46
Indutância Origem: Wikipédia, a enciclopédia livre. Ambox rewrite.svg Esta página precisa ser reciclada de acordo com o livro de estilo (desde a gosto de 2013). Sinta-se livre para editá-la para que esta possa atingir um nível de qualidade super ior. Question book.svg Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde setembro de 2011). Por favor, adicione referências e ins ira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido. Encontre fontes: Google (notícias, livros e acadêmico) Portal A Wikipédia possui o portal: Portal de eletrônica Eletromagnetismo Circular.Polarization.Circularly.Polarized.Light Right.Handed.Animation.305x190. 255Colors.gif Representação do vetor campo elétrico de uma onda eletromagnética circularmente polariza da. Eletrostática [Expandir] História [Expandir] Magnetostática [Expandir] Eletrodinâmica [Expandir] Circuitos elétricos [Expandir] Físicos [Expandir] v e Em um sistema constituído de uma ou mais espiras, formando uma bobina perfeita - ( resistência interna igual a zero) - quando percorrido por uma corrente elétrica prod uz um campo magnético, campo este que faz um fluxo \Phi que as atravessa. Indutância pode ser definida como a razão entre o enlace total do fluxo e a corrente elétrica envolvida. Para o entendimento do conceito de enlace do fluxo, primeiram ente consideremos um Toroide de N espiras , pelo qual uma corrente I que circula produz um fluxo total \Phi. O enlace de fluxo N\Phi é caracterizado como o numero de espiras N presente no fluxo \Phi. [1] A capacidade de uma bobina de N espiras em criar o fluxo com determinada corrent e i que percorre o circuito é denominada Indutância (símbolo L) medida em "henry" cujo símbolo é H. L=\frac{N \Phi}{i} [1] Índice 1 Propriedades 2 Indutância Mútua 3 Auto-indução 4 Potência e Energia Armazenada em indutores 5 Referências

Inductand Pinaop oij Aush Idu 09

Embed Size (px)

DESCRIPTION

aiush doa ouyd ua iu6sgd uyag sduyg auydg ausgd iuag d87 83y 87wy 87a fuyh sadivsdunudbc sdvous dfuh suh isoudh fish fush fuo saf zsifg iosa gioas gios ai afg posf giods ag dzshisdifug

Citation preview

Page 1: Inductand Pinaop oij Aush Idu 09

IndutânciaOrigem: Wikipédia, a enciclopédia livre.Ambox rewrite.svg

Esta página precisa ser reciclada de acordo com o livro de estilo (desde agosto de 2013).Sinta-se livre para editá-la para que esta possa atingir um nível de qualidade superior. Question book.svg

Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde setembro de 2011). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.�Encontre fontes: Google (notícias, livros e acadêmico) Portal A Wikipédia possui o portal:

Portal de eletrônica

EletromagnetismoCircular.Polarization.Circularly.Polarized.Light Right.Handed.Animation.305x190.255Colors.gifRepresentação do vetor campo elétrico de uma onda eletromagnética circularmente polarizada.Eletrostática[Expandir]História[Expandir]Magnetostática[Expandir]Eletrodinâmica[Expandir]Circuitos elétricos[Expandir]Físicos[Expandir]v � e

Em um sistema constituído de uma ou mais espiras, formando uma bobina perfeita - (resistência interna igual a zero) - quando percorrido por uma corrente elétrica produz um campo magnético, campo este que faz um fluxo \Phi que as atravessa.

Indutância pode ser definida como a razão entre o enlace total do fluxo e a corrente elétrica envolvida. Para o entendimento do conceito de enlace do fluxo, primeiramente consideremos um Toroide de N espiras , pelo qual uma corrente I que circula produz um fluxo total \Phi. O enlace de fluxo N\Phi é caracterizado como o numero de espiras N presente no fluxo \Phi. [1]

A capacidade de uma bobina de N espiras em criar o fluxo com determinada corrente i que percorre o circuito é denominada Indutância (símbolo L) medida em "henry" cujo símbolo é H.

L=\frac{N \Phi}{i} [1]

Índice

1 Propriedades 2 Indutância Mútua 3 Auto-indução 4 Potência e Energia Armazenada em indutores 5 Referências

Page 2: Inductand Pinaop oij Aush Idu 09

Propriedades

A corrente num circuito produz um campo magnético e portanto, fluxo magnético. Assim, qualquer variação da corrente conduzirá a forças eletromotrizes induzidas no circuito.

Se, por exemplo, fecharmos um interruptor num circuito de corrente contínua, a corrente não aumenta instantaneamente desde zero até um valor final, devido à indutância do circuito. A tendência da corrente a aumentar bruscamente será contrariada por uma corrente induzida oposta, que regula o aumento da corrente de forma gradual. Igualmente, quando se abrir o interruptor a corrente não passará a ser nula de forma instantânea, mas de forma gradual.[2]Indutância mútua entre dois circuitos.

Imaginemos dois circuitos, um ao lado do outro (figura ao lado). No primeiro circuito está ligada uma pilha que produz uma corrente, existindo uma resistência variável que permite alterar a intensidade dessa corrente. No segundo circuito não está ligada nenhuma fonte.[2]

A corrente no circuito 1 (lado esquerdo) produz fluxo magnético dentro do circuito 2, que deverá ser diretamente proporcional à corrente I_1, que produz esse campo magnético:

\Phi_2 = -M\,I_1

onde Mé uma constante chamada (indutância mútua) , que depende da forma dos circuitos e da distância entre eles.

A variação da corrente no circuito 1 induz uma força eletromotriz no circuito 2:

\varepsilon_2 = M\,\frac{d\,I_1}{d\,t} [2]

No sistema internacional de unidades, a unidade da indutância (volt vezes segundo, sobre ampere) é o henry, representada pela letra H.Indutância Mútua

Estando dois ou mais circuitos próximos uns dos outros, como observado na Figura ao lado (circuitos elétricos adjacentes).Circuitos Elétricos adjacentes. O fluxo magnético é resultante da soma de dois termos, sendo um proporcional a corrente do circuito 1 , e outro a corrente do circuito 2.

O fluxo magnético \Phi através de um circuito elétrico não depende somente da corrente naquele circuito, mas depende também da correntes dos outros circuitos correlacionados.[3]

O campo magnético na superfície S_2 é a superposição de \overrightarrow{B_1} referente a corrente I_1 e \overrightarrow{B_2} devido a I_2. O fluxo magnético \overrightarrow{B_1} é proporcional a I_1, assim como \overrightarrow{B_2} é proporcional a I_2.

\Phi_{m2,1}=M_{2,1}\,I_1

No qual M_{2,1} é denominado de Indutância Mútua. O fluxo líquido \Phi_{m2,1} do campo magnético total \overrightarrow{B}=\overrightarrow{B_1}+\overrightarrow{B_2}, presente no circuito 2, pode ser descrito como \Phi_{m2}=\Phi_{m2,2}+\Phi_{m2,1}. Para o circuito 1, uma equação para o fluxo de \overrightarrow{B_2} é dado por:[3]

\Phi_{m1,2}=M_{1,2}\,I_2

Com uma frequência alta, o fluxo magnético numa área contida num circuito varia com o

Page 3: Inductand Pinaop oij Aush Idu 09

tempo, devido as correntes de circuitos próximos que variam. A condição anterior induz uma força eletromotriz em um processo chamado de indução mútua, que depende da geometria dos circuitos e de sua orientação um em relação ao outro. A distancia de separação do circuito é inversamente proporcional a indutância mútua [4]

O conceito de Coeficiente de indutância ( Indutância mutua), acontece quando da energia que ocorre da interação entre circuitos elétricos, sendo um fator que depende da geometria dos circuitos. O fator pode ser denominado de auto indutância quando se relaciona a auto-energia de um circuito e de indutância mutua quando a interação ocorre entre circuitos distintos. [5]

Para um indutor a indutância pode ser calculada a partir da seguinte expressão:[6]

L= \frac{\mu_0.N^2.A}{l-0,45d}

Onde:

- \mu_0= 4.\pi. 10^-7(H/m) é permeabilidade do vácuo;

-N e o número de espiras;

- l é a extensão da bobina;

- d é o diâmetro do núcleo;

- A é a área da secção transversal do núcleo;Auto-induçãoLinhas do campo magnético produzido pela corrente num circuito.Auto-indução lei de Faraday-Lenz

A corrente num circuito produz um campo magnético com linhas de campo que produzem fluxos de sentido contrário na área delimitada pelo circuito e no exterior do circuito (figura ao lado):

A lei de Faraday-Lenz descreve o fenômeno seguinte: quando o fluxo de um campo magnético que atravessa um circuito condutor varia ao longo do tempo, aparece neste circuito uma tensão chamada força eletromotriz. Lenz, afirma que a direção da corrente induzida é de tal forma que se opõe com seus efeitos magnéticos a causa que a produz.Assim, a força eletromotriz induzida pode ser definida por:[7]

\epsilon_i =-\,\frac{1}{c}\,\frac{d\,\Phi_i}{d\,t}

No qual o simbolo \Phi_i é caracterizado pelo fluxo no circuito , do campo B_1 devido a corrente I_1. O sinal menos indica que a força eletromotriz é sempre orientada a se opor a variação da corrente elétrica. [7]

De acordo com a lei de Biot-Savart, o campo magnético produzido pelo circuito é diretamente proporcional à corrente. Portanto, o fluxo magnético produzido por um circuito sobre si próprio, e proporcional à corrente:[2]

\Phi = L\,IA constante Lé a autoindutância do circuito. A fem autoinduzida no próprio circuito é:

\epsilon_i = -L\,\frac{dI}{dt}Símbolo usado nos diagramas de circuito para representar a auto-indução.

Quanto maior for a área do circuito, maior será a sua autoindutância. Para evitar uma autoindutância elevada, que pode ser indesejada no caso de correntes variáveis, a fonte num circuito não se liga como na figura acima, mas com dois fios colados um ao

Page 4: Inductand Pinaop oij Aush Idu 09

lado do outro que ligam o dispositivo à fonte. Assim, reduz-se a área interna do circuito.

Nas partes do circuito onde se deseja que a indutância seja elevada, ligam-se bobinas com várias voltas e, portanto, com área interna elevada. Esses indutores representam-se nos diagramas de circuito com o símbolo da figura ao lado.

L representa o valor da indutância, medida em henrys no sistema internacional. O símbolo da auto-indução total do circuito coloca-se em alguma parte do circuito. Na análise do circuito, esse dispositivo é designado de (indutor) e representa um elemento passivo em que a diferença de potencial é diretamente proporcional à corrente: L\,dI/dt.[2]Potência e Energia Armazenada em indutores

Um circuito sendo desligado, a corrente existente neste circuito pode variar induzindo uma corrente em outro circuito que esteja próximo. Quando uma corrente em um circuito esta aumentando, torna-se necessário um aumento da tensão induzida pela variação da corrente, aumentando-se a energia, que pode ficar armazenada e reaproveitada posteriormente. O indutor é capaz de armazenar energia em um campo magnético,sendo que um indutor quando percorrido por corrente elétrica, de acordo com a lei de Faraday ocorre um acúmulo de cargas positivas na entrada e de cargas negativas na saída de um indutor. O acumulo de cargas representa o armazenamento de energia no campo magnético. A energia pode ser dada por:[8] p(t)=\int_{t_0}^{t}Li(t).\frac{d_i(t)}{dt}\,dt= w-w_0

com as condições iniciais nulas, temos: w=\frac{1}{2}.Li^2(t)Referências

Hayt Jr,W.A.| Buck, J.A.. : Eletromagnetismo. [S.l.]: AMGH Editora Ltda,, 2013. 595 p.[ Eletricidade e Magnetismo. Porto: Jaime E. Villate, 20 de março de 2013. 221 págs]. Creative Commons Atribuição-Partilha (versão 3.0) ISBN 978-972-99396-2-4. Acesso em 20un. 2013.[ Física- Eletricidade e Magnetismo, ótica. New York: Paul A. Tipler,Gene Mosca, 2004. 550 págs]. Editora Edgard BlucherJewett,J.W.| Serway, R.A.. : Física para cientistas e engenheiros- Eletricidade e magnetismo. [S.l.]: Cengage Learning Edições Ltda,, 2011. 380 p.[ Calculo de indutância e de força em circuitos elétricos. Montreal: Marcelo Bueno,André K. T. Assis, 2015. 210 págs]. Library and Archives Canada Cataloguing in PublicationFernandes, Thelma Solange Piazza. "Elementos Armazenadores de Energia" (PDF). Setor de Tecnologia da Universidade Federal do Paraná. Consultado em 29 de novembro de 2015.[ Curso de Física de Berkeley - Eletricidade e Magnetismo. Universidade de Harvard: Edward M. Purcell, 1973. 429 págs]. Livros Técnicos e Científicos Editora S.A.

Fernandes, Thelma Solange Piazza. "Elementos Armazenadores de Energia" (PDF). Setor de Tecnologia da Universidade Federal do Paraná. Consultado em 29 de novembro de 2015.

Categorias:

Grandezas físicasGrandezas da eletrônica

Menu de navegação

Não autenticado Discussão Contribuições Criar uma conta

Page 5: Inductand Pinaop oij Aush Idu 09

Entrar

Artigo Discussão

Ler Editar Editar código-fonte Ver histórico

Página principal Conteúdo destacado Eventos atuais Esplanada Página aleatória Portais Informar um erro

Colaboração

Boas-vindas Ajuda Página de testes Portal comunitário Mudanças recentes Manutenção Criar página Páginas novas Contato Donativos

Imprimir/exportar

Criar um livro Descarregar como PDF Versão para impressão

Ferramentas

Páginas afluentes Alterações relacionadas Carregar ficheiro Páginas especiais Ligação permanente Informações da página Item no Wikidata Citar esta página

Noutros idiomas

Afrikaans ???? ??????? ?????????? ?????????? (???????????)? ????????? Bosanski Català Ce�tina Cymraeg

Page 6: Inductand Pinaop oij Aush Idu 09

Deutsch ???????? English Esperanto Español Eesti Euskara ????? Suomi Français Gaeilge Galego ????? Hrvatski ??????? Bahasa Indonesia Íslenska Italiano ??? ??? Lietuviu Latvie�u Bahasa Melayu ????? ???? Nederlands Norsk nynorsk Norsk bokmål Polski Româna ??????? Srpskohrvatski / ?????????????? Slovencina Sloven�cina ?????? / srpski Svenska ????? Türkmençe Türkçe ?????????? O?zbekcha/??????? Wolof ?? ??

Editar ligações

Esta página foi modificada pela última vez à(s) 19h01min de 7 de janeiro de 2016. Este texto é disponibilizado nos termos da licença Creative Commons - Atribuição - Compartilha Igual 3.0 Não Adaptada (CC BY-SA 3.0); pode estar sujeito a condições adicionais. Para mais detalhes, consulte as Condições de Uso.

Política de privacidade Sobre a Wikipédia Avisos gerais Programadores Cookie statement Versão móvel

Wikimedia Foundation Powered by MediaWiki

Page 7: Inductand Pinaop oij Aush Idu 09

IndutorOrigem: Wikipédia, a enciclopédia livre.Portal A Wikipédia possui o portal:

Portal de eletrônica

Um indutor é um dispositivo elétrico passivo que armazena energia na forma de campo magnético, normalmente combinando o efeito de vários loops da corrente elétrica.

