Author
quochungvnu
View
214
Download
0
Embed Size (px)
8/14/2019 Chuong7 AI
1/89
NHP MN TR TU NHN TO
@copyrights by DrNguyn XunHoi
8/14/2019 Chuong7 AI
2/89
Nhp mn hc my
8/14/2019 Chuong7 AI
3/89
Outline
Th no l hc?
Hc quy np.
Hc vi cy quyt nh. Hc trong Mng Neural. Mng Perceptron.
Mng Perceptron a lp vi thut gii BP.
8/14/2019 Chuong7 AI
4/89
Th no l hc?
Nh v lm li (hc vt).
Hc nh quan st v khi qut ho (hc hiu). nh ngha ca H. Simon.
Hc l s thay i thch ng trong h thng
gip cho h thng c th x l vn ngycng hiu qu hn khi gp li nhng tnhhung tng t
8/14/2019 Chuong7 AI
5/89
Hc lm g?
Hc l cn thit trong nhng mi trng chaquen thuc,
Hc l mt phng php hu hiu xy dng
h thng
Hc l cch cc chng trnh thng minh c
th hiu chnh hnh vi tng hiu qu giiquyt vn .
8/14/2019 Chuong7 AI
6/89
Learning agents
8/14/2019 Chuong7 AI
7/89
Xy dng module hc cho h thng
Vic xy dng module hc cho h thng phi tnhn yu t: Phn no cn hc tng hiu nng gii quyt vn .
Thng tin phn hi i vi phn ny ca h thng.
Biu din cho tri thc cn hc.
Dng thng tin phn hi: Hc c gim st: tr li chnh xc cho cc cu hi.
Hc khng gim st: khng c cu tr li chnh xc.
Hc tng cng: thng nu lm ng.
8/14/2019 Chuong7 AI
8/89
Hc quy np
V d: hc mt hm t mu v d.
flhm mc tiu
Mt mu v d l mt cp (x, f(x))
Bi ton: Tm gi thuyt hsao cho h fda trn tp mu cho trc
M hnh n gin ho vic hc: Khng tnh n tri thc c sn Gi s tp mu l c .
8/14/2019 Chuong7 AI
9/89
Phng php hc quy np
Xy dng h gn vi ftrn tp hun luyn (h c gi l nht qun vi ftrn tp mu)
E.g., khp ng cong:
8/14/2019 Chuong7 AI
10/89
Phng php hc quy np
Xy dng h gn vi ftrn tp hun luyn
(h c gi l nht qun vi ftrn tp mu)
E.g., khp ng cong:
8/14/2019 Chuong7 AI
11/89
Phng php hc quy np Xy dng h gn vi ftrn tp hun luyn
(h c gi l nht qun vi ftrn tp mu) E.g., khp ng cong:
8/14/2019 Chuong7 AI
12/89
Phng php hc quy np
Xy dng h gn vi ftrn tp hun luyn
(h c gi l nht qun vi ftrn tp mu)
E.g., khp ng cong:
8/14/2019 Chuong7 AI
13/89
Phng php hc quy np
Xy dng h gn vi f trn tp hun luyn
(h c gi l nht qun vi f trn tp mu)
E.g., khp ng cong:
8/14/2019 Chuong7 AI
14/89
Phng php hc quy np Xy dng h gn vi f trn tp hun luyn
(h c gi l nht qun vi f trn tp mu) E.g., khp ng cong:
Ockhams razor: u tin nhng gi thit no xp
x tt hm mc tiu v cng n gin cng tt
8/14/2019 Chuong7 AI
15/89
Hc cc cy quyt nh
Bi ton: Hc xem khi no th nn ngi bn i timt restaurant:1. Alternate: C restaurant no cnh y khng?2. Bar: Liu c khu vc quy bar c th ngi khng?3. Fri/Sat: hm nay l th 8 hay th 7?
4. Hungry: c ang i khng?5. Patrons: S ngi trong restaurant (None, Some,Full)
6. Price: khong gi ($, $$, $$$)7. Raining: ngoi tri c ma khng?
8. Reservation: t trc cha?9. Type: loi restaurant (French, Italian, Thai, Burger)10. WaitEstimate: thi gian ch i (0-10, 10-30, 30-
60, >60)
8/14/2019 Chuong7 AI
16/89
Biu din thuc tnh gi tr Cc mu c biu din bng cc thuc tnh v gi tr(Boolean,
discrete, continuous)
Nhim v t ra l phn loi xem trng hp no trong tng lai l
positive (T) hay negative (F)
8/14/2019 Chuong7 AI
17/89
Cy quyt nh
Biu din gi thit cn hc. V d:
8/14/2019 Chuong7 AI
18/89
Kh nng biu din Cy quyt nh c kh nng dng biu din bt c hm no.
