53
DISCIPLINA: ELETRÔNICA BÁSICA E PROJETOS ELETRÔNICOS PROFESSOR: CLÓVIS ANTÔNIO PETRY MÓDULO 01 – TURMA 132 FONTE LINEAR PROJETO E MONTAGEM ALUNOS: DANILO FELICIO JR. ALTIERES SCOTTI FLORIANÓPOLIS, JULHO DE 2007.

Relatorio Fonte Linear - professorpetry.com.brprofessorpetry.com.br/Bases_Dados/Relatorios_Alunos/Relatorio... · 3 INTRODUÇÃO O objetivo deste documento é mostrar a montagem e

Embed Size (px)

Citation preview

DISCIPLINA: ELETRÔNICA BÁSICA E PROJETOS ELETRÔNICOS

PROFESSOR: CLÓVIS ANTÔNIO PETRY MÓDULO 01 – TURMA 132

FONTE LINEAR PROJETO E MONTAGEM

ALUNOS: DANILO FELICIO JR. ALTIERES SCOTTI

FLORIANÓPOLIS, JULHO DE 2007.

2

SUMÁRIO

INTRODUÇÃO ............................................................................................................... 03

1. FONTE LINEAR ......................................................................................................... 04

1.1 ESCOLHA DO PROJETO .......................................................................................... 04

1.2 PROJETO E SIMULAÇÃO DA FONTE ................................................................... 05

1.2.1 PROJETO .................................................................................................................. 05

1.2.2 FUNCIONAMENTO DA FONTE ............................................................................. 07

1.2.3 SIMULAÇÃO ............................................................................................................. 08

2. MONTAGEM DA FONTE ......................................................................................... 15

2.1 COMPONENTES E MATERIAIS UTILIZADOS ..................................................... 15

2.2 MONTAGEM EM MATRIZ DE CONTATOS .......................................................... 20

2.2.1 TESTES DA FONTE EM MATRIZ DE CONTATOS ................................................ 22

2.3 MONTAGEM EM PLACA DE CIRCUITO IMPRESSO (PCI) ................................ 26

2.3.1 PROJETO E CONFECÇÃO DA PCI ........................................................................ 26

2.3.2 MONTAGEM DA FONTE NA PCI ........................................................................... 30

2.3.3 ACONDICIONAMENTO DA FONTE EM GABINETE ............................................ 32

2.3.4 TESTES FINAIS DA FONTE NA PCI ....................................................................... 33

2.4 CONSIDERAÇÕES FINAIS ...................................................................................... 39

CONCLUSÃO .................................................................................................................. 40

ANEXOS ........................................................................................................................... 41

3

INTRODUÇÃO

O objetivo deste documento é mostrar a montagem e o funcionamento de uma fonte linear com tensão de entrada de 220 V e saídas reguláveis fixas de 5 e 12 V, analisando, através de testes em laboratório, o comportamento teórico e prático da corrente e das tensões de saída, e apresentar os resultados obtidos.

A fonte linear montada é composta por um transformador 220V/15+15V com TAP central , um circuito retificador de onda completa com dois diodos e TAP central, filtro, regulador de tensão e outro filtro após a regulação, como mostra a Figura 01. Esta fonte apresenta na saída uma corrente de no máximo 1A e sua potência máxima é de 12W.

Figura 01 – Diagrama esquemático da fonte linear

De uma forma resumida o trafo abaixa a tensão alternada da rede de 220V para

15V, o retificador coloca o semi-ciclo negativo da tensão para o semi-ciclo positivo e o filtro atenua a ondulação (ripple) da tensão retificada. Um transistor atua como regulador série da tensão retificada e filtrada e após a regulação, um outro filtro elimina qualquer ondulação indesejável.

TRAFO RETIFICADOR FILTRO

REGULADOR FILTRO CARGA

4

1. FONTE LINEAR 1.1 ESCOLHA DO PROJETO

Inicialmente procuramos um projeto de uma fonte linear qualquer e o escolhido foi um projeto de uma edição especial da revista Saber Eletrônica sobre fontes de alimentação. O projeto escolhido pode ser visto na Figura 02.

Figura 02 – Projeto original da fonte linear

A fonte foi originalmente projetada para uma corrente máxima de 1A e tensão de

saída variável de 0 a 12V com um instrumento indicador analógico para mostrar a tensão de saída. Após estudarmos o projeto escolhido, decidimos alterar o projeto da fonte para apenas duas tensões fixas de 5V ou 12V na saída, ajustadas por uma chave seletora. Desse modo eliminamos do projeto inicial o potenciômetro (P1), o trimpot (P2) e o instrumento indicador analógico (M1). O diodo zener (Z1) foi substituído por um de 13V porque não achamos no comércio um zener de 12,6V e foi adicionado outro diodo zener de 5,6V. Todos os resistores do circuito original foram redimensionados segundo a nova configuração. Os diodos 1N4002 não foram encontrados no comércio e foram substituídos por diodos 1N4004, mas isso não altera nenhuma característica do circuito, haja vista que a única diferença entre os dois é a maior tolerância do diodo 1N4004 à picos repetitivos de tensão (ver Anexo 01). Foram incluídos ainda, dois leds para indicar a tensão de saída da fonte – 5 ou 12V – conforme a posição da chave seletora.

Verificada a viabilidade do projeto e a funcionalidade do mesmo junto ao profº Petry, iniciamos o projeto no simulador.

