos

formados por k elementos distintos escolhidos entre os n elementos dados. Observe que duas

combinações são diferentes quando possuem elementos distintos, não importando a ordem em

que os elementos são colocados.

Combinações simples

Exemplo: 

No conjunto E = {a,b.c,d} podemos considerar:a) combinações de taxa 2: ab, ac, ad,bc,bd, cd.b) combinações de taxa 3: abc, abd,acd,bcd.c) combinações de taxa 4: abcd.

Page 17: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Representando por Cn,k o número total de combinações de n elementos tomados k a k  (taxa k) ,

temos a seguinte fórmula:

o número acima é também conhecido como Número Binomial e

indicado por:

Ck

k ! (n – k)!=n!

nC

k ! (n – k)!=n!

n,kou

k

k ! (n – k)!=n!

n

Page 18: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Exemplo:Uma prova consta de 15 questões das quais o aluno deve resolver 10. De quantas formas ele poderá escolher as 10

questões?

Solução:

Observe que a ordem das

questões não muda o teste.

Logo, podemos concluir que trata-se de um problema de combinação de 15 elementos com

taxa 10. 

Ck ! (n – k)!

=n!

n,k

C10 ! (15 – 10)!

=15!

15,10

C10 ! (5)!

=15!

15,10

C10 ! (5)!

=15 . 14 . 13 . 12 . 11 . 10!

15,10

360 360 C120

=15,10 = 3003 formas

Page 19: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Paulo entrou numa lanchonete com muita sede. Veja quais eram as bebidas disponíveis: 4 opções de refrigerante: R1, R2, R3 e R4; 3 opções de suco: S1, S2 e S3; 2 marcas de água mineral: A1 e A2.De quantas maneiras ele pode escolher uma bebida?

Princípio aditivo de contagem

Refrigerante ou Suco ou Água

R1, R2, R3 e R4 S1, S2 e S3 A1 e A2

4 opções + 3 opções + 2 opções

Ele tem 9 formas diferentes (4 + 3 + 2 = 9) de escolher a bebida (R1, R2, R3, R4, S1 ,S2, S3, A1, A2).

Esse problema ilustra o princípio aditivo de contagemprincípio aditivo de contagem.

Page 20: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Ao abrir seu armário, hoje de manhã, Flávia encontrou 3 pares de tênis: T1, T2 e T3; 2 calças jeans: J1 e J2; 4 camisetas: C1, C2, C3 e C4.

De quantas formas diferentes ela pode escolher um conjunto tênis-jeans-camiseta para ir à escola?

Princípio multiplicativo de contagem

Tênis e Jeans e camiseta

T1, T2, e T3 J1, e J2 C1, C2, C3 e C4

3 opções 2 opções 4 opções

3 x 2 x 4

24 formas

Page 21: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Os princípios aditivo e multiplicativo são a base para resolução de problemas de cálculo combinatório. Por isso, deve ficar muito clara a distinção entre os dois princípios.

OBSERVAÇÃO

Conjunção Faz ligação entre Operação

ou hipóteses adição

e etapas multiplicação

Page 22: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Dependendo dos critérios usados, os agrupamentos podem ser de dois tipos: ordenados ou não-

ordenados. É importante saber diferenciá-los.

Agrupamentos ordenados ou não-ordenados

Page 23: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

A partir de um grupo que tem 5 estudantes (A, B, C, D, E), obter todas as maneiras de se formar uma comissão de 3 alunos. Analisar se os agrupamentos são ordenados ou não-ordenados.Para formar a comissão, é só escolher 3 entre os 5 estudantes. Veja as alternativas.{A, B, C}, {A, B, D}, {A, B, E}, {A, C, D}, {A, C, E}, {A,D, E}, {B, C, D}, {B, C, E), {B, D, E}, {C, D, E}

São 10 formas diferentes. Nesse total, não consideramos, por exemplo, a comissão {D, C, A}. Ela é a mesma que {A, C, D}, que já foi contada. No caso, temos agrupamentos não-ordenados.