E.g. hm Boolean:
Vi mt cy quyt nh nht qun vi tp mu hun luyn th miinput, output ca hm tng ng vi mt ng i trong cy.Nhng cng c th kh nng khi qut ho khng cao i vi cc vd mi cha bit.
u tin tm cy c phc tp nh.
8/14/2019 Chuong7 AI
19/89
Khng gian gi thuyt
S lng cy quyt nh cho hm Boolean == S lng hm boolean
= s lng bng lun vi 2n hng = 22n
E.g., nu c 6 thuc tnh Boolean, c18,446,744,073,709,551,616 cy
8/14/2019 Chuong7 AI
20/89
Thut ton hc cy quyt nh Mc ch: Tm cy nh nht qun vi tp mu hun luyn.
tng: Tm kim heuristic chn thuc tnh quan trng nht phn tch ( quy)
8/14/2019 Chuong7 AI
21/89
Chn thuc tnh
tng: chn thuc tnh (gi tr) sao cho sao cho n gip
phn tch tp mu thanh hai tp thun khit (ch c positivehay ch c negative).
Patrons?l la chn tt hn
8/14/2019 Chuong7 AI
22/89
S dng l thuyt thng tin
ci tChoose-Attribute
trong thut tonDTL:
Lng thng tin (Entropy):
I(P(v1), , P(vn)) = i=1 -P(vi) log2 P(vi)
i vi tp cp mu positive v n negative:
np
n
np
n
np
p
np
p
np
n
np
pI
++
++=
++ 22loglog),(
8/14/2019 Chuong7 AI
23/89
Li thng tin (Information gain)
chn thuc tnhA chia tp hun luyn Ethnh cc tpcon E1, , Ev tnh theo gi tr caA, v gi sA c vgi tr khc nhau.
Li thng tin (IG) l gim trong entropy trong vic testthuc tnh:
Chn thuc tnh c IG ln nht
= ++++
=
v
i ii
i
ii
iii
np
n
np
p
Inp
np
Aremainder1
),()(
)(),()( Aremaindernp
n
np
pIAIG ++=
8/14/2019 Chuong7 AI
24/89
Li thng tin (Information gain)
Trong tp mu ca v d, p = n = 6, I(6/12, 6/12) = 1 bit
Xt thuc tnh Patrons v Type (v cc thuc tnh khc):
Patrons c gi tr IG cao nht nn c DTL chn lm gcca cy quyt nh.
bits0)]
4
2,
4
2(
12
4)
4
2,
4
2(
12
4)
2
1,
2
1(
12
2)
2
1,
2
1(
12
2[1)(
bits0541.)]6
4,
6
2(
12
6)0,1(
12
4)1,0(
12
2[1)(
=+++=
=++=
IIIITypeIG
IIIPatronsIG
8/14/2019 Chuong7 AI
25/89
Li thng tin (Information gain) Cy quyt nh hc bi DTL t 12 v d:
Nh hn cy quyt nh a ra lc u
8/14/2019 Chuong7 AI
26/89
Khi no hc tt?
Lm sao chc rng h f?
s dng cc kt qu trong thng k v hc thng k. Th h trn tp v d mi (test set)
Learning curve = % S lng on ng trn tp test khi kch thctp hun luyn tng ln.
8/14/2019 Chuong7 AI
27/89
c thm
Gio trnh: chng 18 (phn 1-3).
MIT Open courseware: ch5, ch6, ch7.
T. Mitchell, Machine Learning, McGraw-Hill.
J.R. Quinlan, C4.5: Programs for MachineLearning, Morgan Kaufmann.
8/14/2019 Chuong7 AI
28/89
Cu hi n tp
1. nh ngha vic hc?2. Cho bit cc loi hc khc nhau?
