56
UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE MECÂNICA DOS FLUIDOS Fernanda Hille JULHO / 2014

Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE

MECÂNICA DOS FLUIDOS

Fernanda Hille

JULHO / 2014

Page 2: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET - EMB

INTRODUÇÃO

Esta apostila foi desenvolvida como um projeto de ensino do Programa de Educação Tutorial do Centro de Engenharias da Mobilidade (PET-CEM). O presente trabalho apresenta um resumo da matéria, contendo os principais conceitos fundamentais e exemplos de vários assuntos da mecânica dos fluidos. Somente a leitura deste material não é suficiente para entendimento total da matéria. É necessária a leitura de algum livro do assunto para analisar as demonstrações de fórmulas e resolver outros exemplos.

Page 3: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB

SUMÁRIO

1. CONCEITOS FUNDAMENTAIS .............................................................................1

2. ESTÁTICA DOS FLUIDOS .....................................................................................2

2.1. Manômetros de Coluna .............................................................................2

2.2. Forças Hidrostáticas Sobre Superfícies Submersas .................................5

3. EQUAÇÕES BÁSICAS NA FORMA INTEGRAL PARA UM VC .............................9

3.1. Conservação da Massa (Equação da Continuidade) ................................9

3.2. Equação da Quantidade de Movimento para um VC inercial ..................10

4. ANÁLISE DIFERENCIAL DOS MOVIMENTOS DOS FLUIDOS............................13

4.1. Conservação da Massa em Análise Diferencial ......................................13 4.2. Equação de Navier-Stokes ......................................................................15 4.3. Equação de Euler.....................................................................................16 4.3.1.Equação de Euler em Coordenadas de Linha de corrente .........16 4.4. Função de Corrente .................................................................................17

4.5. Potencial de Velocidade ..........................................................................17 4.6. Equação de Bernoulli ...............................................................................18 4.7. Escoamento em Planos Elementares ......................................................21 4.8. Superposição de Escoamentos em Planos Elementares.........................22

5. ANÁLISE DIMENSIONAL E SEMELHANÇA ........................................................28

5.1. Determinação dos Grupos 𝜋 ...................................................................28 5.2. Grupos Adimensionais Importantes ........................................................31 5.3. Semelhança em Escoamentos e Estudos de Modelos ...........................32 6. ESCOAMENTO VISCOSO INTERNO E INCOMPRESSÍVEL .............................36 6.1. Escoamento Entre Placas Paralelas Infinitas ..........................................36

Page 4: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB

6.1.1. Ambas Estacionárias .................................................................36 6.1.2. Em um Pistão .............................................................................38 6.1.3. Em Dutos.....................................................................................39 6.2. Equação da Energia em Escoamentos em Tubos ...................................42 6.3. Perda de Carga ........................................................................................42 7. ESCOAMENTO VISCOSO, INCOMPRESSÍVEL E EXTERNO.............................45 7.1. Espessuras de Camada Limite ................................................................45 7.2. Escoamento Sobre Uma Placa Plana Horizontal (Blausius) ...................47 7.3. Força de Arrasto ......................................................................................47 8. SUGESTÃO DE ESTUDO.....................................................................................51 REFERÊNCIAS..........................................................................................................52

Page 5: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 1

1. CONCEITOS FUNDAMENTAIS

Fluido: É uma substância que se deforma continuamente sob ação de uma tensão de cisalhamento. Podem estar em forma de gases ou líquidos.

Viscosidade (µ): Caracteriza a resistência de um fluido ao escoamento, ou seja, quanto maior a viscosidade de um fluido mais dificuldade ele tem de se movimentar.

Escoamento Laminar: As secções do fluido se deslocam em planos paralelos ou em círculos concêntricos coaxiais (quando em um tubo cilíndrico), sem se misturar.

Escoamento Turbulento: As partículas se misturam de uma forma não linear, ou seja, caótica com turbulência e redemoinhos.

Zona de Transição: Os escoamentos mudam de laminar para turbulentos quando atingem o Reynolds de transição. O Reynolds de transição é de 2.300 para escoamentos internos e aproximadamente 500.000 para escoamentos externos.

Re = 𝜌𝑉𝐿

µ

Onde, 𝜌 e µ são referentes ao fluido, L refere-se ao objeto e V é velocidade do

objeto em relação ao fluido.

Escoamento Compressível: A densidade varia com a pressão. Geralmente são gases.

Escoamento Incompressível: A densidade não varia com a pressão. Geralmente

são líquidos. Para um gás ser incompressível M = 𝑉

𝑐 se M < 0,3 o gás pode ser

tratado como incompressível.

Escoamento Interno: São os escoamentos que passam por dentro de dutos, tubos, placas, etc.

Escoamento externo: O fluido pode estar livre ou sobre uma única placa.

Page 6: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 2

2. ESTÁTICA DOS FLUIDOS

2.1. Manômetros de Coluna Para descobrir a pressão em algum ponto do manômetro é utiliza-se a equação da pressão:

p2 = p1 ± ρ.g.h Quando o ponto 2 está a uma altura menor do ponto 1, há uma quantidade de fluido maior sobre o ponto 1, portando:

p2 = p1 + ρ.g.h Quando o ponto 2 está mais alto que o ponto 1 a pressão nele é menor do que do ponto 1, assim: p2 = p1 - ρ.g.h Se os dois pontos estiverem na mesma altura: p2 = p1 Para facilitar os cálculos em manômetros de coluna complexos e com diferentes tipos de fluidos, são adicionados pontos em cada transição dos fluidos. Veja o exemplo a seguir: Exemplo 1 Qual é a pressão no ponto 2 em função da pressão no ponto 1, das alturas e das densidades dos fluidos?