Esta questão deve ser respondida usando:

Ck ! (n – k)!

=n!

n,k

C3 ! (5 – 3)!

=5!

5,3

C3 ! x 2!

=5 x 4 x 3!

5,3 = 10

Page 24: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

A partir do mesmo grupo de alunos (A, B, C, D, E), obter todas as maneiras de se formar a diretoria do grêmio da

escola, composta de presidente (P), vice (V) e tesoureiro (T).Agora, devemos escolher 3 alunos entre os 5 e, em seguida,

ordenar os escolhidos, conforme o cargo. É importante a ordem da escolha. Cada solução é uma sequência do tipo (P,

V, T). Veja o cálculo através da permutação.

Presidente: 5 opções Vice-Presidente: 4 opções

Tesoureiro: 3 opções 5 x 4 x 3 = 60 maneiras

As várias diretorias são formadas pêlos mesmos estudantes. Em cada uma delas, no entanto, as pessoas ocupam cargos diferentes. Concluímos que há 60 maneiras distintas de se formar a diretoria. São agrupamentos ordenados.

Page 25: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

Exercício

Page 26: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

1. Uma igreja tem 4 portas. Quando vai lá, Marisa sempre entra por uma porta e sai por outra. De quantas formas diferentes ela pode fazer isso?

Solução:

O percurso dela se compõe de 2 etapas: entrada e saída. Vamos usar o princípio multiplicativo.

Para a 1a etapa, ela tem 4 opções, porque são 4 portas. Escolhida a porta de entrada, ela tem 3 opções de saída, porque ela não usa novamente a porta por onde entrou.

Conclusão: ela pode entrar e sair de 4 . 3 = 12 maneiras diferentes.

Page 27: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

2. Um salão tem 6 portas. De quantos modos distintos esse salão pode estar aberto?

Para a primeira porta temos duas opções: aberta ou fechada

Para a segunda porta temos também, duas opções, e assim sucessivamente.

Para as seis portas, teremos então, pelo Princípio Fundamental da Contagem ( PFC ):

N = 2 . 2 . 2 . 2 . 2 . 2 = 64Lembrando que uma dessas opções corresponde a todas as duas portas fechadas, teremos então que o

número procurado é igual a 64  - 1 = 63.

Resposta: o salão pode estar aberto de 63 modos possíveis.

Solução:

Page 28: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

3. Utilizando apenas os algarismos 1, 3, 4, 6, 7, 8 e 9, quantos números naturais podem ser formados, de 3 ou 4 algarismos?

Solução:

Na 1a hipótese, são 3 etapas. Cada uma corresponde à escolha de um algarismo. Em cada etapa, há 7 opções, porque podemos repetir algarismos. Então:

7 x 7 x 7 = 343 números de três algarismos.

Na 2a hipótese, o raciocínio é o mesmo, ou seja, são 4 etapas. Cada uma corresponde à escolha de um algarismo. Em cada etapa, há 7 opções, porque podemos repetir algarismos. Então:

7 x 7 x 7 x 7 = 2 401 números de quatro algarismos.

Total = 343 + 2 401 = 2 744 números.

Page 29: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

4. Utilizando os algarismos 1, 2, 4, 5, 7 e 9, quantos números naturais maiores que 7000 e de 4 algarismos distintos podemos formar?

Solução:

Para o 1o algarismo (1a etapa), são 2 opções (7 ou 9). Os números formados devem ser maiores que 7 000. Para o 2o algarismo (2a etapa), são 5 opções. Um dos seis algarismos dados já foi usado na 1a posição. Para o 3o algarismo (3a etapa), há 4 opções. Dois dos seis algarismos já foram usados na 1a e 2a posições. Pelo mesmo raciocínio, há 3 opções para o 4o algarismo (4a etapa). Pelo princípio multiplicativo, podemos formar, no total, 2 x 5 x 4 x 3 = 120 números nas condições dadas.

Page 30: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

5. A partir de um grupo de 4 pessoas (A, B, C e D), de quantas maneiras diferentes podemos formar uma comissão de 2 pessoas?

