57
PRIMEIROS MODELOS DA CONSTITUIÇÃO DA MATÉRIA. ATIVIDADE - 2009 BALÃO TUBO DE ENSAIO Desenhar modelos para representar o ar, dentro do tubo, antes e depois do experimento e redigir um texto para descrever como esses modelos explicam o fenômeno.

PRIMEIROS MODELOS DA CONSTITUIÇÃO DA MATÉRIA.quimimoreira.net/BARREIRAS EPISTEMOLOGICAS 2014.pdf · PRIMEIROS MODELOS DA CONSTITUIÇÃO DA MATÉRIA. ATIVIDADE ... HIPÓTESES SOBRE

  • Upload
    votruc

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

PRIMEIROS MODELOS DA CONSTITUIÇÃO DA MATÉRIA.

ATIVIDADE - 2009 BALÃO

TUBO DE ENSAIO

D e s e n h a r m o d e l o s p a r a representar o ar, dentro do tubo, antes e depois do experimento e redigir um texto para descrever como esses modelos explicam o fenômeno.

TOTAL DE PARTICIPANTES: 22 grupos

1) As partículas entram em movimento após o fornecimento de calor: 13 grupos

•Não há agitação sem aquecimento.

•Na temperatura ambiente as moléculas estão em repouso.

2) Agitação molecular natural ANTES DO AQUECIMENTO: 6 grupos

CONCEPÇÃO ANIMISTA.

“as moléculas se agitaram e ocuparam o espaço da bexiga pois para obter maior estabilidade, elas procuram o local mais frio do sistema”.

3) Migração das moléculas do tubo para o balão: 2 grupos

4) Aumento do raio atômico por agitação dos elétrons (salto quântico) e distanciamento em relação ao núcleo: 5 grupos• Ocorre excitação dos elétrons.

CONCEPÇÃO SUBSTANCIALISTA.

BALÃO

TUBO DE ENSAIOA d i m i n u i ç ã o d a d e n s i d a d e d a molécula faz o ar subir!

CONCEPÇÃO SUBSTANCIALISTA.

CONCEPÇÕES - 2014

Na temperatura ambiente as moléculas estão paradas ou com baixa agitação 14/17  grupos

O aquecimento causa agitação molecular ou provoca aumento dessa agitação 15/17  grupos

O aquecimento causa a excitação dos elétrons/moléculas provocando a agitação/locomoção das moléculas 06/17  grupos

O ar quente sobe 05/17  grupos

O Aquecimento provoca colisão intermolecular

A temperatura é diretamente proporcional a distância intermolecular

Ar quente procura uma saída

02/17  grupos

02/17  grupos

01/17  grupos

Junior High School Pupils’ Understanding of the Particulate Nature of Matter: An Interview Study

SHIMSHON NOVICK and JOSEPH NUSSBAUM Israel Science Teaching Centre Hebrew University, Jerusalem, Israel 60442

introduction

Nearly all Israeli school children begin their formal study of physical science during the seventh grade. Their program, entitled The Structure ofMatter[ 11, focuses on the investigation of matter in its three states and the interpretation of selected characteristic properties (such as density, fluidity, compressibility, diffusion, crystallinity, decompo- sition, and mixing and joining) in terms of a simple particle model.

Since the transition from a primitive continuous to a particulate conception of matter is a major change in a pupil’s outlook on the physical world, it would seem important to learn whether such a transition is really achieved by pupils who have studied the “Structure of Matter” program.

We have undertaken to investigate how these pupils have internalized the particle model. How, if at all, do they use the “particle picture” to interpret new phenomena, which they have not encountered in the classroom? Answers to this question can be useful to curriculum developers in considering possible revision of the Structure of Matter program or the necessity for further reinforcement and/or development of the particle model at a later stage. They can also guide teachers in considering their teaching strategies in this area.

Our aim was to arrive at the structure of pupils’ conceptions, and we felt that a paper-and-pencil test was not sensitive enough for this purpose. We have therefore chosen the Piaget-type interview. Although this method has been most widely used in replications of Piaget’s own experiments with science-related tasks, Sullivan[2] has emphasized the need for its application to the investigation of specific science concepts, and studies by the authors have demonstrated its usefulness[3,4].

