lMaterialsForStudentsQuiz

Embed Size (px)

Citation preview

  • 8/18/2019 lMaterialsForStudentsQuiz

    1/8

    1

    I. EXTERNAL FLOW

    Configuration   N u   Correlation Comment

    Flat plate, laminar, const.   T w   N ux   0.332  Re1/2x   P r1/3 0.6 P r 60,  Re < R

    Flat plate, laminar, const.   T w   N uL   0.664  Re1/2

    L   P r1/3

    0.6 P r 60,  Re < RFlat plate, laminar, const.   q w   N ux   0.453  Re

    1/2x   P r1/3 0.6 P r 60,  Re < R

    Flat plate, laminar, const.   q w   N uL   0.68  Re1/2L   P r

    1/3 0.6 P r 60,  Re < R

    Flat plate, turbulent, const.   T w   N ux   0.0296  Re4/5x   P r1/3 0.6 P r 60,  Re > R

    Flat plate, turbulent, const.   q w   N ux   0.0308  Re4/5x   P r1/3 0.6 P r 60,  Re > R

    Flat plate, turbulent   N uL   (0.037 Re4/5L   − 871)P r

    1/3 0.6    P r    60,  Re > RRecr  = 5× 105

    Flat plate, laminar, const.   T w   N ux   0.564  Re1/2x   P r1/2 P r 0.05,  RexP r > 10

    Flat plate, laminar, const.   q w   N ux   0.886  Re1/2x   P r1/2 P r 0.05,  RexP r > 10

    Cylinder, cross flow:   NuD   = 0.3+  0.62Re1/2D   P r

    1/3

    [1 + (0.4/P r)2/3]1/4

    1 +

      ReD282000

    5/84

    /5

    . (valid

    when ReDP r > 0.2)

    Sphere:   NuD  = 2 +

    0.4Re1/2D   + 0.06Re

    2/3D

    P r0.4

     µ

    µs

    1/4

    . (valid for 0.71    P r   380,

    3.5 ReD   7.6 × 104, 1 µ/µs  3.2)

    FIG. 1:  NuD  =  CRemDPr

    n

     P r

    Prs

    1/4

    ,  n = 0.37 if  P r ≤ 10 and  n = 0.36 if  P r ≥ 10. All properties

    except  P rs  are evluated at  T ∞.   P rs   alone is evaluated at the surface temperature.

  • 8/18/2019 lMaterialsForStudentsQuiz

    2/8

    714   Appendix A: Some thermophysical properties of selected materials 

    Table A.6   Thermophysical properties of gases at atmosphericpressure (101325 Pa)

    T (K)   ρ (kg/m3) cp (J/kg·K) µ (kg/m·s)   ν (m2/s) k (W/m·K)   α (m2/s)   Pr

    Air

    100 3.605 1039 0.711×10−5 0.197×10−5 0.00941 0.251× 10−5 0.784

    150 2.368 1012 1.035 0.437 0.01406 0.587 0.745

    200 1.769 1007 1.333 0.754 0.01836 1.031 0.731

    250 1.412 1006 1.606 1.137 0.02241 1.578 0.721

    260 1.358 1006 1.649 1.214 0.02329 1.705 0.712

    270 1.308 1006 1.699 1.299 0.02400 1.824 0.712

    280 1.261 1006 1.747 1.385 0.02473 1.879 0.711290 1.217 1006 1.795 1.475 0.02544 2.078 0.710

    300 1.177 1007 1.857 1.578 0.02623 2.213 0.713

    310 1.139 1007 1.889 1.659 0.02684 2.340 0.709

    320 1.103 1008 1.935 1.754 0.02753 2.476 0.708

    330 1.070 1008 1.981 1.851 0.02821 2.616 0.708

    340 1.038 1009 2.025 1.951 0.02888 2.821 0.707

    350 1.008 1009 2.090 2.073 0.02984 2.931 0.707

    400 0.8821 1014 2.310 2.619 0.03328 3.721 0.704

    450 0.7840 1021 2.517 3.210 0.03656 4.567 0.703

    500 0.7056 1030 2.713 3.845 0.03971 5.464 0.704

    550 0.6414 1040 2.902 4.524 0.04277 6.412 0.706600 0.5880 1051 3.082 5.242 0.04573 7.400 0.708