Solução: Ck ! (n – k)!

=n!

n,k

C2 ! (4 – 2)!

=4!

4,2

C2 ! (2)!

=4 . 3 . 2 . 1

4,2

C2 . 1 . 2 . 1

=4 . 3 . 2 . 1

4,2 = 6

6 comissões

Page 31: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

6. Uma fábrica produz 3 modelos de automóveis, com 5 opções de cores. Cada um deles está disponível em 2 versões: duas portas e quatro portas. Quantas alternativas diferentes tem um comprador para adquirir um automóvel, levando-se em conta essas três variáveis?

Solução: 3 opções de modelos

5 opções de cores

2 opções de versão (duas ou quatro portas)

3 x 5 x 2 = 30 alternativas diferentes

Page 32: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

7. Normalmente, o uniforme de um clube de futebol é constituído por uma camisa, um calção e um par de meias. Um clube tem 3 opções de camisa, 2 de calção e 2 de meias. Quantas partidas ele pode jogar, no máximo, sem repetir o uniforme?

Solução: 3 opções de camisa

2 opções de calção

2 opções de meias

3 x 2 x 2 = 12 partidas

Page 33: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

8. Numa lanchonete, há 5 tipos de salgado, 3 tipos de sanduíche, 2 tipos de suco e 4 marcas de refrigerante. De quantas formas diferentes um cliente pode escolher a) um comestível? b) uma bebida?c) um salgado e um refrigerante?d) um sanduíche e uma bebida?e) um comestível e uma bebida? Solução:

a) um comestível?

5 opções de salgado + 3 opções de sanduíche = 8 formas

O cliente pode escolher entre salgado ou sanduíche.

Este “ou” caracteriza o Princípio aditivo de contagem

b) uma bebida?

2 opções de suco + 4 opções de refrigerante = 6 formas

O cliente pode escolher entre suco ou refrigerante.

Este “ou” caracteriza o Princípio aditivo de contagem

Page 34: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

8. Numa lanchonete, há 5 tipos de salgado, 3 tipos de sanduíche, 2 tipos de suco e 4 marcas de refrigerante. De quantas formas diferentes um cliente pode escolher c) um salgado e um refrigerante?

Solução:

5 opções de salgado x 4 opções de refrigerante = 20 formas

O cliente pode escolher entre um salgado e um refrigerante.

Este “e” caracteriza o Princípio multiplicativo de contagem

Page 35: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

8. Numa lanchonete, há 5 tipos de salgado, 3 tipos de sanduíche, 2 tipos de suco e 4 marcas de refrigerante. De quantas formas diferentes um cliente pode escolher d) um sanduíche e uma bebida?

Solução:

3 opções de sanduíche x (2 opções de suco + 4 opções de refrigerante) = 18 formas

O cliente pode escolher entre um sanduíche e uma bebida.

Este “e” caracteriza o Princípio multiplicativo de contagem.

Na escolha da bebida, o cliente pode optar por suco ou refrigerante.

Este “ou” caracteriza o Princípio aditivo de contagem.

Page 36: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

8. Numa lanchonete, há 5 tipos de salgado, 3 tipos de sanduíche, 2 tipos de suco e 4 marcas de refrigerante. De quantas formas diferentes um cliente pode escolher e) um comestível e uma bebida? Solução:

(5 opções de salgados + 3 opções de sanduíche) x (2 opções de suco + 4 opções de refrigerante) = 8 x 6 = 48 formas

Para o comestível, o cliente pode escolher entre salgado ou sanduíche.

Este “ou” caracteriza o Princípio aditivo de contagem

O cliente pode escolher entre um comestível e uma bebida.

Este “e” caracteriza o Princípio multiplicativo de contagem.

Na escolha da bebida, o cliente pode optar por suco ou refrigerante.

Este “ou” caracteriza o Princípio aditivo de contagem.