S1 – chave liga-desliga da fonte; F1 – Fusível de vidro de proteção; T1 – Transformador 220V / 15+15V 1A; D1 e D2 – diodos 1N4002; C1 – capacitor de 1000µF; C2 – capacitor de 10µF; C3 – capacitor de 100µF; R1 – resistor de 470Ωhms 1/8W; R2 – resistor de 2,2kΩhms 1/8W;

R3 - resistor de 10kΩhms; LED1 – led indicador de funcionamento da fonte; Z1 – diodo zener 12,6V 1W; Q1 – transistor TIP31; P1 – potenciômetro linear 4,7kΩhms; P2 – trimpot 47kΩhms; M1 – Instrumento de bobina móvel de 200µA a 1mA; J1 e J2 – Bornes vermelho e preto.

5

1.2 PROJETO E SIMULAÇÃO DA FONTE

Para alterarmos o projeto original e simularmos a fonte, utilizamos o software para projetos eletrônicos e simulação Proteus ISIS 6.9 SP5. 1.2.1 PROJETO

Transcrevemos o projeto com as alterações para o software, e podemos ver o projeto final da fonte linear na Figura 03:

6

Figura 03 – Projeto final da fonte linear

LEGENDA

V1 – tensão alternada da rede – 220V; ON-OFF – chave liga-desliga da fonte; F1 – Fusível de vidro de proteção; TRAFO – Transformador 220V / 15+15V 1A; D1 e D2 – diodos 1N4004; C1 – capacitor de 1000µF; C2 – capacitor de 10µF; C3 – capacitor de 100µF; R1 – resistor de 1kΩhm; R2 – resistor de 120Ωhms; R3 - resistor de 180Ωhms; R4 - resistor de 10kΩhm; R5 – resistor de 1kΩhm; R6 – resistor de 1kΩhm; LED1 – led indicador de funcionamento da fonte; LED2Z1 – led indicador de tensão de saída 12V; LED2Z2 – led indicador de tensão de saída 5V; Z1 – diodo zener 1N4743 13V; Z2 – diodo zener 1N4734 5,6V; H1A/H1B – chave seletora de tensão que também aciona os leds indicadores de tensão da saída; Q1 – transistor TIP31.

TRAFO

7

1.2.2 FUNCIONAMENTO DA FONTE

O transformador com TAP central abaixa a tensão alternada da rede (V1), fornecida pela concessionária de energia, de 220V para 15+15V também alternada e a chave ON-OFF liga ou desliga o transformador da rede. O fusível F1 protege toda a fonte contra alguma eventual sobre-corrente. A tensão alternada 15+15V é retificada pelos diodos D1 e D2 passando a parcela negativa da onda para o lado positivo. Em seguida a tensão é filtrada pelo capacitor C1 restando então uma tensão contínua de 15V ainda com uma pequena ondulação (ripple). O resistor R1 limita a corrente e abaixa a tensão evitando a queima do LED1, que indica o estado da fonte, ou seja, ligada ou desligada da rede de energia elétrica. O resistor R2 abaixa a tensão para o diodo zener Z1, que irá manter a tensão em 13V e ,do mesmo modo, o resistor R3 abaixa a tensão para o diodo Z2, que irá manter a tensão em 5,6V. A chave de contatos duplos H1A/B irá selecionar a tensão de saída em 5V ou 12V e, ao mesmo tempo, irá acender o LED2Z1 ou o LED2Z2, dependendo do diodo zener selecionado, indicando a tensão de saída da fonte. Os resistores R5 e R6 abaixam a tensão e limitam a corrente para os leds indicadores de tensão. O transistor Q1, cuja tensão da base será fornecida pelo Z1 ou Z2, irá regular a tensão de saída em 5V ou 12V, conforme o zener selecionado pela chave H1, eliminando as ondulações (ripple) que não foram eliminados pelo filtro (C1). O capacitor C2 garante que não haja queda de tensão na base do transistor Q1 durante uma fração de segundo quando a chave seletora H1 for acionada com a fonte ligada e o capacitor C3 funciona como um último filtro mantendo a tensão de saída de acordo com a tensão fornecida pelo transistor Q1. Finalmente, o resistor R4 descarrega o capacitor C3. Essa função se torna importante quando a fonte está com uma tensão de saída de 12V e trocamos, através da chave seletora H1, a tensão da fonte para 5V. Caso não houvesse esse resistor a tensão de saída da fonte iria diminuir lentamente até o patamar de 5V.

8

1.2.3 SIMULAÇÃO Com o projeto finalizado, simulamos a fonte nas situações sem carga, com meia-carga e com carga completa com as tensões de saída 5V e 12V. Obtivemos assim, para cada tensão nominal de saída da fonte, valores simulados de tensão e corrente fornecidas pela fonte nas três situações anteriormente citadas. Abaixo temos as tabelas com os valores encontrados:

Tabela 01 – Tensão de saída: 5V TENSÃO (V) CORRENTE (A)

Nominal 5,00 1,00

Sem carga 5,44 -

Meia-carga 5,14 0,51

Carga completa 4,98 1,00

Tabela 02 – Tensão de saída: 12V TENSÃO (V) CORRENTE (A)

Nominal 12,00 1,00

Sem carga 12,70 -

Meia-carga 12,30 0,51

Carga completa 11,80 0,98

As quedas de tensão verificadas na simulação, conforme mostram a Tabela 01 e a Tabela 02, ocorrem em função do aumento da carga e estão dentro do que se considera normal.