3. Cho bit cc dng hc trong hc my?
4. Cu trc cy quyt nh?5. Ci t thut ton DTL.
6. Dng C4.5, hoc thut ton DTL gii ccbi ton v Data Mining.
8/14/2019 Chuong7 AI
29/89
PERCEPTRON N LP
8/14/2019 Chuong7 AI
30/89
Cu trc Perceptron
W
w1 1, w1 2, w1 R,w2 1, w2 2, w2 R,
wS 1, wS 2, wS R,
=
wi
wi 1,wi 2,
wi R,
= W
wT
1
wT
2
wT
S
=
ai hardlim ni( ) hardlim wT
i p bi+( )= =
8/14/2019 Chuong7 AI
31/89
Perceptron n lp mt u ra
a hardlim wT
1 p b+( ) hardlim w1 1, p1 w1 2, p2 b+ +( )= =
w 1 1, 1= w 1 2, 1= b 1=
8/14/2019 Chuong7 AI
32/89
Bin quyt nh
wT
1
p b+ 0= wT
1
p b=
Tt c cc im trn bin quyt nh c cng tch vhng vi vector trng s.
Tt c khi chiu ln vector trng s u quy v mt im.
Ni khc i chng nm trn ng thng vung gc vivector trng s.
V d h OR
8/14/2019 Chuong7 AI
33/89
V d hm - OR
p10
0= t1 0=,
p20
1= t2 1=,
p31
0= t3 1=,
p41
1= t4 1=,
8/14/2019 Chuong7 AI
34/89
Li gii cho bi ton phn lp OR
w1
0.5
0.5=
wT
1 p b+ 0.5 0.50
0.5b+ 0.25 b+ 0= = = b 0.25=
Siu phng bin phi vung gc vi vector trng s.
Ly mt im bt k trn siu phng bin tnh gi tr ca bias.
8/14/2019 Chuong7 AI
35/89
Perceptron n lp nhiu u ra
Mi mt neuron c mt siu phng bin ring.
wT
i p bi+ 0=
Mi neuron c th dng phn tch hai lp.
Do nu n-neuron u ra th c th dng phn
tch 2n lp.
L h d
8/14/2019 Chuong7 AI
36/89
Lut hc qua v d
p1 t1{ , } p2 t2{ , } pQ tQ{ , }, , ,
p11
2= t1 1=,
p21
2= t2 0=,
p30
1= t3 0=,
8/14/2019 Chuong7 AI
37/89
Khi to ban u
w11.0
0.8=
np p1 vo mng neural:
a hardlim wT
1 p1( ) hardlim 1.0 0.81
2 = =
a hardlim 0.6( ) 0= =
Khi to ngu nhin:
Phn sai lp.
8/14/2019 Chuong7 AI
38/89
LUT HC t
1w to p
1
Khng n nh
cngp1
vo1w
Ift 1 and a 0, then w1ne w
w1old
p+== =
w1new
w1ol d
p1+1.0
0.8
1
2+ 2.0
1.2= = =
Ta c lut:
V t th h i
8/14/2019 Chuong7 AI
39/89
Vector mu th hai
Ift 0 and a 1, then w1 ne w w1 old p== =
a hardlim wT
1p
2( ) hardlim 2.0 1.2
1
2
= =
a ha rdlim 0.4( ) 1= = (Phn lp sai)
Ta c lut hc:
w1ne w
w1ol d
p22.0
1.2
1
2
3.0
0.8= = =
V h b
8/14/2019 Chuong7 AI
40/89
Vector mu th ba
Siu phng phn lp chnh xc.
a hardlim wT
1 p3( ) hardlim 3.0 0.80
1
= =
a ha rdlim 0.8( ) 1= = (Phn lp sai)
w1ne w
w1ol d
p33.0
0.8
0
1 3.0
0.2= = =
Ift a, then w1ne w
w1o ld
.==
L t h th ht
8/14/2019 Chuong7 AI
41/89
Lut hc thng nht
Ift 1 and a 0, then w1ne w
w1old
p+== =
Ift 0 and a 1, then w1
n eww
1
oldp== =
Ift a, then w1
n eww
1
ol d==
e t a=
Ife 1, then w1ne w
w1old
p+==
Ife 1, then w1ne w
w1old
p==
Ife 0, then w1ne w
w1old
==
w1new
w1ol d
e p+ w1ol d
t a( )p+= =
bne w
bol d
e+=
ch : biastng ngvi u vo c
kt nitrng s =1.