Page 37: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

9. Numa prova de matemática, foram dadas 8 sentenças. Em cada uma delas, o aluno deveria marcar uma das letras: V (verdadeira) ou F (falsa). De quantas maneiras diferentes as 8 marcações podem ser feitas? Solução:

Para cada sentença temos V ou F, ou seja, 2 opções. Este “ou” caracteriza o Princípio aditivo de contagem

O aluno deve responder 8 sentenças.

28 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 = 256 maneiras

Page 38: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

10. Utilizando-se só os algarismos 1, 2, 4, 6 e 8, formam-se todos os números de 4 algarismos.a) Qual é o total de números formados?b) Quantos não têm algarismo repetido?c) Quantos têm pelo menos um algarismo repetido?d) Quantos são pares?e) Quantos são maiores que 6 000 e não têm algarismo repetido? Solução:

a) Qual é o total de números formados?

São 4 etapas. Cada uma corresponde à escolha de um algarismo. Em cada etapa, há 5 opções, porque podemos repetir algarismos. Então:

5 x 5 x 5 x 5 = 625 números de quatro algarismos.

Page 39: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

10. Utilizando-se só os algarismos 1, 2, 4, 6 e 8, formam-se todos os números de 4 algarismos.b) Quantos não têm algarismo repetido? Solução:

Para o 1o algarismo (1a etapa), são 5 opções. Para o 2o algarismo (2a etapa), são 4 opções. Um dos cinco algarismos dados já foi usado na 1a posição. Para o 3o algarismo (3a etapa), há 3 opções. Dois dos cinco algarismos já foram usados na 1a e 2a posições. Pelo mesmo raciocínio, há 2 opções para o 4o algarismo (4a etapa). Pelo princípio multiplicativo, podemos formar, no total, 5 x 4 x 3 x 2 = 120 números na condição dada.

Page 40: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

10. Utilizando-se só os algarismos 1, 2, 4, 6 e 8, formam-se todos os números de 4 algarismos.c) Quantos têm pelo menos um algarismo repetido?

Solução:

625 números de quatro algarismos com a possibilidade de ocorrer repetição.

120 números de quatro algarismos com a possibilidade de não ocorrer repetição.

625 - 120 = 505 números de quatro algarismos com a possibilidade de pelo menos um algarismo repetido.

Page 41: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

10. Utilizando-se só os algarismos 1, 2, 4, 6 e 8, formam-se todos os números de 4 algarismos.d) Quantos são pares? Solução:

São 4 etapas. Cada uma corresponde à escolha de um algarismo. Nas 3 primeiras etapas, há 5 opções (cada uma), porque podemos repetir algarismos. No entanto, na quarta etapa (para ocupar a quarta posição) temos apenas 4 opções, com os algarismos pares (2, 4, 6 e 8)

5 x 5 x 5 x 4 = 500 números de quatro algarismos.

Page 42: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

10. Utilizando-se só os algarismos 1, 2, 4, 6 e 8, formam-se todos os números de 4 algarismos.e) Quantos são maiores que 6 000 e não têm algarismo repetido? Solução:

São 4 etapas.

Para a 1a etapa temos 2 opção (Com os algarismos 6 e 8)

Para a 2a etapa temos 4 opções (Com os algarismos 1, 2, 4 e 6 ou 8)

Para a 3a etapa temos 3 opções (dois algarismos já foram utilizados na 1a e 2a etapa)

Para a 4a etapa temos 2 opções (três algarismos já foram utilizados na 1a, 2a e 3a etapa)

2 x 4 x 3 x 2 = 48 números

Page 43: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

11. No sistema de emplacamento de veículos, usam-se letras e algarismos. Um exemplo é a placa PMG-0358. As 3 letras são escolhidas entre as 26 do alfabeto; os algarismos são escolhidos entre os 10 disponíveis. Suponha que haja placas com quatro zeros (0000).a) Quantas placas diferentes podem ser feitas?b) Quantas têm as 3 letras e os 4 algarismos diferentes?c) Quantas só têm vogais e algarismos maiores que 6?d) Quantas têm 3 vogais diferentes e o primeiro e o último algarismos iguais?