Concluídas as simulações e verificado o correto funcionamento da fonte e sua viabilidade, partimos então para a etapa de montagem da fonte.

A seguir temos as figuras obtidas a partir da simulação no software:

9

Figura 04 – Simulação da fonte com saída 5V; fonte sem carga

10

Figura 05 - Simulação da fonte com saída 12V; fonte sem carga

11

Figura 06 - Simulação da fonte com saída 5V; fonte com meia-carga

12

Figura 07 - Simulação da fonte com saída 12V; fonte com meia-carga

13

Figura 08 - Simulação da fonte com saída 5V; fonte com carga completa

14

Figura 09 - Simulação da fonte com saída 12V; fonte com carga completa

15

2. MONTAGEM DA FONTE

Após a conclusão do projeto e das simulações da fonte no software Proteus ISIS 6.9 SP5, partimos então para a aquisição dos componentes e materiais necessários à execução do projeto. 2.1 COMPONENTES E MATERIAIS UTILIZADOS

Na Tabela 03 temos a relação de componentes e materiais utilizados na montagem da fonte, juntamente com as respectivas quantidades e os preços encontrados no mercado:

Tabela 03 – Lista de componentes

COMPONENTE QUANTITADE(un.)

PREÇO UNITÁRIO

(R$/un.)

PREÇO TOTAL

(R$) Cabo de força 01 2,70 2,70Chave ON-OFF 01 1,00 1,00Fusível de vidro 01 0,30 0,30Porta-fusível 01 0,20 0,20Barra sindal 01 0,90 0,90Transformador 220V/15+15V 1A 01 14,90 14,90Diodo 1N4004 1w 02 0,10 0,20Diodo Zener 1N4743 13V 1w 01 0,35 0,35Diodo Zener 1N4734 5,6V 1w 01 0,35 0,35Resistor 1kΩhm 1w 03 0,15 0,45Resistor 120Ωhms 1w 01 0,15 0,15Resistor 180Ωhms 1w 01 0,15 0,15Resistor 10kΩhms 1w 01 0,15 0,15LED difuso 5mm 03 0,50 1,50Capacitor eletrolítico de 10µF 01 0,30 0,30Capacitor eletrolítico de 100µF 01 0,30 0,30Capacitor eletrolítico de 1000µF 01 0,60 0,60Transistor TIP31 01 1,20 1,20Dissipador de calor 01 - -Chave HH 01 3,50 3,50Bornes 02 0,60 1,20Gabinete metálico 01 - -PREÇO TOTAL 30,40

Inicialmente projetamos um gabinete metálico para esta fonte (ver Anexo 06), mas

pela dificuldade em achar alguma empresa que confeccionasse o gabinete e por não encontrarmos no mercado um gabinete de dimensões adequadas ao projeto, reutilizamos um gabinete de fonte para computador para acondicionar o projeto.

O dissipador de calor colocado no transistor TIP31 também foi reutilizado de uma fonte para computador.

Segue abaixo uma seqüência de fotos dos componentes e materiais que compõe a fonte linear:

16

Foto 01 - Cabo de força

Foto 02 - Transformador – 220V/15+15V 1A

Foto 03 - Chave ON-OFF

Foto 04 – Fusível e porta-fusível

17

Foto 05 - Diodo 1N4004

Foto 06 – Resistor de 10kΩhms/1w

Foto 07 – Resistor de 1kΩhms/1w

Foto 08 – Dissipador de calor

Foto 09 - Resistor de 120Ωhms/1w

Foto 10 - Resistor de 180Ωhms/1w

18

Foto 11 - Diodo Zener 1N4734 de 5,6V/1w

Foto 12 - Diodo Zener 1N4743 de 13V/1w

Foto 13 - LEDs

Foto 14 - Capacitor eletrolítico de 10µF

Foto 15 - Capacitor eletrolítico de 100µF

Foto 16 - Capacitor eletrolítico de 1000µF

19

Foto 17 - Transistor TIP31

Foto 18 - Bornes

Foto 19 - Chave HH

20

2.2 MONTAGEM EM MATRIZ DE CONTATOS Adquiridos os componentes e materiais, montamos a fonte em matriz de contatos para que pudéssemos testá-la em laboratório.

Após montada a fonte, conforme o projeto na matriz de contatos, iniciamos os testes utilizando um osciloscópio digital.

21

Foto 20 - Fonte linear montada em matriz de contatos

22

2.2.1 TESTES DA FONTE EM MATRIZ DE CONTATOS A seguir temos as formas de onda encontradas nos testes em matriz de contatos

com o osciloscópio digital: A Figura 10 mostra a forma das ondas, as tensões máximas e as tensões eficazes nas duas saídas do secundário do transformador 220V/15+15V. Cada canal (Ch1 e Ch2) mostra os resultados de uma das saídas do transformador. A tensão neste ponto ainda é alternada.

Figura 10 – Forma das ondas no secundário do trafo

23

Na Figura 11 temos a comparação entre as tensões máxima e eficaz no secundário do transformador (Ch1) e a tensão média retificada e filtrada (Ch2) e suas respectivas formas de onda.

Figura 11 A Figura 12 permite a comparação entre a ondulação (ripple) da tensão retificada e filtrada antes da regulação do transistor TIP31 (Ch1), e a ondulação da tensão regulada pelo transistor.