8/14/2019 Chuong7 AI
42/89
Perceptron n lp nhiu u ra
winew
wiold
e ip+=
bine w
biol d
ei+=
Wne w
Wol d
epT
+=
bnew
bol d
e+=
Update dng th i ca ma trn trng s:
Dng ma trn:
8/14/2019 Chuong7 AI
43/89
V d t ng phn loi To/Chui
W 0.5 1 0.5= b 0.5=
a hardlim Wp1 b+( ) hardlim 0.5 1 0.51
1
1
0.5+
= =
Tp hun luyn (ba thuc tnh: Shape, Texture,
Weight)
Trng s khi to
Ln lp u tin
p1
1
1
1
t1, 1= =
p2
1
1
1
t2, 0= =
a hardlim 0.5( ) 0= =
Wne w
Wol d
epT
+ 0.5 1 0.5 1( ) 1 1 1+ 0.5 0 1.5= = =
bne w
bol d
e+ 0.5 1( )+ 1.5= = =
e t1 a 1 0 1= = =
8/14/2019 Chuong7 AI
44/89
Ln lp th hai
a hardlim Wp2 b+( ) hardlim 0.5 0 1.511
1
1.5( )+( )= =
a hardlim 2.5( ) 1= =
e t2 a 0 1 1= = =
Wne w
Wold
e pT
+ 0.5 0 1.5 1( ) 1 1 1+ 1.5 1 0.5= = =
bne w
bol d
e+ 1.5 1( )+ 0.5= = =
8/14/2019 Chuong7 AI
45/89
Kim tra
a hardl im Wp1 b+( ) hardlim 1.5 1 0.511
1
0.5+( )= =
a hardlim 1.5( ) 1 t1= = =
a hardl im Wp2 b+( ) hardlim 1.5 1 0.5
1
1
1
0.5+( )= =
a hardlim 1.5( ) 0 t2= = =
8/14/2019 Chuong7 AI
46/89
nh L hi t cho Perceptron
1. Kh tch tuyn tnh: Hai tp im A v B trong khng gianvector X n-chiu c coi l kh tch tuyn tnh nu tn tin+1 s thc w1, ..., wn sao cho vi mi x=(x1,x2,...,xn)A tho
mn wx wn+1 v vi mi y=(y1, y2,..,yn) B tho mn wy wn+1 v vi mi y=(y1, y2,..,yn) B tho mnwy
8/14/2019 Chuong7 AI
47/89
nh L hi t cho Perceptronnh l (cho perceptron n lp mt u ra): Nu hai tp P v
N l hu hn v kh tch tuyn tnh th lut ton hcPerceptron s hi t (c ngha l tw s ch c update mt shu hn ln).
Chng minh:i) t P'=PN' trong N' gm nhng phn t khng thuc N.ii) Cc vector thuc P' c th chun ho (chun bng 1) v nutn ti w sao cho wx > 0 (vi mi x P') th x > 0 vi mi iii) Vector c th chun ho. Do gi thit l siu phng bin
tn ti, nn phi c vector li gii c chun ho w*.
h L hi t h P t
8/14/2019 Chuong7 AI
48/89
nh L hi t cho PerceptronChng minh (tip): Gi s thut ton chy c t+1 bc, w(t+1) cupdate. C ngha l ti bc t tn ti vectorpi b phn lp sai (c th lp
lun tng t trong trng hp vector b phn lp sai l ni). w(t+1)=w(t)+pi (1)Cosine ca gc gia w v w* l:
cos =(w*. w(t+1))/(||w*||.||w(t+1)||) =(w*. w(t+1))/(||w(t+1)||) (2)Th (1) vo t s ca (2) ta c:
w*.w(t+1)=w*(w(t)+pi)=w*. w(t)+w*.pi w*. wt + trong = min{w*.p / pP'}.
Do bng quy np ta c: w*. w(t+1) w*. w(0) + (t+1) (3)Mt khc xt mu s ca (2):||w(t+1)||2=(w(t)+pi)(w(t)+pi)=||w(t)||2+2w(t).pi+||pi||2
Do w(t).pi l s m hoc bng 0 (do mi phi update w(t))w(t+1) ||w(t)||2+||pi||2 ||w(t)||2+1 ||w(0)||2+(t+1) (4)Kt hp (3) v (4) ta c:cos (w*. w(0)+(t+1))/sqrt( ||w(0)||2+(t+1))
V phi tng t l vi sqrt(t) (do > 0) do t bt buc phi hu hn (v
cos 1). Kt thc chng minh.
