109
Um químico analítico pode se defrontar com dois tipos de problemas: Qualitativo: Esta água destilada contém boro? Estes dois solos são do mesmo lugar? Quantitativo: Quanta albumina existe nesta amostra de soro sanguíneo? Quanto chumbo existe na água da torneira? Esta amostra de aço contém pequenas quantidades de cromo, tungstênio e manganês, quanto de cada um? Química Analítica moderna tem um caráter essencialmente quantitativo. Uma resposta quantitativa, a qualquer das perguntas anteriores é mais indicada que uma qualitativa. Problemas em Química Analítica:

Problemas em Química Analítica - ufjf.brstica.pdf · Problemas em Química Analítica: A pessoa que precisou da análise pode, com os resultados quantitativos, julgar se o conteúdo

Embed Size (px)

Citation preview

Um químico analítico pode se defrontar com dois tipos de problemas:

Qualitativo:

•Esta água destilada contém boro?

•Estes dois solos são do mesmo lugar?

Quantitativo:

•Quanta albumina existe nesta amostra de soro sanguíneo?

•Quanto chumbo existe na água da torneira?

•Esta amostra de aço contém pequenas quantidades de cromo, tungstênio e manganês,

quanto de cada um?

Química Analítica moderna tem um caráter essencialmente quantitativo.

Uma resposta quantitativa, a qualquer das perguntas anteriores é mais indicada que uma

qualitativa.

Problemas em Química Analítica:

A pessoa que precisou da análise pode, com os resultados quantitativos, julgar se o

conteúdo do analito é nocivo e exige alguma providência ou não.

Em alguns casos, apenas uma resposta quantitativa tem algum valor. Por exemplo,

virtualmente todo o soro sanguíneo humano tem albumina, a dúvida só poderia ser quanto.

É importante considerar que, mesmo quando uma resposta qualitativa é solicitada, métodos

quantitativos têm de ser usados para obtê-la.

Na realidade, um químico analítico nunca pode dizer simplesmente que encontrou ou não

encontrou boro na amostra de água.

Ele deve empregar um método quantitativo, capaz de detectar, digamos, 1 μg mL-1 de boro.

Como devo expressar o resultado final?

Qual a densidade de um mineral que apresenta uma massa 4,635 (± 0,002) g e um

volume de 1,13 (± 0,05) mL?

a) Qual a incerteza da densidade calculada?

b) Quantos algarismos significativos devem ser usados para expressar a densidade?

Algarismos significativos

O número de algarismos significativos de uma medida é o número de dígitos que

representam um resultado experimental, de modo que apenas o último algarismo seja

duvidoso.

Pode ser obtido de duas formas:

-Diretamente ou

-Indiretamente

Algarismos significativos

Diretamente

Ex 1. Determinação da massa de uma substância em uma balança.

Balança analítica com incerteza ± 0,1 mg: 0,0402 g de NaCl; 1,0056 g de CaCO3

Ex 2. Medida do volume de uma solução com uma pipeta.

Pipeta volumétrica capacidade de 5mL (classe A) tem incerteza de ± 0,01 mL: 5,00 mL

Ex 3. Medida do volume de uma solução com uma bureta.

Bureta capacidade 10 mL (classe A) tem incerteza de ± 0,02 mL: 8,00 mL

Indiretamente

A partir dos valores de outras grandezas medidas.

Ex 4. Cálculo da concentração de uma solução a partir da massa do soluto e do volume

da solução. Solubilização de 0,0402 g de NaCl pesado em balança analítica em um

balão volumétrico de 100 mL.

Ex 5. Cálculo da densidade do mineral.

Como devo expressar o resultado final?

Qual a densidade de um mineral que apresenta uma massa 4,635 (± 0,002) g e um

volume de 1,13 (± 0,05) mL?

a) Qual a incerteza da densidade calculada? PROPAGAÇÃO DAS INCERTEZAS!!!!

mLgmL

gd /1018,4

)05,0(13,1

)002,0(635,4

mLg /)2,0(1,4

Como devo expressar o resultado final?

Qual a densidade de um mineral que apresenta uma massa 4,635 (± 0,002) g e um

volume de 1,13 (± 0,05) mL?

b) Quantos algarismos significativos devem ser usados para expressar a densidade?

REGRA DOS ALGARISMOS SIGNIFICATIVOS!!!!

mLgmL

gd /10,41018,4

)05,0(13,1

)002,0(635,4

Zero é significativo:

(a) Entre 2 algarismos significativos;

(b) Depois da vírgula e a direita de outro dígito significativo.

Zero não é significativo antes da vírgula e a esquerda de um número significativo.

O arredondamento deve ser

feito somente na resposta final

(não em resultados

intermediários).

Adição e subtração

-se os números a serem adicionados ou subtraídos têm igual número de algarismos

significativos: resposta deve ficar com o mesmo número de casas decimais do

número individual

Ex: 5,345 + 6,728 = 12,073

-se os números a serem adicionados ou subtraídos não possuírem o mesmo número

de algarismos significativos: limita-se pelo de menor número

Ex: 18,9984032 + 83,80 = 102,7984032 102,80

Ex: 1,632 x 105 + 4,107 x 103 + 0,984 x 106 = ?????

Algarismos significativos em aritmética

Algarismos significativos em aritmética

Multiplicação e divisão

-limita-se ao número de dígitos contidos no número com menos algarismos

significativos

Ex: 3,26 x 10-5 x 1,78 = 5,80 x 10-5

Ex: 4,3179 x 1012 x 3,6 x 10-19 = 1,6 x 10-6

Ex: 34,60 / 2,46287 = 14,05

A potência de 10 não influencia em nada o número de algarismos significativos que

devem ser mantidos.