O indutor pode ser utilizado em circuitos como um filtro passa baixa, rejeitando as altas frequências.[1] [2]

Também costuma ser chamado de bobina, choke ou reator.Indutores miniatura

Índice

1 Construção 2 Indutância 3 Energia 4 Em circuitos elétricos 5 Análise de circuitos 6 Redes de indutores 7 Fator Q 8 Aplicações 9 Ver também 10 Notas 11 Referências 12 Ligações externas

Construção

Um indutor é geralmente construído como uma bobina de material condutor, por exemplo, fio de cobre. Um núcleo de material ferromagnético aumenta a indutância concentrando as linhas de força de campo magnético que fluem pelo interior das espiras. Indutores podem ser construídos em circuitos integrados utilizando o mesmo processo que é usado em chips de computador. Nesses casos, normalmente o alumínio é utilizado como material condutor. Porém, é raro a construção de indutores em CI's; eles são volumosos em uma pequena escala, e praticamente restritos, sendo muito mais comum o uso de um circuito chamado "gyrator", que utiliza um capacitor comportando-se como se fosse um indutor.[3]

Pequenos indutores usados para frequências muito altas são algumas vezes feitos com um fio passando através de um cilindro de ferrite.Indutância

Indutância é a grandeza física associada aos indutores, é simbolizada pela letra L, medida em henry (H), e representada graficamente por um fio helicoidal.[4] Em outras palavras é um parâmetro dos circuitos lineares que relaciona a tensão induzida por um campo magnético variável à corrente responsável pelo campo. A tensão entre os terminais de um indutor é proporcional à taxa de variação da corrente que o atravessa. Matematicamente temos:

u(t) = L \frac{di(t)}{dt}

onde:

Page 8: Inductand Pinaop oij Aush Idu 09

u(t) é a tensão instantânea -> sua unidade de medida é o volt (V) L é a indutância -> sua unidade de medida é o henry (H) i(t) é a corrente instantânea -> sua unidade de medida é o ampere (A) t é o tempo (s)

Energia

A energia (medida em joules, no SI) armazenada num indutor é igual à quantidade de trabalho necessária para estabelecer o fluxo de corrente através do indutor e, consequentemente, o campo magnético. É dada por:

E_\mathrm{armazenada} = {1 \over 2} L I^2

onde I é a corrente que circula pelo indutor.[5]Em circuitos elétricos

Um indutor resiste somente a mudanças de corrente.[6] Um indutor ideal não oferece resistência para corrente contínua, exceto quando a corrente é ligada e desligada, caso em que faz a mudança de modo mais gradual. Porém, a maioria dos indutores do mundo real são construídos a partir de materiais com resistência elétrica finita, que se opõe até mesmo à corrente direta. Materiais supercondutores não oferecem resistência a passagem de correntes elétricas contínuas, e suas aplicações implicam propriedades distintas para os indutores feitos deste tipo de material.

No geral, a relação entre a variação da tensão de acordo com o tempo u(t) através de um indutor com indutância L e a variação da corrente de acordo com o tempo i(t) que passa por ele é descrita pela equação diferencial:

u(t) = L \frac{di(t)}{dt}

Quando uma corrente alternada (CA) senoidal flui por um indutor, uma tensão alternada senoidal (ou força eletromotriz, Fem) é induzida. A amplitude da Fem está relacionada com a amplitude da corrente e com a freqüência da senóide pela seguinte equação:

U = I \times \omega L

onde ? é a frequência angular da senóide definida em termos da frequência f por:

\omega = 2 \pi f\,

A reatância indutiva é definida por:

X_L = \omega L = 2 \pi f L\,

onde XLé a reatância indutiva medida em Ohms (medida de resistência), ? é a freqüência angular, f é a frequência em hertz, e L é a indutância.

A reatância indutiva é o componente positivo imaginário da impedância.

A impedância complexa de um indutor é dada por:

Z = j \omega L = j 2 \pi f L\ = j X_L,

onde j é a unidade imaginária.Análise de circuitos

Os problemas de análise de circuitos, que resultam num sistema de equações lineares, nos quais se busca encontrar os valores de corrente e de variação de tensão para cada compondente (incógnitas) são resolvidos por extensão dos problemas de circuitos com apenas fontes e resistores. Neste modelo estendido, a indutância e a capacitância são con

Page 9: Inductand Pinaop oij Aush Idu 09

sideradas como resistências complexas[nota 1] , que passam a se denominar impedância. Os resultados são interpretados na forma polar, sendo o ângulo do vetor encontrado interpretado como fase da corrente alternada ou tensão alternada.[7]Redes de indutores

Cada indutor de uma configuração em paralelo possui a mesma diferença de potencial (tensão) que os demais. Para encontrar a indutância equivalente total (Leq):[8]

Um diagrama de vários indutores, lado a lado, com as extremidades conectadas ao mesmo fio

\frac{1}{L_\mathrm{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n} \Rightarrow L_\mathrm{eq} = \frac{\prod_{i=1}^n L_i }{\sum_{j = 1}^{n} \prod_{k \neq j} L_k }

A corrente através de indutores em série permanece a mesma, mas a tensão de cada indutor pode ser diferente. A soma das diferenças de potencial é igual à tensão total. Para encontrar a indutância total:[9]

Um diagrama de vários indutores, conectados ponta com ponta, com a mesma corrente passando por cada um

L_\mathrm{eq} = L_1 + L_2 + \cdots + L_n \,\!

Fator Q

O fator Q de um indutor pode ser encontrado através desta fórmula, onde R é a resistência elétrica interna:

Q = \frac{\omega{}L}{R}

Aplicações

Os indutores estão relacionados aos eletromagnetos em estrutura, mas são usados para um propósito diferente: armazenar energia em um campo magnético.

Por sua habilidade de alterar sinais CA, os indutores são usados extensivamente em circuitos analógicos e processamento de sinais, incluindo recepções e transmissões de rádio. Como a reatância indutiva X_L muda com a frequência, um filtro eletrônico pode usar indutores em conjunto com capacitores e outros componentes para filtrar partes específicas da frequência do espectro.

Dois (ou mais) indutores acoplados formam um transformador, que é um componente fundamental de qualquer rede elétrica nacional.[10]

Um indutor é normalmente usado como saída de uma fonte chaveada de alimentação. O indutor é carregado para uma fração específica da frequência de troca do regulador e descarregado pelo restante do ciclo. Esta relação de carrega/descarrega é o que reduz (ou impulsiona) a tensão de entrada para seu novo nível.Ver também

Capacitor Resistor Eletricidade Eletrônica Gyrator Indutância Laço de indução Reator Transformador

Page 10: Inductand Pinaop oij Aush Idu 09

Solenóide

Notas

sendo que a impedância do capacitor é um imaginário negativo, o passo que a do indutor é um positivo.

Referências

Brain, Marshall. "Como Funcionam os Indutores". UOL Ciência. Consultado em 1 de março de 2012."Indutor". Mundo Vestibular. Consultado em 3 de março de 2012."Como Enrolar Pequenos Indutores". archiveweb. Consultado em 1 de março de 2012.Lima, Marcos. "Indutância" (PDF). Departamento de Física Matemática da USP. Consultado em 1 de março de 2012.Fernandes, Thelma Solange Piazza. "Elementos Armazenadores de Energia" (PDF). Setor de Tecnologia da Universidade Federal do Paraná. Consultado em 6 de março de 2012.Telles, Willian (9 de junho de 2006). "Indutores, Indutância e Transformadores". Amigo Nerd. Consultado em 3 de março de 2012.Kienitz, Karl Heinz. Análise de Circuitos, um Enfoque de Sistemas. 2 ed. São José dos Campos - SP: Divisão de Engenharia Eletrônica do Instituto Tecnológico de Aeronáutica, 2010. 139 p. ISBN 9788587978172"Associação em Paralelo de Indutores". Departamento de Telemática da Unicamp. Consultado em 7 de março de 2012."Associação em Série de Indutores". Departamento de Telemática da Unicamp. Consultado em 7 de março de 2012.

"indutor". Eletrônica Didática. Consultado em 2 de março de 2012.

Ligações externas

Informações Básicas Sobre Indutores

Categorias:

EletromagnetismoComponentes elétricosEletrônicaEletricidadeFísicaEngenhariaArmazenagem de energia

Menu de navegação

Não autenticado Discussão Contribuições Criar uma conta Entrar

Artigo Discussão

Ler Editar Editar código-fonte Ver histórico

Página principal Conteúdo destacado Eventos atuais Esplanada Página aleatória

Page 11: Inductand Pinaop oij Aush Idu 09

Portais Informar um erro

Colaboração

Boas-vindas Ajuda Página de testes Portal comunitário Mudanças recentes Manutenção Criar página Páginas novas Contato Donativos

Imprimir/exportar

Criar um livro Descarregar como PDF Versão para impressão

Noutros projectos

Wikimedia Commons

Ferramentas

Páginas afluentes Alterações relacionadas Carregar ficheiro Páginas especiais Ligação permanente Informações da página Item no Wikidata Citar esta página

Noutros idiomas

Afrikaans Alemannisch Aragonés ??????? Asturianu Az?rbaycanca ?????????? ?????????? (???????????)? ????????? ????? Bosanski Català ??????? Ce�tina Deutsch ???????? English Esperanto Español Eesti Euskara

Page 12: Inductand Pinaop oij Aush Idu 09

????? Suomi Français Galego ????? ?????? Hrvatski Magyar Interlingua Bahasa Indonesia Ido Italiano ??? Basa Jawa ??????? ??? Kurdî Latina Latvie�u ?????? ?????? ????? Bahasa Melayu ????? ???? Norsk bokmål Occitan Oromoo ?????? Polski ?????? Runa Simi ??????? Sicilianu Scots Srpskohrvatski / ?????????????? ????? Simple English Slovencina Sloven�cina Shqip ?????? / srpski Svenska ????? ??? Türkçe ???????/tatarça ?????????? ???? O?zbekcha/??????? Ti?ng Vi?t Winaray Wolof ?????? ?? ??

Editar ligações

Esta página foi modificada pela última vez à(s) 16h34min de 16 de janeiro de 2016. Este texto é disponibilizado nos termos da licença Creative Commons - Atribuição - C

Page 13: Inductand Pinaop oij Aush Idu 09

ompartilha Igual 3.0 Não Adaptada (CC BY-SA 3.0); pode estar sujeito a condições adicionais. Para mais detalhes, consulte as Condições de Uso.

Política de privacidade Sobre a Wikipédia Avisos gerais Programadores Cookie statement Versão móvel

Wikimedia Foundation Powered by MediaWiki

EnergiaOrigem: Wikipédia, a enciclopédia livre.Disambig grey.svg Nota: Este artigo é sobre a definição de energia em ciências naturais. Para outros significados de energia, veja energia (desambiguação).A energia solar é responsável por praticamente todos os processos naturais observáveis no planeta Terra. Da energia eólica associada a furacões à energia térmica no solo dos desertos ardentes, da energia cinética nas águas de um rio caudaloso à energia potencial presente no vapor de água nas nuvens, da energia elétrica em uma tempestade de raios à energia hidrolétrica, da energia fóssil à renovável, da energia que as plantas usam para crescer até a que usamos para viver, todas têm por fonte primária a energia solar. São raros os processos na superfície da Terra que não se ligam de alguma forma à energia solar.

Em ciência, energia (do grego ?? dentro, e????[1] trabalho, obra, dentro do trabalho[2] ) refere-se a uma das duas grandezas físicas necessárias à correta descrição do inter-relacionamento - sempre mútuo - entre dois entes ou sistemas físicos. A segunda grandeza é o momento. Os entes ou sistemas em interação trocam energia e momento, mas o fazem de forma que ambas as grandezas sempre obedeçam à respectiva lei de conservação.

É bem difundido - não só em senso comum - que energia associa-se geralmente à capacidade de produzir um trabalho ou realizar uma ação [Ref. 1] . Em verdade, a etimologia da palavra tem origem no idioma grego, onde e???? (ergos) significa "trabalho". Embora não completamente abrangente no que tange à definição de energia, esta associação não se mostra por completo fora do domínio científico, e, em princípio, qualquer ente que esteja a trabalhar - por exemplo, a mover outro objeto, a deformá-lo ou a fazê-lo ser percorrido por uma corrente elétrica - está a "transformar" parte de sua energia, transferindo-a ao sistema sobre o qual realiza o trabalho.

O conceito de energia é um dos conceitos essenciais da Física. Nascido no século XIX, desempenha papel crucial não só nesta cadeira como em todas as outras disciplinas que, juntas, integram a ciência moderna. Notoriamente relevante na Química e na Biologia, e mesmo em Economia e outras áreas de cunho social, a energia se destaca como pedra fundamental, uma vez que o comércio de energia move anualmente quantidades enormes de dinheiro.

Pela sua importância, há na Física uma subárea dedicada quase que exclusivamente ao estudo da energia: a termodinâmica. Em termodinâmica, o trabalho é uma entre as duas possíveis formas de transferência de energia entre sistemas físicos; a outra forma é o calor.Física\nabla \cdot \mathbf{B} = 0

\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}

\nabla \cdot \mathbf{E} = \rho

\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}} {\partial t} + \mathbf{J}

Page 14: Inductand Pinaop oij Aush Idu 09

As Equações de MaxwellFísicaHistória da FísicaFilosofia da Física[Expandir]Divisões elementares[Expandir]Grandezas Físicas[Expandir]Campos de pesquisa[Expandir]Cientistas[Expandir]Experimentos[Expandir]Experimentos atuaisver � editar

Índice

1 Definição científica de energia 1.1 Energia 1.2 O teorema de Noether 1.3 Unidades 2 Formas de energia 2.1 Energia potencial 2.1.1 Energia potencial gravitacional 2.1.2 Energia potencial elétrica 2.1.3 Energia potencial elástica 2.1.4 Energia potencial nuclear 2.2 Energia cinética 2.2.1 Energia térmica 2.2.2 Energia cinética translacional 2.2.3 Energia cinética rotacional 2.2.4 Energia cinética total 2.2.5 Cargas elétricas em movimento 2.3 Energia mecânica 2.4 Massa 2.5 Energia radiante 3 Recursos energéticos 3.1 Energia solar 3.2 Energia elétrica 3.3 Energia hidrelétrica 3.4 Energia química 3.4.1 Em biologia 3.4.2 Eletroquímica 3.4.3 Combustíveis 3.5 Energia eólica 3.6 Energia nuclear 4 Notas 5 Referências 5.1 Bibliografia auxiliar 6 Ver também

Definição científica de energia

O conceito científico de energia só pode ser entendido mediante a análise de dois entes ou sistemas físicos em interação. Quando dois sistemas físicos interagem entre si, mudanças nos dois sistemas ocorrem. A interação entre sistemas físicos naturais dá-se, em acordo com os resultados empíricos, sempre de forma muito regular, sendo uma mudança específica em um deles sempre acompanhada de uma mudança muito específica no outro, embora estas mudanças possam certamente ser de naturezas muito ou mesmo completamente distintas.Energia

Page 15: Inductand Pinaop oij Aush Idu 09

Regularidades observadas na natureza expressam-se dentro da ciência mediante o estabelecimento das denominadas leis científicas. No que se refere à forma com que dois entes físicos interagem entre si, na busca da correta correlação entre as mudanças observadas nos sistemas viu-se a necessidade de se estabelecerem, para o correto cumprimento da tarefa, não apenas uma mas duas grandezas físicas primárias independentes, cada qual associada à uma lei de conservação própria, leis estas inerentes a todos os sistemas físicos e que combinadas, permitem a correta descrição dos mesmos. Tais grandezas físicas são denominadas energia e momento, e as leis científicas que as governam denominam-se respetivamente lei da conservação da energia [Nota 1] e a lei da conservação do momento linear. Ao passo que o momento é uma grandeza vetorial, a sua contra-parte aqui descrita é uma grandeza escalar.