Figura 12

24

A Figura 13 mostra a tensão média logo após a retificação e a filtragem (Ch1) e a tensão média regulada pelo transistor TIP31, cuja referência (13V) está sendo fornecida pelo diodo zener 1N4743.

Figura 13

A Figura 14 mostra a tensão média logo após a retificação e a filtragem (Ch1) e a tensão média regulada pelo transistor TIP31, cuja referência (5,6V) está sendo fornecida pelo diodo zener 1N4734.

Figura 14

25

A Figura 15 mostra a curva da tensão em função do tempo no instante em que a fonte é ligada e, em seguida, a curva da tensão em função do tempo no instante em que a fonte é desligada. O canal 1 (Ch1) corresponde à tensão de saída 12V e o canal 2 (Ch2) corresponde à tensão de saída 5V.

Figura 15

26

2.3 MONTAGEM EM PLACA DE CIRCUITO IMPRESSO (PCI) Após a montagem da fonte em matriz de contatos e os testes subseqüentes, partimos para a etapa de projeto e confecção da placa de circuito impresso. 2.3.1 PROJETO E CONFECÇÃO DA PCI O projeto da placa de circuito impresso foi realizado no software Eagle 4.16R2, que é um software específico para projeto de placas de circuito impresso. Utilizando o Eagle, primeiramente foi desenhado um esquema da fonte (Figura 16) para então, a partir deste esquema, gerar o layout da placa de circuito impresso (Figura 17).

27

Figura 16 - Esquema da fonte para confecção do layout da PCI

28

Tendo o desenho esquemático da fonte, o software gera um projeto de layout com todos os componentes desenhados em tamanho real. Nesta etapa apenas organizamos os componentes sobre a placa buscando a melhor disposição dos mesmos e desenhamos as trilhas.

Figura 17 - Layout da PCI

Com o layout da PCI pronto, iniciamos a confecção da placa por um processo

artesanal de transferência térmica. Este processo consiste em transferir a tinta da impressão a laser para o cobre da placa protegendo assim a parte do cobre que interessa. Para criar uma placa de circuito impresso usando este método deve-se seguir os passos abaixo:

1. Imprimir o projeto da placa de circuito impresso invertido (espelhado) numa impressora laser em papel comum. A impressão em impressoras com o sistema de jato de tinta não funcionará corretamente;

2. Recortar a placa de fenolite no tamanho desejado;

3. Colocar a folha com o projeto do circuito impresso sobre o cobre na placa

de fenolite e fixar a folha de modo a não haver movimento;

4. Molhar o papel com um pouco de álcool e espalhar com o dedo de modo a molhar toda a parte que esta em contato com a placa;

5. Utilizar um ferro de passar roupa ligado pressionando-o e fazendo

movimentos sobre o papel e a placa. Com o calor e a pressão do ferro sobre o papel, a tinta da impressão irá aderir ao cobre;

29

6. Em seguida, a placa, juntamente com o papel sobre a mesma, deve ser

colocada sob água fria (corrente ou num recipiente qualquer) de modo a causar um resfriamento rápido;

7. Com o papel totalmente molhado e a placa resfriada, retirar o papel

esfregando o mesmo com os dedos sob a água fria. Este passo deve ser feito com cuidado para que a tinta não seja retirada junto com o papel;

8. Após retirado todo o papel, utilizar um caneta com tinta permanente para

retroprojetor para preencher espaços vazios que possam haver nas trilhas criadas decorrentes da não transferência da impressão do papel para a placa ou por falhas causadas na retirada do papel. A tinta da caneta irá proteger as falhas da corrosão, que será o próximo passo;

9. Protegidas as trilhas, colocar a placa num recipiente com percloreto de ferro

para que seja feita a corrosão química do cobre não protegido. Deve-se utilizar um furador de placas para fazer um pequeno furo, normalmente num dos cantos da placa, para que seja colocado um arame ou fio de modo a permitir a colocação e retirada da placa do ácido sem que haja contato do mesmo com as mãos, ou ainda, pode-se usar uma pinça;

10. Em aproximadamente 01 hora o processo de corrosão deverá estar

concluído. Após a corrosão deve-se lavar a placa e utilizar uma esponja de aço para retirar totalmente a tinta que está sobre as trilhas de cobre. O ácido pode ser reutilizado várias vezes, no entanto, quanto mais contaminado o ácido ficar com o cobre, mais tempo levará o processo de corrosão de novas placas.

Concluída a corrosão da placa, utilizamos um furador de placas para fazer os furos de acordo com o projeto da placa de circuito. O resultado pode ser visto na Foto 21.

30

Foto 21 - Placa de circuito impresso

2.3.2 MONTAGEM DA FONTE NA PCI Com a placa de circuito impresso pronta, soldamos todos os componentes na placa e também aplicamos uma camada de estanho sobre as trilhas (Foto 22). Além de dar maior capacidade de corrente, o estanho protege o cobre da oxidação, evitando assim falhas no funcionamento da fonte. Na Foto 23 podemos ver a fonte completa montada na PCI.