Erros na análise quantitativa:

Um exemplo do efeito dos erros na análise quantitativa pode ser ilustrado pela Figura 1:

Figura 1 - Resultados para a determinação de ferro (III)

TODAS AS MEDIDAS SÃO INFLUENCIADAS POR ERROS. ELAS NUNCA SÃO

COMPLETAMENTE ELIMINADAS MAS SIM MINIMIZADAS.

A primeira pergunta a ser respondida antes de começar uma análise é “QUAL É O

ERRO MÁXIMO QUE EU POSSO TOLERAR NO RESULTADO?”

A resposta para essa pergunta determina o quanto tempo você gastará na análise.

Definições:

MÉDIA:

N

x

x

N

ii

1

xi = valor individual

N = número de replicatas

PRECISÃO: concordância entre duas ou mais medidas realizadas exatamente do

mesmo jeito.

DESVIO PADRÃO:

1

1

2

N

xx

s

N

ii

VARIÂNCIA:

DESVIO PADRÃO RELATIVO:

COEFICIENTE DE VARIAÇÃO:

EXATIDÃO: proximidade do resultado do valor verdadeiro

1000xx

sRSD

%100xx

sCV

1

1

2

2

N

xx

s

N

ii

Exatidão e precisão:

Tipos de erros:

O ato de medir é, em essência, um ato de comparar, e essa comparação envolve erros

de diversas origens (dos instrumentos, do operador, do processo de medida etc.).

Quando se pretende medir o valor de uma grandeza, pode-se realizar apenas uma ou

várias medidas repetidas, dependendo das condições experimentais particulares ou

ainda da postura adotada frente ao experimento.

Todos os tipos de erro podem ser expressos como "erro absoluto" ou como "erro

relativo".

Tipos de erros:

Erro absoluto:

Erro relativo:

verdadeiroixxE

%100xx

xxE

verdadeiro

verdadeiroi

Analista 1: alta precisão e alta exatidão

Analista 2: baixa precisão e boa exatidão

Analista 3: excelente precisão e péssima exatidão

Analista 4: baixa precisão e baixa exatidão

ERROS GROSSEIROS: são facilmente reconhecidos. Eles são erros tão sérios que não

deixam alternativas a não ser refazer todo o experimento.

Exemplos incluem a quebra do equipamento, contaminação de reagentes, erros na

adição de alíquotas, etc.

ERROS RANDÔMICOS OU ALEATÓRIOS (indeterminados): estes erros se

manifestam na forma de pequenas variações nas medidas de uma amostra, feitas em

sucessão pelo mesmo analista, com todas as precauções necessárias e em condições

de análise praticamente idênticas. Não podem ser controlados.

ERROS SISTEMÁTICOS (determinados) : são erros em que se pode conhecer a sua

fonte. São independentes das leis do acaso e produzem-se sempre no mesmo sentido,

podendo ser anulados ou corrigidos.

Exemplos incluem balança mal calibrada, deficiência de funcionamento, erros de

operação, etc.

Como reduzir os erros sistemáticos?

•Calibração de instrumentos e sua correção

•Determinação do branco de uma amostra: consiste na execução de uma análise nas

mesmas condições experimentais usadas na análise da amostra, porém na ausência do

constituinte de interesse.

•Análise de uma substância padrão nas mesmas condições experimentais usadas na

análise da amostra.

•Uso de métodos de análise independentes

•Determinações paralelas

•Adição de padrão: adiciona-se à amostra uma quantidade conhecida de constituinte a

ser determinado.

•Padrões internos: adição de uma quantidade fixa de um material de referência a uma

série de amostras de concentrações conhecidas da substância a ser determinada.

Distribuição dos erros aleatórios

•A dispersão dos resultados de um conjunto de medidas pode ser estimada pelo desvio

padrão.

•Quando se faz um número elevado de leituras, pelo menos 50, de uma variável

contínua, por exemplo, o ponto final de uma titulação, os resultados se distribuem, em

geral de forma aproximadamente simétrica em torno da média.

68,26% - um intervalo

95,44% - 2 intervalos

99,72% - 3 intervalos

Distribuição Normal (ou Gaussiana)

média

Limite de confiança

Confiabilidade dos resultados

Um ponto muito importante é poder rejeitar certos resultados de forma sensata.

Aplicação do teste Q:

valormenorvalormaior

próximomaisvalorsuspeitovalorQ

Intervalo de confiança

Permite estimar a faixa na qual a média verdadeira poderá ser encontrada.

Aplicação tabela distribuição de t:

n

tsx

Limite de confiança de

para n análises repetidas

Exercício

A análise de uma amostra de calcita gerou porcentagens de CaO de 55,95; 56,00;

56,04; 56,08 e 56,23. O último valor parece anômalo; deve ser mantido ou rejeitado

em nível de confiança de 95%?

valormenorvalormaior

próximomaisvalorsuspeitovalorQ

Intervalo de confiança

Permite estimar a faixa na qual a média verdadeira poderá ser encontrada.

Aplicação tabela distribuição de t:

n

tsx

Limite de confiança de

para n análises repetidas

Exercício

Um químico obteve os seguintes dados para o teor alcoólico de uma amostra de

sangue: % de C2H5OH: 0,084; 0,089 e 0,079. Calcule o intervalo de confiança a

95%, sabendo que o desvio padrão do método é 0,005%.

Grau de liberdade é, em estatística, o número de determinações independentes (dimensão da amostra)

menos o número de parâmetros estatísticos a serem avaliados na população.

Comparação de resultados

A comparação dos valores de um conjunto de resultados com o valor verdadeiro ou

com os valores de outros conjuntos de resultados permite verificar a exatidão e

precisão do método analítico, ou se ele é melhor do que outro.

