26
673 The Canadian Mineralogist Vol. 48, pp. 673-698 (2010) DOI : 10.3749/canmin.48.3.673 THE PYROCHLORE SUPERGROUP OF MINERALS: NOMENCLATURE Daniel aTenCiO § Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080, São Paulo, SP, Brazil MarCelO B. anDraDe Instituto de Física de São Carlos, Universidade de São Paulo, 13560–970, São Carlos, SP, Brazil anDrew G. CHriSTY Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia reTO GierÉ Institut für Geowissenschaften, Albert-Ludwigs-Universität, Albertstrasse 23b, D–79104 Freiburg, Germany Pavel M. KarTaSHOv Institute of Geology, Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetnyi pereulok 35, 109017, Moscow, Russia aBSTraCT A new scheme of nomenclature for the pyrochlore supergroup, approved by the CNMNC–IMA, is based on the ions at the A, B and Y sites. What has been referred to until now as the pyrochlore group should be referred to as the pyrochlore supergroup, and the subgroups should be changed to groups. Five groups are recommended, based on the atomic proportions of the B atoms Nb, Ta, Sb, Ti, and W. The recommended groups are pyrochlore, microlite, roméite, betafite, and elsmoreite, respectively. The new names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation) of the dominant valence [or H 2 O or ] at the Y site. The second prefix refers to the dominant cation of the dominant valence [or H 2 O or ] at the A site. The prefix “keno-” represents “vacancy”. Where the first and second prefixes are equal, then only one prefix is applied. Complete descriptions are missing for the majority of the pyrochlore-supergroup species. Only seven names refer to valid species on the grounds of their complete descriptions: oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite, and hydrokenoelsmoreite. Fluornatromicrolite is an IMA-approved mineral, but the complete description has not yet been published. The following 20 names refer to minerals that need to be completely described in order to be approved as valid species: hydroxycalciopyrochlore, fluornatropyrochlore, fluorcalciopyrochlore, fluorstrontiopyrochlore, fluorkenopyrochlore, oxynatropyrochlore, oxyplumbopyrochlore, oxyyttropyrochlore-(Y), kenoplumbopyrochlore, fluorcalciomicrolite, oxycalciomicrolite, kenoplumbomicrolite, hydromicrolite, hydrokenomicrolite, oxycalciobetafite, oxyuranobetafite, fluornatroroméite, fluorcalcioroméite, oxycalcioroméite, and oxyplumboroméite. For these, there are only chemical or crystal- structure data. Type specimens need to be defined. Potential candidates for several other species exist, but are not sufficiently well characterized to grant them any official status. Ancient chemical data refer to wet-chemical analyses and commonly represent a mixture of minerals. These data were not used here. All data used represent results of electron-microprobe analyses or were obtained by crystal-structure refinement. We also verified the scarcity of crystal-chemical data in the literature. There are crystal- structure determinations published for only nine pyrochlore-supergroup minerals: hydropyrochlore, hydroxykenomicrolite, hydroxycalcioroméite, hydrokenoelsmoreite, hydroxycalciopyrochlore, fluorcalciopyrochlore, kenoplumbomicrolite, oxycalciobetafite, and fluornatroroméite. The following mineral names are now discarded: alumotungstite, bariomicrolite, bariopyrochlore, bindheimite, bismutomicrolite, bismutopyrochlore, bismutostibiconite, calciobetafite, ceriopyrochlore-(Ce), cesstibtantite, ferritungstite, jixianite, kalipyrochlore, monimolite, natrobistantite, partzite, plumbobetafite, plumbomicrolite, § E-mail address: [email protected]

the pyrochlore supergroup of minerals: nomenclature

  • Upload
    buique

  • View
    226

  • Download
    2

Embed Size (px)

Citation preview

Page 1: the pyrochlore supergroup of minerals: nomenclature

673

The Canadian MineralogistVol.48,pp.673-698(2010)DOI:10.3749/canmin.48.3.673

THE PYROCHLORE SUPERGROUP OF MINERALS: NOMENCLATURE

DanielaTenCiO§

Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080, São Paulo, SP, Brazil

MarCelOB.anDraDe

Instituto de Física de São Carlos, Universidade de São Paulo, 13560–970, São Carlos, SP, Brazil

anDrewG.CHriSTY

Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia

reTOGierÉ

Institut für Geowissenschaften, Albert-Ludwigs-Universität, Albertstrasse 23b, D–79104 Freiburg, Germany