    650 0.5427 1063 3.257 6.001 0.04863 8.430 0.712

    700 0.5040 1075 3.425 6.796 0.05146 9.498 0.715

    750 0.4704 1087 3.588 7.623 0.05425 10.61 0.719

    800 0.4410 1099 3.747 8.497 0.05699 11.76 0.723

    850 0.4150 1110 3.901 9.400 0.05969 12.96 0.725

    900 0.3920 1121 4.052 10.34 0.06237 14.19 0.728

    950 0.3716 1131 4.199 11.30 0.06501 15.47 0.731

    1000 0.3528 1142 4.343 12.31 0.06763 16.79 0.733

    1100 0.3207 1159 4.622 14.41 0.07281 19.59 0.736

    1200 0.2940 1175 4.891 16.64 0.07792 22.56 0.738

    1300 0.2714 1189 5.151 18.98 0.08297 25.71 0.738

    1400 0.2520 1201 5.403 21.44 0.08798 29.05 0.738

    1500 0.2352 1211 5.648 23.99 0.09296 32.64 0.735

  • 8/18/2019 lMaterialsForStudentsQuiz

    3/8

    Figure5.10   The heat removal from suddenly-cooled bodies as

    a function of  h  and time.  213

  • 8/18/2019 lMaterialsForStudentsQuiz

    4/8

          F

           i     g     u     r     e

          5  .      7

        T     h   e    t   r   a   n   s    i   e   n    t    t   e   m   p   e   r   a    t   u   r   e     d    i   s    t   r    i     b   u    t    i   o   n    i   n   a     s       l     a       b

       a    t   s    i   x

       p   o   s    i    t    i   o   n   s   :    x      /      L

        =

        0    i   s    t     h   e   c   e   n    t   e   r ,

        x

          /      L

        =

        1    i   s   o   n   e   o   u    t   s    i     d   e     b   o   u   n     d   a   r   y .

    20

  • 8/18/2019 lMaterialsForStudentsQuiz

    5/8

          F

           i     g     u     r     e

          5  .      8

        T     h   e    t   r   a   n   s    i   e   n    t    t   e   m   p   e   r

       a    t   u   r   e     d    i   s    t   r    i     b   u    t    i   o   n    i   n   a     l   o   n   g     c     y      l      i     n      d     e     r

       o     f   r   a     d    i   u   s     r     o

       a    t   s    i   x   p   o   s    i    t    i   o   n   s   :

         r

           /     r     o

        =

        0    i   s    t     h   e   c   e   n    t   e   r     l    i   n   e   ;     r       /     r     o

        =

        1    i   s    t     h   e   o   u    t   s    i     d   e     b   o   u   n     d   a   r   y .

    210

  • 8/18/2019 lMaterialsForStudentsQuiz

    6/8

          F

           i     g     u     r     e

          5  .      9

        T     h   e    t   r   a   n   s    i   e   n    t    t   e   m   p   e   r   a

        t   u   r   e     d    i   s    t   r    i     b   u    t    i   o   n    i   n   a     s     p       h     e     r     e   o     f   r   a

         d    i   u   s     r     o

       a    t   s    i   x   p   o   s    i    t    i   o   n   s   :     r       /     r     o

        =    0

        i

       s    t     h   e   c   e   n    t   e   r   ;     r       /     r     o

        =

        1    i   s    t     h   e   o   u    t   s    i

         d   e     b   o   u   n     d   a   r   y .

    21

  • 8/18/2019 lMaterialsForStudentsQuiz

    7/8

    Table 5.2   One-term coefficients for convective cooling [5.1].

    Plate Cylinder SphereBi

    λ̂1   A1   D1  λ̂1   A1   D1   λ̂1   A1   D1

    0.01 0.09983 1.0017 1.0000 0.14124 1.0025 1.0000 0.17303 1.0030 1.0000

    0.02 0.14095 1.0033 1.0000 0.19950 1.0050 1.0000 0.24446 1.0060 1.0000

    0.05 0.22176 1.0082 0.9999 0.31426 1.0124 0.9999 0.38537 1.0150 1.0000

    0.

    10 0.31105 1.0161 0.9998 0.44168 1.0246 0.9998 0.54228 1.0298 0.99980.15 0.37788 1.0237 0.9995 0.53761 1.0365 0.9995 0.66086 1.0445 0.9996