Ci ti th t t h P t
8/14/2019 Chuong7 AI
49/89
Ci tin thut ton hc Perceptron
Mc d nh l hi t m bo tnh dng ca thut ton hcPerceptron, tuy nhin trong thc t s ln lp c th rt ln
(thm ch l hm s m vi u vo).2. Corrective Learning (perceptron mt u ra): = e.w(t).pi (e=yi-ti)
w(t+1)= w (t)+ ((+).pi)/||pi||Mi sample b phn lp sai c th hiu chnh li trong mt bc
phn lp ng. V d nu pi P b phn lp sai (w(t).pi0.
Ci ti th t t h P t
8/14/2019 Chuong7 AI
50/89
Ci tin thut ton hc Perceptron
2. Thut gii hc Pocket (Gallant, 1990):
Trong thc t tp d liu khng phi lc no cng kh tch tuyntnh mt cch hon ho. Do cn lu gi vector trng s (hay matrn trng s) t mc phn lp tt nht.Gii thut:(perceptron mt u ra)
Bc khi to: Khi tr vectorw ngu nhin. t ws=w (ws lvector lu tr), hs=0 (hs l s vector phn lp thnh cng lin tip).Bc lp: Udate w s dng lut hc Perceptron. Dng bin h ghili s ln phn lp thnh cng lin tip. Nu h>hs th thay ws bng w
v hs thay bng h. Tip tc lp.(Gallant, 1990) chng minh rng nu tp training l hu hn v ccvector u vo cng nh trng s l hu t th thut ton s hi tti li gii ti u vi xc sut bng 1.
8/14/2019 Chuong7 AI
51/89
Hn ch ca Perceptron n lp
wT
1 p b+ 0=
Bin quyt nh l tuyn tnh
Khng dng uc i vi cc bi ton khng kh tch tuyn tnh
Hm XOR
c thm
8/14/2019 Chuong7 AI
52/89
c thm M.T. Hagan, H.B. Demuth, and M. Beale, Neural
Network Design, PWS Publishing. N.J. Nilson, Mathematical Foundations of
Learning Machines, Morgan Kaufmann.
Cu Hi n Tp
8/14/2019 Chuong7 AI
53/89
Cu Hi n Tp1. Nu cu trc v lut hc ca mng Perceptron?
2. Chng minh nh l hi t ca mng Perceptron?3. Ly cc v d v m phng Perceptron trong MatLab?
8/14/2019 Chuong7 AI
54/89
PERCEPTRON A LP
Ni dung: Cu trc mng Perceptron a lp. Thut gii lan truyn ngc (BP). nh L Kolmogorov v phc tp hc. Mt s Heuristics cho vic ci tin BP.
P t L
8/14/2019 Chuong7 AI
55/89
Perceptron a Lp
R S1
S2
S3
Network
8/14/2019 Chuong7 AI
56/89
V d
C bi t i h
8/14/2019 Chuong7 AI
57/89
Cc bin quyt inh
Mng con th nht
Bin th nht:a1
1 hardlim 1 0 p 0.5+( )=
Bin th hai:
a21
hardlim 0 1 p 0.75+( )=
C Bi Q t h
8/14/2019 Chuong7 AI
58/89
Cc Bin Quyt nhBin th ba:
Bin th t:
Mng con th hai
a31 hardlim 1 0 p 1.5( )=
a41
hardlim 0 1 p 0.25( )=
M t h
8/14/2019 Chuong7 AI
59/89
Mng tng hp
W1
1 0
0 1
1 0
0 1
= b1
0.5
0.751.5
0.25
=
W2 1 1 0 0
0 0 1 1
= b2 1.5
1.5
=
W3
1 1= b3
0.5=
X X H
8/14/2019 Chuong7 AI
60/89
Xp X Hm
f1
n( ) 11 e
n+
-----------------=
f2
n( ) n=
w1 1,1
10= w 2 1,1
10= b11
10= b21
10=
w1 1,2
1= w1 2,2
1= b2
0=
Gi tr cc tham s
8/14/2019 Chuong7 AI
61/89
th "hm" ca mng
-2 -1 0 1 2-1
0
1
2
3
Th i i h
8/14/2019 Chuong7 AI
62/89
Thay i gi tr cc tham s