Page 7: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 3

Resolução: Observe onde os pontos A, B, C, D, E, F, G e H foram colocados. Para achar a pressão no ponto 2 é necessário analisar cada ponto. Percorrendo o manômetro a partir do ponto 1 até o ponto 2 e passando por todos os pontos no caminho, são obtidas as seguintes equações: pA = p1 + ρ(água).g.h1 pB = pA ( estão na mesma altura) pC = pB – ρ(mercúrio).g.h2 pD = Pc pE = pD + ρ(óleo).g.h3 pF = pe pG = pF - ρ(mercúrio).g.h4 pH = pG - ρ (água).g.h5 p2 = pH Resolvendo as equações: p2 = g ( - ρ(água).g.h5 - ρ(mercúrio).g.h4 + ρ(óleo).g.h3 – ρ(mercúrio).g.h2 P1 + ρ(água).g.h1) Obs: Observe que a p2 tem que ser menor que p1, já que p2 está em um ponto mais alto.

Page 8: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 4

Manômetros Inclinados

𝑠𝑒𝑛𝜃 = ℎ

𝐿

Manômetros com Fluidos Diferentes

ρ1 > ρ2

Page 9: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 5

Manômetros com Diâmetros Diferentes

Quando aplicada uma força em um lado do manômetro, as alturas deslocadas serão diferentes devido aos diâmetros diferentes, porém o volume deslocado é o mesmo. Assim:

D².Zb = d².Za

2.2. Forças Hidrostáticas Sobre Superfícies Submersas

Magnitude da força:

Page 10: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 6

I Fr I = - ∫ p dA Para: _Fluidos estáticos _Incompressíveis _Onde a gravidade é a única força atuando p= patm + ρ.g.h Mas h = y.sen (θ) Então:

IFrI = - ∫ ρ.g.y.sen(θ)dA

Ponto de ação da força:

y`. Fr = ∫y.pdA

x`.Fr = ∫x.pdA

Exemplo 2:

A profundidade (h) da represa é 10m. O ângulo (𝜃) da comporta com o chão é de 45°. O comprimento da comporta (L) é 14,142m. A largura da represa (w) é de 8m. Qual é a força (Fr) na comporta?

Primeiramente é necessário definir as hipóteses do problema:

Page 11: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 7

_Fluido estático _Incompressível _Nenhuma força externa atuando _Pressão atmosférica atuando em ambos os lados da comporta 1. Magnitude da força: p = ρ.g.h h = y.sen(θ)

p = ρ.g.y.sen(θ)

Fr = - ∫ p dA

𝐴

Fr = - ∫ ∫ ρ. g. y. sen(θ) dx dy𝒘

𝟎

𝑳

𝟎

Fr = -∫ w ρ. g. y. sen(θ) dy𝐿

0

L

Fr = − 𝑤.𝜌.𝑔.𝑦².𝑠𝑒𝑛(𝜃)

2]

0

Fr = −𝑤.𝜌.𝑔.𝐿².𝑠𝑒𝑛(𝜃)

2

Fr = −8.1000.9,81.14,142².𝑠𝑒𝑛(45°)

2

Fr = 5.549kN

2. Ponto de ação da força:

y`. Fr = ∫ y p dA

𝐴

y`. Fr = ∫ ∫ y. ρ. g. y. sen(θ). dx. dy𝑤

0

𝐿

0

y`. Fr = ∫ y². ρ. g. sen(𝜃).w. dy𝐿

0

y`. Fr = 𝐿³.𝜌.𝑔.𝑠𝑒𝑛(𝜃).𝑤

3

y` = 14,142³.1000.9,81.𝑠𝑒𝑛(45°).8

3.5549.10³

Page 12: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 8

y`=9,43m

x`.Fr = ∫ xpdA

𝐴

x`. Fr = ∫ ∫ x. ρ. g. y. sen(θ). dx. dy𝑤

0

𝐿

0

x`. Fr = 1

2∫ w². ρ. g. y. sen(𝜃). dy

𝐿

0

x`= 𝑤².𝜌.𝑔.𝑠𝑒𝑛(𝑡𝑒).𝐿²

4.𝐹𝑟

x` = 8².1000.9,81.𝑠𝑒𝑛(45°).14,142²

4.5549x10³

x` = 4m Obs: O valor de x obviamente deve ser 4, pois o ponto de atuação da força em x deve ser a metade da largura total.

Page 13: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 9

3. EQUAÇÕES BÁSICAS NA FORMA INTEGRAL PARA UM VOLUME DE CONTROLE

3.1. Conservação da Massa (Equação da Continuidade)

“A taxa de variação temporal da massa no interior do volume de controle é igual ao fluxo líquido de massa através da superfície de controle”.

Onde é a densidade do fluido, t é o tempo, dV é o volume infinitesimal, V é

a velocidade absoluta do fluido, n é o vetor unitário normal ao elemento de área dA.

O primeiro termo representa a taxa de variação da massa dentro do volume de controle e o segundo termo representa a taxa líquida de fluxo de massa para fora através da superfície de controle. Casos especiais Escoamento incompressível através de um Volume de Controle fixo

∫ �⃗� 𝑑𝐴

𝑆𝐶 =0

Em alguns casos é possível aproximar uma velocidade uniforme em cada entrada e saída. Nesse caso a equação pode ser simplificada para:

Σ �⃗� 𝐴 = 0 SC

O vetor da área deve estar sempre apontado para fora da superfície de controle.

Vazão volumétrica

Q =∫V dA A

Módulo de velocidade média de uma secção:

�̅� = Q A

Page 14: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 10

Escoamento permanente compressível através de um volume de controle fixo

∫ ρ �⃗� d𝐴 = 0 SC

Em alguns casos é possível aproximar uma velocidade uniforme em cada entrada e saída. Nesse caso a equação pode ser simplificada para:

Σ ρ �⃗� .𝐴 = 0 SC

3.2. Equação da quantidade de movimento para um volume de controle Inercial Segunda lei de Newton para um volume de controle não acelerado:

Fc: Forças de campo. Na mecânica dos fluidos geralmente é a gravidade, mas ainda podem ser campos elétricos ou magnéticos. Fs: Forças de superfície. Na mecânica dos fluidos a mais comum é a pressão. Exemplo 3: Um jato de água é defletido por um bloco retangular (15 mm x 200 mm x 100mm) que pesa 6N. Determine a vazão volumétrica mínima para derrubar o bloco.