PavelM.KarTaSHOv

Institute of Geology, Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetnyi pereulok 35, 109017, Moscow, Russia

aBSTraCT

Anewschemeofnomenclature for thepyrochlore supergroup, approvedby theCNMNC–IMA, isbasedon the ionsattheA,B andY sites.What has been referred to until nowas the pyrochlore group shouldbe referred to as the pyrochloresupergroup,andthesubgroupsshouldbechangedtogroups.Fivegroupsarerecommended,basedontheatomicproportionsoftheBatomsNb,Ta,Sb,Ti,andW.Therecommendedgroupsarepyrochlore,microlite,roméite,betafite,andelsmoreite,respectively.Thenewnamesarecomposedoftwoprefixesandonerootname(identicaltothenameofthegroup).Thefirstprefixreferstothedominantanion(orcation)ofthedominantvalence[orH2Oor□]attheYsite.Thesecondprefixreferstothedominantcationofthedominantvalence[orH2Oor□]attheAsite.Theprefix“keno-”represents“vacancy”.Wherethefirstandsecondprefixesareequal,thenonlyoneprefixisapplied.Completedescriptionsaremissingforthemajorityofthe pyrochlore-supergroup species.Only sevennames refer to valid species on the grounds of their complete descriptions:oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite,and hydrokenoelsmoreite. Fluornatromicrolite is an IMA-approvedmineral, but the complete description has not yet beenpublished.The following20names refer tominerals thatneed tobecompletelydescribed inorder tobeapprovedasvalidspecies: hydroxycalciopyrochlore, fluornatropyrochlore, fluorcalciopyrochlore, fluorstrontiopyrochlore, fluorkenopyrochlore,oxynatropyrochlore, oxyplumbopyrochlore, oxyyttropyrochlore-(Y), kenoplumbopyrochlore, fluorcalciomicrolite,oxycalciomicrolite, kenoplumbomicrolite, hydromicrolite, hydrokenomicrolite, oxycalciobetafite, oxyuranobetafite,fluornatroroméite,fluorcalcioroméite,oxycalcioroméite,andoxyplumboroméite.Forthese,thereareonlychemicalorcrystal-structuredata.Typespecimensneedtobedefined.Potentialcandidatesforseveralotherspeciesexist,butarenotsufficientlywellcharacterizedtograntthemanyofficialstatus.Ancientchemicaldatarefertowet-chemicalanalysesandcommonlyrepresentamixtureofminerals.Thesedatawerenotusedhere.Alldatausedrepresentresultsofelectron-microprobeanalysesorwereobtainedbycrystal-structurerefinement.Wealsoverifiedthescarcityofcrystal-chemicaldataintheliterature.Therearecrystal-structure determinations published for only nine pyrochlore-supergroupminerals: hydropyrochlore, hydroxykenomicrolite,hydroxycalcioroméite, hydrokenoelsmoreite, hydroxycalciopyrochlore, fluorcalciopyrochlore, kenoplumbomicrolite,oxycalciobetafite, andfluornatroroméite.The followingmineral names are nowdiscarded: alumotungstite, bariomicrolite,bariopyrochlore, bindheimite, bismutomicrolite, bismutopyrochlore, bismutostibiconite, calciobetafite, ceriopyrochlore-(Ce),cesstibtantite, ferritungstite, jixianite, kalipyrochlore,monimolite, natrobistantite, partzite, plumbobetafite, plumbomicrolite,

§ E-mail address:[email protected]

Page 2: the pyrochlore supergroup of minerals: nomenclature

674 THeCanaDianMineralOGiST

plumbopyrochlore, stannomicrolite, stetefeldtite, stibiconite, stibiobetafite, stibiomicrolite, strontiopyrochlore, uranmicrolite,uranpyrochlore,yttrobetafite-(Y),andyttropyrochlore-(Y).

Keywords:pyrochloresupergroup,nomenclature,pyrochloregroup,microlitegroup,betafitegroup,roméitegroup,elsmoreitegroup.

