25
Estruturas em Treliça Prof. Eduardo Mesquita

Apostila Estruturas Em Trelica

Embed Size (px)

Citation preview

Page 1: Apostila Estruturas Em Trelica

Estruturasem Treliça

Prof. Eduardo Mesquita

- 2006 -

Page 2: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

ESTRUTURAS EM TRELIÇAESTRUTURAS EM TRELIÇA

São estruturas lineares, formadas por barras que no conjunto devem formar uma estrutura indeformável.

Estrutura deformável

1. T1. TIPOSIPOS DEDE T TRELIÇARELIÇA

1.1 - Treliças Planas1.1 - Treliças Planas

Suas barras estão num mesmo plano.

1.2 - Treliças Tridimensionais1.2 - Treliças Tridimensionais

Suas barras estão todas em planos diferentes. As treliças são utilizadas para coberturas, pontes, como vigas de lançamento, etc.

2. H2. HIPÓTESESIPÓTESES P PARAARA OSOS V VÁRIOSÁRIOS P PROCESSOSROCESSOS DEDE C CÁLCULOSÁLCULOS

2.12.1 – As barras da treliça são ligadas entre si por intermédio de articulações sem atrito.

2.22.2 – As cargas e reações aplicam-se somente nos nós da estrutura.

2.32.3 – O eixo de cada barra coincide com a reta que une os centros das articulações (como nas estruturas lineares).

Satisfeitas todas as hipóteses mencionadas, as barras da treliça só serão solicitadas por forças normais.

3. E3. ESFORÇOSSFORÇOS S SOLICITANTESOLICITANTES

Forças Normais

As tensões provocadas por estas forças são chamadas tensões primárias.

Estruturas em Treliça

1

Barra indeformável

tração

compressão

N

NN

N

A A

B B

Page 3: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

(verificação da resistência da peça)

Observações:

1. Na prática não se consegue obter uma articulação perfeita, sem atrito. As articulações são formadas por chapas rebitadas ou soldadas, que podem ser consideradas praticamente rígidas.

2. Devido ao fato de não termos uma articulação perfeita aparecerá momento fletor e força cortante, porém este estudo não é parte do nosso curso.

3. Também o peso próprio da barra provoca flexão na mesma, só que é desprezível por ser muito pequeno. O peso da barra vai aplicado nos nós.

4. T4. TRELIÇASRELIÇAS I ISOSTÁTICASSOSTÁTICAS EE H HIPERESTÁTICASIPERESTÁTICAS

Dados os valores das forças P1, P2, P3 e P4, se conseguirmos determinar, pelas equações da estática, os valores de R1 e R2 e os esforços nas barras, ela é isostática.

Estruturas em Treliça

2

seção da peça

A

B

P/2

P/2

P1 P2

R1 P3R2

P4

Page 4: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Se determinarmos somente as reações de apoio ela é dita internamente hiperestática (as incógnitas são as forças normais).

Quando nem as reações se determinam ela é dita externamente hiperestática.

As incógnitas a se determinarem são:

As reações de apoio HA, VA e VB, chamadas de vínculos representados pela letra V.

Esforços normais nas barras representados pela letra b.

Logo o número de incógnitas é (b + V).

Portanto, para cada nó da estrutura nós temos duas equações, logo se a estrutura possuir N nós, teremos 2N equações.

Portanto, para uma treliça ser isostática, devemos ter

Treliça hiperestática b + V > 2N.

O grau de hiperestaticidade de uma treliça é dado pela equação:

g = (b + V) – 2N

Se g = 0 a treliça é isostática.

Exemplos:

Estruturas em Treliça

3

HA

P2

A

VB

B

VA

P

N1

N2N3

Page 5: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

v = 3, b = 11, N = 7 v = 3, b = 9

b + v = 14 2N = 14 N = 6 b + v = 12 2N = 12

Isostática Isostática

v = 4, b = 13, N = 8 v = 3, b = 14, N = 8

b + v = 17 2N = 16 b + v = 17, 2N = 16

Hiperestática (g = 1) Hiperestática (g = 1)

Incógnita: uma das reações de Incógnita: esforço de uma das apoio – externamente barras- internamente hiperestática. hiperestática.

5 – T5 – TRELIÇASRELIÇAS S SIMPLESIMPLES

Geralmente quase todas as treliças são formadas a partir de um triângulo inicial. Para cada novo nó introduzido, basta acrescentar duas barras não colineares.