SC

VCSC Ad.VV

t

dVVFFF

Page 15: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 11

Primeiramente é necessário traçar o volume de controle. No VC devem estar presentes todas as saídas e entradas de água.

Agora, vamos definir as hipóteses do problema: _ Escoamento permanente. _ Escoamento incompressível. _ Escoamento uniforme em cada seção onde o fluido cruza as fronteiras do VC. Com essas hipóteses podemos usar diretamente a equação da continuidade para escoamento incompressível através de um volume de controle fixo e com escoamento uniforme cm cada seção:

Σ �⃗� 𝐴 = 0 SC

-V1.A1 + V2.A2 + V3.A3 = 0 V1.A1 = V2.A2 + V3.A3 Porém, A1= A2+ A3 e A2=A3 V1=V2=V3

Page 16: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 12

Observe que quando o bloco estiver caindo ele irá girar em torno do ponto do canto inferior direito. A força do jato de água precisa vencer a força de torque nesse ponto. A força Fy é o peso do bloco: 6N. Fazendo a somatória dos momentos em ralação ao ponto do torque igual à zero: 𝐹𝑦.𝑤

2 –

𝐹𝑥.𝐿

2 = 0

6.0,015

2 –

𝐹𝑥.0,1

2 = 0

Fx = 0,9 N Então, sabe-se que a força que o jato precisa ter é de 0,9N. Agora é possível encontrar a velocidade que ele precisa atingir para exercer essa força, utilizando a equação da quantidade de movimento para um volume de controle inercial. As forças de campo nesse casso é zero. Então a equação pode ser simplificada para:

Fx = ∫V ρ V dA SC

Fx = - ρ.V².AJato

Fx = -1000.v². (π.r²) 0,9 = -1000.v².( π.0,005²) V = 3,386 m/s Com a velocidade, a vazão pode ser facilmente calculada: Q = v. A Q = 3,386.( π.0,005²)

Q= 2,66x10 −4 m³/s

Page 17: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 13

4. INTRODUÇÃO À ANÁLISE DIFERENCIAL DOS MOVIMENTOS DOS FLUIDOS

4.1. Conservação da massa Forma diferencial da lei da conservação da massa em coordenadas retangulares:

Também pode ser escrita da seguinte forma:

Casos especiais Incompressível: A massa específica não é função nem das coordenadas espaciais nem do tempo.

Ou na forma vetorial:

Permanente: Todas as propriedades do fluido são, por definição, independente do tempo assim:

Na forma vetorial:

Em coordenadas cilíndricas:

𝜕(𝑟𝜌𝑉𝑟)

𝜕𝑟+

1

r ∂(ρVθ)

∂θ +

𝜕(𝜌𝑉𝑧)

𝜕𝑧 +

𝜕𝜌

𝜕𝑡 = 0

Page 18: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 14

Incompressível:

𝜕(𝑟𝑉𝑟)

𝜕𝑟+

1

r ∂Vθ

∂θ +

𝜕𝑉𝑧

𝜕𝑧 = 0

Permanente:

𝜕(𝑟𝜌𝑉𝑟)

𝜕𝑟+

1

r ∂(ρVθ)

∂θ +

𝜕(𝜌𝑉𝑧)

𝜕𝑧 = 0

Exemplo 4: Um escoamento incompressível em regime permanente tem as componentes de velocidade u= x³ +2z² e w = y³ - 2yz. Qual deve ser a componente v(x,y,z) para que o escoamento satisfaça a equação da continuidade?

3x² + 𝜕𝑣

𝜕𝑦 - 2y= 0

𝜕𝑣

𝜕𝑦 = 2y -3x² (1)

Integrando 𝜕𝑣

𝜕𝑦 :

∫𝑑𝑣 = ∫(2𝑦 − 3𝑥2)𝑑𝑦

𝑣 = 𝑦² − 3𝑥²𝑦 + 𝑓(𝑥, 𝑦) (2) Derivando e comparando com a equação 1:

𝑣` = 2𝑦 − 3𝑥² + 𝑓`(𝑥, 𝑦) = 2𝑦 − 3𝑥²

𝑓`(𝑥, 𝑦) = 0

Integrando 𝑓(𝑥, 𝑦)= C Assim, substituindo na equação 2:

𝑣 = 𝑦² − 3𝑥²𝑦 + 𝐶

Page 19: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 15

4.2. Equação de Navier-stokes Para escoamentos incompressíveis com viscosidade constante: Coordenadas retangulares

Na forma vetorial:

Coordenada cilíndricas

Exemplo 5: Um escoamento sem atrito, em regime permanente, o campo de velocidade é dado por: V=2xyi-y²j. Sendo a densidade constante e desprezando a gravidade, ache uma expressão para o gradiente de pressão na direção x. Solução

Page 20: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 16

Hipóteses 1. Escoamento invíscido 2.Escoamento em regime permanente 3.Gravidade desprezível 4.Escoamento Incompressível 5.Escoamento bidimensional u= 2xy v= -y² Utilizando a equação de Navier-Stokes na direção x:

Com as simplificações a equação fica:

- 𝜕𝑃

𝜕𝑥 = 𝜌 (𝑢

𝜕𝑢

𝜕𝑥+ 𝑣

𝜕𝑢

𝜕𝑦)

- 𝜕𝑃

𝜕𝑥 = 𝜌[2𝑥𝑦(2𝑦) + (−𝑦2)(2𝑥)]

- 𝜕𝑃

𝜕𝑥 = 𝜌2xy²

4.3. Equação de Euler

A equação de Euler é usada para escoamentos invíscidos, ou seja, 𝜇=0:

É a equação de Navier-Stokes simplificada. 4.3.1 Equação de Euler em Coordenadas de Linhas de Correntes Para um escoamento em regime permanente Equação normal à linha de corrente:

Page 21: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 17

Onde: R: raio de curvatura da linha de corrente.