Existem 2 métodos muito usados para comparar resultados:

-teste t de Student

-teste da razão de variâncias (teste F)

Estes métodos utilizam o número de GRAUS DE LIBERDADE, em termos

estatísticos, o número de determinações independentes (dimensão da amostra)

menos o número de parâmetros estatísticos a serem avaliados na população.

Teste t de Student

-Usado para amostras pequenas

-Comparar a média de uma série de resultados com um valor de referência e

exprimir o nível de confiança associado ao significado de comparação

-Também usado para testar a diferença entre as médias de dois conjuntos de

resultados

s

nxt

)( = valor verdadeiro

Probabilidade do valor de t estar dentro de certos limites

Caso 1 – Comparando um resultado medido com um valor conhecido

Uma amostra de carvão foi adquirida como sendo um Material Padrão de Referência

certificado pelo Instituto Nacional de Padrões e Tecnologia (NIST) dos Estados Unidos,

contendo 3,18%pp de enxofre. Está se testando um novo método analítico para verificar

se o valor conhecido pode ser produzido ou não. Os valores medidos são 3,29; 3,22;

3,30 e 3,23%pp de enxofre, dando uma média de 3,26 e um desvio-padrão de 0,04. Esta

resposta concorda com o valor fornecido pelo NIST?

n

tsxμ

Valores necessários: t (Tabela t student), média (valor dado), desvio-padrão (valor dado) e

número de medidas (valor dado)

Lembrar que graus de liberdade nesse caso = n - 1

Caso 1 – Comparando um resultado medido com um valor conhecido

Uma amostra de carvão foi adquirida como sendo um Material Padrão de Referência

certificado pelo Instituto Nacional de Padrões e Tecnologia (NIST) dos Estados Unidos,

contendo 3,18%pp de enxofre. Está se testando um novo método analítico para verificar

se o valor conhecido pode ser produzido ou não. Os valores medidos são 3,29; 3,22;

3,30 e 3,23%pp de enxofre, dando uma média de 3,26 e um desvio-padrão de 0,04. Esta

resposta concorda com o valor fornecido pelo NIST?

0602634

0401823263 ,,

),)(,(,

n

tsxμ

Intervalo de confiança de 95% = 3,20 até 3,32%pp

O valor conhecido está pouco fora do intervalo de confiança de 95% Há menos do

que uma chance de 5% de que nosso método concorde com a resposta conhecida.

Caso 2 - Comparação entre as médias de duas amostragens

Quando um novo método analítico está sendo desenvolvido é comum comparar-se a

média e precisão do novo método com as do método de referência.

21

2121

nn

nn

s

xxt

p

2

1

2

1

médiax

médiax

sP = desvio padrão agrupado

2

)1()1(

21

2

22

2

11

nn

snsns

p

É necessário que não haja uma diferença significativa entre as precisões dos

métodos aplica o teste F antes de usar o teste t.

t calculado > t tabelado (95%)

diferença significativa resultados são

considerados diferentes

Teste F

-Usado para comparar as precisões de dois grupos de dados, como, por exemplo, os

resultados de dois métodos de análise diferentes ou resultados de dois laboratórios

diferentes.

-O maior valor de s é sempre colocado no numerador, o que faz com que o valor de F seja

sempre maior do que a unidade.

2

2

B

A

s

sF

F calculado > F tabelado a diferença é significativa

Caso 3 - Comparação diferenças individuais

-Usamos dois métodos diferentes para fazer medidas simples em várias amostras

diferentes.

-Os dois métodos fornecem a mesma resposta “dentro do erro experimental”?

Para cada amostra, ambos os resultados

são similares, porém não são idênticos.

Para verificar se existe uma diferença

significativa entre os dois métodos

realizaremos o teste t.

Caso 3 - Comparação diferenças individuais

-Usamos dois métodos diferentes para fazer medidas simples em várias amostras

diferentes.

-Os dois métodos fornecem a mesma resposta “dentro do erro experimental”?

1

)( 2

n

dds i

d

ns

dt

d

calculado

t tabelado = 2,228 há menos do que

95% de chance de que os dois resultados

sejam diferentes

Amostragem, padronização e calibração

Dimensão da amostra

Dimensão da amostra Tipo de análise

> 0,1 g Macro

0,01 a 0,1 g Semimicro

0,0001a 0,01 g Micro

<10-4 g Ultramicro

Tipos de constituintes

Nível do analito Tipo de constituinte

1 a 100% Majoritário

0,01% (100 ppm) a 1% Minoritário

1 ppb a 100 ppm Traço

< 1 ppb Ultratraço

Erros interlaboratoriais em função da concentração

Etapas envolvidas no processo de amostragem

Identificação da população da qual a amostra vai ser obtida

-Amostra líquida grande e heterogênea: água de um lago

-Amostra sólida grande e heterogênea: amostra de solo ou uma amostra de

minério

-Amostra de origem biológica: pedaço de tecido animal

Amostragem:

-Pequena fração representativa do material cuja composição se deseja determinar

-Composição deve refletir a composição média do todo

É a etapa mais difícil do processo analítico global e o fator determinante da

exatidão da análise

Coleta da amostra bruta que é representativa da população que está sendo

amostrada

Erros sistemáticos: eliminados com trabalho cuidadoso, uso adequado de padrões,

calibrações, brancos e materiais de referência.

Erros aleatórios podem ser mantidos em níveis aceitáveis, controlando as

variáveis que afetam as medições

Redução da amostra bruta a poucas centenas de grama de uma amostra

laboratorial homogênea, conveniente para análise.

AMOSTRAGEM

As 3 etapas

Objetivos do processo de amostragem

-Obter um valor médio que seja uma estimativa sem tendências da média da

população. Esse objetivo pode ser atingido apenas se todos os membros da

população tiverem uma probabilidade igual de estarem incluídos na amostra.