Foto 22 – Placa de circuito impresso com trilhas estanhadas

31

Foto 23 – Fonte linear montada na PCI

32

2.3.3 ACONDICIONAMENTO DA FONTE EM GABINETE Finalizada a montagem da fonte na PCI, acondicionamos a mesma num gabinete metálico reutilizado de uma fonte para computador. A Foto 24 mostra a fonte finalizada:

Foto 24 – Fonte no gabinete

33

2.3.4 TESTES FINAIS Com a fonte montada na PCI, iniciamos os testes definitivos de tensão e carga

primeiramente utilizando um multímetro e posteriormente utilizando um osciloscópio digital para adquirirmos as formas de onda em diversos pontos da fonte. Os resultados obtidos através dos testes com multímetro estão na Tabela 04 e na Tabela 05:

LEGENDA DAS TABELAS 04 E 05: VS1 – Tensão alternada entre o negativo e um dos secundários do transformador; VS2 – Tensão alternada entre o negativo e o outro secundário do transformador; VC1 – Tensão contínua entre os terminais do capacitor C1; VO – Tensão contínua na saída da fonte; IO – Corrente na carga.

Tabela 04 – Tensões obtidas com multímetro; tensão de saída 12V TENSÃO (V)

COMPONENTES Sem Carga Meia-carga Carga

completa Regulação

VS1 14,00 12,20 11,20 25 %

VS2 14,00 12,20 11,40 23 %

VC1 17,95 14,25 12,30 46 %

VO 13,43 12,40 10,40 29 %

IO (A) - 0,48 0,80

Tabela 05 – Tensões obtidas com multímetro; tensão de saída 5V TENSÃO (V)

COMPONENTES Sem Carga Meia-carga Carga

completa Regulação

VS1 14,00 12,30 11,70 20 %

VS2 14,00 12,30 11,50 22 %

VC1 17,90 14,32 12,92 38 %

VO 5,10 5,09 4,74 07 %

IO (A) - 0,48 0,73

A regulação foi obtida através da fórmula acVc

acVcacVsarg/

arg/arg/ − .100%

34

Também foi monitorada a temperatura do trafo, dos diodos zener, Z1 ou Z2, conforme o caso, e do transistor Q1 da fonte com um termômetro infravermelho nas situações desligado, sem carga, meia-carga e com carga completa:

Tabela 06 – Temperatura do trafo, Z1 e Q1; tensão de saída 12V TEMPERATURA (°C)

COMPONENTES Desligado Meia-Carga Carga

completa Variação

TRAFO 25 33 40 15

Z1 27 28 28 1

Q1 25 29 32 7 Com tensão de saída de 12V, o componente que teve a maior variação de temperatura foi o transformador.

Tabela 07 - Temperatura do trafo, Z2 e Q1; tensão de saída 5V TEMPERATURA (°C)

COMPONENTES Desligado Meia-carga Carga

completa Variação

TRAFO 25 35 35 10

Z1 27 30 31 4

Q1 25 45 68 43

Com tensão de saída de 5V, o componente que teve a maior variação de

temperatura foi o transistor Q1. A temperatura maior sobre o transistor Q1 com a tensão de saída em 5V, ocorre

porque a diferença entre a tensão retificada e filtrada e a tensão de saída é maior. Esta diferença acaba dissipada na forma de calor sobre o transistor.

A variação da temperatura (∆T) foi obtida através da fórmula: ∆T = Tmaior – Tmenor

35

A seguir temos as formas de onda obtidas nos testes sem carga e com meia-carga com a fonte montada na PCI:

A Figura 18 mostra a forma das ondas, as tensões máximas e as tensões eficazes

nas duas saídas do secundário do transformador 220V/15+15V. Cada canal (Ch1 e Ch2) mostra os resultados de uma das saídas do transformador. A tensão neste ponto ainda é alternada. Fonte sem carga.

Figura 18

36

Na Figura 19 temos a comparação entre as tensões máxima e eficaz no secundário do transformador (Ch1) e a tensão média retificada e filtrada (Ch2) e suas respectivas formas de onda. Fonte sem carga.

Figura 19 A Figura 20 mostra a tensão média logo após a retificação e a filtragem (Ch1) e a

tensão média regulada pelo transistor TIP31, cuja referência (5,6V) está sendo fornecida pelo diodo zener 1N4734. Fonte sem carga.

Figura 20

37

A Figura 21 mostra a tensão média logo após a retificação e a filtragem (Ch1) e a tensão média regulada pelo transistor TIP31, cuja referência (13V) está sendo fornecida pelo diodo zener 1N4743. Fonte sem carga.

Figura 21

A Figura 22 mostra a tensão máxima e média logo após a retificação e a filtragem (Ch1), a tensão média na saída da fonte (Ch2) e a corrente da fonte (Ch3) na condição de saída em 12V com meia-carga.

Figura 22

38

Na Figura 23 temos a comparação entre a ondulação (ripple) logo após a retificação e filtragem (Ch1) e a ondulação na saída da fonte (Ch2) na condição de tensão de saída 12V sem carga.

Figura 23 Na Figura 24 temos a comparação entre a ondulação (ripple) logo após a

retificação e filtragem (Ch1) e a ondulação na saída da fonte (Ch2) na condição de tensão de saída 12V com meia-carga.

Figura 24

39

Na Figura 25 temos a comparação entre a ondulação (ripple) logo após a retificação e filtragem (Ch1) e a ondulação na saída da fonte (Ch2) na condição de tensão de saída 5V sem carga.

Figura 25 Na Figura 26 temos a comparação entre a ondulação (ripple) logo após a

retificação e filtragem (Ch1) e a ondulação na saída da fonte (Ch2) na condição de tensão de saída 5V com meia-carga.