4.4. Função de Corrente para Escoamento Incompressível e Bidimensional 𝝋 Coordenadas retangulares

u = 𝜕𝜑

𝜕𝑦 v =−

𝜕𝜑

𝜕𝑥

Coordenadas cilíndricas

Vr = 1

r

𝜕𝜑

𝜕𝜃 V𝜃 = -

𝜕𝜑

𝜕𝑟

Pontos de estagnação Os pontos de estagnação são o x e y onde a velocidade é igual a zero.

4.5. Potencial de Velocidade ∅ Coordenadas retangulares

u = −𝜕∅𝜕𝑥

v =−𝜕∅

𝜕𝑦 w =−

𝜕∅

𝜕𝑧

Coordenadas cilíndricas

Vr = −𝜕∅𝜕𝑟

V𝜃 = −1

𝑟

𝜕∅

𝜕𝜃 V𝑧 = −

𝜕∅

𝜕𝑧

Exemplo 6: Para as funções de corrente, em m²/s, determine a magnitude e ângulo dos vetores velocidade com o eixo x, na posição x=2m e y = 4m.

Page 22: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 18

𝜑 = 𝑥𝑦 + 𝑥²

u = 𝜕𝜑

𝜕𝑦 v=−

𝜕𝜑

𝜕𝑥

u = xi v = -(y+2x)j

�⃗� = xi - (y+2x)j Em x = 2 e y = 4:

�⃗� = 2i -8j Magnitude:

|�⃗� |= √(22 + (−8)2)

|�⃗� |= 8,25 m/s

Ângulo com o eixo x:

tg𝜃 = 𝑣

𝑢

tg𝜃 = −8

2

𝜃= - 75,96° 4.6. Equação de Bernoulli A equação de Bernoulli necessita das seguintes hipóteses: _ Escoamento em regime permanente _ Escoamento incompressível _ Escoamento sem atrito _ Escoamento ao longo de uma linha de corrente

Algumas restrições da equação de Bernoulli:

Page 23: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 19

1. Quando a gradiente de pressão não for favorável, pois, não existem linhas de corrente.

2. Quando há mudanças bruscas na geometria do sólido.

Exemplo 7: Uma mangueira de jardim de 10 m de comprimento e diâmetro interno de 20 mm é usada para drenar uma piscina. Se os efeitos da viscosidade forem desconsiderados, qual a vazão de drenagem?

Solução Hipóteses:

Page 24: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 20

_ Escoamento invíscido _ Escoamento em regime permanente _Piscina muito grande Com essas hipóteses é possível aplicar a equação de Bernoulli nos pontos 1 e 2:

𝑃1

𝜌 +

𝑉1²

2 + gz1 =

𝑃2

𝜌 +

𝑉2²

2 + gz2

P2 e P1 são iguais a Patm, pois estão diretamente no ar e V1 pode ser aproximada á zero, já que a piscina é grande e a velocidade de vazão é pequena. Simplificando a equação:

V2 = √(2𝑔(𝑧1 − 𝑧2)

V2= √(2.9,81(0,2 − (−0,23)) V2 = 2,9 m/s Agora para descobrir a vazão de drenagem basta aplicar a fórmula da vazão no ponto 2: Q2=V2.A2

Q2 = 2,9.𝜋𝑟²

Q2 = 2,9𝜋 0,01²

Q2 = 9,11x10−4 m³/s

Page 25: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 21

4.7. Escoamento em Planos Elementares

Potencial de velocidade ∅ e função da linha de corrente 𝜑 para planos elementares são facilmente encontrados na tabela abaixo:

Page 26: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 22

4.8. Superposição de Escoamentos em Planos Elementares Somente quando for incompressível e irrotacional.

𝜑3 = 𝜑1 + 𝜑2

u3= u1 + u2

v3 = v1 + v2

Método direto: Combinações Algumas combinações já foram estudadas e colocadas na tabela a seguir:

Page 27: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 23

Page 28: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 24

Page 29: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 25

Exemplo 8: O escoamento potencial contra uma placa plana pode ser descrito com a seguinte

função de corrente: 𝜑 = 𝐴𝑥𝑦, onde A é uma constante. Esse é um escoamento com ponto de estagnação contra uma placa com uma lombada. Determine a relação entre a altura h da lombada, constante A e a intensidade q da fonte.

Page 30: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 26

Utilizando a superposição com a fonte:

𝜑 = 𝐴𝑥𝑦 + 𝜑𝑓𝑜𝑛𝑡𝑒

𝜑 = 𝐴𝑥𝑦 + 𝑞𝜃

2𝜋

Transformando a equação para coordenadas cilíndricas:

x= r cos𝜃 y = r sen𝜃

𝜑 = 𝐴 r cos𝜃 r sen𝜃 + 𝑞𝜃

2𝜋

𝜑 = 𝐴 r² cos𝜃 sen𝜃 + 𝑞𝜃

2𝜋

Utilizando a propriedade dos senos e cossenos:

Sen2𝜃 = 2 cos𝜃 sen𝜃

Então:

1

2sen2𝜃 = cos𝜃 sen𝜃

𝜑 =𝐴

2 r² sen2𝜃 +

𝑞𝜃

2𝜋

Page 31: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 27

Encontrando as velocidades:

Vr = 1

r

𝜕𝜑

𝜕𝜃 V𝜃 = -

𝜕𝜑

𝜕𝑟

Vr = A r cos2𝜃 + 𝑞

2𝜋𝑟 V𝜃 = - Ar sen2𝜃

No ponto E:

𝜃 = 𝜋

2 e r = h

Substituindo nas velocidades e igualando a zero:

Vr = A h cos(2𝜋

2) +

𝑞

2𝜋ℎ V𝜃 = - Ah sen(

2𝜋

2)

0 = Ah(-1) + 𝑞

2𝜋ℎ V𝜃 = 0

h² = 𝑞

2𝜋𝐴

Page 32: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 28

5. ANÁLISE DIMENSIONAL E SEMELHANÇA

Em muitos testes e pesquisas são utilizados modelos em escalas muito menores que o produto real. Mas como saber se o tamanho do modelo se comportará da mesma maneira que o produto real se comportaria em diferentes situações? Para isso, utiliza-se a análise dimensional e semelhança. 5.1. Determinação dos Grupos π Os grupos π são compostos somente por parâmetros adimensionais. Para determiná-los é necessário seguir alguns passos. Esses passos são mostrados no exemplo a seguir: Exemplo 9: Força de arrasto sobre uma esfera lisa. Dados: F= f (ρ, mi, D, v) 1° Passo: Listar os parâmetros que julgar envolvidos F V D ρ mi n = 5 parâmetros dimensionais 2° Passo: Listar as dimensões primárias envolvidas M ( massa) L (comprimento) T( tempo) r = 3 dimensões primárias 3° Passo: Expressar os parâmetros em termos das dimensões A força é expressa em massa x aceleração. A aceleração por sua vez, é expressa em distância percorrida / por tempo ao quadrado. Sendo assim:

F : ML

A densidade é expressa pela massa sobre o volume e o volume é expresso em comprimento ao cubo.

ρ: M

A viscosidade é expressa em:

µ: M

Lt

O diâmetro é expresso em comprimento.

D: L

Page 33: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 29

A velocidade é expressa em comprimento por tempo.

V: L

t

Então:

ML

t² = f (

M

Lt,M

L³, L,

L

t)

4° Passo: Encontrar a quantidade de parâmetros π. Para isso basta resolver a equação: m = n – r m = 5 – 3 M = 2 Então existem 2 parâmetros π. 5° Passo: Selecionar r parâmetros que em conjunto possuam todas as dimensões primárias (parâmetros repetentes). _ Caracterize o fluido: ρ _ Caracterize a geometria: D _ Caracterize o escoamento: V Obs: _ Não pode ser o parâmetro dependente (nesse caso o F).

_ Nenhum dos parâmetros repetentes pode ter dimensões que sejam uma

potência das dimensões de outro parâmetro repetente; por exemplo, A (L²) e I ( 𝐿4). 6°Passo: Parâmetros π

Π1= ρaVbDcF Precisamos descobrir os valores de a, b e c. Expressando os parâmetros em dimensões:

Π1 = [𝑀𝐿−3]𝑎 [𝐿𝑡−1]𝑏 [𝐿]𝑐[𝑀𝐿𝑡−2] Agora agrupamos os expoentes que cada dimensão primária está elevada e igualamos à zero: M: a + 1 = 0 a = -1 t: -b – 2 = 0 b= -2

Page 34: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 30

L : -3a + b + c+ 1= 0 c= -2 Então,

Π1 = 𝐹

𝜌𝑉²𝐷²

Da mesma maneira fazemos para π2:

π2 = ρdVeDfµ

𝜋2 = [𝑀𝐿−3]𝑎 [𝐿𝑡−1]𝑏 [𝐿]𝑐[𝑀𝑡−1𝐿−1]

M: d + 1 = 0 d = 1 t: -e -1 = 0 e= -1 L: -3d + e + f -1 = 0 f = 1 Assim:

𝜋2 =µ

𝜌𝑉𝐷

7° Passo: Aplicar o teorema do pi de buckingham

Π1 = f( π2)

𝐹

𝜌𝑉²𝐷²= f(

µ

𝜌𝑉𝐷 )

8° Passo: Verificar se os grupos são adimensionais

Π1 = 𝑀−1𝐿3𝐿−2𝑡2𝐿2𝑀𝐿𝑡−2

Π1 = 𝑀0𝐿0𝑡0 é adimensional

Π2 = 𝑀−1𝐿3𝐿−1𝑡1𝑀𝐿−1𝑡−1𝐿−1

Π2 = 𝑀0𝐿0𝑡0 é adimensional

Page 35: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 31

5.2. Grupos Adimensionais Importantes na Mecânica dos Fluidos Reynolds Reynolds é definido pela Força Inercial sobre as Forças viscosas:

Re = 𝜌𝑉𝐿

µ

𝐹𝑖𝑛é𝑟𝑐𝑖𝑎

𝐹𝑣𝑖𝑠𝑐𝑜𝑠𝑎

Pensando assim é fácil perceber que se a força inercial for dominante sobre as forças viscosas o Re será maior que 1, caso contrário o Re será menor que 1. Se nenhuma força dominar sobre a outra o Re será igual a 1. Euler Também chamado de coeficiente de pressão, Cp é utilizado para medir a pressão no movimento dos fluidos.

Ԑ𝑢 =2∆𝑝

𝜌𝑉²

𝐹𝑝𝑟𝑒𝑠𝑠ã𝑜

𝐹𝐼𝑛é𝑟𝑐𝑖𝑎

∆𝑃: É a pressão local menos a inicial ρ e V: Propriedades do fluido

Cavitação

Nos estudos da cavitação utiliza-se a equação de Euler, só que o ∆𝑃 é tomado como a pressão da corrente líquida (p) menos a pressão de vapor líquido na temperatura de teste (pv).

Ca = 2(𝑝−𝑝𝑣)

𝜌𝑉²

Quanto menor o Ca, maior a probabilidade de ocorrer cavitação, o que é indesejável. Froude O número de Froude é significativo para escoamentos com efeitos de superfície livre.