À relação existente entre a energia e o momento de um dado ente físico dá-se o nome de relação de dispersão, sendo esta vital no contexto de qualquer teoria para a dinâmica da matéria e energia (mecânica clássica, relatividade, mecânica quântica, etc.). Em mecânica clássica, para partículas massivas, a energia depende do quadrado do momento E \alpha \vec {P}^2 ; para fótons a energia mostra-se diretamente proporcional ao momento por este transportado E \alpha \vec {P} . Grandezas físicas importantes são definidas a partir da relação de dispersão apresentada por um dado ente, a exemplo a massa [Ref. 2] .Relação de dispersão para uma partícula clássica. Em todos os modelos dinâmicos o momento P e a energia E são definidos de forma a satisfazerem leis gerais de conservação.

Como as transformações observadas em um sistema têm naturezas as mais diversas, a exemplo indo desde uma simples mudança nas velocidades das partículas do sistema [Nota 2] até um rearranjo completo das posições espaciais de partículas interagentes uma em relação às outras [Nota 3] e mesmo de um sistema inteiro em relação ao outro [Nota 4] , para cada transformação define-se a forma de se determinar o valor da grandeza energia a ela associada, fazendo-se esta definição sempre de forma que as mudanças observadas neste caso sejam descritas por uma variação de energia igual em módulo ao determinado para as variações de energia associadas a todas as outras mudanças relacionadas, e de forma a garantir-se que a energia total dos sistemas em interação sempre se conserve.

À energia associada ao movimento dos corpos ou partículas dá-se o nome de energia cinética, e mostra-se que esta deve ser determinada, em casos abrangidos pela física clássica, através da expressão: E_c= \frac {1}{2} m v^2 . À energia associada a entes físicos mutuamente interagentes em virtude exclusiva das posições espaciais que ocupam um em relação aos outros dá-se o nome de energia potencial. A forma de calculá-la é determinada em acordo com a natureza da interação entre os mesmos. Quando a interação é, a citar-se a interação entre o satélite e a terra como exemplo, de natureza gravitacional, a energia potencial associada recebe o nome de energia potencial gravitacional, e neste caso é adequadamente calculada através da expressão: E_{pg}= -G \frac {mM_T}{(R_T+h)} , onde G é a constante de gravitação universal, h a altura do satélite, RT o raio da Terra, m a massa do satélite e MT a massa da Terra. Repare a dependência explicita da energia com a posição do satélite relativa à Terra, adequadamente representada pela distância (RT+h) do satélite ao centro do planeta, e com as massas da Terra e do satélite, refletindo o fato de tratar-se de uma interação de natureza gravitacional (onde massa atrai massa). Se a natureza for elétrica, tem-se a energia potencial elétrica; se for elástica (lei de Hooke) tem-se a energia potencial elástica, e assim por diante, definindo-se sempre uma forma adequada de se calcular a energia associada de forma a ter-se sempre a lei da conservação da energia válida, qualquer que sejam as naturezas das mudanças relacionadas ou os sistemas em interação.

No contexto de interação entre sistemas é vital falar-se sobre uma entidade física amplamente encontrada ao abordar-se o assunto, principalmente quando o tema é energia potencial: o campo. Inicialmente introduzido por Michael Faraday na Física, este surge como uma mera simplificação matemática junto a solução de problemas práticos, mas com o avanço da tecnologia, verificou-se que o campo é em verdade mais do que isto, vindo nos paradigmas modernos a ganhar o posto de ente físico real. O fato empírico que leva à necessidade do conceito de campo mediando a interação entre sistemas é o de que, pa

Page 16: Inductand Pinaop oij Aush Idu 09

ra um observador externo aos sistemas que interagem, uma mudança em um sistema nem sempre é imediatamente acompanhada pela correspondente mudança no outro sistema. Há um lapso de tempo experimentalmente verificável e mensurável entre as duas mudanças que obriga a uma revisão do conceito de ação à distância que vigorou nas primeiras teorias sobre as interações entre os entes físicos, à exemplo na Gravitação universal de Newton. Se a energia liga-se diretamente à mudanças observadas no sistema, é evidente que a energia do primeiro sistema diminui antes que a energia no segundo sistema aumente, o que em princípio violaria durante este lapso de tempo a lei da conservação da energia. Os resultados dos experimentos modernos demonstram entretanto que esta energia está literalmente a propagar-se pelo espaço entre os dois sistemas, estando esta associada ao campo físico responsável pela interação entre eles. A velocidade na qual esta energia se propaga no vácuo é em verdade, qualquer que seja o referencial (inercial) adotado, a maior velocidade admissível pela natureza para qualquer ente físico, sendo essa conhecida na física pela letra c. Nos dias de hoje o valor dessa velocidade é exatamente definido, valendo c = 299 792 458 metros por segundo, sendo as definições de metro e segundo dela então derivadas.

Em acordo com o paradigma moderno tem-se portanto que energia pura pode propagar-se pelo espaço na forma de um campo, existindo como um ente físico real. Entre estes campos certamente o destaque é para o campo eletromagnético, que expressa a interação eletromagnética entre partículas eletricamente carregadas. A esta energia pura propagando-se dá-se o nome de radiação eletromagnética. A luz é uma onda eletromagnética, e como tal pode ser entendida como energia pura em movimento. Ao passo que a existência das ondas eletromagnéticas encontra-se bem estabelecida, os cientistas ainda procuram observar ondas de campos associados à interações de outras naturezas; a saber, no final de 2015, pesquisadores do projeto LIGO (Laser Interferometer Gravitational-Wave Observatory) observaram "distorções no espaço e no tempo" causadas por um par de buracos negros com 30 massas solares em processo de fusão.[3] [4] [5] [6]O teorema de NoetherVer artigo principal: Teorema de Noether

Uma profunda e abrangente consequência da simetria presente na natureza encontra-se expressa em um teorema conhecido por Teorema de Noether. Em resumo, ele afirma que "toda simetria contínua no comportamento dinâmico de um sistema - ou seja, na equação dinâmica e no potencial mecânico - implica uma lei de conservação para aquele sistema. ... De enorme importância para a termostática é a simetria das leis da dinâmica frente à translações temporais. Isto é, as leis fundamentais da dinâmica (como as Leis de Newton, as equações de Maxwell ou a Equação de Schrödinger) permanecem inalteradas mediante a transformação t --> t' + t0 (ou seja, por uma mudança na origem da escala de tempo). Se o potencial externo é independente do tempo, o teorema de Noether prediz a existência de uma quantidade que se conserva. Esta quantidade é nomeada energia. " [Ref. 3] .Unidades

A unidade de energia no sistema internacional de unidades é o joule (J). O joule é uma unidade derivada, equivalente a 1 newton metro (1J=1N.1m ) ou ainda a 1 quilograma metro quadrado por segundo quadrado (1J=1kg \frac {m^2}{s^2} ).

1 joule corresponde à energia transferida a um objeto por uma força resultante constante de 1N que, atuando de forma sempre paralela à trajetória descrita, o faz durante o intervalo de tempo necessário para que este objeto mova-se 1 metro ao longo da trajetória.

Embora a unidade oficial seja o joule, outras unidades de energia são frequentemente utilizadas em função do contexto. Destacam-se o (quilo)watt-hora (kWh) [Nota 5] , unidade utilizada na medida do consumo de energia elétrica residencial ou industrial, o elétron-volt (eV), muito utilizada em física nuclear e de física de partículas, e o erg, unidade muito comum em países que ainda não adotaram por completo o estabelecido pelo Sistema Internacional de Unidades.

Page 17: Inductand Pinaop oij Aush Idu 09

O watt-hora corresponde à energia transformada quando um dispositivo cuja potencia seja de 1 watt opera durante um intervalo de tempo de 1 hora. Uma lâmpada cuja potência nominal é 60W transforma 720Wh (ou seja, 0,72kWh) de energia elétrica em outras formas de energia a cada 12 horas de funcionamento (720 Wh = 60W x 12h).

O elétron-volt corresponde à energia cinética ganha quando um elétron move-se entre dois pontos separados por uma diferença de potencial de 1 volt.

O erg é a unidade utilizada ao empregar-se o sistema de unidade cgs, comum em alguns países mesmo hoje em dia. Um erg equivale à um grama centímetro quadrado por segundo quadrado, ou seja, à décima milhonésima parte do joule (1 erg = 10-7 joules).Formas de energiaSalto São Francisco, no Paraná. A energia potencial é a energia associada a um determinado corpo devido à posição que este ocupa. A água no alto do paredão tem maior energia potencial do que quando encontra-se debaixo. A energia cinética é a energia associada ao movimento deste corpo: água em movimento possui energia cinética; parada, não. Há ainda a energia radiante, que permitiu que esta fotografia fosse tirada.

Apesar de não se restringir a isso, a energia pode ser entendida como a capacidade de realizar trabalho, a capacidade de colocar as coisas em movimento, e movimento é algo fundamental no nosso dia-a-dia. As sociedades humanas dependem cada vez mais de um elevado consumo energético para sua subsistência. Para isso foram sendo desenvolvidos ao longo da história diversos processos de transformação, transporte e armazenamento de energia. Na realidade, em acordo com o expresso pela primeira lei da termodinâmica e pelos conceitos de energia interna e energia térmica, só existem, além da energia pura radiante, duas formas de energia armazenadas em um sistema: a potencial e a cinética. No cotidiano entretanto estas acabam recebendo nomes específicos que geralmente fazem referência explícita à natureza do sistema envolvido no armazenamento ou às plantas industriais onde estas são levadas à transformação. Assim tem-se a energia hidráulica como sinônimo de energia potencial gravitacional ou mesmo cinética armazenada nas águas de uma represa hidroelétrica, que conforme o nome diz, cuida da conversão de energia "hidráulica" em energia potencial elétrica; a energia nuclear para a energia potencial associada à interação nuclear forte, ou até mesmo, em senso comum, para a energia elétrica produzida em termoelétricas cujas fontes de energia térmica sejam reatores nucleares; a energia eólica associada à energia cinética de movimento das massas de ar (ventos); a energia solar associada à radiação eletromagnética com origem no Sol e energia geotérmica associada à energia térmica do interior da terra.Energia potencialVer artigo principal: Energia potencial

É a energia que um objeto possui em virtude da posição relativa que encontra-se dentro do sistema. Um martelo levantado, uma mola comprimida ou esticada ou um arco tensionado de um atirador, todos possuem energia potencial. Esta energia está pronta para ser transformada em outras formas de energia e será transformada, mediante a realização de trabalho, tão logo a configuração espacial do sistema que contém a energia potencial mude: quando o martelo cair, pregará um prego; a mola, quando solta, fará andar os ponteiros de um relógio; o arco disparará uma flecha. Assim que ocorrer algum movimento, a energia potencial da fonte diminui, enquanto se transforma nos casos citados em energia de movimento (energia cinética). Ao contrário, levantar o martelo, comprimir a mola e esticar o arco são processos onde a energia cinética transforma-se em energia potencial.

Normalmente atribui-se a energia potencial ao objeto que ocupa uma dada posição dentro do sistema ao qual pertence, como feito anteriormente. Ressalva-se explicitamente entretanto que a energia não pertence exclusivamente ao objeto como parece à primeira vista. Esta encontra-se em verdade armazenada no sistema como um todo, composto pelo objeto e suas demais partes. Muitas vezes não faz-se referência explícita ao resto do sistema, mas este sempre figura, se não de forma explicita, pelo menos adequadamente substituído por um campo bem determinado, que responde pela interação do objeto com o sistema em questão, mesmo que o faça de forma implícita. Fala-se assim

Page 18: Inductand Pinaop oij Aush Idu 09

da energia potencial gravitacional de um avião - no campo de gravidade da Terra -, de energia potencial de um elétron - no campo elétrico gerado pelos pólos de uma bateria -, e assim por diante.

Uma consideração importante sobre a energia potencial refere-se à sua medida. Não se determina fisicamente o valor absoluto da energia potencial de um sistema em uma dada configuração, mesmo porque isto não faria muito sentido. O que é fisicamente mensurável é a variação da energia potencial observada quando o sistema muda sua configuração, indo de um estado inicial para um estado final. Nestes termos é usual atribuir-se uma energia potencial nula (zero) para o sistema em uma dada configuração espacial inicialmente especificada, e então medir-se a energia potencial de qualquer outra configuração do sistema em relação a este estado de referência, sendo a energia potencial de uma configuração qualquer igual à energia que teve que ser transferida ao sistema para levá-lo do estado de referência até esta configuração final, mantidas as energias cinéticas associadas às partes integrantes do sistema constantes de forma que toda a energia entregue ao sistema seja inteiramente armazenada na forma de energia potencial.

A energia potencial é assim dependente de um referencial a se escolher no início do problema - e que deve ser mantido durante todo o problema sobre risco de obter-se uma solução incorreta. A energia potencial de uma lâmpada em relação ao piso de um apartamento de cobertura é certamente diferente da energia potencial da mesma lâmpada se a referência adotada for o solo, em nível do andar térreo.

No cotidiano encontram-se presentes diversos tipos de energia potencial, dos quais se destacam: a elástica, a gravitacional e a elétrica.Energia potencial gravitacionalAs cônicas. Estudadas pela matemática, aparentemente em nada têm a ver com a energia. Entretanto satélites, planetas, asteroides, cometas e qualquer outro objeto que se mova sob ação exclusiva da gravidade têm suas trajetórias descritas por uma destas curvas. Se a energia mecânica de um corpo - a soma de sua energia potencial gravitacional e cinética - é negativa, este encontra-se confinado ao sistema, e por tal descreve uma trajetória fechada, uma órbita circular ou elíptica (a circunferência também é uma elipse, com excentricidade nula). Se a energia mecânica do objeto for nula ou positiva, este não está confinado ao sistema: sua trajetória não é fechada, e este escapa para os confins do universo, nunca retornando. Se sua energia mecânica é maior do que zero, este o fará em uma trajetória hiperbólica; caso seja exatamente zero, sua trajetória será parabólica [Ref. 4] . A reta também é uma cônica; semirretas são também trajetórias possívem qualquer caso, mas estas alinham-se com a massa central, o que pode resultar em colisão.

A energia potencial gravitacional entre duas massas passíveis de serem tratadas como massas pontuais é fornecida pela Teoria da gravitação universal, sendo expressa pela relação:

E_{pg} = -G \frac {m_1m_2}{r} [Ref. 5] ,

onde m1 e m2 são as respectivas massas das partículas, r a distância entre elas, e G a Constante gravitacional universal (cuja função é estabelecer as unidades a se usarem na expressão). Nesta expressão o sistema de referência para o qual a energia potencial é definida como nula é aquele composto pelas massas infinitamente afastadas. Como a força de gravidade é sempre atrativa, a energia potencial para duas massas juntas é sempre menor do que para as mesmas massas separadas: a energia potencial é, assim, negativa para qualquer par de massas separadas por uma distância mensurável (não infinita).

Isaac Newton demonstrou de forma muito elegante, através do desenvolvimento do cálculo integral e diferencial, que para interações como a gravitacional e a elétrica - que dependem do inverso do quadrado da distância - distribuições esfericamente simétricas e homogêneas de massa ou carga podem ser, para todos os efeitos externos à estas, consideradas como se fossem partículas pontuais situadas nos centros das esferas, sen

Page 19: Inductand Pinaop oij Aush Idu 09

do a massa ou a carga destas partículas iguais à massa ou carga totais presentes nestas esferas [Ref. 6] [Ref. 7] . Dai o uso do raio da Terra para calcular-se o campo gravitacional em sua superfície. Pelo mesmo motivo a Terra pode ser considerada um excelente terra elétrico. Tal comportamento também é facilmente demonstrado através da aplicação da Lei de Gauss aos sistemas em questão [Ref. 8] , sendo conhecido por "teorema das cascas".