SOMMaire

Nousproposonsunnouveausystèmedenomenclaturepourlesminérauxdusupergroupedupyrochlore,sanctionnéparleComitédesNomsdeMinéraux,deNomenclatureetdeClassificationdel’AssociationinternationaledeMinéralogie,etfondésurlesionssetrouvantauxsitesA,BetY.Cequiadéjàétéconsidérélegroupedupyrochloredevientlesupergroupedupyrochlore,etlessous-groupesdeviennentdorénavantdesgroupes.Cinqgroupessontmaintenantrecommandés,selonlaproportiondesatomesNb,Ta,Sb,Ti, etWau siteB.Les groupes recommandés sont nomméspyrochlore,microlite, roméite, bétafite, etelsmoreïte,respectivement.Lesnouveauxnomscontiennentjusqu’àdeuxpréfixesetunnom-racine,quiestidentiqueaunomdugroupe.Lepremierpréfixefaitallusionàl’anionprédominant(oucation)delavalencedominante[ouH2Oou□]ausiteY.Lesecondserapporteaucationprédominantdelavalencedominante[ouH2Oou□]ausiteA.Lepréfix“kéno-”représente“lacune”.Danslescasoùlepremieretlesecondpréfixesontlesmêmes,seulunpréfixesuffira.Desdescriptionscomplètesnesontpasdisponiblespourlamajoritédesespècesdusupergroupedupyrochlore.Seulsseptnomsfontréférenceàdesespècesconsidérées valides à cause de leur description complète: oxycalciopyrochlore, hydropyrochlore, hydroxykénomicrolite,oxystannomicrolite,oxystibiomicrolite,hydroxycalcioroméite,ethydrokénoelsmoreïte.Lafluornatromicroliteestuneespèceapprouvée,maisladescriptioncomplètedecetteespècen’apasencoreétépubliée.Lesvingtnomssuivantsserapportentàdesespècesdontladescriptiondoitêtrecomplétéepourêtreconsidéréesvalides:hydroxycalciopyrochlore,fluornatropyrochlore,fluorcalciopyrochlore, fluorstrontiopyrochlore, fluorkénopyrochlore, oxynatropyrochlore, oxyplumbopyrochlore,oxyyttropyrochlore-(Y),kénoplumbopyrochlore,fluorcalciomicrolite,oxycalciomicrolite,kénoplumbomicrolite,hydromicrolite,hydrokénomicrolite, oxycalciobetafite, oxyuranobétafite, fluornatroroméite, fluorcalcioroméite, oxycalcioroméite, etoxyplumboroméite.Danscescas,iln’yaquedesdonnéeschimiquesoudesdonnéessurlastructurecristalline.Ondoitdéfinirdes échantillons-types.Dans plusieurs autres cas, des candidats potentiels existent,mais ils ne sont pas suffisamment biencaractériséspourleurattribuerunstatutofficiel.Lesdonnéeschimiquesplusanciennesreposentsurdesanalysesparvoiehumide,etreprésenteraientengénéraldesmélanges.Detellesdonnéesn’ontpasétéutiliséesici.Touteslesdonnéesreprésententdoncdesrésultatsd’analysesobtenuesavecunemicrosondeélectroniqueoubiendesdonnéesétabliesparanalysedelastructurecristalline.Nousavonsaussivérifiélararetédesdonnéescristallochimiquesdanslalittérature.Nousavonstrouvédesdéterminationsdelastructurecristallinepourseulementneufminérauxdusupergroupedupyrochlore:hydropyrochlore,hydroxykénomicrolite,hydroxycalcioroméite, hydrokénoelsmoreïte, hydroxycalciopyrochlore, fluorcalciopyrochlore, kénoplumbomicrolite,oxycalciobetafite,etfluornatroroméite.Lesnomssuivantsdeviennentdésuets:alumotungstite,bariomicrolite,bariopyrochlore,bindheimite, bismutomicrolite, bismutopyrochlore, bismutostibiconite, calciobétafite, cériopyrochlore-(Ce), cesstibtantite,ferritungstite,jixianite,kalipyrochlore,monimolite,natrobistantite,partzite,plumbobétafite,plumbomicrolite,plumbopyrochlore,stannomicrolite, stetefeldtite, stibiconite, stibiobétafite, stibiomicrolite, strontiopyrochlore, uranmicrolite, uranpyrochlore,yttrobétafite-(Y),etyttropyrochlore-(Y).

(TraduitparlaRédaction)

Mots-clés:supergroupedupyrochlore,nomenclature,groupedupyrochlore,groupedumicrolite,groupedelabétafite,groupedelaroméite,groupedel’elsmoreïte.

Theofficialpyrochlore-supergroupsystemofclas-sification (Hogarth1977)doesnot follow the currentIMA rules ofmineralogical nomenclature, althoughthat system is currently still approved by IMA.Hogarth (1977) assigned species prefixes accordingto the chemical composition of theA position of thepyrochloreformula.Speciesinwhichanexoticcation(i.e.,anythingotherthanCaorNa)madeupmorethan20%of the total number ofA cationswere assigneda special prefix indicating thepresenceof the cation.Insuchcases,theprefixwastoapplytothedominantexoticcation.Forexample,amemberofthepyrochloregroupwith 25% Pb and 20% Srwould be namedplumbopyrochlore,with “strontian”, as an optional(varietal)adjectivalmodifier.At theA site,Hogarth’s(1977)systemdoesnotdifferentiatebetweenoccupancy

inTrODuCTiOn

In 1977, Hogarth presented a comprehensiveclassification and nomenclature for the pyrochloresupergroup,which represented the then-current bodyofknowledgeonpyrochlore-supergroupminerals.Thestudyproducedaconciseclassification,andreducedtheproliferationofsynonymstoahandfulofnames.TheIMACNMMN(nowCNMNC)has recently receiveda series of submissions for potentially newmembersof the pyrochlore supergroup. Some of the submis-sionsinvokednewinterpretationsorextensionsoftheapproachofHogarth(1977).Inaddition,someCommis-sionmembers expressed concern about Hogarth’sspeciesandgroupdivisions,whichdonotconformtocurrentIMAcriteria(Nickel1992).

