37
TERMODINÂMICA QUÍMICA APLICADA 2 – PROF. FÉLIX Ementa: 1- Termodinâmica de soluções 1.1- Relações fundamentais entre propriedades 1.2- O potencial químico 1.3- Fugacidade e coeficiente de fugacidade 1.4- A solução Ideal 1.5- Modelos para a energia de Gibbs 1.6- Propriedades de mistura 1.7- Efeitos térmicos em processos de mistura 1.7- Efeitos térmicos em processos de mistura 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra das fases. Teorema de Duhem 2.3- Calculo dos pontos de orvalho e de bolha 2.4- Calculo de Flash

Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

  • Upload
    dinhdat

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

TERMODINÂMICA QUÍMICA APLICADA 2 – PROF. FÉLIX

Ementa:

1- Termodinâmica de soluções 1.1- Relações fundamentais entre propriedades 1.2- O potencial químico 1.3- Fugacidade e coeficiente de fugacidade 1.4- A solução Ideal 1.5- Modelos para a energia de Gibbs1.6- Propriedades de mistura 1.7- Efeitos térmicos em processos de mistura 1.7- Efeitos térmicos em processos de mistura

2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra das fases. Teorema de Duhem2.3- Calculo dos pontos de orvalho e de bolha 2.4- Calculo de Flash

Page 2: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

Ementa:

3- Equilíbrio de fases 3.1- Equilíbrio e estabilidade 3.2- Equilíbrio líquido-líquido 3.3- Equilíbrio líquido-líquido-vapor3.4- Equilíbrio sólido-líquido 3.5- Equilíbrio sólido-vapor 3.6- Equilíbrio na adsorção de gases em sólidos

TERMODINÂMICA QUÍMICA APLICADA 2 – PROF. FÉLIX

4- Equilíbrio em reações químicas – Equilíbrio químico 4.1- A variação de energia de Gibbs padrão e a constante de equilíbrio 4.2- Efeito da temperatura sobre a constante de equilíbrio 4.3- Avaliação das constantes de equilíbrio 4.4- Relação entre as constantes de equilíbrio e a composição 4.5- Conversões de equilíbrio em reações isoladas

Page 3: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

AvaliaçãoMétodo A avaliação será feita por meio de duas provas escritas (P1 e P2).Critério A Nota final (NF) será calculada da seguinte maneira: NF = (P1 + P2)/2Norma de Recuperação A recuperação será feita por meio de uma prova escrita (PR) e a média de recuperação (MR) calculada pela fórmula: MR = (NF + PR)/2

BibliografiaKORETSKY, M. D. Termodinâmica para Engenharia Química. 1 ed. LTC Editora, 2007. MORAN, M. J.; SHAPIRO, H. N. Princípios de Termodinâmica para Engenharia. 1 ed. LTC Editora, 2009.

TERMODINÂMICA QUÍMICA APLICADA 2 – PROF. FÉLIX

LTC Editora, 2009. SANDLER, S. I., Chemical and Engineering Thermodynamics, 3rd ed., John Wiley & Sons, 1999 SMITH, J.M.; VAN NESS, H.C.; Abott, M. M. Introdução à Termodinâmica da Engenharia Química. 7ª ed. LTC editora, 2007. TERRON, L. R. Termodinâmica Química Aplicada. 1 ed. Editora Manole Ltda, 2009. VAN WILEN, J. Sonntag, Richard. E. Fundamentos da Termodinâmica Clássica. 6 ed. 2004

Page 4: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

INTRODUÇÃO

Espontaneidade e equilíbrio:

Condições gerais de espontaneidade e equilíbrio:Ex: αA + βB � γCSendo G a energia livre de Gibbs e ν os coeficientes estequiométricos :

__ __ __ __ __ ∆G0 = (Σν∆G0

f)produtos - (Σν∆G0f)reagentes= (γ∆G0

f)C – [(α∆G0f)A + (β∆G0

f)B ]__ __

Obs: valores de ∆G0f , ∆H0

f , S0 e Cp0 podem ser obtidos em tabelas da literatura.