-Obter uma variância que seja uma estimativa sem erros sistemáticos da

variância da população, para que limites de confiança válidos para a média

possam ser encontrados e vários testes de hipóteses possam ser aplicados. Esse

objetivo pode ser alcançado apenas se toda amostra possível puder ser

igualmente coletada.

Ambos os objetivos requerem a obtenção de uma AMOSTRA ALEATÓRIA.

Incertezas na amostragem

Desvio padrão global para uma medida analítica:

222

mag sss sa = desvio padrão do processo de amostragem

sm = desvio padrão do método

Determinação do valor de sa:

-Retirada de uma amostra laboratorial (material bruto inicialmente coletado);

-Divisão dessa amostra em 6 partes iguais;

-Análises em replicata para cada uma das 6 partes.

Determinação do valor de sm:

-Diferentes porções da amostra laboratorial

Incertezas na amostragem

Desvio padrão global para uma medida analítica:

222

mag sss sa = desvio padrão do processo de amostragem

sm = desvio padrão do método

Youden sm < sa/3 melhorias adicionais associada à medida são infrutíferas

Se a incerteza da amostragem for muito elevada e não puder ser melhorada,

muitas vezes é interessante mudar para um método de análise menos preciso,

porém mais rápido, assim mais amostras podem ser analisadas em um dado

intervalo de tempo e com isso aumentar a precisão da medida analítica da

espécie de interesse.

Coleta da amostra bruta que é representativa da população que está sendo

amostrada

Idealmente, a amostra bruta é uma réplica em miniatura da massa inteira do

material a ser analisado. Deve corresponder ao todo do material em sua

composição química e, se composto por partículas, na distribuição do tamanho das

partículas.

Diretrizes:

1.Massa da porção amostrada não deve ser maior que a necessária;

2.Levar em consideração os fatores que determinam a massa da porção a ser

amostrada.

Quais são esses fatores?

Fatores que determinam a massa da porção a ser amostrada

1.Incerteza que pode ser tolerada entre a composição da amostra coletada frente a

amostra como um todo;

2.Grau de heterogeneidade do material;

3.Tamanho de partícula para a qual a heterogeneidade se inicia.

Sólidos: heterogeneidade em nível macroscópico

Dispõe-se de uma carroça contendo minério de chumbo constituído de partículas

esféricas com raio de 5 mm. Aproximadamente 4% das partículas são de galena,

têm densidade de 7,6 g cm-3 e contém 70% de chumbo. As partículas

remanescentes têm densidade de 3,5 g cm-3 e não contém ou contém muito pouco

chumbo.

Questão formulada: Quantas gramas de minério deveriam ser amostradas para

que a incerteza relativa da amostragem se mantivesse na ordem de 0,5%?

22

2)1(

P

PP

d

ddppN

r

BABA

N = número de partículas que devem ser amostradas

p = fração de partículas que contém chumbo

(1-p) = fração de partículas que não contém chumbo

dA = densidade do componente A, partículas de galena

dB = densidade do componente B, partículas que não são de galena

PA = porcentagem do analito do componente A

PB = porcentagem do analito do componente B

r = incerteza relativa de amostragem desejada

d = densidade média das partículas

P = porcentagem média do analito

(PA - PB) Grau de heterogeneidade da amostra

N é (1/r2)

N é (1/P2)

Se (PA - PB) aumenta então N aumenta

d = densidade média = (0,04 x 7,6) + (0,96 x 3,5) = 3,7 g cm-3

P = % média de Pb = (0,04 x 0,70 x 7,6 x 100) / 3,7 = 5,8%

N = 8,45 x 105 partículas

Massa = V x d = 8,45 x 105 x 4/3 r3 x 3,7 = 1,6 x 106 g = 1,6 toneladas

Redução da amostra bruta a poucas centenas de grama de uma amostra

laboratorial homogênea, conveniente para análise

Amostra laboratorial = 454 g

É necessário manter o número de 8,45x105 partículas

A que tamanho as partículas devem se reduzidas?

Passo 1: Calcular a massa de uma partícula

mpartícula = 454 / (8,45 x 105) = 5,37 x 10-4 g / partícula

Passo 2: Calcular o raio que as partículas devem possuir para preencher estes

requisitos. Usar densidade média e volume da partícula esférica.

r3 = m x 3/4d

r = 0,3 mm

amostra

peneira com dimensão de poro desejada

Partículas maiores são recolocadas no triturador para depois

passarem novamente pela peneira

Cuidados com contaminação da amostra: desgate e abrasão do material do

qual é constituído o triturador: ágata, aço....

Cuidados para que durante a trituração da amostra não ocorra

alteração de composição

1.Calor: perda de componentes voláteis e perda de água de cristalização

2.Trituração: diminuição do tamanho de partícula, aumento da área superficial

(aumento da reação com atmosfera) e aumento da água de absorção

Ex: Cerâmica na forma de pó fino absorve cerca de 0,6% de água por grama de

material

Secagem da amostra e determinação do teor de umidade

H2O (amostra) H2O (atmosfera)

A umidade da atmosfera dependerá da umidade relativa do ar e da

temperatura do local de armazenamento e análise.

UR = Pressão de vapor H2O atmosfera / Pressão de vapor em atm. sat. com ar

Teor de H2O aumenta se T diminui e UR aumenta

Pressão do vapor em atm. sat. com ar = 23,76 torr

Formas de água em sólidos

Água essencial

1. Água de cristalização: CaSO4.2H2O

2. Água de constituição: Ca(OH)2 (s) / aquecimento = CaO + H2O (g)

Água não essencial

• Água adsorvida

• Água “sorvida”: amido, proteínas, zeólitas, sílica gel, carvão

Água ocluída

Processos de eliminação de água

Aquecimento da amostra em forno convencional

Aquecimento da amostra em forno à vácuo

Aquecimento da amostra em forno de microondas

Determinação do teor de água

Pesagem

Karl Fisher

Amostragem de metais e ligas

As amostra de metais e ligas são obtidas por meio de limalhas, moagem ou

perfuração.