Para a 1a letra, 26 opções, para a 2a letra, 26 opções e para a 3a letra, 26 opções.

Para o 1o número, 10 opções, para o 2o número, 10 opções, para o 3o número, 10 opções e para o 4o número, 10 opções.

26 x 26 x 26 x 10 x 10 x 10 x 10 = 175 760 000 placas

a) Quantas placas diferentes podem ser feitas?

Solução:

Page 44: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

11. No sistema de emplacamento de veículos, usam-se letras e algarismos. Um exemplo é a placa PMG-0358. As 3 letras são escolhidas entre as 26 do alfabeto; os algarismos são escolhidos entre os 10 disponíveis. Suponha que haja placas com quatro zeros (0000).b) Quantas têm as 3 letras e os 4 algarismos diferentes?

Para a 1a letra, 26 opções, para a 2a letra, 25 opções e para a 3a letra, 24 opções.

Para o 1o número, 10 opções, para o 2o número, 9 opções, para o 3o número, 8 opções e para o 4o número, 7 opções.

26 x 25 x 24 x 10 x 9 x 8 x 7 = 78 624 000 placas

Solução:

Page 45: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

11. No sistema de emplacamento de veículos, usam-se letras e algarismos. Um exemplo é a placa PMG-0358. As 3 letras são escolhidas entre as 26 do alfabeto; os algarismos são escolhidos entre os 10 disponíveis. Suponha que haja placas com quatro zeros (0000).c) Quantas só têm vogais e algarismos maiores que 6?

Solução:

Para a 1a letra, 5 opções, para a 2a letra, 5 opções e para a 3a letra, 5 opções (temos apenas 5 vogais no alfabeto).

Para o 1o número, 3 opções, para o 2o número, 3 opções, para o 3o número, 3 opções e para o 4o número, 3 opções (temos apenas 3 algarismos maiores que 6, os algarismos 7, 8 e 9).

5 x 5 x 5 x 3 x 3 x 3 x 3 = 10 125 placas

Page 46: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

11. No sistema de emplacamento de veículos, usam-se letras e algarismos. Um exemplo é a placa PMG-0358. As 3 letras são escolhidas entre as 26 do alfabeto; os algarismos são escolhidos entre os 10 disponíveis. Suponha que haja placas com quatro zeros (0000).d) Quantas têm 3 vogais diferentes e o primeiro e o último algarismos iguais? Solução:

Para a 1a letra, 5 opções, para a 2a letra, 4 opções e para a 3a letra, 3 opções (temos apenas 5 vogais no alfabeto).

Para o 1o número, 10 opções, para o 10o número, 10 opções, para o 3o número, 10 opções e para o 4o número, 1 opção (temos o primeiro e o último algarismo sendo iguais).

5 x 4 x 3 x 10 x 10 x 10 x 1 = 60 000 placas

Page 47: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

12. Chama-se anagrama de uma palavra, toda "palavra" (com ou sem significado) obtida, trocando-se suas letras de posição. Veja, por exemplo, alguns anagramas da palavra AMOR:

AMOR, OMAR, MORA, MAROFormam-se todos os anagramas de CARINHO.a) Qual é o total de anagramas?b) Quantos começam por vogal?c) Quantos terminam em CA, nesta ordem?d) Quantos têm o C e o A juntos, nesta ordem?

Solução:

a) Qual é o total de anagramas?

Existem 7 letras diferentes, portanto temos

7! = 7 . 6 . 5 . 4 . 3 . 2 . 1 = 5 040 anagramas

Page 48: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

12. Chama-se anagrama de uma palavra, toda "palavra" (com ou sem significado) obtida, trocando-se suas letras de posição. Veja, por exemplo, alguns anagramas da palavra AMOR:

AMOR, OMAR, MORA, MAROFormam-se todos os anagramas de CARINHO.b) Quantos começam por vogal? Solução:

Existem 7 letras diferentes, portanto temos:

Existem 3 vogais diferentes, formando 3 opções para a 1a letra do anagrama (1ª posição), sobrando seis posições (para as demais letras), ocasionando uma permutação de 6 letras.