A energia potencial de interação entre dois objetos quaisquer do dia-a-dia é, em virtude dos pequenos valores das duas massas envolvidas, muito pequena, sendo desprezível para qualquer problema prático. A energia potencial gravitacional é particularmente importante quando um objeto é muito massivo: a Terra por exemplo. A energia potencial gravitacional de um objeto nas proximidades da superfície da Terra é proporcional à altura (h) deste corpo - medida, conforme já exposto, em relação a um dado nível de referência previamente escolhido para o qual atribui-se uma energia potencial zero, sendo este agora o nível do solo no local em questão e não o infinito, como no caso anterior. Nestes termos a energia potencial de um objeto pode ser calculada pela expressão:

E_{pg} = ph ,

onde p é o peso do objeto, P = m. g, donde:

E_{pg} = mgh

Repare que, embora grandezas relativas à Terra não apareçam explicitamente nesta expressão, a energia potencial encontra-se necessariamente associada ao sistema Terra objeto e não apenas ao objeto; a Terra encontra-se representada neste caso pelo valor do campo de gravidade g existente junto à superfície do planeta e determinado segundo a gravitação universal por:

g = G \frac {M_T}{R_T^2}

Cálculos feitos, tem-se para para o campo junto à superfície da terra o valor aproximado de 9,8 metros por segundo quadrado [Ref. 7] .

A energia potencial assim determinada será positiva para o objeto em pontos acima do nível de referência (altura positiva) e negativas para o objeto situado em pontos abaixo deste nível (altura negativa).

A expressão Epg=mgh vale apenas para pequenas alturas se comparadas ao raio RT da Terra, onde o campo pode ser considerado constante. Para alturas consideráveis define-se a energia potencial nula para a configuração em que o objeto e o planeta encontram-se infinitamente distantes, e, neste caso, a energia potencial de uma sistema é, novamente com o referencial no infinito:

E_{pg}= -G \frac {mM_T}{(R_T+h)}

Repare que embora o valor absoluto da energia potencial seja muito dependente do sistema adotado como referência - para o qual a energia potencial é definida como zero -, a variação da energia potencial ocorrida quando o sistema muda sua configuração espacial, indo de um estado inicial para um final, será sempre a mesma, qualquer que seja o sistema de referência adotado.

A variação na energia potencial gravitacional calculada segundo a última expressão coincide (em primeira ordem) com a calculada através da expressão \Delta E_{pg} = mg \Delta h para pequenas variações de altura, ou seja, para \Delta h = (h_f-h_i) pequeno [Ref. 7] .Energia potencial elétricaTempestade de raios em Campinas - SP. A energia potencial elétrica para o sistema

Page 20: Inductand Pinaop oij Aush Idu 09

onde uma grande quantidade de cargas elétricas encontra-se acumuladas nas nuvens é maior do que a energia potencial elétrica associada ao sistema onde estas cargas encontram-se no solo. Satisfeitas as condições necessárias, uma corrente elétrica estabelece-se através da atmosfera, e estas cargas deslocam-se da nuvem para o solo. A energia potencial liberada neste processo converte-se, entre outras, em energia radiante - que dá origem à luz visível no evento - e em energia térmica - que aquece o ar nas proximidades da corrente. Parte desta energia acaba dá origem a uma onda de choque, que propaga-se pela atmosfera formando o trovão.

.

Para interações entre partículas pontuais a energia potencial elétrica é a energia associada a uma partícula qualquer com carga elétrica "q" situada a uma distância "d" de uma outra partícula com carga "Q". É calculada pela expressão:

E_{p.eletrica} = \frac{k.q.Q}{d} [Ref. 8]

Nesta expressão a configuração para a energia potencial nula é aquela onde as cargas encontram-se infinitamente distantes umas das outras. Se as cargas têm mesmo sinal e se repelem, o sistema por elas formado quando encontram-se separadas por uma distância r não infinita tem energia potencial positiva. No caso em que as cargas têm sinais contrários há uma atração entre as mesmas, e na formação do sistema a partir das mesmas no infinito deve-se remover energia do sistema no processo a fim de ter-se as cargas estáticas; a energia potencial do sistema formado será negativa.

Tem-se da teoria do eletromagnetismo que o potencial elétrico [Nota 6] V de um ponto situado a uma distância d de uma carga Q é dado por:

V = \frac{k.Q}{d} [Ref. 8] ,

donde:

E_{p.eletrica} = q.V

A última expressão tem em verdade validade geral, não sendo exclusiva para casos envolvendo duas cargas pontuais. É muito útil em análise de circuitos, e o potencial de referência (zero volt) não precisa estar no infinito, podendo neste caso ser um ponto de referência escolhido livremente dentro do circuito. O cálculo do potencial do ponto entretanto não é mais dado pela expressão que a antecede visto que não há claramente neste caso apenas uma carga pontual responsável pelo potencial no referido ponto.

Tem-se respetivamente, nas expressões:

k= constante eletrostática do meio em que as cargas estiverem inseridas.

V= potencial elétrico do ponto onde coloca-se a carga q devido à presença da carga Q ou de qualquer outro sistema de cargas.

q= carga da partícula à qual "associa-se" a energia potencial elétrica, também chamada carga de prova.

d= distância entre a carga q (pontual) e a carga fonte Q (também pontual).

Q= carga fonte Q (pontual).Energia potencial elásticaO chamado "cabelo" de um relógio mecânico (ao centro, sob o suporte superior) nada mais é do que uma fina mola em espiral com uma de suas pontas fixa à estrutura de ajuste (veja a escala ao lado do parafuso) e a outra ligada a uma roda dentada (a concêntrica ao cabelo) e através desta ao mecanismo que move os ponteiros do aparelho

Page 21: Inductand Pinaop oij Aush Idu 09

de forma periódica. Juntas mola e roda integram um oscilador massa mola, onde energia potencial elástica é convertida em cinética de rotação e vice-versa em intervalos de tempo muito precisos, estabelecendo assim um padrão para a marcação do tempo.

A energia potencial elástica está associada a uma mola ou a um corpo deformado desde que em regime elástico e não plástico. Em detalhes, em termos de estrutura da matéria, a energia potencial elástica relaciona-se diretamente às energias potenciais elétrica existente entre as partículas que compõem o corpo, possuindo ambas, em essência, a mesma natureza.

É calculada pela expressão (mola ideal):

E_{p. elastica} = \frac{k.x^2}{2} [Ref. 9] ,

onde:

K = a constante elástica da mola, a mesma dada estabelecida pela lei de Hooke (em newtons por metro).

X = a elongação, a variação no tamanho da mola (em metros).

Esta expressão assume a configuração de energia potencial nula a configuração para a mola solta, em seu tamanho natural. Como a elongação aparece quadrada, tanto faz esticar como comprimir a mola, a energia associada será sempre positiva. As variações nesta energia podem perfeitamente ser negativas, entretanto.Energia potencial nuclear

Convém abrir-se esta seção com algumas considerações importantes apresentadas por Robert Eisberg em um famoso livro didático de sua autoria [Ref. 2] :

" Apesar de dispormos atualmente de um conjunto bastante completo sobre as forças nucleares, contata-se que elas são demasiadamente complicadas, não sendo possível até agora usar este conhecimento para produzir uma teoria ampla dos núcleos. Em outras palavras, nós não podemos explicar todas as propriedades dos núcleos em função das propriedades das forças nucleares que atuam sobre seus prótons e nêutrons. Existem entretanto diversos modelos ... Cada um deles pode explicar um certo número limitado de propriedades nucleares ..." Ainda encontra-se no mesmo livro: " Uma diferença profunda entre o estudo experimental dos núcleos e dos átomos decorre da diferença entre suas energias características. A energia característica dos núcleos é da ordem de 1 Mev [Nota 7] ... Veremos um pouco mais à frente que esta mesma ordem de grandeza caracteriza a energia de ligação de um próton ou nêutron em um núcleo típico assim como a energia de separação entre seu estado fundamental e o primeiro estado excitado. A energia característica dos átomos é da ordem de 1 eV." , mil vezes menor, portanto.Urânio enriquecido. Em processos que levam à fissão dos núcleos deste material uma porção da energia potencial nuclear é convertida em energia térmica, entre outras. A energia liberada pela fissão de um único átomo deste elemento é ordens de grandeza maior do que a energia que seria por este liberada caso este átomo participasse de qualquer reação químicas concebível.

Ressalvas acima consideradas, define-se energia nuclear como a energia potencial associada à posição relativa dos nucleôns [Nota 8] um em relação aos outros em virtude da interação nuclear forte que os mantém unidos no núcleo atômico, definição razoável ao se considar os modelos para os núcleos propostos, a citar: o modelo nuclear da gota líquida, o modelo do gás de fermi, o modelo de camadas, o modelo coletivo, e outros.

A força nuclear forte, ao contrário da elétrica e da gravitacional, apesar de atrativa é uma força de curto alcance: possui um valor extremamente alto se comparado à elétrica quando dois nucleôns estão a uma distância curta e decai rapidamente a zero se estes se afastam além de uma certa distância limite. "ela atua de maneira apreciável somente em uma distância inferior a 10F" (1F = 1fermi = 10-15m, aproximadamente o raio de

Page 22: Inductand Pinaop oij Aush Idu 09

um próton ou nêutron). Considerando-se o sistema com os nucleôns "infinitamente" separados como referencia para a medida da energia potencial nuclear (zero neste caso), isto traduz-se em uma energia potencial negativa muito elevada para o núcleo formado. A energia potencial nuclear negativa confina os prótons e nêutrons no interior do núcleo mesmo sob a intensa repulsão elétrica experimentada pelos prótons devido à sua proximidade pois, neste âmbito, a energia potencial nuclear é, em módulo, muito superior à energia potencial elétrica - positiva - associada aos nucleôns carregados. A energia potencial elétrica liberada caso um próton venha a escapar do núcleo sob a ação da força elétrica não é capaz de compensar o aumento na energia potencial nuclear associado a esta fuga, isto em situações comuns, pelo menos [Nota 9] . "Experiências recentes envolvendo espalhamento de prótons por prótons mostra que o alcance das forças nucleares é da ordem de 2F e que o valor de energia associada à força atrativa é aproximadamente 10 vezes maior do que a energia coloumbiana [Nota 10] quando os dois prótons se encontram separados por esta distância".

Variações nas energias potenciais nucleares ocorrem quando o núcleo participa de uma reação nuclear. As energias liberadas neste processo são ordens de grandeza maiores do que as liberadas a partir de variações nas energias químicas associadas à eletrosfera deste átomo quando este participa de uma reação química.Energia cinéticaVer artigo principal: Energia cinéticaUma velha locomotiva a vapor transforma energia química em energia térmica, e posteriormente energia térmica em energia cinética translacional (as rodas, além da translacional, também têm energia cinética rotacional). A combustão de madeira ou carvão na fornallha é uma reacção química que liberacalor à caldeira, obtendo-se assim vapor que dá energia à locomotiva.

É a energia que um corpo massivo em movimento possui devido à sua velocidade. Uma questão importante a levantar-se aqui é que a energia cinética é, em virtude da relatividade do movimento, fortemente dependente do referencial adotado para seu cálculo. Para um observador fixo ao solo, o motorista de um ônibus em movimento - assumido um movimento uniforme por simplicidade - está animado com uma velocidade \vec v , e por tal encontra-se dotado com uma energia cinética E_c não nula. Contudo, para um passageiro sentado no banco do mesmo ônibus, o mesmo motorista não encontra-se animado, e sendo sua velocidade relativa a este referencial nula, sua energia cinética também deve sê-lo. Para o passageiro no banco do ônibus é o observador no solo que encontra-se dotado com energia cinética, e não o motorista. Contudo, ao contrário do que a primeira impressão possa sugerir, não há, em vista do princípio da conservação da energia, necessária correspondência entre os valores destas energias, justamente por terem sido medidas em diferentes referenciais.

A conservação da energia sempre é observada em um mesmo referencial, qualquer que seja o referencial inercial escolhido, contudo seus valores absolutos são altamente dependentes do referencial escolhido, e a lei da conservação da energia não implica que estes valores sejam diretamente compatíveis com as mudanças de referencial que por ventura venham a se realizar durante a solução do problema em consideração.

A expressão para calcular-se a energia cinética mostra-se também dependente do escopo em consideração, sendo relativamente simples na mecânica clássica e um pouco mais complicada no âmbito da relatividade restrita ou teorias mais avançadas. Em mecânica clássica há a energia cinética translacional, associada à translação de uma partícula ou do centro de massa de um sistema, e a energia cinética rotacional, associada à rotação de um corpo rígido em torno de um eixo de rotação que passe por seu centro de massa. Contudo, antes de entrar-se diretamente em considerações quantitativas sobre estas, é valido falar-se um pouco sobre uma forma de energia cinética que não encontra-se diretamente associada à translação do centro de massa de um sistema ou rotação em torno deste centro, mas sim presa dentro de um sistema na forma de energia cinética associada à agitação térmica das partículas que o integram: a energia térmica.Energia térmica

Page 23: Inductand Pinaop oij Aush Idu 09

A energia térmica é, no fundo, energia cinética. A distinção entre "energia térmica" e "energia cinética" é necessária apenas em virtude de escala. Para sistemas encarados explicitamente a partir de cada uma das partículas que o compõem, partículas aqui em acepção de constituintes os mais básicos da matéria, só há energia cinética, a saber a translacional, explicitamente determinada para cada partícula. Nesta escala e apenas nesta escala "energia" é aceitavelmente definida como a capacidade de produzir trabalho. Entretanto, para sistemas (corpos) macroscópicos compostos por um gigantesco amontoado destas agora "invisíveis" partículas - os estudados pela termodinâmica - é conveniente e em verdade necessário distinguir entre a parcela de energia cinética total das partículas microscópicas não associada à translação do sistema - a chamada energia térmica (microscópica), esta não diretamente perceptível em escala macroscópica - e a parcela desta energia que encontra-se associada à translação ou mesmo rotação do sistema como um todo, ou seja, à translação do centro de massa do sistema ou rotação do sistema em torno deste, esta diretamente perceptível em escala macroscópica. Estas últimas são a energia cinética de translação e rotação conforme abaixo definidas para os corpos clássicos (ou para os "imaginados" como macroscópicos).

Em termodinâmica a transferência de energia cinética ou a sua conversão em energia potencial ou de potencial nesta implicam visivelmente em trabalho: qualquer variação de energia cinética (doravante sempre macroscópica) sempre implica trabalho; a transformação de energia potencial ou cinética (de energia mecânica) em térmica também é feita a princío mediante trabalho (doravante sempre macroscópico), mas este trabalho, ao aumentar a energia térmica do sistema, implica sua "conversão" imediata em calor, sendo o calor uma resultante direta da transferência de energia térmica dentro do sistema ou mesmo entre este e outros sistemas vizinhos que ocorre em virtude da diferença de temperaturas estabelecida pelo acréscimo de energia térmica no dado ponto do sistema envolvido no trabalho em questão (em palavras mais simples, o atrito "aquece"). Calor, na prática, implica sempre em aumento da entropia, o que literalmente implica que parte da energia cinética inicial que fora transformada em energia térmica mediante este trabalho, uma vez integrado à energia interna do sistema, torna-se permanentemente indisponível à realização de qualquer outro trabalho, nunca mais "reaparecendo" em forma de energia cinética no mundo macroscópico. A parcela de energia térmica associada ao aumento da entropia é literalmente e definitivamente "perdida" para as "entranhas" do sistema. Mesmo em uma máquina térmica - especialmente projetada para fazer a transformação inversa, realizar trabalho às expensas de calor - esta parcela de energia não poderá mais ser convertida em energia cinética mensurável; mas ela ainda encontra-se lá, presa dentro do sistema (e "mensurável" em uma escala microscópica).