1ª Lei da Termodinâmica: ∆U=Q-W1ª Lei da Termodinâmica: ∆U=Q-W

Entropia: dS = δQrev/T

Desigualdade de Clausius: dS ≥ δQ/T ( = reversível, > irreversível )

TdS ≥ δQ; TdS ≥ dU+δW ; –d(U+PV-TS) ≥ 0; –d(H-TS) ≥ 0; –d(G) ≥ 0 ou d(G) ≤ 0

Para uma transformação finita:

∆G ≤ 0 ( = sistema em equilíbrio para um valor mínimo de G, < reação espontânea)Se ∆G > 0 a reação não é espontânea.

Page 5: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

INTRODUÇÃO

Espontaneidade e equilíbrio:

Exemplo 6.1 (Koretsky, pag 231)Vimos que a energia de Gibbs determina se um processo pode ocorrerespontaneamente. Este conceito pode ser aplicado para entendermos alguns aspectosdos sistemas biológicos. Use a energia de Gibbs para mostrar porque as proteínas quecontrolam organismos vivos complexos não são estáveis a temperatura ambienteelevadas.

Page 6: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

INTRODUÇÃO

Espontaneidade e equilíbrio:

Solução:

Em temperaturas elevadas:n � d

Fornece-se energia para rompimento de ligações intramoleculares, pontes dehidrogênio, forças de Van der Walls (processo endotérmico), assim:

Hd > HnPor outro lado, a proteína desnaturada não está mais limitada pela sua estruturatridimensional específica, podendo assumir um maior número de configuraçõespossíveis, logo, sua entropia é muito mais elevada:

Sd > Sn

Page 7: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

INTRODUÇÃO

Espontaneidade e equilíbrio:∆G= ∆H-T*∆S

Para a transformação:n � d

∆G= (Hd-Hn)-T*(Sd-Sn)A baixas temperaturas, a estrutura molecular da proteína é mais rígida (∆S é menossignificativo) e possui mais ligações intramoleculares (∆H é mais significativo), logo otermo Hd-Hn domina a análise da equação, nesse caso, sendo Hd > Hn , ∆G tende a sermaior que 0 (se ∆G > 0 a reação não é espontânea). Logo, a baixas temperaturas adesnaturação não é espontânea.

A temperaturas elevadas, a estrutura molecular da proteína é menos rígida (∆S é maissignificativo) e possui menos ligações intramoleculares (∆H é menos significativo), logoo termo Sd-Sn domina a análise da equação, nesse caso, sendo Sd > Sn , ∆G tende aser menor que 0 (se ∆G < 0 a reação é espontânea). Logo, a temperaturas elevadas adesnaturação é espontânea.

Page 8: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

MISTURAS

A equação fundamental:

Sem variação da composição: G=G(T,P)

dG = (∂G/ ∂T)pdT +(∂G/ ∂p)Tdp= -SdT+Vdp

Considerando que a composição muda: G=G(T,P,n1,n2,…)

dG = (∂G/ ∂T)p,nidT +(∂G/ ∂p)T,nidp +(∂G/ ∂n1)T,p,njdn1 +(∂G/ ∂n2)T,p,njdn2 +…

ni � o número de mols de todos os componentes são constantes.ni � o número de mols de todos os componentes são constantes.nj � o número de mols de todos os componentes, excluindo o componente dadiferencial são constantes.

Definindo potencial químico como sendo: µI = ∂G/ ∂ni

dG = -SdT+Vdp+Σµidni

Page 9: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

MISTURAS

As propriedades de µµµµi:

Propriedade intensiva de um sistema (valor constante em qualquer ponto do sistema): µI = ∂G/ ∂ni

Suponha que em duas regiões (A e B) de um sistema os potenciais químicos fossem diferentes.

Considerando constantes T, P e nj.Transferindo dni moles de i da região A para a região B:dGA= µi

A(-dni) e dGB= µiB(-dni).