Scope of Study

Since the interview time was limited to about 30 minutes, we decided to probe only a few aspects of the partide model, concentrating primarily on phenomena in the gaseous phase which can be simply interpreted using the particle model developed in the Structure of Matter program.

Science Education 62(3): 273-281 (1978) 0 1978 John Wiley & Sons, Inc. 0036-8326/78/0062-0273$0 I .OO

Como sondar as concepções dos estudantes?Junior High School Pupils’ Understanding of the Particulate Nature of Matter: An Interview Study

SHIMSHON NOVICK and JOSEPH NUSSBAUM Israel Science Teaching Centre Hebrew University, Jerusalem, Israel 60442

introduction

Nearly all Israeli school children begin their formal study of physical science during the seventh grade. Their program, entitled The Structure ofMatter[ 11, focuses on the investigation of matter in its three states and the interpretation of selected characteristic properties (such as density, fluidity, compressibility, diffusion, crystallinity, decompo- sition, and mixing and joining) in terms of a simple particle model.

Since the transition from a primitive continuous to a particulate conception of matter is a major change in a pupil’s outlook on the physical world, it would seem important to learn whether such a transition is really achieved by pupils who have studied the “Structure of Matter” program.

We have undertaken to investigate how these pupils have internalized the particle model. How, if at all, do they use the “particle picture” to interpret new phenomena, which they have not encountered in the classroom? Answers to this question can be useful to curriculum developers in considering possible revision of the Structure of Matter program or the necessity for further reinforcement and/or development of the particle model at a later stage. They can also guide teachers in considering their teaching strategies in this area.

Our aim was to arrive at the structure of pupils’ conceptions, and we felt that a paper-and-pencil test was not sensitive enough for this purpose. We have therefore chosen the Piaget-type interview. Although this method has been most widely used in replications of Piaget’s own experiments with science-related tasks, Sullivan[2] has emphasized the need for its application to the investigation of specific science concepts, and studies by the authors have demonstrated its usefulness[3,4].

Scope of Study

Since the interview time was limited to about 30 minutes, we decided to probe only a few aspects of the partide model, concentrating primarily on phenomena in the gaseous phase which can be simply interpreted using the particle model developed in the Structure of Matter program.

Science Education 62(3): 273-281 (1978) 0 1978 John Wiley & Sons, Inc. 0036-8326/78/0062-0273$0 I .OO

STUDY ON PARTICLE THEORY 281

Appendix

Phenomenon No. 1 A Buchner flask (1 liter) containing air, and a hand vacuum pump were shown, and the operation

and function of the pump were demonstrated. The pump was then connected and operated for several strokes in order to remove some of the air from the flask.

Tasks: (1) “If you were able to see the air in the flask, draw how it would look before and after the

vacuum pump was used to remove some of the air.” [Fig. 2(a)]. (2) “Here are some ‘before and after’ drawings made by some pupils from other schools[Fig.

31, when shown the same phenomenon. Which drawing do you think is the best ‘picture’ of the air in the flask before and after evacuation?” Pupils who drew “continuous pictures” in task 1 were first shown the page with various predictions based on a continuous model. After responding to the drawings they were shown a second page containing the same predictions in terms of a particle model.

(3) “Tell what there is between the dots in the drawings [on the second page].” Here we are

(4) “Explain why all these particles don’t fall to the bottom of the flask. What holds them probing aspect 3 (empty space).

up?” This task probes aspect 4 (intrinsic motion of particles).

Phenomenon No. 2 Two colorless liquids were presented in two stoppered flasks. The first (concentrated ammonia)

was opened and a strip of orange paper was held at its mouth. The strip turned blue. The first flask was closed, the second (concentrated hydrochloric acid) opened, and the strip held a t its mouth. The strip turned red (Fig. 2(b)).

Tasks: ( 5 ) “Explain why the paper turned blue over the first flask and red over the second flask.

(6) “How does the substance rise from the liquid to the paper?” Make a sketch.”

Phenomenon No. 3 The two flasks containing colorless liquids were again used. A few drops of each liquid were placed

on cotton plugs in depressions in two small corks. These corks were simultaneously inserted in the ends of a 30 cm glass tube. After about a minute, a white smoke ring appeared in the tube, closer to one end than the other (Fig. 2(c)).