Fr = 𝑉

√𝑔𝑙

𝐹𝑖𝑛é𝑟𝑐𝑖𝑎

𝐹𝑔𝑟𝑎𝑣𝑖𝑑𝑎𝑑𝑒

Page 36: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 32

Weber É um indicativo da existência, e da freqüência, de ondas capilares em uma superfície livre.

We =𝜌𝑉²𝐿

𝜃

𝐹𝑖𝑛é𝑟𝑐𝑖𝑎

𝐹𝑠𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙

Mach Caracteriza os efeitos da compressibilidade em um escoamento.

M= 𝑉

𝑐

V= velocidade do escoamento C = velocidade do som 5.3. Semelhança de Escoamentos e Estudos de Modelos Modelo: Tamanho reduzido do protótipo. Para os testes em um protótipo sejam eficazes em relação ao modelo algumas semelhanças devem ser consideradas: Semelhança Geométrica As dimensões dos protótipos são proporcionais em escala as dimensões do modelo. Semelhança Cinemática

A velocidade do escoamento sobre o protótipo deve ter a mesma direção e sentido que a velocidade do escoamento sobre o modelo.

Page 37: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 33

Vm = ε Vp

휀: Fator de escala

A semelhança geométrica garante a semelhança cinemática. Semelhança Dinâmica

Fm = 휀 Fp

A semelhança cinemática é condição necessária, mas não garante a semelhança dinâmica.

Re,m = Re, p : 𝜌𝑉𝐷

µ] =

𝜌𝑉𝐷

µ]

𝐹

𝜌𝑉²𝐷²] =

𝐹

𝜌𝑉²𝐷²]

m p m p

Fr, m = Fr, p

Ca, m = Ca, p Exemplo 10: Um modelo de um transdutor sonar é testado em um túnel de vento. A força de arrasto sobre o modelo é Fm = 5N. O transdutor é rebocado a uma velocidade de 2m/s no mar. a) Determine a velocidade necessária no ar para se realizar um teste eficaz (Vm). b) Estime a força de arrasto sobre o protótipo (Fp). Dados:

Page 38: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 34

Modelo: Fm=5N Dm= 0,5m

µar=1,81x10−5 N.s/m²

ρar= 1,225 Kg/m³

Protótipo: Vp = 2m/s Dp = 8m

ρmar = 1025 Kg/m³

µmar=1,218x10−3 N.s/m²

Para o teste ser eficaz é necessário garantir a semelhança dinâmica. Re,m = Re,p 𝜌𝑉𝐷

µ] =

𝜌𝑉𝐷

µ]

m p

Agora colocando os valores na equação: 1,225.𝑉𝑚.0,5

1,81x10−5 = 1025.2.8

1,218x10−3

a) Vm=397,9 m/s

𝐹

𝜌𝑉²𝐷²] =

𝐹

𝜌𝑉²𝐷²]

m p

Fp= Fm𝜌𝑝𝑉𝑝²𝐷𝑝²

𝜌𝑚𝑉𝑚²𝐷𝑚²

Page 39: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 35

Fp= 5.1025.2².8²

1,225.387,8².0,5²

b) Fp = 29,37 N

Page 40: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 36

6. ESCOAMENTO VISCOSO INTERNO E INCOMPRESSÍVEL

Na entrada do tubo a velocidade do escoamento é uniforme. Devido à condição de não deslizamento, sabemos que a velocidade na parede do tubo é zero em toda a extensão. Para escoamentos incompressíveis, a conservação da massa exige que, conforme a velocidade na proximidade da parede é reduzida, a velocidade na região central sem atrito do tudo deve crescer para compensar. Suficientemente longe da entrada do tubo, o perfil de velocidade não muda mais. Nessa região o escoamento está completamente desenvolvido e é inteiramente viscoso. O comprimento do tubo onde o escoamento ainda está se desenvolvendo é chamado comprimento de entrada.

A condição de completamente desenvolvido faz com que 𝜕

𝜕𝑥 seja igual a zero.

Escoamento laminar completamente desenvolvido O comprimento de entrada pode ser calculado como:

𝐿

𝐷= 0,06

𝜌𝑉𝐷

µ

6.1. Entre Placas Paralelas Infinitas 6.1.1. Ambas Estacionárias

Hipóteses: _ Regime Permanente _ Bidimensional _FBx=0 _Completamente desenvolvido

Page 41: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 37

Distribuição da Velocidade

U= 1

𝜕𝑃

𝜕𝑋 (2y - H)

Distribuição da tensão cisalhante

𝒯xy = 𝜇𝜕𝑈

𝜕𝑦 então,

𝒯xy = 1

2

𝜕𝑃

𝜕𝑋 (2y - H)

Vazão em volume

Q = −𝑏

𝜕𝑃

𝜕𝑋

𝐻³

6 b: Profundidade

Velocidade Média

�̅� = −𝜕𝑃

𝜕𝑋

𝐻²

12µ

Vazão Volumétrica como função da queda de pressão

𝑄

𝑏=

𝐻³∆𝑃

12µ𝐿

Ponto de Velocidade máxima 𝜕𝑢

𝜕𝑦= 0

y = 𝐻

2

Page 42: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 38

6.1.2. Em um Pistão

Placa superior se movendo com velocidade constante Distribuição da Velocidade

U= 1

𝜕𝑃

𝜕𝑋 (y² - Hy) +

𝑈𝑦

𝐻

Tensão cisalhante

U= 𝜔𝑅 então,

𝒯xy = µ.𝜔𝑅

𝐻

Ponto de Velocidade máxima 𝜕𝑢

𝜕𝑦= 0

y = 𝐻

2 –

𝑈/𝐻

(1

µ)(

𝜕𝑃

𝜕𝑥)