Pedaços de metais removidos da superfície não são representativos do interior

do sólido.

Parte interna também deve ser amostrada!!!

Pedaços serrados transversalmente.

Perfuração com brocas de lado a lado. Coleta do material interno para análise!!!

Amostragem de gases e líquidos industriais

Efetuar amostragem contínua!!!

Garantir que a amostra coletada represente uma fração constante do fluxo

Amostragem de gases e soluções homogêneas

A amostra laboratorial pode ser relativamente pequena, porque a

heterogeneidade se inicia em nível molecular!!!

Assim pequeno volume de amostra contém uma quantidade apreciável de

partículas!!!

O líquido ou gás a ser amostrado deve ser bem homogeneizado antes da

amostragem. Se o volume é grande o procedimento de homogeneização pode

ser eficiente.

Várias amostragens consecutivas pode ser mais eficiente.

Ex: Determinação de O2 dissolvido na água de um lago!!!

Padronização e calibração

Uma parte importante de todos os procedimentos analíticos é o processo de

calibração e padronização.

Calibração: determina a relação entre a resposta analítica e a concentração do

analito (uso de padrões químicos)

•Quase todos os métodos analíticos requerem algum tipo de calibração com

padrões químicos.

•Os métodos gravimétricos e alguns métodos coulométricos estão entre os

poucos métodos absolutos que não dependem da calibração com padrões

químicos.

Diversos tipos de procedimentos de calibração

Comparação com padrões

2 tipos:

-Comparação direta

-Procedimento de titulação

Comparação direta:

Comparação de uma propriedade do analito (ou o produto de uma reação com o

analito)

Ex: a cor produzida como resultado de uma reação química do analito x aquela

produzida pela reação de padrões

Titulações:

Analito reage com um reagente padronizado (titulante) em uma reação de

estequiometria conhecida

MÉTODOS DE CALIBRAÇÃO

Modos de calibração:

a) Calibração Pontual – determina-se o valor de uma constante K com um único

padrão, a qual expressa a relação entre a medida instrumental e a concentração do

analito de interesse. Esta hipótese deve ser testada experimentalmente.

b) Calibração Multipontual – calibração com mais de dois padrões.

*O método mais empregado consiste na calibração multipontual com até 5 níveis de

concentração, podendo apresentar uma relação linear (sensibilidade constante na faixa

de concentração de trabalho) ou não-linear (sensibilidade é função da concentração do

analito).

Para muitos tipos de análises químicas, a resposta para o procedimento analítico deve

ser avaliado para quantidades conhecidas de constituintes (chamados padrões), de

forma que a resposta para uma quantidade desconhecida possa ser interpretada.

1. Curva de calibração externa ou curva analítica

2. Curva de adição de padrão

3. Padrão interno

MÉTODOS DE CALIBRAÇÃO

AMOSTRA PADRÃO

É uma amostra de referência que contém o analito de interesse.

Padrão externo:

Amostra e padrão são injetados separadamente e a identificação do composto

desejado é feita através da comparação de alguma característica, por exemplo, em

cromatografia, tempo de retenção.

Padrão interno:

Adição de quantidade conhecida de elemento de referência nos padrões e na

amostra.

BRANCO

Os brancos indicam a interferência de outras espécies na amostra e os traços de

analito encontrados nos reagentes usados na preservação, preparação e análise.

Medidas frequentes de brancos também permitem detectar se analitos provenientes de

amostras previamente analisadas estão contaminando as novas análises, por estarem

aderidos aos recipientes ou aos instrumentos.

1.Branco do método

2.Branco para reagentes

3.Branco de campo

BRANCO

Branco de método: é uma amostra que contém todos os constituintes exceto o analito,

e deve ser usada durante todas as etapas do procedimento analítico.

Branco para reagente: é semelhante ao branco de método, mas ele não foi submetido a

todos os procedimentos de preparo de amostra.

Branco de campo: é semelhante a um branco de método, mas ele foi exposto ao local

de amostragem.

Obs.: O branco de método é a estimativa mais completa da contribuição do branco para

a resposta analítica, sendo que sua resposta deve ser subtraída da resposta de uma

amostra real antes de calcularmos a quantidade de analito na amostra.

Determinação de ácido ascórbico (vitamina C) em suco de laranja:

Branco: sinal = 0,10 unidade

Padrão: [AA] = 2 μmol L-1; sinal = 2,39 unidade

sinal = K [AA]padrão

(2,39-0,10) = K (2)

K = 1,145 unidade L mol-1

Amostra: [AA] = x μmol L-1; sinal = 6,11 unidade

sinal = K [AA]padrão

(6,11-0,10) = 1,145 [AA]

[AA] = 5,24 μmol L-1

CALIBRAÇÃO PONTUAL

Correlação e regressão

CONCENTRAÇÃO DO PADRÃO

SINAL

Quando se usam métodos instrumentais, é necessário calibrar, freqüentemente, os

instrumentos usando uma série de amostras (padrões), cada uma em uma concentração

diferente e conhecida do analito CURVA DE CALIBRAÇÃO EXTERNA

Dois procedimentos estatísticos devem ser aplicados à curva de calibração:

a) Verificar se o gráfico é linear ou não

b) Encontrar a melhor reta (ou melhor curva) que passa pelos pontos.

Coeficiente de correlação

Para verificar se existe uma relação linear entre duas variáveis x1 e y1, usa-se o

coeficiente de correlação de Pearson, r:

n = número de pontos experimentais

O valor de r deve estar entre -1 e +1.