Tasks: (7) “What is the ‘white substance’ and how is it formed? Make a sketch.” (8) “Explain why the white ring doesn’t appear in the middle of the tube.”

References

1. Ministry of Education Curriculum Unit, The Structure of Mutter, Tel Aviv: Maalot,

2. Sullivan, E. V., Piaget and fhe School Curriculum, Toronto: The Ontario Institute for Studies

3. Nussbaum, J . and J. D. Novak, “An assessment of children’s concepts of the earth utilizing

4. Novick, S. and J . Menis, “A study of student perceptions of the mole concept,” Journal of

1969.

in Education, 1967, No. 2, pp. 1-38.

structured interviews,” Science Education, 60(4): 535-550 (1976).

Chemical Education, 53( 1 1): 720-722 (1976).

Received May 1 1 , 1977

Qual é a temperatura de

ebulição de uma

molécula de água?

GASTON BACHELARD: ERRO E OBSTÁCULOS EPISTEMOLÓGICOS Para Bachelard o erro tem significado diferente, daquele em que se verifica no cotidiano. Nesse contexto, o erro é visto como algo noçivo e indesejado. Tanto cientistas quanto professores procuram descartar o erro durante seu trabalho.

Para Bachelard, ao contrário, o erro tem outro significado e sua manifestação no processo de produção do conhecimento vem, de forma sutil, auxiliar no crescimento do conhecimento científico. Para exemplificar e facilitar a compreensão da gênese da palavra erro na concepção de Bachelard, podemos nos apropriar daquele velho ditado popular: “é errando que se aprende”. !Fonte: HIPÓTESES SOBRE A COMBUSTÃO ENTRE ALUNOS DO ENSINO MÉDIO: A EPISTEMOLOGIA DE GASTON BACHELARD

De modo geral as pessoas odeiam errar!

Quem odeia errar odeia..?…

Como  a  ciência  se  contrói?

Bachelard defende que o erro em sua estrutura é importante para a construção do conhecimento científico. Ele parte do pressuposto de que toda ciência é feita em decorrência dos erros superados. Sendo assim, precisamos errar em nossas práticas científicas, pois é a partir do erro que nos tornamos mais atentos a novos fatos.

Segundo Bachelard, o obstáculo epistemológico, se configura em um impedimento que faz com que o indivíduo não seja capaz de progredir na esfera intelectual científica. Desse modo, estagnação e o retrocesso científico estão relacionados a erros que se cristalizam a partir de seus p roduto res e to r nam-se fu tu ros obstáculos epistemológicos.

Obstáculo Animista O obstáculo animista consiste em uma concepção que atribui vida a corpos inanimados. Nesse caso, associam-se características do reino animal e vegetal com elementos do reino mineral.

De acordo com as teorias de Bachelard, o obstáculo animista estaria associado às concepções da alquimia, segundo as quais uma substância era dotada de vida, o que se aplicava também ao oxigênio.

Representação animista do átomo. Fonte: Hartwing et al. (Cap. 5, p. 138).

Obstáculo Substancialista

Representação realista da molécula. Fonte: Hartwing et al. (Cap. 5, p. 171).

Na figura ao lado, as dimensões da molécula e do homem estão no mesmo patamar, a ponto de um dos átomos da extremidade molecular ser segurado pelas mãos do sujeito representado no desenho. O obstáculo realista está relacionado com a experiência primeira (impressões prévias no campo concreto colocadas antes e acima da crítica de determinados assuntos). Esta, é de acordo com Bachelard um dificultador inicial para a cultura científica.

Obstáculo Realista

Como afirma Lopes (1992, p 258) “os obstáculos realistas se apresentam, portanto, na medida em que o racionalismo é pouco desenvolvido”. Isso ocorre quando, trabalhamos com o macro sem desenvolver o micro, que é, totalmente abstrato, “escondendo” o verdadeiro conceito científico.

Análise  de  obstáculos  epistemológicos  Grupos  de  4  estudantes

Por  que  me  tornei  e  continuei  Professor?

Tenha Brio

Brio?

Por  que  me  tornei  e  continuei  Professor?