Se o número de vínculos relativos às treliças acima mencionadas forem iguais a 3, as treliças serão sempre isostáticas b + 3 = 2N

Observações:

1. A treliça hiperestática com 3 vínculos, conforme desenho acima, tem uma barra a mais, logo não entra nesta classificação.

Estruturas em Treliça

4

Page 6: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

6. P6. PROCESSOSROCESSOS DEDE R RESOLUÇÃOESOLUÇÃO

6.1 – Processo dos Nós6.1 – Processo dos Nós

Seja o nó C, da treliça ABCDEF. Nele concorrem as barras conforme a figura abaixo:

Conforme já dissemos, cada nó apresenta duas equações e, se admitirmos que todas as barras estejam tracionadas, teremos:

Nó C:

Genericamente, teremos:

(componente horizontal de P1) = 0

(componente vertical de P1) = 0

As componentes verticais em função do seno.

As componentes horizontais em função do cosseno.

Os valores de H e V podem ser positivos ou negativos, se as forças forem de tração e compressão, respectivamente.

Convenção:

6.2 – Casos de Simplificação6.2 – Casos de Simplificação

Para carregamentos particulares pode acontecer que uma treliça possua barra ou barras não solicitada(s), ou então solicitadas pela mesma força normal. Em muitos casos a identificação destas barras é imediata, simplificando bastante o

Estruturas em Treliça

5

C D E4 5

23

1

A

6 79

8

F B

P1

N2 N3

N4

P1

C

2

1

+ +

Page 7: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

cálculo da treliça.Seja a treliça abaixo:

Nó A duas barras não coaxiais sem forças externas aplicadas.

N1 = N4 = 0 as barras não estão solicitadas.

Nó C duas barras não coaxiais sem forças externas aplicadas.

N5 = 0

N2 = N6

Nó B duas barras não coaxiais sem forças externas aplicadas.

N17 = -P3 (compressão).

N16 = 0

Nó D duas barras não coaxiais sem forças externas aplicadas.

N10 = N14

N13 = 0

Nó E duas barras não coaxiais sem forças externas aplicadas.

N8 = N12

N9 = - P2 (compressão).

6.3 – Processos dos Coeficientes de Força6.3 – Processos dos Coeficientes de Força

Estruturas em Treliça

6

A E24 8

13

2

5 7 9

6

C

B

P1

12 16

11

10

13 15 17

14

D

P2

P3

Page 8: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Esse processo é análogo ao dos nós, mas leva muito mais vantagens se houver muitas barras com inclinações diferentes, principalmente se os comprimentos dessas barras forem obtidos por simples medição num esquema da estrutura.

Vamos supor uma barra AB qualquer de comprimento l de projeções h e v (horizontal e vertical, respectivamente).

Da figura, tiramos: o ângulo que a barra AB faz com

a horizontal. Voltando ao processo dos nós, onde tínhamos:

, substituímos os valores do cos e sen , ficando:

onde N, h, v e l em cada parcela das somatórias, referem-se a uma mesma barra.

O coeficiente de forças de uma barra é obtido da relação: , que substituindo nas

equações acima nos dá:

Através das equações acima, determinamos os valores de t correspondentes às diversas barras da estrutura. Em seguida, obtemos as forças normais, multiplicando-se os valores de t pelos comprimentos das respectivas barras.

Estruturas em Treliça

7

A

B

h

vl

horizontal

Page 9: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Exercício: Resolver a treliça dada nos exemplos anteriores pelo processo dos coeficientes de força.

Nó Equação Barra t (tf/m) l (m) N (tf)

AV 3,97 + 3t1 = 0 1 -1,32 3 -3,96H 5,2 + 4t2 = 0 2 -1,3 4 -5,2

BV -3t1 - 3t3 = 0 3 1,32 5 6,6H 4t4 + 4t3 = 0 4 -1,32 4 -5,28

CV -2-3t5 - 3t7 = 0 5 -1,32 3 -3,96H -4t4 + 4t7 + 4t8 = 0 6 0,02 4 0,08

DV +3t3 + 3t5 = 0 7 0,65 5 3,25H -4t2 - 4t3 + 4t6 = 0 8 -1,97 4 -7,88

EV -4 - 3t9 - 3t11 = 0 9 -0,65 3 -1,95H -4t8 + 4t12 + 4t11 = 0 10 0,68 4 2,72

FV 3t9 + 3t7 = 0 11 -0,68 5 -3,4H -4t7 - 4t6 + 4t10 = 0 12 -1,29 4 -5,16

GV -6cos60º - 3t13 = 0 13 -1 3 -3H

6.4 – Processo das Seções ou de Ritter6.4 – Processo das Seções ou de Ritter

Como vimos no processo dos nós, admitimos cortadas todas as barras da treliça e consideramos sucessivamente as condições de equilíbrio (H = 0 e V = 0) relativas a todos os nós, um a um.