A variação total da energia de Gibbs será:A (µi

A) B (µiB)

A variação total da energia de Gibbs será:dG = dGA+dGB = (µi

B -µiA) dni

Para o processo ser espontâneo: dG<0, o que só ocorre se µiB<µi

A, ou seja:

“A substância escoa espontaneamente da região de potencial químico mais alto para a região de potencial químico mais baixo”.

Page 10: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

água(l)

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

A condição de equilíbrio:

Para que um sistema esteja em equilíbrio, o potencial químico de cada constituinte deve possuir o mesmo valor em todos os pontos do sistema.Ex:

µágua(l)= µágua(l)Para um único componente, µ = G/n

_ _dµ = - S dT+ V dp

água(g)

Page 11: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Estabilidade das fases formadas por uma substância pura:_ _ _

(∂µsólido/ ∂T)p = - Ssólido (∂µlíquido/ ∂T)p = - Slíquido (∂µgás/ ∂T)p = - Sgás_ _ _

Em qualquer temperatura: Sgás>>Slíquido>Ssólido

s

lg

µ

s

l

µa

b

µaµb

Tf Teb T Tf T

Se T < Tf :µb< µa fase sólida mais estável

Se T > Tf :µa< µb fase líquida mais estável

Page 12: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Variação das curvas µµµµ = f(t) com a pressão:

Para T constante:_ _ _

(∂µsólido/ ∂p)T = Vsólido (∂µlíquido/ ∂p)T = Vlíquido (∂µgás/ ∂p)T = VgásLogo, se p diminuir ∂p é negativo, logo ∂µ também negativo, então µ também diminui

_ _ _Em qualquer temperatura: Vgás>>Vlíquido>Vsólido, logo a variação de µ em função de p é muito maior para o gás do que par ao líquido e para o sólido.

µ µ µ

s

lg

T

___ pressão alta

- - - pressão baixa

Tf;Tf’;Teb;Teb’

s

lg

Ts T

s

lg

Ttriplo TSublimação

Ponto triplo

Page 13: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLESVariação das curvas µµµµ = f(t) com a pressão:

Regra de Trouton:Para muitos líquidos:∆Svap ≈ 90 J/(mol K)∆Hvap ≈ 90Teb J/(mol K)Não vale para líquidos associados tais como a água , álcool e aminas e parasubstâncias com temperatura de ebulição menor que 150K .

Substâncias que obedecem a Regra de Trouton:

Sublimação ocorrerá abaixo da pressão obtida pela equação.Sublimação ocorrerá abaixo da pressão obtida pela equação.ln(p)=-10,8(Teb-Tf)/Tf

Page 14: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

A equação de Clapeyron:

Para duas fases α e β de uma substância pura, a condição de equilíbrio é: µα= µβPara qualquer variação de p, (p+dp), ou T, (T+dT), ocorrerá uma variação deµ, (µ +dµ), e, na nova condição de equilíbrio:

µα + dµα = µβ + dµβ � dµα = dµβ , logo:_ _ _ _

-Sα dT+ Vα dp = - Sβ dT+ Vβ dp _ _ _ _

Sendo ∆S = Sβ - Sα e ∆V = Vβ - VαSendo ∆S = Sβ - Sα e ∆V = Vβ - Vα

dT/dp = ∆V/∆S , ou, dp/dT = ∆S/∆V �Equação de Clapeyron

Page 15: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Equilíbrio sólido-líquido:

dp/dT = ∆Sfus/∆Vfus � ∆Sfus= ∆Hfus/T � ∆Hfus > 0 (sempre absorve calor para fundir)

Portanto: ∆Sfus > 0 sempre.∆Vfus é positivo para a maioria das substâncias e negativo para poucas, como H2O.