Figura 26

40

2.4 CONSIDERAÇÕES FINAIS

Ao final de todos os testes e aquisições, verificamos que, quando colocamos uma carga que exigisse a corrente nominal máxima da fonte, a mesma não conseguiu manter a tensão de saída e a corrente. Na condição de tensão de saída 12V e carga completa (Tabela 04), a tensão real na saída da fonte chegou a 86,67% da tensão nominal e a corrente máxima foi de 80% da corrente nominal. Já na condição de tensão de saída 5V e carga completa (Tabela 05), a tensão real na saída da fonte foi de 94,8% da tensão nominal, portanto bem próximo da tensão que deveria apresentar, mas a corrente máxima foi de 73% da corrente nominal. Analisando as tabelas 04 e 05, observamos que o transformador, apesar das especificações indicarem uma tensão nominal no secundário de 15V e uma corrente nominal máxima de 1A, não conseguiu manter a tensão no secundário nem mesmo com a fonte em meia-carga. Comparando os resultados práticos com os resultados obtidos na simulação (Tabela 01 e Tabela 02), concluímos que o transformador foi a causa da não obtenção dos resultados simulados na prática.

41

CONCLUSÃO

Finalizada a fonte linear e após os diversos testes e aquisições feitos, a fonte funcionou satisfatoriamente. O fato de a fonte não ter mantido a tensão de saída em 12V ou 5V e 1A de corrente com carga completa, fato esse que deveu-se à qualidade do transformador, não compromete o seu funcionamento e uso. É bom lembrar que, em qualquer equipamento, é interessante evitar o seu uso no limite da sua capacidade máxima, sob pena da queima de algum componente, ou de todo o equipamento, ou, no mínimo, a diminuição da sua vida útil.

42

ANEXOS

1N4001-1N

4007

1N4001-1N4007, Rev. C1 2003 Fairchild Semiconductor Corporation

1N4001 - 1N4007

General Purpose Rectifiers

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Electrical Characteristics TA = 25°C unless otherwise noted

Features• Low forward voltage drop.

• High surge current capability.

Symbol

Parameter

Device

Units 4001 4002 4003 4004 4005 4006 4007

VF Forward Voltage @ 1.0 A 1.1 V Irr Maximum Full Load Reverse Current, Full

Cycle TA = 75°C 30 µA

IR Reverse Current @ rated VR TA = 25°C TA = 100°C

5.0 500

µA µA

CT Total Capacitance VR = 4.0 V, f = 1.0 MHz

15 pF

DO-41COLOR BAND DENOTES CATHODE

Symbol

Parameter

Value

Units 4001 4002 4003 4004 4005 4006 4007

VRRM Peak Repetitive Reverse Voltage 50 100 200 400 600 800 1000 V IF(AV) Average Rectified Forward Current,

.375 " lead length @ TA = 75°C 1.0 A

IFSM Non-repetitive Peak Forward Surge Current

8.3 ms Single Half-Sine-Wave 30 A

Tstg Storage Temperature Range -55 to +175 °C TJ Operating Junction Temperature -55 to +175 °C

Symbol

Parameter

Value

Units PD Power Dissipation 3.0 W RθJA Thermal Resistance, Junction to Ambient 50 °C/W

Thermal Characteristics

Topocon
ANEXO 01

1N4001-1N

4007

1N4001-1N4007, Rev. C1 2003 Fairchild Semiconductor Corporation

General Purpose Rectifiers (continued)

Typical Characteristics

Forward Characteristics

0.6 0.8 1 1.2 1.40.010.020.04

0.10.20.4

124

1020

FORWARD VOLTAGE (V)

FORW

ARD

CUR

REN

T (A

)

T = 25 C Pulse Width = 300µµµµS2% Duty Cycle

ºJ

Non-Repetitive Surge Current

1 2 4 6 8 10 20 40 60 1000

6

12

18

24

30

NUMBER OF CYCLES AT 60Hz

FORW

AR

D SU

RGE

CUR

RENT

(A) p

k

Forward Current Derating Curve

0 20 40 60 80 100 120 140 160 1800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

AMBIENT TEMPERATURE ( C)

FOR

WA

RD C

URR

ENT

(A)

º

SINGLE PHASE HALF WAVE

60HZRESISTIVE OR

INDUCTIVE LOAD.375" 9.0 mm LEAD

LENGTHS

Reverse Characteristics

0 20 40 60 80 100 120 1400.01

0.1

1

10

100

1000

RATED PEAK REVERSE VOLTAGE (%)

REVE

RSE

CUR

RENT

( A

)

T = 25 CºJ

T = 150 CºJ

T = 100 CºJ

µ µµµ

Zeners (1N4728A

- 1N4752A

)

1N4700A Rev. C 2001 Fairchild Semiconductor Corporation

Zeners1N4728A - 1N4752A

Absolute Maximum Ratings* TA = 25°C unless otherwise notedTolerance: A = 5%

Symbol

Parameter

Value

Units PD Power Dissipation

Derate above 50°C 1.0

6.67 W

mW /°C TSTG Storage Temperature Range -65 to +200 °C TJ Operating Junction Temperature + 200 °C R θJL Thermal resistance Junction to Lead 53.5 °C/W R θJA Thermal resistance Junction to Ambient 100 °C/W Lead Temperature (1/16” from case for 10

seconds) + 230 °C

Surge Power** 10 W

NOTES:1) These ratings are based on a maximum junction temperature of 200 degrees C.2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

*These ratings are limiting values above which the serviceability of the diode may be impaired.**Non-recurrent square wave PW = 8.3 ms, TA = 55 degrees C.