    0.20 0.43284 1.0311 0.9992 0.61697 1.0483 0.9992 0.75931 1.0592 0.9993

    0.30 0.52179 1.0450 0.9983 0.74646 1.0712 0.9983 0.92079 1.0880 0.9985

    0.40 0.59324 1.0580 0.9971 0.85158 1.0931 0.9970 1.05279 1.1164 0.9974

    0.50 0.65327 1.0701 0.9956 0.94077 1.1143 0.9954 1.16556 1.1441 0.9960

    0.60 0.70507 1.0814 0.9940 1.01844 1.1345 0.9936 1.26440 1.1713 0.9944

    0.70 0.75056 1.0918 0.9922 1.08725 1.1539 0.9916 1.35252 1.1978 0.9925

    0.80 0.79103 1.1016 0.9903 1.14897 1.1724 0.9893 1.43203 1.2236 0.9904

    0.90 0.82740 1.1107 0.9882 1.20484 1.1902 0.9869 1.50442 1.2488 0.9880

    1.00 0.86033 1.1191 0.9861 1.25578 1.2071 0.9843 1.57080 1.2732 0.9855

    1.10 0.89035 1.1270 0.9839 1.30251 1.2232 0.9815 1.63199 1.2970 0.9828

    1.20 0.91785 1.1344 0.9817 1.34558 1.2387 0.9787 1.68868 1.3201 0.9800

    1.30 0.94316 1.1412 0.9794 1.38543 1.2533 0.9757 1.74140 1.3424 0.9770

    1.40 0.96655 1.1477 0.9771 1.42246 1.2673 0.9727 1.79058 1.3640 0.9739

    1.50 0.98824 1.1537 0.9748 1.45695 1.2807 0.9696 1.83660 1.3850 0.9707

    1.60 1.00842 1.1593 0.9726 1.48917 1.2934 0.9665 1.87976 1.4052 0.9674

    1.80 1.04486 1.1695 0.9680 1.54769 1.3170 0.9601 1.95857 1.4436 0.9605

    2.00 1.07687 1.1785 0.9635 1.59945 1.3384 0.9537 2.02876 1.4793 0.9534

    2.20 1.10524 1.1864 0.9592 1.64557 1.3578 0.9472 2.09166 1.5125 0.9462

    2.40 1.13056 1.1934 0.9549 1.68691 1.3754 0.9408 2.14834 1.5433 0.9389

    3.00 1.19246 1.2102 0.9431 1.78866 1.4191 0.9224 2.28893 1.6227 0.9171

    4.00 1.26459 1.2287 0.9264 1.90808 1.4698 0.8950 2.45564 1.7202 0.8830

    5.00 1.31384 1.2402 0.9130 1.98981 1.5029 0.8721 2.57043 1.7870 0.8533

    6.00 1.34955 1.2479 0.9021 2.04901 1.5253 0.8532 2.65366 1.8338 0.8281

    8.00 1.39782 1.2570 0.8858 2.12864 1.5526 0.8244 2.76536 1.8920 0.7889

    10.00 1.42887 1.2620 0.8743 2.17950 1.5677 0.8039 2.83630 1.9249 0.7607

    20.00 1.49613 1.2699 0.8464 2.28805 1.5919 0.7542 2.98572 1.9781 0.6922

    50.00 1.54001 1.2727 0.8260 2.35724 1.6002 0.7183 3.07884 1.9962 0.6434

    100.00 1.55525 1.2731 0.8185 2.38090 1.6015 0.7052 3.11019 1.9990 0.6259∞   1.57080 1.2732 0.8106 2.40483 1.6020 0.6917 3.14159 2.0000 0.6079

    219

  • 8/18/2019 lMaterialsForStudentsQuiz

    8/8

    §5.3   Transient conduction in a one-dimensional slab    20

    Table 5.1   Terms of series solutions for slabs, cylinders, and

    spheres.  J 0  and J 1  are Bessel functions of the first kind.

    An   f n   Equation for λ̂n

    Slab 2sin λ̂n

    λ̂n + sin λ̂n cos λ̂ncos

    λ̂n

    x

    L

      cot λ̂n  =

    λ̂n

    BiL

    Cylinder 2J 1(λ̂n)

    λ̂n

    J 20(λ̂n)+ J 

    21(λ̂n)

      J 0λ̂n

    r o

      λ̂n J 1(λ̂n) = Bir o J 0(λ̂n)

    Sphere   2 sin λ̂n − λ̂n cos λ̂n

    λ̂n − sin λ̂n cos λ̂n

      r o

    λ̂n r 

    sin

    λ̂n r 

    r o

      λ̂n cot λ̂n  = 1− Bir o

    The solution is somewhat harder to find than eqn. (5.33) was, but the

    result is4

    Θ =

    ∞n=1

    exp−λ̂2n Fo

    2sin λ̂n cos[λ̂n(ξ − 1)]λ̂n + sin λ̂n cos λ̂n

      (5.34)

    where the values of  λ̂n  are given as a function of  n  and Bi = hL/k by the

    transcendental equation

    cot λ̂n  =λ̂n

    Bi   (5.35)

    The successive positive roots of this equation, which are   λ̂n   =   λ̂1, λ̂2,

    λ̂3, . . . , depend upon Bi. Thus,Θ = fn(ξ,Fo,Bi), as we would expect. This

    result, although more complicated than the result for b.c.’s of the first

    kind, still reduces to a single term for Fo 0.2.

    Similar series solutions can be constructed for cylinders and spheres

    that are convectively cooled at their outer surface, r   = r o. The solutions

    for slab, cylinders, and spheres all have the form

    Θ =T  − T ∞

    T i−T ∞

    =

    n=1

    An exp−λ̂2n Fof n   (5.36)

    where the coefficients  An, the functions  f n, and the equations for the

    dimensionless eigenvalues λ̂n  are given in Table 5.1.

    4See, for example, [5.1, §2.3.4] or [5.2, §3.4.3] for details of this calculation.