Valores ∆Sfus = 8 a 25 J/(mol K) e ∆Vfus = ± (1 a 10) cm3/molConsiderando: ∆Sfus = 16 J/(mol K) e ∆Vfus = ± 4 cm3/mol

dp/dT=16 / ± 4.10-6 = ± 4 106 Pa/K = ± 40 atm/K ou:dp/dT=16 / ± 4.10 = ± 4 10 Pa/K = ± 40 atm/K ou:dT/dp= ± 0,02 K/atm � uma variação de 1 atm gera uma alteração de centésimos de K.

s l

p

T

Page 16: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Equilíbrio líquido-gás:

dp/dT = ∆Sfus/∆Vfus � ∆Svap= ∆Hvap/T � ∆Hvap > 0 (sempre absorve calor para evaporar)

Portanto: ∆Svap > 0 sempre.∆Vvap é positivo para todas as substâncias.dp/dT é positivo para todas as substâncias

Como o volume do gás depende fortemente de T e p a inclinação da curva líquido-gás é pequena quando comparada à da sólido-gás.pequena quando comparada à da sólido-gás.

s l

p

T

g

Nos equilíbrios s-l e l-g:µsól=µliq e µliq= µgás

-satisfeitas para pares específicos de T e p

No ponto triplo: µsól=µliq= µgásSatisfeita para um único par T = Tt e p = pt

Page 17: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Equilíbrio sólido-gás:

dp/dT = ∆Ssub./∆Vsub. � ∆Ssub.= ∆Hsub./T � ∆Hsub. > 0 (sempre absorve calor para sublimar)

Portanto: ∆Ssub. > 0 sempre.∆Vsub é positivo para todas as substâncias.dp/dT é positivo para todas as substâncias

s l

p

s l

T

g

Diagrama de fase

Page 18: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Diagramas de fases:

CO2

Page 19: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Diagramas de fases:

água

Page 20: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Diagramas de fases:

Hélio

Page 21: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

Diagramas de fases:

Enxofre

Page 22: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

A integração da equação de Clapeyron:

Equilíbrio sólido-líquido:

dp/dT=∆Sfus/ ∆Vfus � ∆Hfus=T ∆Sfus

Considerando que para uma pressão p1 a temperatura de fusão seja Tf e para outro valor de pressão p2 a temperatura de fusão seja Tf’ e integrando a equação de Clapeyron, obtem-se:

p2 – p1 = (∆Hfus/ ∆Vfus )ln(Tf’/Tf) = (∆Hfus/ ∆Vfus )ln [(Tf +Tf’ –Tf ) /Tf ]

p2 – p1 = (∆Hfus/ ∆Vfus )ln [1+(Tf’ –Tf ) /Tf ] ≈ (∆Hfus/ ∆Vfus ) (Tf’ –Tf ) /Tf

∆p = (∆Hfus/ ∆Vfus ) (∆T /Tf )

Onde ∆T é o aumento do ponto de fusão correspondente ao aumento de pressão ∆p.

Page 23: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

A integração da equação de Clapeyron:Equilíbrio a fase condensada e o gás:

_ _ _dp/dT=∆S/ ∆V = ∆H / [T (Vg-Vc) ] ≈ ∆H / (T Vg ) = ∆H p / (RT2)Integrando a equação de Clapeyron:ln(p/po) = - ∆H/(RT)+∆H/(Rto)Onde po é a pressão de vapor a To e p é a pressão de vapor a T.Quando po = 1 atm, To é o ponto de ebulição normal do líquido ou o ponto de sublimação normal do sólido.ln(p) = - ∆H/(RT)+∆H/(RTo) ou log(p) = - ∆H/(2,313RT)+∆H/(2,313RTo)

log(p)=A+B/T Regra de Trouton:log(p)

1/T

log(p)=A+B/TA e B tabelados para várias substâncias

Regra de Trouton:Para muitos líquidos:∆Svap ≈ 90 J/(mol K)∆Hvap ≈ 90Teb J/(mol K)Não vale para líquidos associados taiscomo a água , álcool e aminas e parasubstâncias com temperatura deebulição menor que 150K .Portanto, para as substâncias queobedecem a regra de Trouton , basta-seconhecer a Teb para se calcular os valoresde A e B.