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
1 w 1 1,2
1
1 w1 2,2
1
0 b21
20
1 b2
1
M L
8/14/2019 Chuong7 AI
63/89
Mng a Lp
a
m 1+
f
m 1+
W
m 1+
a
m
b
m 1+
+( )= m 0 2 M 1, , ,=
a0
p=
a aM
=
H Li
8/14/2019 Chuong7 AI
64/89
Hm Li
p1 t1{ , } p2 t2{ , } pQ tQ{ , }, , ,
Tp hun luyn
F x( ) E e2 ][= E t a( )2 ][=
MSE
F x( ) E eT
e ][= E t a( )T
t a( ) ][=Dng Vector
F x( )
t k( )
a k( )
( )
Tt k( )
a k( )
( )e
Tk
( )e k
( )= =
Xp x MSE
w i j,m
k 1+( ) wi j,m
k( ) F
w i j,m
------------= bim
k 1+( ) bim
k( ) F
bim
---------=
Approximate Steepest Descent
o Hm Hm Hp
8/14/2019 Chuong7 AI
65/89
o Hm Hm Hpf n w( )( )d
wd-----------------------
f n( )dnd
--------------n w( )d
wd---------------
=
f n( ) n( )cos= n e 2w= f n w( )( ) e2w( )cos=
f n w( )( )dwd
-----------------------f n( )d
nd--------------
n w( )dwd
--------------- n( )sin( ) 2e 2w( ) e2w( )sin( ) 2e2w( )= = =
V d
Tnh Gradient
F
w i j,m
------------
F
nim
---------ni
m
wi j,m
------------= F
bim
---------F
nim
---------ni
m
bim
---------=
TNH GRADIENT
8/14/2019 Chuong7 AI
66/89
TNH GRADIENT
ni
mw
i j,
ma
j
m 1
j 1=
Sm 1
b
i
m+=
nim
wi j,m
------------ ajm 1
=ni
m
bim
--------- 1=
sim F
nim
---------
nhy
Fw i j,
m------------ si
maj
m 1=
F
bim
--------- si
m=
Gradient
Steepest Descent
8/14/2019 Chuong7 AI
67/89
Steepest Descent
wi j,m
k 1+( ) wi j,m
k( ) sim
ajm 1
= bim
k 1+( ) bim
k( ) sim
=
Wm
k 1+( ) Wm
k( ) sm
am 1
( )T
= bm
k 1+( ) bm k( ) sm=
sm F
nm
----------
Fn1
m---------
F
n2m
---------
F
nS
mm
-----------
=
Bc tip theo: Tnh nhy (Backpropagation)
Ma trn Jacobian
8/14/2019 Chuong7 AI
68/89
Ma trn Jacobian
nm 1+
nm
-----------------
n1m 1+
n1m----------------
n1m 1+
n2m----------------
n1m 1+
nS
mm----------------
n2m 1+
n1m
----------------
n2m 1+
n2m
----------------
n2m 1+
nS
mm
----------------
nSm 1+m 1+
n1m
----------------
nSm 1+m 1+
n2m
----------------
nSm 1+m 1+
nS
mm
----------------
nim1+
nj
m----------------
wi l,
m 1+al
m
l 1=
Sm
bi
m 1++
njm
----------------------------------------------------------- wi j,m 1+ aj
m
nj
m---------= =
fm
njm( )
fm
njm( )
njm
---------------------=
F' m
nm
( )
fm n1m( ) 0 0
0 fm
n2m
( ) 0
0 0 fm
nSm
m
( )
=n
m 1+
nm
----------------- Wm 1+
F'mn
m( )=
nim 1+
njm
---------------- wi j,
m 1+ fm
njm( )
njm
--------------------- wi j,
m 1+f'm n
j
m( )= =
8/14/2019 Chuong7 AI
69/89
Backpropagation (Sensitivities)
sm Fn
m---------- n
m 1+
n
m
-----------------
T
Fn
m 1+----------------- Fm nm( ) W m 1+( ) T F
nm 1+
-----------------= = =
sm
Fm
nm
( ) Wm 1+
( )T
sm 1+
=
nhy c tnh t tng cui cng vlan truyn ngc li cho n tng u.