3 . 6! = 3 . 6 . 5 . 4 . 3 . 2 . 1 = 2 160 anagramas

Page 49: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

12 . Chama-se anagrama de uma palavra, toda "palavra" (com ou sem significado) obtida, trocando-se suas letras de posição. Veja, por exemplo, alguns anagramas da palavra AMOR:

AMOR, OMAR, MORA, MAROFormam-se todos os anagramas de CARINHO.c) Quantos terminam em CA, nesta ordem?

Solução:

Existem 7 letras diferentes (sete posições), sendo que nas duas últimas não pode acontecer permutações, sobrando 5 letras para serem permutadas (trocadas de posição)

5! = 5 . 4 . 3 . 2 . 1 = 120 anagramas

Page 50: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

12. Chama-se anagrama de uma palavra, toda "palavra" (com ou sem significado) obtida, trocando-se suas letras de posição. Veja, por exemplo, alguns anagramas da palavra AMOR:

AMOR, OMAR, MORA, MAROFormam-se todos os anagramas de CARINHO.d) Quantos têm o C e o A juntos, nesta ordem?

Solução:

Este caso ocorre como se C e A fosse uma única letra.

Portanto teríamos 6 letras CA, R, I, N, H e O.

6! = 6 . 5 . 4 . 3 . 2 . 1 = 720 anagramas

Page 51: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

13. O professor de Matemática propôs o seguinte problema: "De um grupo de 5 colegas, de quantas maneiras você pode convidar 3 para serem seus companheiros de viagem?". Marcelo apresentou a seguinte solução:1a etapa: escolher o primeiro ... 5 opções2a etapa: escolher o segundo ... 4 opções3a etapa: escolher o terceiro ... 3 opçõesTotal: 5 . 4 . 3 = 60 maneiras diferentes. Essa solução está correta? Por quê?

Não está correta. A solução dada pressupõe que seja importante a ordem em que foi feito o convite. A solução passa por uma combinação tomada 5 a 3.

Ck ! (n – k)!

=n!

n,k

C3 ! (5 – 3)!

=5!

5,3

C3 ! x 2!

=5 x 4 x 3!

5,3 = 10

Page 52: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

14. Em uma sapateira irei guardar 3 sapatos, 2 chinelos e 5 tênis. Quantas são as disposições possíveis desde que os calçados de mesmo tipo fiquem juntos, lado a lado na sapateira? Solução:

Para os três tipos de calçados, veja : P3 = 3! = 3 . 2 . 1 = 6

Para os sapatos, veja P3 = 3! = 3 . 2 . 1 = 6

Para os chinelos, veja P2 = 2! = 2 . 1 = 2

Finalmente para os tênis, veja P5 = 5! = 5 . 4 . 3 . 2 . 1 = 120

Multiplicando estes quatro números temos:

P3 . P3 . P2 . P5 = 3! . 3! . 2! . 5! = 6 . 6 . 2 . 120 = 8640

8640 disposições possíveis.

Page 53: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

15. Oito pessoas irão acampar e levarão quatro barracas. Em cada barraca dormirão duas pessoas. Quantas são as opções de distribuição das pessoas nas barracas?

Solução:

Também podemos resolver este exercício recorrendo à formula da combinação simples:

2 520 opções

=. C6,2 . C4,2 . C2,2 C8,2 28 . 15 . 6 . 1 = 2 520

Page 54: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

16. Grêmio (RS), Flamengo (RJ), Internacional (RS) e São Paulo (SP) disputam um campeonato. Levando-se em conta apenas a unidade da federação de cada um dos clubes, de quantas maneiras diferentes pode terminar o campeonato?

Solução:

Em outras palavras queremos saber o número de

permutações possíveis entre as unidades da federação

de RS, RJ, RS e SP.

Através do cálculo de P4 temos:

P4 = 4! = 4 . 3 . 2 . 1 = 24

No entanto a UF do RS ocorre 2 vezes, devemos portanto

eliminar as duas permutações referentes a ela,

dividindo 24 por 2!, quando iremos obter 12 maneiras

diferentes de poder terminar o campeonato.