2

1

2

1

2

1

2

1

1111

yynxxn

yxyxnr

r = +1,0

x

y

r = 0,0

x

y

r = -1,0

x

y

r = 0,0

x

y

Quanto mais próximo de ±1, maior a probabilidade de que exista uma relação linear

entre as variáveis x e y.

Valores de r que tendem a zero indicam que x e y não estão linearmente

correlacionados.

Regressão linear

Determinar a melhor reta que passa pelos pontos experimentais REGRESSÃO

LINEAR OU MÉTODO DOS MÍNIMOS QUADRADOS.

A equação de uma linha reta é: y = a + bx

y = variável dependente

x = variável independente

b = inclinação da reta

a = intersecção no eixo dos y

2

1

2

1

1111

xxn

yxyxnb

xbya

1

1

xdevaloresostodosdemédiax

ydevaloresostodosdemédiay

Pela curva de calibração

a = intersecção

b = coeficiente angular = y/x

0,0 0,1 0,2 0,3 0,4 0,50

5

10

15

20

25

Intersecçãox

y

y

x

Cálculo x computador

Concentração 0,00 0,10 0,20 0,30 0,40

Sinal 0,00 5,20 9,90 15,30 19,10

x1 y1 x12 y1

2 x1y1

0,00 0,00 0,00 0,00 0,00

0,10 5,20 0,01 27,04 0,52

0,20 9,90 0,04 98,01 1,98

0,30 15,30 0,09 234,09 4,59

0,40 19,10 0,16 364,81 7,64

x1=1,00 y1= 49,5 x12 = 0,30 y1

2 =723,95 x1y1 =14,73

Equação y = 0,24 + 48,3x e r = 0,9987

2

1

2

1

2

1

2

1

1111

yynxxn

yxyxnr

Cálculo x computador

0,0 0,1 0,2 0,3 0,4 0,50

5

10

15

20

25

Sin

al

Concentração Computador

Equação y = 0,24 + 48,3x e r = 0,9987

Erros na inclinação e intersecção da reta

2/

^

1/nyyS

xyregressãoderetadapartiravaloresy

^

2

1/)(/ xxSS

xyb

2

1

2

1/)(/ xxnxSS

xya

Desvio padrão da inclinação:

Desvio padrão da intersecção:

RESULTADO: b ± ts e a ± ts

Erro na estimativa da concentração

2/1

22

2

0/ 11

xxb

yy

nb

SS

xy

xc

Exemplo

Calcule os desvios padrões da inclinação e da intersecção da reta y = 48,3x + 0,24 para

intervalo de confiança a 95% .

Concentração (g mL-1) 0,00 0,10 0,20 0,30 0,40

Resposta 0,00 5,20 9,90 15,30 19,10

2/

^

1/nyyS

xy 2

1/)(/ xxSS

xyb

2

1

2

1/)(/ xxnxSS

xya

Desvio padrão da inclinação:

Desvio padrão da intersecção:

•O sucesso do método da curva de calibração é muito dependente da exatidão com

que são conhecidas as concentrações dos padrões e quão próxima a matriz dos

padrões está da matriz das amostras a serem analisadas.

•Infelizmente, estabelecer esta similaridade de matriz entre amostras complexas e

padrões geralmente é difícil ou impossível de ser feita, e os efeitos da matriz levam a

erros de interferência.

•Para minimizar os efeitos da matriz, normalmente é necessário separar o analito do

interferente antes de obter a resposta medida do instrumento.

Método da adição de padrão

-Adições de quantidades conhecidas do analito na amostra (spiking)

-Elimina ou minimiza interferências introduzidas pela matriz de amostras complexas

-A matriz permanece quase inalterada após cada adição, a única diferença é

concentração do analito.

t

xxss

V

ckVckVS

S = resposta instrumental

k = constante de proporcionalidade

Vs = volume da solução padrão

cs = concentração da solução padrão

Vx = volume da solução problema

cx = concentração da solução problema

Vt = volume total

A equação da reta é: y = a + bx

y = resposta do instrumento

x = concentração da solução padrão

b = inclinação da reta

a = intersecção no eixo dos y

t

s

V

kVb

t

xx

V

ckVa

Determinação por extrapolação

2/1

2

1

2

2

/ 1

xxb

y

nb

SS

xy

xE

Desvio padrão do valor extrapolado

Determinação da concentração por extrapolação

0

t

xxss

V

ckVckVS

x

ss

x V

cVc 0

)(

Via gráfico

Exemplo

Alíquotas de 10,00 mL de uma amostra de água natural foram pipetadas em frascos

volumétricos de 50,00 mL. Exatamente 0,00, 5,00, 10,00, 15,00 e 20,00 mL de uma

solução padrão contendo 11,10 ppm de Fe3+ foram adicionados a cada um, seguidos

por um excesso de íons tiocianato para formar o complexo Fe(SCN)2+ e posterior

diluição para o volume final. A resposta para cada uma das cinco soluções, medida com

um colorímetro foi determinada como sendo 0,240, 0,437, 0,621, 0,809 e 1,009,

respectivamente. Qual era a concentração de Fe3+ na amostra de água?