Page 24: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

EQUILÍBRIO DE FASES EM SISTEMAS SIMPLES

A integração da equação de Clapeyron:Equilíbrio a fase condensada e o gás:

A equação pode ser escrita em função da entalpia molar como:ln(p)= constante - ∆h/R*(1/T)

Exemplo 6.2 (Koretsky) O trimetilgálio, Ga(CH3)3 , pode ser usado como gás dealimentação para o crescimento de filmes de GaAs. Calcule a entropia de vaporizaçãodo Ga(CH3)3 a partir dos dados de pressão de saturação contra temperatura fornecidosna Tabela E6.2. Calcule a diferença percentual entre o valor estimado e o obtidoexperimentalmente em um calorímetro (∆hvap=33,1 kJ/mol).experimentalmente em um calorímetro (∆hvap=33,1 kJ/mol).

Tabela E6.2 – Dados de Pressão de Saturação para Ga(CH3)3T(K) Psat[kPa]_____________________________250 2,04260 3,3270 7,15280 12,37290 20,45300 32,48310 49,75_________________________________

Respostas:∆hvap=35,1 kJ/molDiferença= 6,0%

Page 25: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

Teorema de Euler

• “A derivada total de qualquer função homogênea de primeiro grau pode ser escrita como a soma de suas derivadas parciais primeiras”

• Se f(x, y, z) for homogênea de grau 1, então :

TERMODINÂMICA DE MISTURAS

Page 26: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

• A contribuição de uma certa substância para uma determinada propriedadede uma mistura é contabilizada através de uma função termodinâmicadenominada PROPRIEDADE PARCIAL

• Para compreender o equilíbrio de fases em sistemas de composiçãovariável (misturas) é fundamental conhecer as relações entre aspropriedades parciais e as propriedades das misturas.

TERMODINÂMICA DE MISTURAS

Propriedades Parciais

propriedades parciais e as propriedades das misturas.

As propriedades macroscópicas de um fluido homogêneo em equilíbrio sãofunções da temperatura, pressão e composição, ou seja,

onde k é uma propriedade intensiva, e por

onde K=nk é uma propriedade extensiva

( )K,,,, 21 xxPTfk =

( )K,,,, 21 nnPTfK =

Page 27: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

• k representa qualquer propriedade molar: v, u, h, cv, cp, s e g.

• As seguintes propriedades também podem ser representadas por k:

4 κ (compressibilidade isotérmica)4 β (expansividade volumétrica)

TERMODINÂMICA DE MISTURAS

Propriedades Parciais

4 β (expansividade volumétrica)4 ρ (densidade)4 Z (fator de compressibilidade)

Page 28: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

• Fazendo-se a diferencial total de (K), tem-se

• A derivada de K em relação ao número de moles de cada componente, a Pe T constantes, é denominada de PROPRIEDADE MOLAR PARCIAL,

( ) ( ) ( ) ( )∑

∂∂+

∂∂+

∂∂=

ii

nPTinTnP

dnn

KdP

P

KdT

T

KKd

ij,,,,

Propriedades Parciais

TERMODINÂMICA DE MISTURAS

e T constantes, é denominada de PROPRIEDADE MOLAR PARCIAL, sendo escrita como

( )ijnPTi

in

KK

∂∂≡

,,

Page 29: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

• Combinando-se as 2 eqs. anteriores, tem-se

• As propriedades das misturas e as propriedades parciais molares se

( ) ∑+

∂∂+

∂∂=

iii

xTxP

dxKdPP

kdT

T

kkd .

,,

Propriedades Parciais

TERMODINÂMICA DE MISTURAS

• As propriedades das misturas e as propriedades parciais molares se relacionam através das seguintes expressões:

∑=i

ii Kxk ∑=i

ii KnK

Page 30: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

• A propriedade parcial molar é a taxa de variação da propriedade (nK) como número de moles da espécie i (ni), a T, P e nj constantes, onde nj é onúmero de moles de todas as espécies presentes na solução, com exceçãoda espécie i.

