19
Roberto Werneck, Outubro 2017 Produtos químicos renováveis sob a visão da química verde

Produtos químicos renováveis sob a visão da química verde · Roberto Werneck, Outubro 2017 Produtos químicos renováveis sob a visão da química verde

  • Upload
    haminh

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

Roberto Werneck,Outubro 2017

Produtos químicos renováveis sob a visão daquímica verde

AGENDA

Braskem: quick introduction

Case studies in Green chemistry

Renewables and atom economy

RAW MATERIALS CHEMICALS PLASTIC RESINS FINISHED PRODUCTS

BRASKEM IN THE CONTEXT OF THE CHEMICAL INDUSTRY

NAPHTHANATURAL GASETHANOLSALT

ETHYLENEGREEN ETHYLENEPROPYLENECHLORINE/ SODA

PEGREEN PEPPPVC

COMPETITIVE INTEGRATION

BRAZIL (KTA)CHEMICALS: 3,752PE: 3,025PP: 1,975PVC: 710

USA (KTA)PP: 1,425

GERMANY (KTA)PP: 545

INDUSTRIAL PLANTPROJECTUNDER CONSTRUCTIONMEXICO (KTA)

PE: 1,050

BAHIABRASIL

1 CRACKER4 PE1 PP1 CHLORINE 1 PVC

ALAGOASBRASIL

1 CHLORINE2 PVC

RIO DE JANEIROBRASIL

1 CRACKER 1 PE 1 PP

RIO GRANDE DO SULBRASIL

1 GREEN ETHYLENE2 CRACKERS5 PE 2 PP

SÃO PAULOBRASIL

1 CRACKER2 PE2 PP1 SPECIALTY CHEM

PENNSYLVANIAUNITED STATES

1 PP

WEST VIRGINIAUNITED STATES

1 PP

NORDRHEIN-WESTFALENDEUTSCHLAND

1 PP

SACHSEN-ANHALTDEUTSCHLAND

1 PP

TEXASUNITED STATES

3 PP (+1)1 PE UTEC

VERACRUZMEXICO

1 CRACKER3 PE

BRASKEM IN THE CONTEXT OF THE CHEMICAL INDUSTRY

Life cycle analysis

CO2 captured by sugar cane

Ethanol mills produce renewable ethanol and power

Packaging and consumer goods made with renewable PE

100%recyclable

Carbon capture(Cradle to Braskem’s gate):

1t

of PE I’m green™

3.08tCO2.eq

captures

Braskem produces renewable ethylene and PE

PE

14C12C+13C

14C12C+13C

0,00000000012%99,99999999988%

0,00000000000%100,00000000000%

Composição isotópica Composição isotópica

Ethanol

Dehydration

Purification

Ethylene(polymer grade)

Sugar cane

Naphtha/ Ethane

Steam cracking

Purification

Ethylene(polymer grade)

Oil/ gas

PE

CONVENTIONAL PE vs  RENEWABLE PE

AGENDA

Braskem: quick introduction

Case studies in Green chemistry

Renewables and atom economy

Innovative catalyst

CASE STUDY – NEW GRADES OF I’m green™ POLYETHYLENE

Polymer plant improvements

Richer product portfolio

• internal development + vendor technology• pilot scale testing• industrial scale validation• scale‐up of catalyst production

• optimal processing conditions• energy integration

• new grades with existing cliente demand• high performance PE

CASE STUDY – NEW GRADE OF I’m green™ POLYETHYLENE

THE 12 PRINCIPLES OF GREEN CHEMISTRY

1 Prevention

2 Atom economy

3 Less hazardous chemical synthesis

4 Designing safer chemicals

5 Safer solventes and auxiliaries

6 Design for energy efficiency

7 Use of renewable feedstocks

8 Reduce derivatives

9 Catalysis

10 Design for degradation NOT APPLICABLE

11 Real‐time analysis for pollution prevention

12 Inherent safer chemistry for accident prevention

• less hydrogenation, better co‐monomer incorporation• less impurities, less purge

• raw materials are flammable

• PE is safe and non‐toxic

• no solventes are used

• no major changes to already eficiente plant• I’m green™ PE is made from renewable ethylene• new grades = more throughput

• no derivatives, straightforward reactions

• no derivatives, straightforward reactions

• recyclable product, circular economy

• online instrumentation and analyzers

• PE is safe and non‐toxic• raw materials are flammable

• all atoms used in polymerization

Preliminary, qualitative assessment intended only as input for an external evaluation which is still in progress

OTHER CASE STUDIES

1. PreventionPrevent waste rather than treat or clean up waste

2. Atom EconomyMaximize incorporation of all materials into the final product.

3. Less Hazardous Chemical Syntheses

4. Designing Safer Chemicals 5. Safer Solvents and AuxiliariesAvoid auxiliary substances (e.g., solvents, separation agents, etc.)

6. Design for Energy EfficiencyIf possible, at ambient temperature and pressure

7. Use of Renewable Feedstocks 8. Reduce DerivativesAvoid unnecessary derivatization

9. Catalysis 10. Design for DegradationChemical products should be designed not to persist in the environment.

N/A N/A N/A

11. Real-time analysis for PollutionPrevention

12. Inherently Safer Chemistry for Accident Prevention

 

Preliminary, qualitative assessment intended only as input for an external evaluation which is still in progress

Printing the future

RENEWABLES AT BRASKEM

PRINTING THE FUTURE

Earth

International Space Station

http://www.braskem.com.br/imprimindoofuturo

PRINTING THE FUTURE

IMPRIMINDO O FUTUROPRINTING THE FUTURE

AGENDA

Braskem: quick introduction

Case studies in Green chemistry

Renewables and atom economy

ATOM ECONOMY IN NAPHTHA STEAM CRACKING

CH4

H2

CH4

H2

H2

H2

Naphtha

Steam cracking prod

ucts

Illustrative only, using a model compound (and some of the potential cracked products). The goal is not to represent any specific molecule, but instead to show the complexity of the chemical system.

Naphtha

ATOM ECONOMY IN NAPHTHA CRACKING

CH4

CH4 CH4 CH4

H2

H2

H2 H2 H2

CH4 CH4 CH4

CH4 CH4 CH4

CH4

H2

Cracking products

Illustrative only, using a model compound (and some of the potential cracked products). The goal is not to represent any specific molecule, but instead to show the complexity of the chemical system.

ATOM ECONOMY – RENEWABLE PE

6 CO2

6 H2O6 O2

2 C2H4 2/n (C2H4)n

2 C2H6O 2 C2H4 2 H2O

2 C2H6O 2 CO2

4 CO2

4 H2O 2/n (C2H4)n

6 O2

2n CO2

2n H2O 1 (C2H4)n

3n O2

3.14t CO2

1.28t H2O 1t (C2H4)n

3.42t O2

Illustrative only, does not include impurities, side reactions and other forms of carbono loss..

Rio, October 2017

Thanks!

Faber CastellMaterial escolarEstojo para lápis-de-cor

Coca ColaAlimentosEmbalagem Dell Vallle

WickboldAlimentosPão Integral

IpirangaAutomotivaIpiranga F1 Master Performance

EletroluxEletrodomésticosEcologic

MSASegurançaV-Gard