Torque

T= 𝐹. 𝑅

F= 𝜏yx.AS

AS = 2ΠRL

T= µ.𝜔𝑅

𝐻 2ΠRL.R

Page 43: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 39

Potência

W= T.𝜔 6.1.3. Escoamento em Dutos

Distribuição da Velocidade

Vz= 1

𝜕𝑃

𝜕𝑧 (r²-R²)

Distribuição da tensão cisalhante

𝒯xy = 𝑟

2

𝜕𝑃

𝜕𝑧

Vazão em volume

Q = −𝜋𝑅4

𝜕𝑃

𝜕𝑧

Velocidade Média

V = −𝜕𝑃

𝜕𝑧

𝑅²

Vazão Volumétrica como função da queda de pressão

∆𝑃 = 128𝑄𝜇𝐿

𝜋𝐷4

Page 44: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 40

Ponto de Velocidade máxima 𝜕𝑉𝑧

𝜕𝑟= 0

r = 0

Exemplo 11:

O mancal de virabrequim é lubrificado por óleo 𝜇 = 0,2 𝑃𝑎. 𝑠. O eixo gira a 80rpm. Determine o torque requerido para girar o eixo e a potência dissipada.

Hipóteses: _ Escoamento em um pistão _Escoamento Laminar _ Regime permanente _ Incompressível _Completamente desenvolvido

_ 𝜕𝑝𝜕𝑥

=0, o escoamento é simétrico no mancal real sem carga.

3600rpm = 80.2𝜋

60 rad/s = 8,38 rad/s

Vimos que:

Page 45: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 41

U= 1

𝜕𝑝

𝜕𝑋 (y² - Hy) +

𝑈𝑦

𝐻

U=𝑈𝑦

𝐻

𝜏yx = 𝜇𝜕𝑢

𝜕𝑦

𝜏yx = 𝜇𝑈

𝐻

U = 𝜔R

𝜏yx = 𝜇𝜔R

𝐻

𝜏yx =0,2 8,38x0,0375

2,5𝑥10−4

𝜏yx = 251,4 Pa

T= 𝐹. 𝑅

F= 𝜏yx.A

T=251,42πRLR

T= 502,8.0,0375² 2

a) Torque: T= 1,42 N.m W = F U

W=F R 𝜔

W= T 𝜔 W= 1,42. 8,38 b) Potência: W= 11,85 w

Page 46: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 42

6.2. Equação da Energia em Escoamento em Tubos

(𝑃1

𝜌𝑔+ 𝛼2

𝑉1²

2𝑔+ 𝑧1 ) - (

𝑃2

𝜌𝑔+ 𝛼2

𝑉2²

2𝑔+ 𝑧2 ) = hlt

Onde:

𝛼 = 2 : Laminar 𝛼 = 1 : Turbulento hlt: Perda de carga total 6.3. Perda de Carga hlt = hl + hlm

hl: Perdas maiores, causadas por efeitos de atrito no escoamento completamente desenvolvido. hlm: Perdas localizadas ou menores, causadas por entradas, acessórios, variações de área e outras. Perdas maiores (hl) a) Escoamento Laminar

hl= (64

𝑅𝑒)

𝐿

𝐷

𝑉²

2

b) Escoamento turbulento

hl= f 𝐿𝐷

𝑉²2

f é o fator de atrito q é função de Re, 𝑒

𝐷. Pode ser obtido através da seguinte tabela:

Page 47: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 43

Perdas Menores hlm Para escoamento completamente desenvolvido através de um tubo horizontal de área constante: hlm = 0.

hlm = K 𝑉²

2

K pode variar com as entradas e saídas do tubo:

Page 48: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 44

O K também varia com expansões e contrações, curvas, válvulas e acessórios entre outros. Esses valores de K podem ser facilmente obtidos em tabelas de livros de mecânica dos fluidos.

Page 49: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 45

7. ESCOAMENTO VISCOSO, INCOMPRESSÍVEL E EXTERNO

Quando um objeto move-se através de um fluido o movimento das moléculas do fluido perto do objeto é perturbado, e estas moléculas movem-se ao redor do objeto,

gerando forças aerodinâmicas.

7.1. Espessuras da Camada Limite

Espessura de pertubação, 𝛿 É a distância da superfície na qual a velocidade situa-se dentro de 1% da velocidade

da corrente livre, isto é, u ≈ 0,99𝑈.

Espessura de deslocamento, 𝛿 ∗ É a distância na qual a placa seria deslocada de forma que a perda de fluxo de massa ( devido à redução na área do escoamento uniforme) fosse equivalente à perda causada pela camada-limite.

Page 50: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 46

Para escoamentos incompressíveis,

𝛿 ∗ = ∫ (1 −𝑢

𝑈)𝑑𝑦

𝛿

0

Espessura de quantidade de movimento, 𝜃 É a distância que a placa seria movida de modo que a perda de fluxo de quantidade de movimento fosse equivalente à perda real causada pela camada-limite.

𝜃 = ∫𝑢

𝑈

𝛿

0

(1 −𝑢

𝑈)𝑑𝑦

Hipóteses simplificadoras Essas hipóteses simplificadoras são usualmente feitas em análises de engenharia, visto que o perfil de velocidade em uma camada-limite une-se assintoticamente com a velocidade da corrente livre.

Page 51: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 47

1. u→U em y= 𝛿

2.𝜕𝑢

𝜕𝑦 = 0 em y= 𝛿

3. u≪ 𝑈 dentro da camada-limite 4. ∆𝑃 é desprezível 7.2. Escoamento Sobre Uma Placa Plana Horizontal (Blausius) Escoamento Laminar

Espessura da camada-limite: 𝛿 =5𝑥

√(𝑅𝑒𝑥)

Coeficiente de atrito superficial: Cf = 0,664

√(𝑅𝑒𝑥)

Solução aproximada ( Laminar ou turbulento)

Espessura da camada-limite: 𝛿 =5,48

√(𝑅𝑒𝑥)

Coeficiente de atrito superficial: Cf = 0,73

√(𝑅𝑒𝑥)

Escoamento turbulento sobre a placa plana

Espessura da camada-limite: 𝛿 =0,382

√(𝑅𝑒𝑥)

Coeficiente de atrito superficial: Cf = 0,0594

√(𝑅𝑒𝑥)

7.3. Força de Arrasto

A força de arrasto é força que faz resistência ao movimento de um objeto sólido através de um fluido.