Significado físico da propriedade parcial molar

TERMODINÂMICA DE MISTURAS

Relação útil entre as propriedades parciais molares de diferentes componentesem uma mistura. Tem-se que:

A Equação de Gibbs-Duhen

Diferenciando e mantendo T e P constantes:

sendo conclui-se que:

(a T e P constantes) � Equação de Gibbs-Duhen

ii KnK Σ=

( )iiiiTP dnKKdndK +Σ=, iidnKdK Σ=

ii KdnΣ=0

Page 31: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

• Propriedades Molares:– Propriedades da mistura k:

• v, u, h, s, g, etc.

– Propriedades da substância pura ki:• vi, ui, hi, si, gi, etc.

Observação: diferentes notações

TERMODINÂMICA DE MISTURAS

i i i i i

– Propriedades parciais :

iV iU iHiS iG

iK

FAZER EXEMPLOS 6.5 a 6.11

Page 32: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

Consideremos o caso da mistura binária contendo 10% molar de clorofórmio(1) em acetona (2) a 333K e 1 Mpa, para a qual v pode ser obtida a partir daseguinte equação de virial:

Determinação Gráfica das Propriedades Parciais Molares – MisturasBinárias

]/³[00133,000401,0000910,0 2221

21 molmxxxx

P

RTv −−−=

v(cm³/mol)

TERMODINÂMICA DE MISTURAS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

v(cm³/mol)

v(cm³/mol)

Fazer exemplos 6.12 e 6.13

Page 33: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

O volume molar da mistura em função das propriedades parciais molares é:Derivando em relação a x1 e multiplicando por x1:

__

21112211 )1( VxVxVxVxv −+=+=

Determinação Gráfica das Propriedades Parciais Molares – MisturasBinárias

TERMODINÂMICA DE MISTURAS

__Equação de reta com coeficiente linear Ki e coeficiente angular dk/dxi.

( )

2:1;;

1

22

111

2

2221121111

1

=>−−+=+=+=

+−=−−=−=

ixdx

dvKkx

dx

dvVvx

dx

dvVv

vVVxVxVxVxdx

dvx

ii

i

Page 34: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

Gráfico:

1600

1800

2000

18601 =v

14402 =v

Fazer exemplos 6.12 e 6.13 e exercício 6.37

Determinação Gráfica das Propriedades Parciais Molares – MisturasBinárias

TERMODINÂMICA DE MISTURAS

400

600

800

1000

1200

1400

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

v(cm³/mol)

v1---v2

4251 =V

14202 =V 160−=∆ misv

Page 35: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

• A igualdade de Temperatura indica que as fases estão em equilíbriotérmico. Não há gradientes de T para mover energia de uma fase paraoutra.

• A igualdade de Pressão faz com que haja equilíbrio mecânico entre asfases, isto é; não há gradientes de P para mover massa de uma fase paraoutra.

EQUILÍBRIO DE FASES EM SISTEMAS MULTICOMPONENTES

TERMODINÂMICA DE MISTURAS

• A igualdade de Potencial Químico proporciona equílibrio químico aosistema.

• A igualdade de potencial químico significa que não há forças motrizes deorigem química que movam componentes preferencialmente de uma fasepara outra.

Page 36: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

Generalizando o resultado para cada fase contendo seus componentes e emequilíbrio entre si, as condições para o equilíbrio entre as fases são:

EQUILÍBRIO DE FASES EM SISTEMAS MULTICOMPONENTES

TERMODINÂMICA DE MISTURAS

Page 37: Eq Fases 1 - sistemas.eel.usp.brsistemas.eel.usp.br/docentes/arquivos/5817066/loq4088/Eq_Fases_1.pdf · 2- Equilíbrio liquido – vapor 2.1- A natureza em equilíbrio 2.2- A regra

Regra das Fases (sem reação química):F = C - P + 2

Dado um sistema binário (C=2), com 2 fases em equilíbrio (P=2), tem-se F=2, ou

EQUILÍBRIO DE FASES EM SISTEMAS MULTICOMPONENTES

TERMODINÂMICA DE MISTURAS

Dado um sistema binário (C=2), com 2 fases em equilíbrio (P=2), tem-se F=2, ouseja, é necessário especificar 2 variáveis intensivas independentes paracaracterizá-lo completamente.

Fazer Exemplo 6.14