Nesta escala, onde valem as leis da termodinâmica, definir "energia" como a capacidade de realizar trabalho mostra-se "delicado" de ser feito, portanto.Energia cinética translacional

Retomando-se aos casos associados ao centro de massa - quer macroscópicos que no caso de uma partícula - a energia cinética é calculada no âmbito da física clássica, para o caso translacional, por:

E_c = m \frac {\vec v . \vec v}{2}, onde:

m= massa do corpo.

\vec v= velocidade do centro de massa do corpo.

Resolvendo-se o produto escalar, em termos do módulo v da velocidade \vec v , esta expressão traduz-se por:

E_c = \frac{1}{2}mv^2 [Ref. 10] [Ref. 9]

Isto significa que quanto mais rápido um dado objeto se move maior é a quantidade de energia cinética que o mesmo possui. Além disso, quanto mais massivo for o objeto, maior será a quantidade de energia cinética presente quando este estiver se movendo

Page 24: Inductand Pinaop oij Aush Idu 09

a uma dada velocidade.

Para uma partícula pontual, mesmo microscópica, se a velocidade \vec v em consideração for a velocidade desta em relação à origem do referencial adotado, o que geralmente o é, a expressão acima representa a energia cinética total que esta possui. Entretanto, para corpos extensos (com dimensões), além de transladar este pode girar, e a energia cinética conforme calculada acima constitui-se apenas em uma parcela da sua energia cinética macroscópica total.

Para que algo se mova é necessário transformar qualquer outro tipo de energia em energia cinética. As máquinas mecânicas - automóveis, tornos, bate-estacas ou quaisquer outras máquinas motorizadas - transformam algum tipo de energia, geralmente previamente armazenada na forma de alguma energia potencial, em energia cinética.

Para variar-se a energia cinética total de um objeto necessita-se realizar sobre o mesmo um trabalho. Isto traz à luz o teorema do trabalho - variação da energia cinética, que afirma a igualdade entre os valores do trabalho realizado e a variação da energia cinética apresentada pelo corpo.

Relembrando mais uma vez, vale ressaltar que a energia cinética, assim como a energia potencial, não é absoluta. A energia cinética de um corpo é dependente do referencial adotado para fazer-se a medida da velocidade deste corpo. Isto decorre diretamente da relatividade do movimento [Nota 11]

No âmbito de outras teorias para a dinâmica mais abrangentes, a energia cinética pode ser definida por uma expressão bem diferente da encontrada no escopo da mecânica clássica. A exemplo, a energia cinética de uma partícula com massa de repouso m0 que se move com uma velocidade v é definida, no âmbito da relatividade especial, por:

E_c=\frac{m_0c^2}{\sqrt{(1-\frac{v^2}{c^2})}}-m_0c^2

Esta expressão se reduz à apresentada para o caso da mecânica clássica quando a velocidade v do objeto é muito inferior à velocidade da luz c, conforme esperado [Nota 12] .

O autor é remetido ao estudo das respectivas teorias para maiores detalhes, se necessário.Energia cinética rotacionalO Radiômetro de Crookes. Também conhecido como o moinho de luz ou motor solar, consiste de um bulbo de vidro hermeticamente fechado, contendo um vácuo parcial. Dentro há um conjunto de palhetas que são montadas sobre um eixo de forma a poderem girar livremente. A hélice gira quando expostas à luz, em um claro processo de conversão da energia radiante em energia cinética rotacional. A explicação detalhada para o processo que leva à rotação tem sido a causa de muito debate científico, entretanto.

A chamada energia rotacional é simplesmente a energia cinética associada a um corpo material extenso (ou não) que executa um movimento de rotação em torno de um eixo de referência que pode ou não atravessá-lo, sem que este entretanto translade (o eixo é fixo no referencial adotado, e passa pois pelo centro de massa do corpo). É determinada a partir da soma - da integral - da energia cinética que cada pedacinho de massa em que se pode dividi-lo tem devido à rotação, sendo esta integral feita ao longo de todo o corpo. Repare que um pedacinho do corpo, quando próximo ao eixo de rotação, tem energia cinética menor pois move-se também com velocidade tangencial menor se comparado a um pedacinho similar que encontre-se situado longe do eixo de rotação. Em termos de mecânica rotacional, esta integral, ao ser realiza, resulta em:

E_{c.rot} = \frac {1}{2} I \omega^2 [Ref. 10]

onde I representa o momento de inércia [Nota 13] deste corpo em relação ao eixo em questão e \omega representa a velocidade angular do corpo em relação ao mesmo eixo.

Page 25: Inductand Pinaop oij Aush Idu 09

Ao passo que para variar-se a energia cinética de translação necessitamos de uma força que realize um trabalho, para variar-se a energia de rotação esta força deve também prover um torque, e através dele também realizar trabalho.Energia cinética total

A energia cinética total de um corpo rígido que além de rotacionar também translada, a exemplo uma esfera que rola sobre um plano inclinado sem escorregar, ou mesmo uma roda de bicicleta movendo-se em contato com o solo, é dada pela sua energia cinética de rotação em torno do eixo de rotação mais a energia cinética a ele associada devido à translação deste eixo:

E_{c.total} = \frac {1}{2} mv^2 + \frac {1}{2} I \omega^2 [Ref. 10]

onde m representa a massa total do corpo, v a velocidade de translação do centro de massa do sistema, \omega a velocidade angular do sistema em torno do eixo de rotação - que passa pelo centro de massa do sistema - e I o momento de inércia do corpo em torno do eixo em consideração.

O teorema do trabalho - variação da energia cinética aplica-se à energia total de um corpo.Cargas elétricas em movimento

Quando cargas elétricas são colocadas em movimento de forma a estabelecer uma corrente elétrica, esta produz ao seu redor um campo magnético. Correntes constantes mantém o campo constante, e há uma energia associada a este campo, podendo esta ser chamada de energia magnética. A energia magnética não pode ser descrita através de uma "energia potencial magnética" conforme ocorre para o caso da energia elétrica porque o campo magnético não é um campo conservativo. Mesmo o processo de variação da energia magnética envolve um processo elétrico - o princípio da indução eletromagnética -, não havendo mecanismos unicamente magnéticos capazes de descrevê-lo.

Conclui-se que uma partícula carregada em movimento possui uma quantidade de energia extra armazenada no campo magnético e não apenas a energia cinética associada à sua massa em movimento.

O leitor é remetido ao estudo da magnetostática e do eletromagnetismo para maiores detalhes [Ref. 11] [Nota 14] .Energia mecânicaCom o atrito do ar sendo desprezível a energia mecânica da bola durante o voo - a soma de sua energia cinética com sua energia potencial gravitacional - se conserva. Durante a colisão com o solo, mesmo considerado que a energia potencial elástica associada à deformação da bola inclui-se como parcela na energia mecânica desta, há atrito e parte desta energia é dissipada na forma de energia térmica (e outras). Após cada colisão a energia mecânica da bola é menor.

No âmbito da mecânica clássica, a energia mecânica E_M de um sistema discreto de partículas ou corpos extensos é a soma de todas as energias potenciais associadas às interações conservativas entre os corpos ou partículas em consideração, e de todas as energias cinéticas destes corpos ou partículas, incluídas as energias cinéticas de rotação, se aplicável.

E_{M} = \Sigma E_{pot.} + \Sigma E_{cin.}

A energia mecânica é, em princípio, uma energia definida em escopo macroscópico - ou seja, para um sistema de corpos extensos - sendo o resultado da soma das energias cinéticas de translação dos centros de massa das partes do sistema, das energia cinéticas de rotação destas partes em torno dos respectivos centros de massa, e das energias potenciais devidas à interações conservativas - como a de origem gravitacional, elástica, ou elétrica - entre essas partes. Em sistemas macroscópicos, a energia térmica, a energia química e outras parcelas associadas às energias internas das partes não integram, pois, a energia mecânica do sistema.

Page 26: Inductand Pinaop oij Aush Idu 09

Contudo, no âmbito da física estatística, ao se estudarem os sistemas termodinâmicos - a saber, a matéria - o conceito de energia mecânica, quando aplicado microscopicamente às partículas fundamentais que constituem um corpo material - suposto macroscopicamente estático no referencial adotado - leva diretamente ao conceito de energia interna de um sistema, corespondendo esta à soma de duas parcelas: a energia térmica - atrelada diretamente à soma das energias cinéticas das partículas em escala microscópica e à temperatura absoluta do sistema - e a energia química, parcela correspondente à soma da(s) energia(s) potencial(is) devidas às interações - neste caso sempre conservativas - entre as partículas do sistema, a destacar-se de longe nessa escala a interação elétrica entre elétrons e núcleos, entre átomos, entre moléculas, etc. [Nota 15] .

A energia mecânica "EM" que um único corpo possui é a soma da sua energia cinética "Ec" com a(s) energia(s) potencial(is) à(s) qual(is) se sujeita em virtude de campos externos.

Se o sistema for conservativo, ou seja, apenas forças conservativas atuam sobre ele, a energia mecânica total se conserva e é uma constante de movimento.

O atrito não é uma força conservativa. Sistema sujeitos a atrito têm sua energia mecânica afetada pelo mesmo.MassaVer artigo principal: massa

Com o desenvolvimento da física moderna verificou-se, a partir dos resultados oriundos tanto da física quântica quanto da física relativística, que massa e energia são intercambiáveis, podendo ser convertidas uma na outra mediante processos físicos hoje bem-estabelecidos. A equivalência entre energia e massa é expressa através da mundialmente conhecida equação E=mc2, proposta por Einstein ainda quando da publicação da relatividade especial.

A conversão de massa em energia encontra-se diretamente ligada à energia nuclear, pois em reações nucleares altamente exoenergéticas, como a fissão do urânio ou a fusão do hidrogênio, verifica-se que a soma das massas dos produtos formados é menor do que a soma das massas dos reagentes, sendo a diferença inteiramente convertida em energia e liberada no processo. Processo que envolvem a criação de pares, como o que dá origem a um pósitron e a um elétron a partir de energia pura (energia radiante), ou a aniquilação destes, com a liberação da energia associada, são muito comuns em física de partículas [Ref. 2] .

Fatos experimentais que explicitam a conversão de massa em energia e energia em massa como processos naturais trazem à tona um problema com duas leis de conservação encontradas no âmbito da mecânica clássica de formas completamente separadas: a lei da conservação de massas e a lei da conservação da energia (em sua forma clássica). Certamente a conversão entre massa em energia leva à violação de tais leis. Contudo ressalta-se que no mundo clássico, aquele acessível aos nossos sentidos, no qual nos preocupamos com as reações químicas mas não com as nucleares, a quantidade de massa que converte-se em energia ou vice-versa é imperceptível aos melhores equipamentos: no mundo clássico massa e energia se conservam de fora separada. Em física de altas energias, contudo, não há lei de conservação de massa. Há apenas lei da conservação da energia em sua forma abrangente [Nota 16] , e a massa figura nesta lei mediante a famosa equação de Einstein, sendo tratada como uma forma de energia. A relação entre massa e energia encontra-se evidente na relatividade aos considerarmos a expressão: "A energia tem inércia". Decorre que ao aumentar-se a energia de um sistema, aumenta-se também a sua inércia ao responder a forças aplicadas, ou seja, a sua massa. Repare que não há a necessidade explícita de conversão de energia em massa de repouso, e dizer que a massa aumentou não significa necessariamente que matéria surgiu dentro do sistema. Há assim uma clara distinção entre massa [Nota 17] e massa de repouso. A massa de repouso de uma partícula em velocidade próxima à da luz, digamos, a de um elétron, continua a mesma, mas ao se tentar aumentar a velocidade deste, digamos, em um cíclotron, verifica-se que e

Page 27: Inductand Pinaop oij Aush Idu 09

ste se comporta como se tivesse uma massa muito maior do que a sua massa de repouso. Quanto mais próximo este encontrar-se da velocidade da luz, maior será sua inércia, ou seja, sua massa, pois também maior é a sua energia cinética (aqui, necessariamente relativística), e o que é mais importante, maior será a quantidade de energia a ser acrescida para que este apresente uma mesma variação de velocidade. No limite em que este se move praticamente à velocidade da luz, sua massa é infinitamente grande, e uma quantidade de energia infinita teria que ser-lhe acrescida para fazê-lo finalmente chegar à velocidade da luz.Energia radianteVer artigo principal: Ondas eletromagnéticasAuroras em Saturno. As auroras, fenômeno que acontece também na Terra, são resultado da conversão de energia cinética associada ao vento solar em energia radiante, grande parte dela na faixa do visível. Partículas carregadas presentes no vento solar são direcionadas aos pólos em virtude do campo magnético do planeta em um processo conhecido por garrafa de van allen. A colisão destas partículas com átomos e moléculas dos gasesatmosféricos resulta na emissão de luzes que iluminam os céus junto aos pólos magnéticos.

Trata-se de energia pura propagando-se pelo espaço em forma de ondas associadas a um campo. É, em vista do paradigma moderno, a energia diretamente associada à radiação eletromagnética: à luz, às ondas de rádio, aos raios infravermelhos, aos raios X, e outras.

A energia radiante atravessa perfeitamente o vácuo: a quase totalidade de energia que recebemos do sol chega até nós na forma de energia radiante distribuída em uma larga faixa de frequências, faixa esta que inclui a faixa do visível na região de maior densidade de energia, com as diversas cores (violeta, azul, verde, amarelo, laranja, vermelho) que conseguimos enxergar sendo particularmente intensas no espectro solar. Contudo o homem não se restringiu a usar apenas os olhos para vasculhar o cosmo; radiotelescópios observam o cosmos em comprimentos de onda que não podemos ver, indo desde as ondas de rádio até os raios X e mesmo raios cósmicos [Ref. 12] [Ref. 8] .

As ondas eletromagnéticas são uma combinação de campos magnético e elétricos ortogonais variáveis que sustentam-se mutuamente mediante da lei da indução de Faraday e a Lei de Ampère em sua forma generalizada por Maxwell, possuindo, uma vez produzidas, existências independentes das cargas aceleradas que a geraram. Ressalta-se que "cargas estáticas e cargas em movimento com velocidade (vetorial) constante não irradiam. Cargas aceleradas irradiam." [Ref. 8] .

Observe que, embora não irradiem ondas eletromagnéticas, cargas elétricas estáticas e cargas em movimento não acelerado possuem seus campos elétricos e no último caso também magnéticos associados, e nestes campos há energia armazenada. Contudo estes campos e estas energias estão "presos" à carga, e não propagando-se livremente pelo espaço, como ocorre com a energia nas ondas eletromagnéticas. Aos campos das cargas nestas condições associam-se a energia potencial elétrica e a "energia magnética" antes referida no subtópico "Cargas elétricas em movimento" dentro do "Energia cinética" deste artigo.

A energia transportada em uma onda eletromagnética é removida da carga acelerada mediante um fenômeno conhecido por reação à radiação (fórmula de Larmor)[Ref. 11] . Ondas eletromagnéticas não transportam apenas energia; transportam também momento. O fluxo de energia em uma onda eletromagnética é descrito pelo vetor de Poynting \vec{S}, cuja direção é perpendicular ao plano estabelecido pelos vetores campo elétrico \vec{E} e campo magnético \vec{B}, sendo obtido por:

\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} [Ref. 8]

onde \mu_0 representa a permeabilidade magnética do vácuo e "X" representa o produto vetorial.Recursos energéticosEnergia solar

Page 28: Inductand Pinaop oij Aush Idu 09

Ver artigo principal: Energia solarUma termoelétrica solar. O imenso conjunto de espelhos direciona a energia radiante diretamente recebida do sol ao topo da torre. Lá esta converte-se em energia térmica, que posteriormente é utilizada para fazer os geradores elétricos funcionarem.