Page 52: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 48

Coeficiente de arrasto

CD = 𝐹𝑑

1𝜌𝑣²𝐴

2

O coeficiente de arrasto para objetos selecionados ( Re ≥ 10³) pode ser determinado com auxílio da seguinte tabela:

Exemplo 12:

Em um teste para medir a velocidade máxima de carros, um tuatara atinge uma velocidade de 432 km/h. Imediatamente, após passar pelo sinalizador de tempo, o piloto abre o paraquedas de frenagem, de área A = 21 m². As resistências do ar e do rolamento do carro podem ser desprezadas. Determine o tempo necessário para que o veículo desacelere para 36 km/h. A massa do carro é de 1000 kg. Dados: Vi = 432 km/h ou 120 m/s Vf = 36 km/h ou 10 m/s

𝜌(𝑎𝑟) = 1,21 𝑘𝑔/𝑚3 a 20°C

𝜇(ar) = 1,81x10−5 N. s/m²

Page 53: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 49

Para achar o CD pode-se utilizar a tabela desde que o Re seja maior ou igual a 10³. Então, calculando o Re:

Re = 𝜌𝑉𝐷

µ

Encontrando o Diâmetro:

A = 𝜋 𝐷²

4

D = (4𝐴

𝜋)1

2⁄

D = (4𝑥21

𝜋)1

2⁄

D = 5,17m

Re = 1,21 𝑥 10 𝑥 11,28

1,81x10−5

Re = 7,54 x 106

O Re do problema valida a hipótese, então pela tabela: CD = 1,42. Considerando a segunda Lei de Newton: -FD = ma

-FD = m 𝑑𝑉𝑑𝑡

(1)

E da equação da força de arrasto:

Page 54: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 50

FD = 𝐶𝐷 𝜌 𝑉² 𝐴

2 (2)

Igualando 1 e 2:

−𝐶𝐷 𝜌 𝑉² 𝐴

2 = m

𝑑𝑉𝑑𝑡

Integrando:

−1 𝐶𝐷 𝜌 𝐴

2𝑚∫ 𝑑𝑡 = ∫

𝑑𝑉

2

𝑉𝑓

𝑉𝑖

𝑡

0

−1 𝐶𝐷 𝜌 𝐴

2𝑚𝑡 = −

1

𝑉𝑓+

1

𝑉𝑖

−1 𝐶𝐷 𝜌 𝐴

2𝑚𝑡 = −

(𝑉𝑖 − 𝑉𝑓)

𝑉𝑓 𝑉𝑖

𝑡 =(𝑉𝑖 − 𝑉𝑓)

𝑉𝑓 𝑉𝑖

2𝑚

𝐶𝐷 𝜌 𝐴

𝑡 =(120 − 10)

120𝑥10

2𝑥1000

1,42𝑥1,21𝑥21

t = 5,08 s

Page 55: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 51

8. SUGESTÃO DE ESTUDO Para melhor entendimento da matéria, primeiramente deve se ler os capítulos do livro que são estudados em sala assim que lhe são apresentados. Após o término da leitura do capítulo, é sugerido tentar resolver os exemplos do livro sem olhar a resolução e em seguida resolver os exercícios sugeridos. Para fixar e revisar o assunto, essa apostila deve ser estudada.

Leitura Introdução à MECÂNICA DOS FLUIDOS, Robert W. Fox, Philip J. Pritchard, Alan T. McDonald; Sétima edição. Exercícios

Capítulo 3: 3.23, 3.24, 3.26, 3.28, 3.51 e 3.65 Capítulo 4: 4.12, 4.22, 4.66 e 4.195 Capítulo 5: 5.4, 5.5, 5.10, 5.22, 5.36, 5.40, 5.47 Capítulo 6: 6.10, 6.28, 6.39, 6.46, 6.67, 6.77 Capítulo 7: 7.9, 7.12, 7.15, 7.42, 7.46, 7.50, 7.76 Capítulo 8: 8.1, 8.9, 8.20, 8.47, 8.57, 8.76, 8.84, 8.90, 8.117 Capítulo 9: 9.12, 9.19, 9,81, 9,84, 9,98

Page 56: Fernanda Hille - petemb.ufsc.br · Mecânica dos Fluidos PET – EMB 1 1. CONCEITOS FUNDAMENTAIS Fluido: É uma substância que se deforma continuamente sob ação de uma tensão

Mecânica dos Fluidos

PET – EMB 52

REFERÊNCIAS Fox, Robert; Pritchard, Philip; McDonald, Alan; Introdução à Mecânica dos Fluidos, sétima edição.

HTTP://WWW.FENG.PUCRS.BR/LSFM/MECFLU/MECANICA-DOS-FLUIDOS/APOSTILA%20MECANICA%20DOS%20FLUIDOS%202011.PDF HTTP://WWW.UFPE.BR/LDPFLU/CAPITULO5.PDF HTTP://UFPEMECANICA.FILES.WORDPRESS.COM/2011/07/ANC3A1LISE-DIMENSIONAL-E-SEMELHANC3A7A-DINC3A2MICA-CORRIGIDO.PDF HTTP://SOMAUTOMOTIVOCARROSTUNING.BLOGSPOT.COM.BR/2011/07/TUATARA-E-O-NOME-DO-NOVO-ESPORTIVO-DA.HTML