Electrical Characteristics TA = 25°C unless otherwise noted

@@@

DO-41COLOR BAND DENOTES CATHODE

Device VZ (V)

ZZ (ΩΩΩΩ)

IZT (mA)

ZZK (ΩΩΩΩ)

IZK (mA)

VR (V)

IR (µµµµA)

ISURGE (mA)

IZM (mA)

1N4728A 1N4729A 1N4730A 1N4731A

3.3 3.6 3.9 4.3

10 10 9.0 9.0

76 69 64 58

400 400 400 400

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

100 100 50 10

1380 1260 1190 1070

276 252 234 217

1N4732A 1N4733A 1N4734A 1N4735A

4.7 5.1 5.6 6.2

8.0 7.0 5.0 2.0

53 49 45 41

500 550 600 700

1.0 1.0 1.0 1.0

1.0 1.0 2.0 3.0

10 10 10 10

970 890 810 730

193 178 162 146

1N4736A 1N4737A 1N4738A 1N4739A

6.8 7.5 8.2 9.1

3.5 4.0 4.5 5.0

37 34 31 28

700 700 700 700

1.0 0.5 0.5 0.5

4.0 5.0 6.0 7.0

10 10 10 10

660 605 550 500

133 121 110 100

1N4740A 1N4741A 1N4742A 1N4743A 1N4744A

10 11 12 13 15

7.0 8.0 9.0 10 14

25 23 21 19 17

700 700 700 700 700

0.25 0.25 0.25 0.25 0.25

7.6 8.4 9.1 9.9 11.4

10 5.0 5.0 5.0 5.0

454 414 380 344 304

91 83 76 69 61

1N4745A 1N4746A 1N4747A 1N4748A

16 18 20 22

16 20 22 23

15.5 14

12.5 11.5

700 750 750 750

0.25 0.25 0.25 0.25

12.2 13.7 15.2 16.7

5.0 5.0 5.0 5.0

285 250 225 205

57 50 45 41

1N4749A 1N4750A 1N4751A 1N4752A

24 27 30 33

25 35 40 45

10.5 9.5 8.5 7.5

750 750 1000 1000

0.25 0.25 0.25 0.25

18.2 20.6 22.8 25.1

5.0 5.0 5.0 5.0

190 170 150 135

38 34 30 27

VF Forward Voltage = 1.2 V Maximum @ IF = 200 mA for all 1N4700 series

Topocon
ANEXO 02

©2000 Fairchild Semiconductor International Rev. A, February 2000

TIP31 Series(TIP31/31A/31B

/31C)

NPN Epitaxial Silicon TransistorAbsolute Maximum Ratings TC=25°C unless otherwise noted

Electrical Characteristics TC=25°C unless otherwise noted

* Pulse Test: PW≤300µs, Duty Cycle≤2%

Symbol Parameter Value Units VCBO Collector-Base Voltage : TIP31

: TIP31A : TIP31B : TIP31C

40 60 80100

VVVV

VCEO Collector-Emitter Voltage : TIP31 : TIP31A : TIP31B : TIP31C

40 60 80100

VVVV

VEBO Emitter-Base Voltage 5 V IC Collector Current (DC) 3 A ICP Collector Current (Pulse) 5 A IB Base Current 1 A PC Collector Dissipation (TC=25°C) 40 W PC Collector Dissipation (Ta=25°C) 2 W TJ Junction Temperature 150 °C TSTG Storage Temperature - 65 ~ 150 °C

Symbol Parameter Test Condition Min. Max. Units VCEO(sus) * Collector-Emitter Sustaining Voltage

: TIP31: TIP31A: TIP31B: TIP31C

IC = 30mA, IB = 0 40 60 80100

VVVV

ICEO Collector Cut-off Current: TIP31/31A: TIP31B/31C

VCE = 30V, IB = 0 VCE = 60V, IB = 0

0.30.3

mAmA

ICES Collector Cut-off Current: TIP31: TIP31A: TIP31B: TIP31C

VCE = 40V, VEB = 0 VCE = 60V, VEB = 0 VCE = 80V, VEB = 0 VCE = 100V, VEB = 0

200200200200

µAµAµAµA

IEBO Emitter Cut-off Current VEB = 5V, IC = 0 1 mA

hFE * DC Current Gain VCE = 4V, IC = 1A VCE = 4V, IC = 3A

25 10 50

VCE(sat) * Collector-Emitter Saturation Voltage IC = 3A, IB = 375mA 1.2 V VBE(sat) * Base-Emitter Saturation Voltage VCE = 4V, IC = 3A 1.8 V fT Current Gain Bandwidth Product VCE = 10V, IC = 500mA 3.0 MHz

TIP31 Series(TIP31/31A/31B/31C)Medium Power Linear Switching Applications• Complementary to TIP32/32A/32B/32C

1.Base 2.Collector 3.Emitter

1 TO-220

Topocon
ANEXO 03

©2000 Fairchild Semiconductor International

TIP31 Series(TIP31/31A/31B

/31C)

Rev. A, February 2000

Typical Characteristics

Figure 1. DC current Gain Figure 2. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

Figure 3. Safe Operating Area Figure 4. Power Derating

1 10 100 1000 100001

10

100

1000VCE = 4V

h FE,

DC

CU

RR

ENT

GAI

N

IC[mA], COLLECTOR CURRENT

1 10 100 1000 1000010

100

1000

10000

IC/IB = 10

VCE(sat)

VBE(sat)

V BE(

sat),

VC

E(sa

t)[m

V], S

ATU

RAT

ION

VO

LTAG

E

IC[mA], COLLECTOR CURRENT

10 1000.1

1

10

100µs

TIP31C VCEO MAX.TIP31B VCEO MAX.TIP31A VCEO MAX.TIP31 VCEO MAX.