O termo energia solar refere-se à toda energia que tem origem no sol, sendo em quase sua totalidade representada pela energia radiante emitida por este astro. Uma pequena parcela desta energia encontra-se associada à energia cinética transportadas pelo vento solar.

O sol é a fonte primária de toda a energia que usamos na Terra excetuando-se a energia nuclear - com origem nos núcleos atômicos dos elementos, formado em estrelas antecedentes ao sol e que no processo de sua morte, liberaram ao espaço sideral o material que hoje encontramos aqui na Terra - e talvez parte da energia geotérmica - a parcela com origem na energia potencial gravitacional liberada no processo de agregação de matéria que formou o planeta e que, convertida em energia térmica, incandesceu a Terra durante sua infância. Ademais, da energia hidrelétrica à energia térmica liberada pela combustão de combustíveis fósseis e mesmo à energia química presente em uma pilha, todas remontam à energia solar em algum momento. É o sol que provê a energia necessária à evaporação da água, que, levada através de nuvens às elevadas altitudes, precipita-se na cabeceira dos rios. É o sol que provê a energia necessária à fotossíntese, sendo a fonte primária de toda a energia química armazenada nos seres vivos em virtude da cadeia alimentar, e nos combustíveis fósseis, destes derivados.

O termo energia solar, em escopo moderno, pode referir-se ao processo de captação de energia via placas solares, onde a energia radiante é diretamente convertida em energia elétrica, e também ao processo de aquecimento de água via coletores solares, o que evita gastos com a compra de energia elétrica a fim de aquecer-se água para o uso humano.Energia elétricaVer artigo principal: Energia elétrica

A chamada energia elétrica nada mais é do que a energia potencial elétrica associada a um sistema onde uma determinada carga elétrica encontra-se situada não em um condutor elétrico de referência - onde define-se a energia potencial desta como sendo nula - mas em um segundo condutor de eletricidade que geralmente acompanha o primeiro mas encontra-se deste isolado. Esta carga, ao passar do fio onde se encontra para o fio de referência libera a energia potencial a ela associada, sendo esta convertida em energia térmica (em um chuveiro, via efeito joule), energia radiante (em um forno microondas), energia cinética (em um motor), ou outra forma de energia qualquer no interior do componente que permitiu sua passagem de um fio a outro. Explica-se assim porque as tomadas de energia têm sempre no mínimo [Nota 18] dois fios.

Análise detalhada deste sistema leva-nos diretamente ao conceito de energia potencial elétrica já previamente considerado neste artigo e a uma área de estudos específica dentro da física: a análise de circuitos, esta sempre presente mesmo nos piores cursos de eletrônica. O leitor é remetido aos tópicos específicos para maiores detalhes.Energia hidrelétricaVer artigo principal: Energia hidrelétricaHidrelétrica de Tucuruí. Observe o desnível dos espelhos d'água de um lado e do outro da barragem. Em uma hidrelétrica a energia potencial gravitacional da água é inicialmente convertida em energia cinética de translação da água, posteriormente em energia cinética de rotação da turbina, e posteriormente em energia potencial elétrica, já no gerador. Como a eficiência nestes processo de transformação nunca é 100%, apenas uma parcela da energia inicialmente armazenada na forma potencial gravitacional acaba convertida em potencial elétrica. Uma parcela acaba sempre transformada em energia térmica.

A energia hidrelétrica é a energia que vem do movimento das águas, usando o potencial hidráulico de um rio de níveis naturais,queda d'água naturais ou artificiais. Essa ene

Page 29: Inductand Pinaop oij Aush Idu 09

rgia é a segunda maior fonte de eletricidade do mundo. Frequentemente constroem-se represas que reprimem o curso da água, fazendo com que ela se acumule em um reservatório denominado barragem. Toda a energia elétrica gerada dessa maneira é levada por cabos, dos terminais do gerador elétrico até os transformadores elétricos e então ao usuário final. A energia hidrelétrica apresenta certos problemas, como consequências socioambientais de alagamentos de grandes áreas, alteração do clima, fauna e flora locais, dentre outros. Entretanto ainda é, se comparado a outras, uma forma limpa de se gerar energia para o consumo humano.

Energia hidrelétrica no Brasil: devido à sua enorme quantidade de rios, a maior parte da energia elétrica disponível é proveniente de grandes usinas hidrelétricas. A energia primária de uma hidrelétrica é a energia potencial gravitacional da água contida numa represa elevada. Antes de se tornar energia elétrica, a energia primária deve ser convertida em energia cinética de translação da água e posteriormente em energia cinética de rotação no gerador elétrico. O dispositivo que realiza esta última transformação é a turbina. Ela consiste basicamente em uma roda dotada de pás, que é posta em rápida rotação ao receber o impulso da massa de água. O último elemento dessa cadeia de transformações é o gerador, que converte o movimento rotatório da turbina em energia potencial elétrica.Energia químicaVer artigo principal: Energia químicaUm foguete espacial possui uma grande quantidade de energia química armazenada no combustível, pronta para ser utilizada enquanto este espera na rampa de lançamento. Quando o combustível é queimado, esta energia é transformada em energia térmica, e parte dela é novamente transformada em energia cinética associada aos gases expelidos e ao foguete. Os gases de escape produzidos, ao serem impelidos para baixo, impelem o foguete para cima.

É o nome da energia que está armazenada nas ligações covalentes, iônicas, metálicas, ou de forma similar em qualquer das ligações responsáveis pela estrutura da matéria conforme a concebemos hoje. Em essência é a energia potencial elétrica [Nota 19] associada às posições relativas dos elétrons nos orbitais eletrônicos (dos elétrons - negativos) e dos núcleos atômicos (positivos) uns em relação aos outros, recebendo este nome em particular apenas para enfatizar a ordem de grandeza e as partículas constituintes do sistema em estudo, composto por átomos, moléculas e/ou íons em interação, que pode ser liberada ou armazenada mediante reações químicas.

Em uma reação química os núcleos alteram suas posições uns em relações aos outros, bem como osrbitais eletrônicos presentes nas eletrosferas atômicas também o fazem, sobretudo os orbitais associados à última camada eletrônica de cada átomo, na conhecida camada de valência. Este rearranjo pode levar a uma configuração espacial final com uma energia potencial maior do que na configuração inicial -no caso das reações endoenergéticas - ou a uma configuração espacial com menor energia potencial elétrica em relação à inicial, caso em que a diferença é geralmente convertida em energia térmica - o que aumenta a temperatura do sistema - e posteriormente liberada às vizinhanças do sistema, devido ao aumento de temperatura, na forma de calor.

Assim existem ligações as quais se associa grande quantidade de energia química e ligações as quais se associa uma quantidade bem menor de energia química. A água é um exemplo de molécula com ligações H-O, pobres em energia química se comparadas às ligações H-H e O=O. A reação entre H2 e O2 leva a uma reestruturação espacial na qual parte da energia química dos reagentes é liberada: a formação de vapor de água a partir dos gases reagentes é em verdade uma reação exoenergética explosiva.Em biologia

De importância dentro da biologia destaca-se não só a água como a glicose, rica em ligações H-C e outras, que se comparadas à ligações C=O presente no CO2 e H-O presente na água, possuem maior energia química associada. Ao passo que a síntese da glicose a partir do CO2 e H2O é portanto uma reação endoenergética, sendo realizada no processo de fotossíntese nas plantas às expensas da energia radiante recebida do sol, a combustão da glicose, representada pelo processo inverso, constitui a principal fonte de energia

Page 30: Inductand Pinaop oij Aush Idu 09

dos seres vivos aeróbicos.

Os seres vivos aeróbicos utilizam a glicose como principal combustível (fonte de energia química); entretanto, esta molécula não pode ser utilizada diretamente, pois sua quebra direta libera de forma imediata muito mais energia que o necessário para o trabalho celular. Uma tora de madeira a arder em chamas é uma amostra desta capacidade de conversão de energia. Por isso a natureza selecionou mecanismos mais controlados, que incluem a transferência da energia química da glicose para moléculas tipo ATP (adenosina trifosfato) antes de seu uso final. Nos primeiros seres vivos a habitarem o planeta surgiu o primeiro destes mecanismos com tal objetivo: a fermentação. A fermentação anaeróbia, além do ATP, gera também etanol e dióxido de carbono (CO2). Aresença de CO2 na atmosfera possibilitou o surgimento da fotossíntese. Este processo fez surgir o O2 (oxigênio) na atmosfera. Com o oxigênio, outros seres vivos puderam desenvolver um novo mecanismo de transferência de energia química da glicose para o ATP: a respiração aeróbica. Ao longa da história do planeta a mudança na atmosfera, ao tornar-se rica em O2, foi responsável por propiciar uma explosão na diversidade de seres a utilizarem a respiração aeróbica como mecanismo de obtenção de energia; este período da evolução ficou conhecido nos anais da biologia por explosão cambriana.

Nos organismo biológicos a energia química pode ser diretamente transformada em energia cinética (nos músculos) ou térmica, sendo esta de grande importância para os organismos homeotérmicos.Eletroquímica

A energia química pode ser transformada diretamente em outras formas de energia que não é térmica, por exemplo em eletricidade (nas baterias ou nas células de hidrogênio em automóveis modernos). Há uma área da química especialmente destinada a este estudo, a eletroquímica.Combustíveis

O petróleo e demais combustíveis fósseis como o carvão mineral têm relevância inegável na modernidade. Representam uma considerável parcela da matriz energética em nossa sociedade atual, e constituem motivo de preocupação, entre outros, por não serem renováveis. Há ainda o problema do aquecimento global, diretamente relacionado aos mesmos. A busca de combustíveis alternativos, como o etanol, evidencia a importância dos combustíveis em nossa sociedade, assim como a importância dos problemas associados à sua produção, distribuição e consumo.Energia eólicaVer artigo principal: Energia eólica

A energia eólica tem sido aproveitada desde a antiguidade para mover os barcos impulsionados por velas ou para fazer funcionar a engrenagem de moinhos, ao mover as suas pás. Nos moinhos de vento a energia eólica era transformada em energia mecânica, utilizada na moagem de grãos ou para bombear água. Os moinhos foram usados para fabricação de farinhas e ainda para drenagem de canais, sobretudo nos Países Baixos.

Na atualidade utiliza-se a energia eólica para mover aerogeradores - grandes turbinas colocadas em lugares de muito vento. Essas turbinas têm a forma de um catavento ou um moinho. Esse movimento, através de um gerador, produz energia elétrica.

A energia eólica vem gradualmente ganhando importância em vista das preocupações modernas no que refere-se a fontes de energias limpas e renováveis.

O auto é remetido ao artigo principal para maiores detalhes.Energia nuclearVer artigo principal: Energia nuclearPlanta de uma usina elétrica termonuclear em funcionamento. A reação nuclear que ocorre no núcleo do reator abastecido com alguns quilogramas de material reativoconverte uma quantidade enorme de energia nuclear em energia térmica a cada segundo. Parte desta energia térmica é convertida em energia mecânica nas turbinas, e posteriorment

Page 31: Inductand Pinaop oij Aush Idu 09

e em energia elétrica. Outra parcela é necessariamenteentregue à uma fonte fria, neste caso ao ambiente mediante a dissipação de vapor d'água aquecido expelido nas chaminés. Mesmo dissipando toda esta energia a cada segundo, um reator pode trabalhar por volta de 30 anos sem ser reabastecido.

Conforme visto, a energia potencial nuclear é a energia potencial associada à posição relativa dos nucleôns uns em relação aos outros em virtude da interação nuclear forte que os mantém unidos no núcleo.

A variação da energia potencial nuclear durante o processos de reação nuclear em um átomo é geralmente enorme se comparada às variações de energia química encontradas quando este mesmo átomo participa de reações químicas as mais exoenergéticas (da ordem de centenas a milhares de vezes maior)[Nota 20] . Os processos nucleares que liberam energia são assim extremamente exoenergéticos, e pequenas quantidades de material reativo podem liberar quantidades astronômicas de energia.

As reações nucleares exoenergéticas são geralmente a fissão de átomos com grandes núcleos (onde destacam-se como elemento natural os isótopos do urânio e como elemento já artificial os isótopos do plutônio) ou a fusão de átomos com núcleos pouco massivos (com destaque para os isótopos do hidrogênio). Até os dias de hoje, embora haja considerável pesquisa associada ao processo de fusão, apenas a energia liberada através dos processos de fissão é praticamente utilizável. A energia que liberam é transformada sobretudo em energia cinética presente nas radiações alfa ou beta, em energia radiante associada à radiações gama e em energia térmica que eleva de forma considerável a temperatura da amostra em reação, podendo facilmente vir a fundi-la em processos ainda longe do crítico (explosivo). Sob controle em um reator nuclear, esta energia térmica liberada pode ser convertida em energia elétrica mediante emprego da mesma tecnologia usada nas termoelétricas: muda-se apenas a fonte de energia primária, que passa a ser o reator nuclear ao invés da fornalha química). Sem controle, uma pequena quantidade de material reativo podem gerar uma explosão monumental, o que, levado a cabo, deu origem às ditas armas nucleares.

Em termos históricos, o domínio do processo de fusão é posterior ao domínio do processo de fissão atômica, pois precisa-se da energia liberada na fissão para iniciar-se o processo de fusão, pelo menos aqui na Terra. A energia que recebemos do sol tem sua origem no processo de fusão nuclear de átomos de hidrogênio, constantemente convertidos em hélio no núcleo desta estrela, sendo este processo também extremamente exoenergético se comparado a uma reação química convencional. Isto justifica em parte o maior poder destrutivo de uma bomba nuclear de hidrogênio (bomba H) tendo em vista a facilidade de obtenção de seus isótopos deutério e trítio se comparada à dificuldade de obtenção de U235 exemplo [Nota 21] . O processo de fissão nuclear do urânio, descoberta em 1939 pelos cientistas alemães Otto Hahn, Lise Meitner e Fritz Strassmann ao bombardearem átomos de urânio com nêutrons mediante a observação de que estes então se dividiam em dois fragmentos, na maioria dos casos em estrôncio e xenônio ou em criptônio e bário, com liberação de mais dois ou três nêutrons energéticos, não teria saído dos limites estritos do laboratório se não fosse pelo fato de que neste processo há também a liberação de uma grande quantidade de calor facilmente mensurável. Decorreram-se apenas cinco anos entre a descoberta da fissão nuclear do urânio e a explosão da arma nuclear Trinity, que antecedeu em dias apenas as explosões nucleares de Hiroshima eNagasaki.Notas

Em vista da relatividade não se pode esquecer da equivalência entre massa e energia. A lei da conservação da energia, em contexto geral, encerra, pois, em si, as duas leis clássicas associadas: a da conservação da massa e a da conservação da energia (clássica). No contexto geral, massa é tratada como se energia o fosse.A variação da temperatura em um gás monoatômico ideal, a exemplo.Em uma reação química, a exemplo.Os gases expelidos pelo foguete e o foguete, ou mesmo o satélite sendo colocado em órbita terrestre e a Terra, a exemploO leitor é alertado para não confundir (quilo)watt-hora, uma unidade de energia, com