Esse processo é utilizado quando se deseja determinar as forças normais em todas as barras.

No processo das seções temos condições de obter a força normal em apenas algumas barras ou somente em uma única.

Neste caso, estabelecemos as condições de equilíbrio do reticulado que resulta, quando aplicamos os cortes naquelas barras cujas forças normais procuramos. Este processo permite, com sucesso, a resolução de diversos casos de treliças simples e compostas (associação de uma ou mais treliças que não podem ser obtidas seguindo-se a lei da formação das treliças simples) tornando-se,

Estruturas em Treliça

8

B E4 8

1 3

2

5 7 9

6

D

A

2tf

12

1611

10

133 m

HA=5,2 tf

HF

30ºC G

4tf6tf

4 m

VB=5,03 tf

4 m 4 mVA=3,97 tf

Page 10: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

entretanto, impraticável no caso das treliças complexas.

Ao partirmos a barra CE a treliça se transforma em dois reticulados geométricos indeformáveis e interligados pela articulação F.

Logo os momentos relativos a quaisquer forças de um lado ou de outro lado dos reticulados devem ser nulos.

Tomando, por exemplo, a parte situada à esquerda de F, temos:

Calcular a força normal na barra CF diagonal:

Estruturas em Treliça

9

B E

D

A

2tf

3 m

5,2 tf

HF

30ºC G

4tf6tf

4 m

5,03 tf

4 m 4 m3,97 tf

B E

D

A

2tf

3 m

5,2 tf

HF

30ºC G

4tf6tf

4 m

5,03 tf

4 m 4 m3,97 tf

NCE NCE

Banzo sup.

B E

D

A

2tf

3 m

5,2 tf

HF

30ºC G

4tf6tf

4 m

5,03 tf

4 m 4 m3,97 tf

NCF

NCF

Page 11: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Nestas condições os dois reticulados estão ligados por duas barras biarticuladas paralelas CE e DF, incapazes de impedir o deslocamento na direção vertical.

Desta forma, para não acontecer movimento relativo das partes, fazemos .

Relativo a um ou outro reticulado.

Tomando o reticulado da esquerda, temos:

Os reticulados estão interligados por duas retas paralelas BC e DF. Também neste caso os reticulados são incapazes de impedir o deslocamento na direção vertical. Logo

temos que fazer

Vamos pega os reticulado da esquerda, logo teremos:

O da esquerda:

O da direita:

Exercício: Dado o sistema reticulado abaixo, pede-se:

Calcular as reações de apoio.

Calcular os esforços normais em todas as barras.

Obs: Utilizar duas casas decimais.

Estruturas em Treliça

10

3 m

B E

D

A

2tf

5,2 tf

HF

30ºC G

4tf6tf

4 m

5,03 tf

4 m 4 m3,97 tf

NCD

NCD

Page 12: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Nó E

Nó D

Estruturas em Treliça

11

+

+

+

3 m

2 m

57

6

90 90

90

90 3

4

1

A

D3 KN

B

C E

2 KN

3 KN

2 KN

2 KN

3 m 2 m 2 m

HA = 6 KN

VA = 6,8 KN VB = -0,8 KN

2 KN

3 KNN6

N7

+

+

2 KN

N2

N1

90

Page 13: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Nó A

Nó B

Estruturas em Treliça

12

3 KN

N4

6 KN

N3

N1

90

6,8 KN

N4

6 KN

N7

N5

-0,8 KN

5 m 4 m

4 kn

2 kn

4

C5

3

90

90

90

90

D8 kn

10 kn 6 kn 2

1

90

A HA = -5,14 KN

4 m

3 m

B HB =15,14 KN

VB = 10 KN

Page 14: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Nó A

Nó C

Nó B

Prova:

NÓS EQUAÇÕESBARRAS

N (KN)