IC(MAX) (DC)

IC(MAX) (PULSE)

5ms 1m

s

I C[A

], C

OLL

ECTO

R C

UR

REN

T

VCE[V], COLLECTOR-EMITTER VOLTAGE

0 25 50 75 100 125 150 175 2000

5

10

15

20

25

30

35

40

45

50

P C

[W],

POW

ER D

ISSI

PATI

ON

TC[oC], CASE TEMPERATURE

4.50 ±0.209.90 ±0.20

1.52 ±0.10

0.80 ±0.102.40 ±0.20

10.00 ±0.20

1.27 ±0.10

ø3.60 ±0.10

(8.70)

2.8

0 ±

0.1

015.9

0 ±

0.2

0

10.0

8 ±

0.3

018.9

5M

AX

.

(1.7

0)

(3.7

0)

(3.0

0)

(1.4

6)

(1.0

0)

(45°)

9.2

0 ±

0.2

013.0

8 ±

0.2

0

1.3

0 ±

0.1

0

1.30+0.10–0.05

0.50+0.10–0.05

2.54TYP[2.54 ±0.20]

2.54TYP[2.54 ±0.20]

TO-220

Package Demensions

©2000 Fairchild Semiconductor International Rev. A, February 2000

TIP31 Series(TIP31/31A/31B

/31C)

Dimensions in Millimeters

VER A.0

33mmmm YYeellllooww GGrreeeenn LLEEDD

OSNG3131A

Features Outline Dimension Water-clear Type

3mm Standard Directivity Superior Weather-resistance

Applications Toys

Audio

Christmas Light

Absolute Maximum Rating (Ta=25) Directivity

Item Symbol Value Unit

DC Forward Current IF 30 mA

Pulse Forward Current* IFP 160 mA

Reverse Voltage VR 5 V

Power Dissipation PD 100 mW

Operating Temperature Topr -40 ~ +95

Storage Temperature Tstg -40 ~ +100

Lead Soldering Temperature Tsol 260/5sec -

*Pulse width Max.10ms Duty ratio max 1/10

Electrical -Optical Characteristics (Ta=25)

Item Symbol Condition Min. Typ. Max. Unit

DC Forward Voltage VF IF=20mA - 2.1 2.8 V

DC Reverse Current IR VR=5V - - 30 µA

Domi. Wavelength λD IF=20mA - 570 - nm

Luminous Intensity Iv IF=20mA - 90 - mcd

50% Power Angle 2θ1/2 IF=20mA - 30 - deg

LED & Application Technologies

Topocon
ANEXO 04

33mmmm HHiigghh RReedd LLEEDD

OSHR3134A-HH

Features Outline Dimension High Bright LED

3mm Standard Directivity

Superior Weather-resistance UV Resistant Epoxy

Color Diffused Type

Applications Toys

Games

General Use

Christmas Light

Absolute Maximum Rating (Ta=25) Directivity

Item Symbol Value Unit

DC Forward Current IF 50 mA

Pulse Forward Current* IFP 150 mA

Reverse Voltage VR 5 V

Power Dissipation PD 200 mW

Operating Temperature Topr -30 ~ +85

Storage Temperature Tstg -30 ~ +100

Lead Soldering Temperature Tsol 260/5sec -

*Pulse width Max.10ms Duty ratio max 1/10

Electrical -Optical Characteristics (Ta=25)

Item Symbol Condition Min Typ Max Unit

DC Forward Voltage VF IF=20mA 1.8 2.0 2.4 V

DC Reverse Current IR VR=5V - - 30 µA

Domi. Wavelength λD IF=20mA 620 625 630 nm

Luminous Intensity Iv IF=20mA 220 275 330 mcd

50% Power Angle 2θ1/2 IF=20mA - 30 - deg

LED & Application Technologies

VER A.0

Topocon
ANEXO 05

6,263,6

9063,6

6,2

229,6

7 161 7

175

65 21,5

IDEM 62,5

47,5

DOBRA

DOBRA

DOBRA

DOBRA

79,870

79,8

Topocon
ANEXO 06

6 90 6

102

670

175

706

6,93

6,93

327

11,5 9 61 9 11,5

11 6 68 6 11

11 6 68 6 11

30,5 31 23 17,5

21 19 23 20 19

Ø6Ø6

Ø3

Ø3Ø3

10 24

2920

12

2926

526

,596

,513

,619

,912

,691

,812

,6

FURO Ø2mm

FURO Ø3mm

FURO Ø2mm

FURO Ø2mm

FURO Ø3mm

FURO Ø2mm

DO

BR

A

DOBRA

DO

BR

AD

OB

RA

DOBRA

DOBRA

DOBRA

DO

BR

AD

OB

RA

DO

BR

A

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

DOBRA

109

70

74VER DETALHE

74

14,34

4,6

8 4,6

45°

FURO Ø2mm