sM
sM 1
s2
s1
Khi u (Last Layer)
8/14/2019 Chuong7 AI
70/89
Khi u (Last Layer)
siM F
niM
----------t a( )T t a( )
niM
---------------------------------------tj aj( )
2
j 1=
SM
ni
M----------------------------------- 2 ti ai( )
ai
niM
----------= = = =
sM
2FM
nM
( ) t a( )=
aini
M---------- ai
M
ni
M---------- f
M
n i
M
( )ni
M
----------------------- fM n iM( )= = =
si
M2 t
i
ai
( ) fM
ni
M( )=
Tng kt thut ton
8/14/2019 Chuong7 AI
71/89
Tng kt thut ton
am 1+
fm 1+
Wm 1+
am
bm 1+
+( )= m 0 2 M 1, , ,=
a0
p=
a aM
=
sM
2FM
nM
( ) t a( )=
s
m
F
m
n
m
( ) W
m 1+
( )
T
s
m 1+
= m M 1 2 1, , ,=
Wm
k 1+( ) Wm
k( ) sm
am 1
( )T
= bm
k 1+( ) bm
k( ) sm
=
Lan truyn Xui
Lan truyn ngc
Cp nht trng s
8/14/2019 Chuong7 AI
72/89
V d: Regression
g p( ) 1 4---p
sin+=
1-2-1
Network
+
-
t
a
ep
8/14/2019 Chuong7 AI
73/89
Network
1-2-1Network
ap
Khi to ban u
8/14/2019 Chuong7 AI
74/89
Khi to ban uW
10( ) 0.27
0.41
= b1
0( ) 0.48
0.13
= W2
0( ) 0.09 0.17= b2
0( ) 0.48=
Network ResponseSine Wave
-2 -1 0 1 2-1
0
1
2
3
L T X i
8/14/2019 Chuong7 AI
75/89
Lan Truyn Xuia
0p 1= =
a1
f1
W1
a0
b1
+( ) logsig 0.270.41
10.48
0.13+
logsig 0.75
0.54
= = =
a1
1
1 e0.75
+--------------------
1
1 e0.54
+--------------------
0.321
0.368= =
a2
f2
W2
a1
b2
+( ) purelin 0.09 0.170.321
0.3680.48+( ) 0.446= = =
e t a 14---p
sin+
a2
14--- 1
sin+
0.446 1.261= = = =
o hm hm chuyn
8/14/2019 Chuong7 AI
76/89
o hm hm chuyn
f1
n( )nd
d 1
1 en
+-----------------
en
1 en
+( )2
------------------------ 11
1 en
+-----------------
1
1 en
+-----------------
1 a1( ) a1( )= = = =
f2
n( )nd
dn( ) 1= =
L T N
8/14/2019 Chuong7 AI
77/89
Lan Truyn Ngc
s2 2F
2
n2( ) t a( ) 2 f2 n2( ) 1.261( ) 2 1 1.261( ) 2.522= = = =
s1
F1
n1
( ) W2( )
Ts
2 1 a11( ) a11( ) 0
0 1 a21
( ) a21( )
0.09
0.172.522= =
s1 1 0.321( ) 0.321( ) 0
0 1 0.368( ) 0.368( )
0.09
0.172.522=
s1 0.218 0
0 0.233
0.227
0.429
0.0495
0.0997= =
Cp nht trng s
8/14/2019 Chuong7 AI
78/89
Cp nht trng s
W2
1( ) W 2 0( ) s2 a1( )T
0.09 0.17 0.1 2.522 0.321 0.368= =
0.1=
W2
1( ) 0.171 0.0772=
b2
1( ) b2 0( ) s2 0.48 0.1 2.522 0.732= = =
W1 1( ) W1 0( ) s 1 a 0( )T
0.270.41
0.1 0.04950.0997
1 0.2650.420
= = =
b1
1( ) b1 0( ) s1 0.480.13
0.1 0.0495
0.0997 0.475
0.140= = =
La chn Cu trc mng
8/14/2019 Chuong7 AI
79/89
La chn Cu trc mngg p( ) 1 i
4----- p
sin+=
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
1-3-1 Network
i = 1 i = 2
i = 4 i = 8
La chn cu trc mng
8/14/2019 Chuong7 AI
80/89
La chn cu trc mngg p( ) 1 6
4------ p
sin+=
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
1-5-1
1-2-1 1-3-1
1-4-1
Hi t
8/14/2019 Chuong7 AI
81/89
Hi t
g p( ) 1 p( )si n+=
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
1
23
4
5
0
1
2
34
5
0
Hi t n cc tr ton cc Hi t n cc tr a phng
Khi qut ho
8/14/2019 Chuong7 AI
82/89
Khi qut ho
p1 t1{ , } p2 t2{ , } pQ tQ{ , }, , ,
g p( ) 14---p
sin+= p 2 1.6 1.2 1.6 2, , , , ,=
-2 -1 0 1 2-1
0
1
2
3
-2 -1 0 1 2-1
0
1
2
3
1-2-1 1-9-1
nh L Kolmogov v Phc Tp
8/14/2019 Chuong7 AI
83/89
g pHc
Bi ton s 13 ca David Hilbert "Nghim ca a th bc7 khng th biu din bng chng hm ca cc hm 2bin c th l a thc sau y: f7+xf3+yf2+zf+1=0 khngth gii c bng cc hm hai bin".