0 5 10 15 20 250,0

0,2

0,4

0,6

0,8

1,0

1,2

S, ab

so

rbân

cia

Vs (mL)

2

1

2

1

1111

xxn

yxyxnb xbya

x1 y1 x12 y1

2 x1y1

0,00 0,240 0,00 0,0576 0,00

1,11 0,437 1,23 0,1910 0,48

2,22 0,621 4,93 0,3856 1,38

3,33 0,809 11,09 0,6545 2,69

4,44 1,009 19,71 1,0181 4,48

x1=11,1 y1= 3,116 x12 = 36,96 y1

2 = 2,3068 x1y1 = 9,03

2

1

2

1

1111

xxn

yxyxnb xbya

x1 y1 x12 y1

2 x1y1

0,00 0,240 0,00 0,0576 0,00

1,11 0,437 1,23 0,1910 0,48

2,22 0,621 4,93 0,3856 1,38

3,33 0,809 11,09 0,6545 2,69

4,44 1,009 19,71 1,0181 4,48

x1=11,1 y1= 3,116 x12 = 36,96 y1

2 = 2,3068 x1y1 = 9,03

Equação S = 0,24 + 0,171 [Fe3+]

2

1

2

1

1111

xxn

yxyxnb xbya

Determinação da concentração por extrapolação

0 = 0,24 + 0,171 [Fe3+] [Fe3+] = 1,404 ppm

10 mL de amostra em um balão de 50,00 mL

[Fe3+] = 7,018 ppm

Método do padrão interno

-Adição de quantidade conhecida de elemento de referência nos padrões e na amostra

-Corrige variações no sinal analítico devido a mudanças nas condições de análise.

Rp = kpCpV

Ra = kaCaV

R = resposta

C = concentração

V = volume utilizado

k = constante de proporcionalidade

p = padrão interno

a = analito

aa

a

pp

p

Ck

R

Ck

R

Uma solução padrão contendo iodoacetona 6,3x10-8 mol L-1 e p-diclorobenzeno 2,0x10-7

mol L-1 (um padrão interno) deu áreas de pico de 395 e 787, respectivamente; 3,00 mL

de uma solução desconhecida de iodoacetona foram tratados com 0,100 mL de p-

diclorobenzeno 1,6x10-5 mol L-1 e a mistura foi diluída para 10,00 mL. As áreas dos picos

foram de 633 e 520 para a iodoacetona e p-diclorobenzeno, respectivamente. Encontre

a concentração de iodoacetona nos 3,00 mL da solução desconhecida original.

Seleção de um método analítico

Definindo o problema:

1. Que exatidão é necessária? TEMPO GASTO

2. Qual é a quantidade de amostra disponível? SENSIBILIDADE

3. Qual é o intervalo de concentração do analito? AMPLITUDE DE INTERVALO

4. Que componentes da amostra causarão interferência? SELETIVIDADE

5. Quais são as propriedades físicas e químicas da matriz da amostra?

ALGUNS MÉTODOS SÃO APLICADOS A SOLUÇÕES AQUOSAS E OUTROS

MAIS APROPRIADOS PARA ANÁLISE DIRETA DE SÓLIDOS

6. Quantas amostras serão analisadas? PONTO DE VISTA ECONÔMICO

Outras características

• Velocidade

• Facilidade e conveniência

• Habilidade requerida do operador

• Custo e disponibilidade do equipamento

• Custo por amostra

Parâmetros de avaliação dos métodos

Faixa dinâmica linear

Para qualquer método quantitativo, existe uma faixa de concentrações do analito

ou valores da propriedade no qual o método pode ser aplicado.

No limite inferior da faixa de concentração, os fatores limitantes são os valores

dos limites de detecção e de quantificação. No limite superior, os fatores limitantes

dependem do sistema de resposta do equipamento de medição.

Dentro da faixa de trabalho pode existir uma faixa de resposta linear e dentro

desta, a resposta do sinal terá uma relação linear com o analito ou valor da

propriedade.

A faixa linear de trabalho de um método de ensaio é o intervalo entre os níveis

inferior e superior de concentração do analito no qual foi demonstrado ser possível

a determinação com a precisão, exatidão e linearidade exigidas, sob as condições

especificadas para o ensaio.

Sensibilidade de calibração

-É uma medida de sua habilidade em discriminar entre pequenas diferenças na

concentração de um analito.

-Dois fatores limitam a sensibilidade: a inclinação da curva de calibração e a

reprodutibilidade ou precisão do dispositivo de medida.

-Para dois métodos que tenham a mesma precisão, aquele que tem a curva de

calibração mais inclinada será o mais sensível.

-Definição: INCLINAÇÃO DA CURVA DE CALIBRAÇÃO A UMA DADA

CONCENTRAÇÃO DE INTERESSE (m).

Sensibilidade analítica: = m/sS

m = inclinação da curva de calibração

sS = desvio padrão da medida

0,0 0,1 0,2 0,3 0,4 0,50

5

10

15

20

25

m

y

x

brbr

mksSS

calibração de curva da inclinação m

detecção de limite LD

branco do medidas das padrão desvio s

3constantek

branco do médiosinalS

eldistinguív mínimo analíticosinalS

br

br

m

m

s

m

SSLD br

brm

3

Limite de detecção

-Pode ser definido como a concentração mais baixa de um analito que pode ser

distinguida com confiança razoável do branco operacional (uma amostra que contém

o analito em concentração zero)

-Este limite depende da razão entre a magnitude do sinal analítico e o tamanho das

flutuações estatísticas no sinal do branco.

Sinal < LD

Espécie não detectada ao limite de

detecção da concentração x,

porém há presença de sinal

analítico não presente no branco.

Limite de quantificação

-É a menor concentração do analito que pode ser determinada com um nível

aceitável de precisão e veracidade.

-Pode ser considerado como sendo a concentração do analito correspondente

ao valor da média do branco mais 5, 6 ou 10 desvios padrão.

Sinal < LQ

Espécie não detectada ao limite de

determinação ou quantificação da

concentração x, porém há presença

de sinal analítico não presente no

branco.

O cálculo do desvio padrão do branco pode ser feito com base na variação das

medidas do branco analítico, da linha de base ou de um padrão de concentração

muito baixa da(s) espécie(s) analisada(s). A escolha depende da técnica e/ou

instrumentação analítica, sendo função do parâmetro que está sendo medido.

Especificidade e seletividade

-A especificidade e a seletividade estão relacionadas ao evento da detecção.

-Um método que produz resposta para apenas um analito é chamado

específico e respostas para vários analitos, mas que pode distinguir a resposta

de um analito da de outros, é chamado seletivo (livre de interferência).