Page 32: Inductand Pinaop oij Aush Idu 09

(quilo)watt, unidade de potência. Alerta-se também que, em verdade, as unidades são o watt-hora e o watt, respectivamente. O prefixo quilo representa mil unidades, sendo 1kWh = 1000Wh.Não confundir os termos potencial elétrico e energia potencial elétrica. Apesar de interligados, têm definições distintas: potencial elétrico é propriedade de um ponto do espaço - no caso sob influência da carga Q - quer encontra-se ali presente a carga de prova q, quer não; já energia potencial elétrica é propriedade de um sistema formado por pelo menos duas cargas elétricas Q e q. Tem-se que Ep.elétrica = V.q, ou seja, o potencial no ponto é definido pela razão entre a energia potencial que uma carga q (ou massa m) de prova qualquer terá se colocada naquele ponto e o valor desta carga (ou massa) de prova: V = Ep.elétrica / q . De forma similar, entretanto, ambos os conceitos dependem de um ponto de referência para o qual Ep. elétrica e V sejam zero joules e zero volts, respectivamente. Para o caso elétrico pontual considerado a configuração de energia potencial nula é quase sempre escolhida como sendo a configuração de duas cargas infinitamente distantes uma da outra. O potencial de zero volt é assim atribuído a um ponto infinitamente distante da(s) carga(s) fonte, Q no caso.1MeV são mil elétrons-vol (eV). Trata-se de uma unidade de energia alternativa ao joule, muito comum em física de altas energias (física de partículas)nucleôn é uma denominação utilizada para designar qualquer das partículas que integram o núcleo atômico, seja ela um próton ou um nêutronÉ sabido que nucleôns conseguem escapar do potencial confinante do núcleo, ocorrendo inclusive liberação de energia no processo. Entretanto efeitos quânticos interessantes têm que ser levados em conta ao estudar-se tal fenômeno, entre eles o efeito túnel. Como estes fogem ao escopo deste artigo, o leitor é remetido ao estudo da radioatividade para maiores detalhes, em particular ao estudo das radiações alfa e beta. O caso da fissão e fusão nuclear são também casos interessante a se estudar no contexto atual. Uma sugestão para uma introdução ao assunto é o livro do Dr. Robert Eisberg apresentado como referência nesta seção. O capítulo 16 intitula-se "Decaimentos nucleares e reações nucleares".Energia coulombiana é a mesma energia potencial elétrica, no caso a energia potencial elétrica associada à proximidade dos dois prótons. O nome decorre da Lei de Coulomb, a equação base no estudo da eletrostática, e do cientista Charles Augustin de Coulomb, que a elaborou.Apesar dos valores absolutos tanto da energia cinética como da energia potencial serem dependentes do referencial escolhido para a medida, em qualquer referencial o princípio da conservação da energia é sempre válido.Para esta demonstração, e para uma razoável introdução à relatividade restrita, consulte Eisberg, Robert; Resnick, Robert - Física Quântica , Átomos, Moléculas, Sólidos, Núcleos e Partículas- 13ª edição - Editora Campus - Rio de Janeiro - ISBN: 85-7001-309-4 - (Apêndice A - pág. 829)Uma tabela com os momentos de inércia para os principais corpos rígidos simétricos, a saber o aro, o anel, o cilindro maciço, o disco, o bastão (haste fina), a esfera (maciça ou oca) e da lâmina retangular pode ser encontrada em Resnick; Halliday; Krane - Física 1 - página 234 (vide referências)Para maiores detalhes sobre a energia associada ao campo magnético consulte: Griffiths, David J. - Introduction to Eletrodynamics - Third Edition (pag. 317)Em princípio, qualquer parcela de energia potencial entre as partículas deve ser considerada. Contudo, a energia potencial gravitacional associada à interação entre moléculas é desprezível nessa escala se comparada à energia potencial elétrica, o mesmo valendo para outras energias, como a atrelada a campos magnéticos. Para mais detalhes, vide seção "Energia Química"Esta lei é muitas vezes referida por lei da conservação da massa-energiaO conceito de "massa relativística" é contudo algo muito delicado. O leitor é remetido ao artigo principal da wikipédia sobre o assunto para maiores esclarecimentosEm verdade as tomadas, segundo a norma, têm que ter três fios. O terceiro é o fio terra, essencial à proteção do usuário mas não ao funcionamento em si do aparelho.A rigor, mesmo não podendo ser expressa em termos de energia potencial, a energia magnética presente nos átomos também deve ser considerada uma vez que constitui-se em energia armazenada, podendo ser transformada. Esta parcela pode mostrar-se importante particularmente em reações envolvendo substâncias ferromagnéticas e antiferromagnétc

Page 33: Inductand Pinaop oij Aush Idu 09

ias ou mesmo com histerese acentuada. Nas situações experimentais as variações nestas energias não aparecem explicitamente, entretanto, sendo "embutidas" junto às variações da energia potencial elétrica conforme definição estrita desta- sendo ao fim ambas consideradas como uma só "energia potencial elétrica".Pequena consideração pode ser feita também a respeito da energia associada à interação elétrica que tende a separar os prótons ali confinados, sendo esta ordens de grandeza menos que a nuclear forte, entretanto

A mais poderosa bomba já detonada, a bomba Tsar, liberou uma energia de 57 mil quilotons. Para comparação, a bomba nuclear de Nagasaki liberou uma energia de apenas 20 quilotons, suficiente entretanto para aniquilar a cidade.

Referências

Feltre, Ricardo - Química - Volume 1 - sexta edição - Editora Moderna - São Paulo - 2004Eisberg, Robert; Resnick, Robert - Física Quântica , Átomos, Moléculas, Sólidos, Núcleos e Partículas - 13ª edição - Editora Campus - Rio de Janeiro - ISBN: 85-7001-309-4Callen, Herbert B. - Thermodynamics and an Introduction to Thermostatistics - Second Edition - John Wiley & Sons - New York (and others) -1985 - ISBN:0-471-86256-8.Goldstein, Herbert - Classical Mechanics - Second Edition - Addison-Wesley Publishing Company - 1992 - ISBN:0-201-02918-9Halliday; Resnick; Walker - Fundamentos de Física 2 : Gravitação, Ondas e Termodinâmica - LTC Livros Técnicos e Científicos Editor SA 1996 - Rio de Janeiro - RJSimmons, George F. - Cálculo com Geometria Analítica - MAKRON Books do Brasil Editora Ltda - McGraw-Hill - 1987 - Vol. 1 e 2Resnick, Robert; Halliday, David; Krane, Kenneth S. - Física 2 - 4ª edição - LTC Livros Técnicos e Científicos Editora SA - Rio de Janeiro - RJ - 1996Resnick; Halliday; Krane - Física 3 - 4ª edição - LTC Livros Técnicos e Científicos Editora SA - Rio de Janeiro - RJ - 1996Álvares, Beatriz Alvarenga; Luz, Antônio Máximo Ribeiro da - Física Ensino Médio -Volume 1 (Livro do professor)- 1ª edição - Editora Scipione - São Paulo, 2006 - ISBN:85-262-5810-9-AL ou ISBN:85-262-5811-7-PRResnick, Robert; Halliday, David; Krane, Kenneth S. - Física 1 - 4ª edição - LTC Livros Técnicos e Científicos Editora SA -Rio de Janeiro - RJ - 1996Para maiores detalhes sobre a energia associada ao campo magnético consulte: Griffiths, David J. - Introduction to Eletrodynamics - Third Edition - Prentice Hall - Upper Saddle River, New jersey - 1999 -ISBN:0-13-805326-X

Singh, Simon - Big Bang - Editora Record - Rio de Janeiro - ISBN:85-01-07213-3

Erro de citação: A etiqueta <ref> com nome "Fisica_Gaspar" definida em <references> não é utilizada no texto acima.Bibliografia auxiliar

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1989 K. R. Symon, Mechanics, Addison-Wesley (1971) R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Addison-Wesley (1970) R. B. Marion, S. Thornton, Classical Dynamics of Particles and Systems, Brooks Cole (2003) J. V. Jose, E. J. Saletan, Classical Dynamics, Cambridge University Press (1998) H. B. Goldstein, Classical Mechanics, Addison-Wesley (2001).</ref>

ROMIZI, Renato. Greco antico. Vocabolario Greco Italiano Etimologico e Ragionato. Bologna: Zanichelli, 2006. ISBN 88-08-08915-0MENEGHETTI, Antonio. Dicionário de Ontopsicologia. 2 ed. rev. Recanto Maestro: Ont

Page 34: Inductand Pinaop oij Aush Idu 09

opsicologica Ed, 2008. ISBN 978-85-88381-41-4Castelvecchi, Davide; Witze, Witze (11 de fevereiro de 2016). "Einstein's gravitational waves found at last". Nature News [S.l.: s.n.] doi:10.1038/nature.2016.19361. Consultado em 21 de fevereiro de 2016-02-1.B.?P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters [S.l.: s.n.] 116 (6). doi:10.1103/PhysRevLett.116.061102."Gravitational waves detected 100 years after Einstein's prediction | NSF - National Science Foundation". www.nsf.gov. Consultado em 2016-02-11.

Overbye, Dennis (11 February 2016). "Physicists Detect Gravitational Waves, Proving Einstein Right". New York Times [S.l.: s.n.] Consultado em 11 February 2016.

Ver tambémWikinotíciasO Wikinotícias tem uma ou mais notícias relacionadas com este artigo: Categoria:EnergiaO Commons possui uma categoria contendo imagens e outros ficheiros sobre EnergiaWikiquoteO Wikiquote possui citações de ou sobre: energia

Energia (sociedade) Energia elétrica Energia eólica Energia maremotriz Energia térmica Energia solar Energia interna Engenharia de energia Geração de energia Lei da conservação da energia Teorema do trabalho-energia

[Expandir]v � eFontes de Energia

[Expandir]v � eEnergias físico-químicas[Expandir]v � eEnergia[Expandir]v � eElementos da NaturezaCategoria:

Energia

Menu de navegação

Não autenticado Discussão Contribuições Criar uma conta Entrar

Page 35: Inductand Pinaop oij Aush Idu 09

Artigo Discussão

Ler Editar Editar código-fonte Ver histórico

Página principal Conteúdo destacado Eventos atuais Esplanada Página aleatória Portais Informar um erro

Colaboração

Boas-vindas Ajuda Página de testes Portal comunitário Mudanças recentes Manutenção Criar página Páginas novas Contato Donativos

Imprimir/exportar

Criar um livro Descarregar como PDF Versão para impressão

Noutros projectos

Wikimedia Commons Wikiquote

Ferramentas

Páginas afluentes Alterações relacionadas Carregar ficheiro Páginas especiais Ligação permanente Informações da página Item no Wikidata Citar esta página

Noutros idiomas

Acèh Afrikaans Alemannisch ???? Aragonés ??????? ?????

Page 36: Inductand Pinaop oij Aush Idu 09

???? Asturianu Az?rbaycanca Boarisch �emaite�ka ?????????? ?????????? (???????????)? ????????? ??????? ????? Brezhoneg Bosanski Català ?????? ??????? Ce�tina Cymraeg Dansk Deutsch ???????? English Esperanto Español Eesti Euskara ????? Suomi Français Nordfriisk Frysk Gaeilge Gàidhlig Galego Avañe'? Gaelg ???/Hak-kâ-ngî ????? ?????? Fiji Hindi Hrvatski Kreyòl ayisyen Magyar ??????? Interlingua Bahasa Indonesia Ilokano Ido Íslenska Italiano ??? Basa Jawa ??????? Qaraqalpaqsha ??????? ????? ??? Kurdî ???????? Latina Lëtzebuergesch Limburgs

Page 37: Inductand Pinaop oij Aush Idu 09

Lumbaart Lingála Lietuviu Latvie�u Malagasy ?????????? ?????? ?????? ????? Bahasa Melayu Mirandés ?????????? ???????? Plattdüütsch ????? ???? Nederlands Norsk nynorsk Norsk bokmål Novial Occitan ????? ?????? Polski Piemontèis ?????? Runa Simi Româna ??????? ?????????? ???? ???? Sicilianu Scots Srpskohrvatski / ?????????????? ????? Simple English Slovencina Sloven�cina ChiShona Soomaaliga Shqip ?????? / srpski Basa Sunda Svenska Kiswahili ????? ?????? ?????? ??? Türkmençe Tagalog Türkçe ???????/tatarça ???????? / Uyghurche ?????????? ???? O?zbekcha/??????? Vèneto Ti?ng Vi?t Winaray Wolof

Page 38: Inductand Pinaop oij Aush Idu 09

?????? ?? ?? Bân-lâm-gú ??

Editar ligações

Esta página foi modificada pela última vez à(s) 17h41min de 27 de fevereiro de 2016. Este texto é disponibilizado nos termos da licença Creative Commons - Atribuição - Compartilha Igual 3.0 Não Adaptada (CC BY-SA 3.0); pode estar sujeito a condições adicionais. Para mais detalhes, consulte as Condições de Uso.

Política de privacidade Sobre a Wikipédia Avisos gerais Programadores Cookie statement Versão móvel

Wikimedia Foundation Powered by MediaWiki

Lei da conservação da energiaOrigem: Wikipédia, a enciclopédia livre.(Redirecionado de Lei da conservação de energia)NoFonti.svg

Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde Junho de 2014). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.�Encontre fontes: Google (notícias, livros e acadêmico) Mecânica clássicaOrbital motion.gifDiagramas de movimento orbital de um satélite ao redor da Terra, mostrando a velocidade e aceleração.Cinemática[Expandir]Dinâmica[Expandir]História[Expandir]Trabalho e Mecânica[Esconder]

Energia cinética Energia potencial Trabalho Conservação da energia Força conservativa Força de contato Função de Lagrange Potência Retropropulsão Princípio de Hamilton

Sistema de partículas[Expandir]Colisões[Expandir]Movimento rotacional[Expandir]Sistemas Clássicos[Expandir]Formulações[Expandir]Gravitação

Page 39: Inductand Pinaop oij Aush Idu 09

[Expandir]Físicos[Expandir]v � eMecânica do contínuoBernoullisLawDerivationDiagram.svgLeis[Esconder]

Conservação da massa Conservação do momento Conservação da energia Desigualdade da entropia

Mecânica dos sólidos[Expandir]Mecânica dos fluidos[Expandir]Reologia[Expandir]Cientistas[Expandir]v � e

Em física, a lei ou princípio da conservação de energia estabelece que a quantidade total de energia em um sistema isolado permanece constante. Tal princípio está intimamente ligado com a própria definição da energia.

Um modo informal de enunciar essa lei é dizer que energia não pode ser criada nem destruída: a energia pode apenas transformar-se.[1]

Índice

1 Tipos de energia 2 História 3 A primeira lei da termodinâmica 4 Mecânica 4.1 Teorema de Noether 4.2 Relatividade 5 Referências

Tipos de energia

Deve-se ter em mente que energia compreende várias divisões com seus conceitos específicos, como energia potencial, energia cinética, energia térmica, energia nuclear.

Por exemplo, na combustão da gasolina dentro de um motor a combustão interna, parte da energia potencial associada às ligações químicas dos reagentes transforma-se em energia térmica, esta diretamente associada à energia cinética das partículas dos produtos e à temperatura do sistema (que se elevam). Pelo princípio da conservação da energia, a energia interna do sistema imediatamente antes da explosão é igual à energia interna imediatamente após a combustão.

Deve-se ter atenção com o princípio de conservação da energia no que se refere ao escopo de sua aplicação. Em seu sentido mais abrangente a conservação da energia implica que se entenda a energia a ser conservada como a energia total do sistema, em acordo com o princípio da equivalência entre massa e energia. Assim, a massa é tratada como se energia fosse e não há lei de conservação de massa para o sistema, apenas a lei da conservação da energia em seu sentido mais abrangente.

Ou seja, a conservação da energia, em sentido amplo, de acordo com o modelo de Albert Einstein, diz respeito à conservação de uma medida que engloba massa e energia, dent

Page 40: Inductand Pinaop oij Aush Idu 09

ro de um sistema isolado.