V d v chng hm hai bin gii phng trnh bc 2.
nh L Kolmogov v Phc Tp Hc
8/14/2019 Chuong7 AI
84/89
nh L Kolmogov v Phc Tp Hc
Nm 1957, Kolmogorov (Arnold, Lorenz) chng minh githit a ra trong bi ton ca Hilbert l sai. Thm chchng minh kt qu mnh hn: mi hm lin tc ubiu din c bng chng cc hm mt bin ch dngphp ton nhn v cng.
nh L Kolmogorov: f:[0,1]n[0,1] l hm lin tc th tnti cc hm mt bin g, hi i=1,2,..,2n+1 v cc hng s isao cho:
f(x1,x2,...,xn)= j=1,2n+1g( i=1,n ihj(xi))nh l cho mng Neural (Baron, 1993):Mng Perceptron hng tin mt lp n dng hmchuyn sigmoid c th xp x bt c hm kh tch Lbe
no trn khong [0,1]
nh L Kolmogov v Phc Tp Hc
8/14/2019 Chuong7 AI
85/89
nh L Kolmogov v Phc Tp Hc
Mc d vy cc nh l ch a ra s tn ti m khng
a ra c thut ton cho vic xc nh cu trc mng(s neuron trong tng n) hay cc trng s.
nh l NP v hc cho mng Neural (Judd, 1990):
Bi ton tm cc trng s ti u cho mng Neural a lp
c hm chuyn hardlims l NP y .Lu :
- do thut ton BP khng m bo tm c nghimti u, thm ch khng m bo s hi t.
-Vic xc nh cu trc mng v mt s yu t ca thutton hc cn mang tnh kinh nghim, Heuristic.
Mt s Heuristics cho BP
8/14/2019 Chuong7 AI
86/89
Cp nht theo ch tun t (online) hay batch(epoch): Thng vic hc theo ch tun t gip BP hi t nhanh hn,c bit khi d liu ln v d tha.
Chun ho gi tr u ra:m bo gi tr u ra nm trong min gi tr ca hm chuyn trn
cc neuron u ra tng ng (thng l nm trong khong[a+, b-]. Chun ho gi tr u vo:m bo gi tr trung bnh gn 0 hoc nh so vi lch tiu chun
(stdev). Cc gi tr tt nht phi c lp vi nhau.Khi to gi tr trng s:Uniform random in [-, ]; [-, -][ , ] Kt thc sm:
Khi lin tip n epoch training m khng c s ci thin ng k li
Mt s Heuristics cho BP
8/14/2019 Chuong7 AI
87/89
Mt s Heuristics cho BP Tc hc:
Tc hc ca cc Neuron nn u nhau v vy, neuron tng sau(thng c gradient ln hn tng trc) nn c tc hc nh hntng trc, Neuron c t input nn c tc hc ln hn Neuron cnhiu input.
Kim tra cho (crossvalidation):
Tch tp d liu ra lm hai tp c lp (training and testing). T lthng l 2/3:1/3. Thc hin vic hc trn tp training v kim trakh nng khi qut ho ca mng trn tp testing.
Lut phn lp ti u:
Dng M neuron u ra cho bi ton phn M lp s dng lut cnhtranh winner-take-all.
Xc nh s neuron lp n:
Cc c lng cn th (s lng d liu, chiu VC). Phng php:Incremental, Decremental.
c thm
8/14/2019 Chuong7 AI
88/89
M.T. Hagan, H.B. Demuth, and M. Beale, Neural
Network Design, PWS Publishing. Gio trnh, chng 19. MIT Courseware: ch8, ch9.
Cu Hi n tp
8/14/2019 Chuong7 AI
89/89
Cu Hi n tp
1. Trnh by cu trc mng Neuron Perceptron a
lp?
2. Trnh by gii thut hc lan truyn ngc choMLP.
3. Trnh by nh l Kolmogorov v ng dng choMLP.
4. Ci t thut gii BP cho MLP.
5. ng dng MLP gii cc bi ton nh:Classification v Regression.