Recuperação ou fortificação:

-Consiste na adição de uma quantidade conhecida de analito à amostra para testar se a

resposta da amostra corresponde ao esperado a partir da curva de calibração. As

amostras fortificadas são analisadas da mesma forma que as desconhecidas.

-Deve-se adicionar pequenos volumes de um padrão concentrado para evitar mudança

significativa no volume de amostra.

Exemplo: Sabe-se que em uma amostra desconhecida existem 10,0 μg de um analito por

litro. Uma adição intencional de 5,0 μg L-1 foi feita numa porção idêntica da amostra

desconhecida. A análise da amostra modificada forneceu uma concentração de 14,6 μg L-

1. Determine o percentual de recuperação da substância intencionalmente adicionada.

100% xC

CCorecuperaçã

adicionada

afortificadnãoamostraafortificadamostra

Repetibilidade ou repetitividade:

Máxima diferença aceitável entre duas repetições, vale dizer dois resultados

independentes, do mesmo ensaio, no mesmo laboratório e sob as mesmas condições.

a) Mesma amostra;

b) Mesmo analista;

c) Mesmo equipamento;

d) Mesmo momento;

e) Mesmo ajuste;

f) Mesma calibração

Reprodutibilidade:

Máxima diferença aceitável entre dois resultados individuais para um mesmo processo e

com demais condições como especificado.

a) Amostras diferentes do mesmo ponto amostral, ou

b) Diferentes analistas, ou

c) Diferentes equipamentos, ou

d) Diferentes técnicas, ou

e) Diferentes calibrações, ou ajustes.

Exatidão:

1.Testes de calibração: a cada dez análises realizadas um padrão de concentração

conhecida e diferentes dos usados para construir a curva de calibração deve ser

analisado.

2. Recuperação da substância fortificada.

3.Amostra de controle de qualidade: são medidas do controle de qualidade que ajuda a

eliminar vícios introduzidos pelo analista, que sabe a concentração das amostras de

verificação de calibração. Amostras de composição conhecida são fornecidas ao analista

como se fossem desconhecida.

4.Brancos.

Precisão:

1.Amostras repetidas (repetibilidade).

2.Porções repetidas da mesma amostra (reprodutibilidade).

Planejamento fatorial

Conhecer como os diferentes parâmetros experimentais afetam o resultado do

experimento (ou análise).

Ex: Reação química – rendimento – temperatura e catalisador (tipo)

Resposta (Rendimento)

Fatores (Temperatura e catalisador)

Sistema

Fator 1

Fator 2

Fator k

Resposta 1

Resposta 2

Resposta k

Benício de Barros Neto et al. ,Como fazer experimentos, 4a ed.

Planejamento fatorial

O sistema atua como função – desconhecida, em princípio, senão precisaríamos de

experimentos – que opera sobre as variáveis de entrada (fatores) e produz como saída

as respostas observadas.

O objetivo da pessoa que realiza os experimentos é descobrir essa função, ou pelo

menos obter uma aproximação satisfatória para ela.

Com esse conhecimento, ela poderá entender melhor a natureza da reação em estudo,

e assim escolher as melhores condições de operação do sistema.

Benício de Barros Neto et al. ,Como fazer experimentos, 4a ed.

Planejamento fatorial

Decidir quais são os fatores e as respostas de interesse.

Fatores: variáveis que o experimentador tem condições de controlar. Podem ser

qualitativos (catalisador) ou quantitativos (temperatura).

Respostas: variáveis de saída do sistema e que serão ou não afetadas por

modificações provocadas nos fatores.

Próximo passo: “O OBJETIVO”

Benício de Barros Neto et al. ,Como fazer experimentos, 4a ed.

Planejamento fatorial

“O OBJETIVO”

Nosso químico pode estar só querendo saber se trocar o catalisador por um mais

barato não vai diminuir o rendimento da reação;

Ou então, pode querer descobrir que temperatura deve ser usada para se obter o

rendimento máximo;

Ou ainda, até quando ele pode variar os fatores sem alterar o rendimento ou a

qualidade do produto final, e assim por diante.

Benício de Barros Neto et al. ,Como fazer experimentos, 4a ed.

Planejamento fatorial

O planejamento de experimentos, isto é, a especificação detalhada de todas as

operações experimentais que devem ser realizadas, vai depender do objetivo particular

que ele quiser atingir. Objetivos diferentes precisarão de planejamentos diferentes.

Pense num experimento, de preferência numa área de seu interesse, cuja resposta

seja quantitativa. Que fatores você gostaria de examinar para determinar a possível

influência deles sobre a resposta?

Benício de Barros Neto et al. ,Como fazer experimentos, 4a ed.

Calibração multivariada

A calibração multivariada é uma área do que hoje se entende como quimiometria, que

por sua vez, já é considerada uma parte da química analítica.

O termo quimiometria (do inglês chemometrics) foi proposto no final dos anos 70, para

descrever as técnicas e operações associadas com a manipulação matemática e

interpretação de dados químicos.

Com o avanço da instrumentação e automação dentro dos laboratórios de análise, uma

enorme quantidade dados, tabelas e gráficos começaram a ser gerados muito

rapidamente. A identificação, classificação e interpretação desses dados podem ser

fatores limitantes na eficiência e efetiva operação das análises, principalmente sem a

utilização de um adequado tratamento dos dados.

Calibração multivariada

A calibração multivariada é empregada de forma bastante efetiva justamente nos casos

onde existe o problema da superposição de sinais analíticos e para determinações

simultâneas. Um modelo é produzido, baseado em todas as informações disponíveis,

que consegue fazer uma relação entre todo o sinal analítico e a propriedade de

interesse (concentração em muitos casos).

Aplicações

Aplicações