A H2 -4,47

Estruturas em Treliça

13

+

+

N2

N1

90

-5,14 KN

N4

2 KN

4 KN

N5

+

+N5

N3

15,14 KN

N1

10 KN

90

A BD2

VA = 6,75 KN VB = 3,25 KN

5

3 KN

HB = 10 KN

3 m3

E 6 KN

3 KN

7

90 90

90

90 90

1

4

C

2 m4 KN

3 m 3 m 3 m

4 KN

6

N1

N2

6,75 KN

90

Page 15: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

V1 8,13

C H4 3,22

V 3 -3,87

B H 5 -6,75

V7 4,58

E H 6 -0,53

V

H

V

Estruturas em Treliça

14

N1

N44 KN

90 N3

4 KN

N7

10 KN

6,75

N5

N6

6 KNN4

90

3 KN

N7

1 KN

B

1 KN

D

1 KN

F

1 KN

H 2 KN

2 m

1 KN

2 m

2 KN

2 m3 m5 m2 m2 mC E G I

J

VJ=1,93 KNVA=2,07KN

A

HA=5 KN

6,490

+

Page 16: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

NDE

(Ret. a esq.)

NDG

(Ret. a esq.)

NEG

(Ret. a esq.)

NFH

(Ret. a dir.)

Estruturas em Treliça

15

1 KN 1 KN 1 KN 1 KN

1 KN

2 KN

3 m

2 m

1 m

2 m

VB=2,31KN

HB=4KN

2 m 5 m

B

LJH

KIGE

F

C

D

A

4 m1,5 m1,5 m

VA=2,69KN

2 KN

+

Page 17: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

NIK

(Ret. a dir.)

NFH

(Ret. a esq.)

NGJ

(Ret. a dir.)

NIJ

(Ret. a dir.)

Reações de Apoio

Estruturas em Treliça

16

6 t

6 t

6 t

HC

VC

VA

2 m 4 m

6 t

CB

A

D

5

34

1

2

2 m

4 m

Page 18: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Equilíbrio dos Nós

Nó A

Nó B

Nó C

Estruturas em Treliça

17

AB

C

DEF

5

6

4

3

2

1

7

8

9

HB

VBVA

5 m12 m

5 m

5 m

P1=500kg P2=1500kg

Reações

VA 1700

VB 300

HB 0

Page 19: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

Nó Equação

AV

H 5 T2 = 0

BV VB + 5T3 + 10T4 + 10T5 = 0

H -HB – 5T2 – 5T3 – 5T4 = 0

CV -5T1 – 5T3 + 5T7 + 5T9 =0

H - 12T9 + 5T3 = 0

DV -P2 – 10T5 = 0

H -5T6 = 0

EV -5T7 – 10T4 = 0

H -12T8 + 5TA + 5T6 = 0

FV -P1 – 5T9 = 0

H 12T8 + 12T9 = 0

Exercício:

Nó Equação

Estruturas em Treliça

18

T L Normal

1 -340 5 -1700

2 0 5 0

3 -240 7,07 -1697

4 240 11,18 2683

5 -150 10 -1500

6 0 5 0

7 -480 5 -2400

8 100 12 1200

9 -100 13 -1300

2t

E

5tDF

A

6

7

5

9

4

8

3

21

3t

HA C

B1t

VA VC

2 m 2 m

1,5 m

3 m

Page 20: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

BV

H

EV

H

FV

H

DV

H

CV

H

AV

H

1. Calcular as forças normais nas barras da treliça:

2. a) Verificar se a treliça é isostática.

b) Calcular a força normal em todas as barras da treliça, utilizar o processo dos nós ou o processo dos coeficientes de força.

Estruturas em Treliça

19

3t 5t

2tD 7 E

6

5

4

3

C

1

2

A B

4 m 4 m

6 m

1000 kgf

A

B

1 2

3 C 500 kgf

4

D

56

7 E

84 m

9

F

2 m

3 m

3 m

5 m

Page 21: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

3. Dada a treliça, determinar as reações de apoio e a força normal nas barras:

4. Determinar as forças normais da treliça abaixo (qualquer método):

5. Dada a treliça abaixo, pede-se verificar se a mesma é isostática, suas reações de apoio e as forças normais em todas as suas barras.

Estruturas em Treliça

20

5t4 m4 m

3 m

3t

2t

C

B

D

6 m 4 m

3 m

3 m 7 m

A E B

C D F5 t2 t

4 m

A B

4

3

12

C D7

3 m

865 3 m

EF

3 m

11

12109

2 KN

G13

2,54 KN4 KN

60º

Page 22: Apostila Estruturas Em Trelica

UNIVERSIDADE FUMEC - FEA

NÓS EQUAÇÕES N (EM KN)

A H

V

B H

V

C H

V

D H

V

E H

V

F H

V

G H

V

H H

V

Estruturas em Treliça

21