Page 55: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

17. Existem 10 jogadores de futebol de salão, entre eles João que por sinal é o único que joga como goleiro, nesta condição quantos times de 5 pessoas podem ser escalados?

Solução:

C4 ! (9 – 4)!

=9!

9,4

C4 ! x 5!

=9 x 8 x 7 x 6 x 5!

9,4

= 126C4 x 3 x 2 x 1

=9 x 8 x 7 x 6

9,4

Page 56: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

18. Um químico possui 10 (dez) tipos de substâncias. De quantos modos possíveis poderá associar 6 [seis) dessas substâncias se, entre as 10, duas somente não podem ser juntadas porque produzem misturas explosivas?

Solução:

Das 10 substância, retirando apenas uma ...

Agora sem as duas substâncias ...

Como elas não podem se misturar

C = 168 9,6

C = 28 8,6

168 - 28 = 140 modos

Page 57: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

19. Dos 12 jogadores levados para uma partida de vôlei, apenas 6 entrarão em quadra no início do jogo. Sabendo que 2 são levantadores e 10 são atacantes, como escolher 1 levantador e 5 atacantes?

Solução:

Dos 2 levantadores escolheremos 1, e dos 10 atacantes apenas 5 serão escolhidos. Como a ordem não faz diferença, temos:

C = 2 2,1 C = 252 10,5

Teremos então 2 · 252 = 504 formas de escolher o time.

Page 58: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

20. Onze cientistas trabalham num projeto sigiloso. Por questões de segurança, os planos são guardados em um cofre protegido por muitos cadeados, de modo que só é possível abri-los

todos se houver pelo menos 6 cientistas presentes.

(a) Qual é o número mínimo possível de cadeados?

(b) Na situação do item (a), quantas chaves cada cientista deve ter?

Solução:

Page 59: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

21. Num certo país, existem 20 cidades e todo par delas é ligado por uma única estrada. Nessas condições, quantas estradas existem?

Solução:

Cada duas cidades é ligada por uma única estrada.

Podemos escolher uma das cidades, digamos, a cidade

A, para o início de uma estrada. Desse modo, podemos

ligar a cidade A para 19 outras cidades. Ou seja, temos

20 x 19 = 380 estradas . Agora, observe que cada

uma dessas cidades é contada duas vezes. Portanto, o

número de estradas é dado por 380/2 = 190.

Page 60: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

21. Onze cientistas trabalham num projeto sigiloso. Por questões de segurança, os planos são guardados em um cofre protegido por muitos cadeados, de modo que só é possível abri-los todos se houver pelo menos 6 cientistas presentes.

(a) Qual é o número mínimo possível de cadeados?

(b) Na situação do item (a), quantas chaves cada cientista deve ter? Solução:

(a) Pelos dados do problema, formado qualquer grupo de 5 cientistas do projeto, existe um cadeado para o qual nenhum deles possui a chave. Mas, em qualquer outro grupo de seis elementos existe essa chave. Portanto, o número de cadeados tem de ser no mínimo igual ao número de maneiras de escolher 5 cientistas dentre os 11participantes do projeto, isto é, o número de cadeados é no mínimo igual a . C11,5 = 462

Page 61: Análise Combinatória. Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento

21. Onze cientistas trabalham num projeto sigiloso. Por questões de segurança, os planos são guardados em um cofre protegido por muitos cadeados, de modo que só é possível abri-los todos se houver pelo menos 6 cientistas presentes.

(a) Qual é o número mínimo possível de cadeados?

(b) Na situação do item (a), quantas chaves cada cientista deve ter? Solução:

Seja A um dos cientistas do projeto. Formado qualquer grupo de 5 cientistas, selecionado dentre os 10 restantes, ex iste um cadeado para o qual A possui a chave, embora os cinco cientistas não possam abrí-lo. Assim, A tem de possuir no mínimoC10,5 =252 chaves.