Quanto no âmbito da física clássica, entretanto, massa e energia são entidades distintas e não relacionadas, e nestas condições a lei da conservação da energia se divide em duas leis clássicas: a lei da conservação da energia em seu sentido mais restrito, e a lei da conservação de massas.História

Filósofos da Antiguidade, desde Tales de Mileto, já tinham suspeitas a respeito da conservação de alguma medida fundamental. Porém, não existe nenhuma razão particular para relacionar isso com o que conhecemos hoje como "massa-energia". Tales pensou que a substância era a água.

Em 1638, Galileu publicou sua análise de diversas situações -incluindo a célebre análise do "pêndulo-ininterrúpto" - que pode ser descrita, em linguagem moderna, como a conversão contínua de energia potencial em energia cinética e vice-versa, garantido que a totalidade da soma destas duas - à qual dá-se o nome de energia mecânica do sistema - permaneça sempre constante. Porém, Galileu não mencionou o processo usando o conceito de energia, como se conhece hoje, e não pode ser creditado pelo estabelecimento desta lei. [2]

Foi Gottfried Wilhelm Leibniz, durante 1676�1689 quem primeiro tentou realizar uma formulação matemática da energia associada ao movimento (energia cinética). Leibniz percebeu que, em vários sistemas mecânicos (de várias massas, mi cada qual velocidade vi ),

\sum_{i} m_i v_i^2

era conservada enquanto as massas não interagissem. Ele chamou essa quantidade de vis viva ou força viva do sistema. O princípio representa uma afirmação acurada da conservação de energia cinética em situações em que não há atrito. Muitos físicos naquele tempo conderavam que a conservação de momento, que é válida mesmo em sistemas com presença de atrito, como definido pela afirmação

\,\!\sum_{i} m_i v_i

era a vis viva. Foi demonstrado, mais tarde, que sob certas condições, ambas as quantidades são conservadas simultaneamente, como em colisões elásticas.

Engenheiros, tais como John Smeaton, Peter Ewart, Karl Hotzmann, Gustave-Adolphe Hirn e Marc Seguin objetaram que a conservação de momento sozinha não era adequada para cálculos práticos, e faziam uso do princípio de Leibniz. O princípio foi também defendido por alguns químicos, tais como William Hyde Wollaston.

Acadêmicos, tais como John Playfair rapidamente apontaram que a energia cinética claramente não era conservada. Os fundamentos desta não conservação são hoje entendidos claramente em vista de uma análise moderna baseada na segunda lei da termodinâmica, mas nos séculos XVIII e XIX o destino da energia cinética perdida ainda era desconhecido.

Gradualmente foi-se suspeitando que o calor, observável através do aumento de temperatura, inevitavelmente gerado pelo movimento sob atrito, era outra forma de vis viva. Em 1783, Antoine Lavoisier e Pierre-Simon Laplace revisaram as duas teorias correntes, a vis viva e teoria do calórico (ou flogisto), o que, junto com as observações de Benjamin Thompson em 1798 sobre a geração de calor durante perfuração de metal para a fabricação de canhões (em um processo chamado alesagem), adicionaram considerável apoio à visão de que havia nítida correlação entre a variação no movimento mecânico e o calorroduzido, de que a conservação era quantitativa e podia ser predita, e que era possível o estabelecimento de uma grandeza que se conservaria no processo de conversão de movimento em calor.

Page 41: Inductand Pinaop oij Aush Idu 09

A vis viva começou a ser conhecida como energia, depois do termo ser usado pela primeira vez com esse sentido por Thomas Young em 1807.

A recalibração da vis viva para

\frac {1} {2}\sum_{i} m_i v_i^2

o que pode ser entendido como encontrar o valor exato da constante para a conversão de energia cinética em trabalho foi em grande parte o resultado da obra de Gustave-Gaspard Coriolis e Jean-Victor Poncelet durante o período de 1819�1839. O primeiro chamou a quantidade de quantité de travail (quantidade de trabalho) e o segundo de travail mécanique (trabalho mecânico), e ambos defenderam seu uso para cálculos de engenharia.

No artigo Über die Natur der Wärme, publicado no Zeitschrift für Physik em 1837, Karl Friedrich Mohr deu uma das primeiras declarações gerais do princípio da conservação de energia, nas palavras: "além dos 54 elementos químicos conhecidos, há no mundo um agente único, e se chama Kraft [energia ou trabalho]. Ele pode aparecer, de acordo com as circunstâncias, como movimento, afinidade química, coesão, eletricidade, luz e magnetismo; e a partir de qualquer uma destas formas, pode ser transformado em qualquer um dos outros."

Uma etapa fundamental no desenvolvimento do moderno princípio conservação foi a demonstração do equivalente mecânico do calor. A teoria do calórico afirmava que o calor não podia ser criado nem destruído, mas a conservação de energia implica algo contraditório a esta ideia: calor e o movimento mecânico são intercambiáveis.

O princípio do equivalente mecânico foi exposto na sua forma moderna pela primeira vez pelo cirurgião alemão Julius Robert von Mayer.[3] Mayer chegou a sua conclusão em uma viagem para as Índias Orientais Neerlandesas, onde ele descobriu que o sangue de seus pacientes possuía uma cor vermelha mais profundo devido a eles consumirem menos oxigênio, e também consumiam menos energia para manterem a temperatura de seus corpos em um clima mais quente. Ele tinha descoberto que calor e trabalho mecânico eram ambos formas de energia, e após melhorar seus conhecimentos de física, ele encontrou uma relação quantitativa entre elas.Aparato de Joule para a medição do equivalente mecânico do calor. Um peso descendente preso a uma corda causa uma rotação numa pá imersa em água.

Entretanto, em 1843, James Prescott Joule descobriu de forma independente o equivalente mecânico do calor em uma série de experimentos. No mais famoso, agora chamado "aparato de Joule", um peso descendente preso a uma corda causava a rotação de uma pá imersa em água. Ele mostrou que a energia potencial gravitacional perdida pelo peso no movimento descendente era igual à energia térmica (calor) ganha pela água por fricção com a pá.

Durante o período entre 1840 e 1843 um trabalho similar foi efetuado pelo engenheiro Ludwig A. Colding, embora este tenha sido pouco conhecido fora de sua nativa Dinamarca.

Tanto o trabalho de Joule quanto o de Mayer sofreram inicialmente forte resistência e foram, quando apresentados, por muitos negligenciados. No decorrer da história, entretanto, a ideia foi aceita e o trabalho de Joule foi o que acabou por conquistar maior fama e reconhecimento.

Em 1844, William Robert Grove postulou uma relação entre mecânica, calor, luz, electricidade e magnetismo tratando todas elas como manifestação de uma "única" força ("energia" em termos modernos). Grove publicou suas teorias em seu livro "The Correlation of Physical Forces" (A Correlação de Forças Físicas).[4] Em 1847, aperfeiçoando o trabalho anterior de Joule, Sadi Carnot, Émile Clapeyron e Hermann von Helmholtz chegaram a conclusões similares às de Grove e publicaram suas teorias em seu livro "Über die E

Page 42: Inductand Pinaop oij Aush Idu 09

rhaltung der Kraft" ("Sobre a Conservação de Força", 1847). A aceitação moderna geral do princípio decorre dessa publicação.

Em 1877, Peter Guthrie Tait afirmou que o princípio surgiu com Isaac Newton, baseado numa leitura criativa das proposições 40 e 41 de "Philosophiae Naturalis Principia Mathematica". Isso é agora geralmente tratado como nada mais do que um exemplo histórico.A primeira lei da termodinâmicaVer artigo principal: Primeira lei da termodinâmica

Entropia é uma função de uma quantidade de calor que mostra a possibilidade de conversão daquele calor em trabalho.

Para um sistema termodinâmico com um número fixo de partículas, a primeira lei da termodinâmica pode ser enunciada como:

\delta Q = \mathrm{d}U + \delta W\,, ou de forma equivalente, \mathrm{d}U = \delta Q - \delta W\,,

sendo que \delta Q é a quantidade de energia acrescentada ao sistema num processo de aquecimento, \delta W é a quantidade de energia perdida pelo sistema devido ao trabalho realizado pelo sistema sobre seus arredores e \mathrm{d}U é o aumento na energia interna do sistema.

Os deltas antes das expressões que representam calor e trabalho são usados para indicar que tais expressões significam o incremento das respectivas medidas, o que deve ser interpretado diferentemente de \mathrm{d}U . Calor e trabalho são processos que somam ou subtraem energia, enquanto a energia interna U é uma forma particular de energia associada ao sistema. Assim, o termo energia térmica para \delta Q significa "a quantidade de energia adicionada como resultado do aquecimento", ao invés de referir o calor como uma forma específica de energia. Do mesmo modo, o termo "trabalho" para \delta W significa "quantidade de energia perdida como resultado do trabalho". O mais significativo corolário desta distinção é que a quantidade de energia interna de um sistema termodinâmico pode ser observado, mas não se pode mensurar quanta energia flue para dentro ou para fora do sistema como resultado de aquecimento ou resfriamento, nem tampouco como resultado de trabalho realizado pelo ou sobre o sistema. Simplificando, "a energia não é criada ou destruída, mas convertida em outra forma"

Num sistema simples, o trabalho pode ser assim enunciado:

\delta W = P\,\mathrm{d}V,

sendo que P é a pressão e dV é a pequena mudança de volume do sistema, sendo ambos variáveis de sistema. A energia térmica poder ser escrita:

\delta Q = T\,\mathrm{d}S,

sendo T a temperatura e \mathrm{d}S a pequena mudança na entropia do sistema. Temperatura e entropia são também variáveis de sistema.Mecânica

Na mecânica clássica a conservação de energia é normalmente dada por

E=T+V,

onde T é a energia cinética e V a energia potencial.

Na verdade este é o caso particular da lei de conservação mais geral

Page 43: Inductand Pinaop oij Aush Idu 09

\sum_{i=1}^N p_i \dot{q}_i - L=const e p_i=\frac{\partial L}{\partial \dot{q}_i}

onde L é a função lagrangeana. Para esta forma particular ser válida, o seguinte deve ser verdadeiro:

O sistema pode ser representado por equações que não contém a variável tempo (tanto energia cinética quanto a potencial não são funções explícitas do tempo) A energia cinética é resultante de uma função quadrática em relação às velocidades. A energia potencial não depende das velocidades.

Teorema de NoetherVer artigo principal: Teorema de Noether

A conservação de energia é uma característica comum em muitas teorias físicas. De um ponto de vista matemático, é entendida como uma consequência do teorema de Noether, que afirma que toda simetria de uma teoria física tem, a ela associada, uma quantidade conservativa; se essa simetria tem independência temporal, então a quantidade conservada é chamada de "energia". A lei de conservação de energia é consequência da simetria do tempo nos fenômenos físicos; a conservação de energia é comprovada através do fato empírico de que as leis da física não se modificam com o tempo. Filosoficamente, isso pode estabelecer que "Nada depende do tempo, por si só". Em outras palavras, se a teoria é invariante sob a simetria contínua sobre o tempo, então a energia é conservada. Alternativamente, teorias que não são invariantes em função do tempo (por exemplo, sistemas com energia potencial dependente do tempo) não possuem conservação de energia - a menos que consideremos que tais sistemas troquem energia com outros sistemas a eles externos, o que firma novamente a invariância. Assim, a conservação da energia continua válida nos modelos mais modernos da física, como a mecânica quântica.RelatividadeVer artigo principal: Teoria da Relatividade

Com o advento da teoria da relatividade restrita de Albert Einstein, a energia tornou-se um componente da energia-momento quadrivetorial.[5] Cada um dos quatro componentes (um de energia e três de momento linear), deste vetor, sendo que cada componente representa uma dimensão no espaço-tempo, é conservado separadamente em qualquer referencial inercial dado. Também é conservado o comprimento do vetor (norma de Minkowski), que é a massa de repouso. A energia relativística de uma partícula massiva contém um termo relacionado à sua massa de repouso, além de sua energia cinética linear. No limite de energia cinética zero (ou equivalentemente no referencial de repouso da partícula massiva, ou o centro de momento linear para objetos ou sistemas), a energia total da partícula ou objeto (incluindo a energia cinética em sistemas internos) está relacionada à sua massa de repouso através da famosa equação E = mc². Assim, a regra da conservação da energia na relatividade especial mostrou-se um caso especial de uma regra mais geral, também conhecida como a conservação de massa e energia, a conservação da massa-energia, a conservação de energia-momento, a conservação da massa invariante ou apenas referida apenas como conservação da energia.

Na relatividade geral, a conservação de energia-momento é expressa com o auxílio do pseudotensor de Landau-Lifshitz.Referências

"Acerca da Conservação da Energia". Centro de Competência TIC. Consultado em 6 de fevereiro de 2012.Santos, Marco Aurélio da Silva. "Um Físico Chamado Galileu Galilei". Mundo Educação. Consultado em 6 de fevereiro de 2012.von Mayer, J.R. (1842) "Remarks on the forces of inorganic nature" em Annalen der Chemie und Pharmacie, 43, 233Grove, W. R. (1874). The Correlation of Physical Forces (6th ed.). London: Longmans, Green.

Page 44: Inductand Pinaop oij Aush Idu 09

"Din^amica Relatív??stica" (PDF). Universidade Federal de Santa Catarina. Consultado em 7 de fevereiro de 2012. replacement character character in |título= at position 18 (Ajuda)

Categoria:

Leis de conservação

Menu de navegação

Não autenticado Discussão Contribuições Criar uma conta Entrar

Artigo Discussão

Ler Editar Editar código-fonte Ver histórico

Página principal Conteúdo destacado Eventos atuais Esplanada Página aleatória Portais Informar um erro

Colaboração

Boas-vindas Ajuda Página de testes Portal comunitário Mudanças recentes Manutenção Criar página Páginas novas Contato Donativos

Imprimir/exportar

Criar um livro Descarregar como PDF Versão para impressão

Ferramentas

Páginas afluentes Alterações relacionadas Carregar ficheiro Páginas especiais Ligação permanente Informações da página Item no Wikidata

Page 45: Inductand Pinaop oij Aush Idu 09

Citar esta página

Noutros idiomas

Afrikaans Alemannisch Aragonés ??????? ??????? Asturianu Az?rbaycanca ?????????? ?????????? (???????????)? ????????? Bosanski Català ?????? ??????? Ce�tina Cymraeg Deutsch ???????? English Esperanto Español Eesti ????? Suomi Français Gaeilge Galego ????? ?????? Fiji Hindi Hrvatski Kreyòl ayisyen Magyar ??????? Interlingua Bahasa Indonesia Íslenska Italiano ??? ??????? ??????? ??? ????????-??????? Latina Lietuviu Latvie�u ?????????? ?????? ?????? ?????????? Nederlands Norsk nynorsk Norsk bokmål Occitan ?????? Polski Piemontèis

Page 46: Inductand Pinaop oij Aush Idu 09

?????? Româna ??????? ?????????? Srpskohrvatski / ?????????????? Simple English Slovencina Sloven�cina ?????? / srpski Svenska ????? ??? Türkçe ???????/tatarça ?????????? ???? O?zbekcha/??????? Ti?ng Vi?t Winaray ?????? ?? ??

Editar ligações

Esta página foi modificada pela última vez à(s) 15h26min de 21 de setembro de 2015. Este texto é disponibilizado nos termos da licença Creative Commons - Atribuição - Compartilha Igual 3.0 Não Adaptada (CC BY-SA 3.0); pode estar sujeito a condições adicionais. Para mais detalhes, consulte as Condições de Uso.

Política de privacidade Sobre a Wikipédia Avisos gerais Programadores Cookie statement Versão móvel

Wikimedia Foundation Powered by MediaWiki