Page 3: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 675

byCaandNa.Inspiteofthis,thespeciesfluornatro-microlitewasapprovedon thebasisofpredominanceofNaattheAsite.The natro-prefixisalsopresentinthenamenatrobistantite.Theprefixcalcio-wasusedfor calciobetafite (Mazzi&Munno1983).RegardingtheB-site occupancy, the division among the groupsisnotmadewithatripartitesymmetricalclassification(assuggestedbyZurevinski&Mitchell2004),norisitbasedonthedominant-valencerule(asadoptedinthisproposal).ThespecieswithNb+Ta>2TiandNb>Taareconsideredaspyrochlore-groupminerals;ifNb+Ta>2TiandTa≥Nb,themineral isconsideredtobelong to themicrolite group, and if 2Ti≥Nb+Ta,themineralbelongstothebetafitegroup.IsostructuralspecieswithotherpredominantcationsattheBsitewerenotincludedinthepyrochloresupergroup(forexample,roméite,withdominantSb,andelsmoreite,withdomi-nantW).Theanionsarenottakenintoaccountintheclassification, but the predominance of fluorinewasusedfortheapprovalofthespeciesfluornatromicrolite.OthernamesthatdisagreewithIMArecommendations,such as cesstibtantite and natrobistantite,were alsointroducedwithIMAapproval.

Many problematic features of pyrochlore-super-groupminerals and synthetic pyrochlores have beenresolved sinceHogarth (1977).The structural role ofH2O,verylargecations(K,Cs,Rb),atypicalBcations(Fe3+,Zr,W), andcationswith stereoactive lone-pairelectrons(Sb3+,Sn2+)arenowunderstood.Inaddition,modernelectron-probemicroanalysis(EPMA)permitsroutinedeterminationofF,providingbetter-qualitydataontheanioncontent.

A new CNMMN subcommittee on pyrochlore(Chairman: Scott Ercit.Members: PetrČerný,GregLumpkin, ErnieNickel,MilanNovák, andRolandRouse)wasestablishedin1998.Oneinterimreportwasissuedin1999,butnoadditionalreportwaspresentedformallytotheCommissionsincethen.Thissubcom-mitteewasterminatedinJune2008.Anunofficialreportpreparedin2003byScottErcitwasprovidedtothenewsubcommitteeandservedasabasisforthepreparationofthisreport.

The following represents a modernization ofHogarth’s(1977)system,inwhichwehavetakenintoaccounttheideaspresentedinthepaperbyHatert&Burke(2008).Webelievethatthenewnamesbeingproposedaremore rational, and their use should be preferred.

In order tomake this report consistentwith therecently approved definitions of group nomenclaturebyMillset al. (2009),what is up to now referred toas the pyrochlore group should be referred to as thepyrochlore supergroup, and the subgroups should bechangedtogroups.

THefOrMula

Thepyrochlore-supergroupminerals crystallize intheisometriccrystalsystem(spacegroupFd3moritssubgroups)andexhibitaunitcellcharacterizedbya�10.4ÅandZ=8(Rouseet al.1998).Theyconformtothegeneralformula:

A2–mB2X6–wY1–n.

fiG.1. Idealpyrochlorecrystalstructureviewedalongthe[110]axis(Ared,YorangeandBO6octahedraingreen)(Hendersonet al.2007).

Page 4: the pyrochlore supergroup of minerals: nomenclature

676 THeCanaDianMineralOGiST

In this formula,A typically isa large [8]-coordinatedcationwitharadiusof~1.0Åoravacancy(□),butcanalsobeH2O(includes ionswithorwithout lone-pairelectronsonsites16dor96ginFd3m).TheAsitethereforemayhostNa, Ca, Ag,Mn,Sr, Ba, Fe2+, Pb2+, Sn2+, Sb3+, Bi3+, Y,Ce (andotherREE), Sc,U,Th,□, or H2O.Themainconstituentsareshowninbold.

B is a [6]-coordinated cation (site 16c), typicallyof highfield-strength.This site thusmay containTa, Nb, Ti, Sb5+, W,butalsoV5+,Sn4+,Zr,Hf,Fe3+,Mg,AlandSi.

X typically isO, but can include subordinateOHandF(site48f).

Y typicallyisananion,butcanalsobeavacancy,H2O, or a very large (>> 1.0Å)monovalent cation(site 8b).Examples areOH–, F, O,□,H2O,K,Cs,Rb.Displacementsto96g,32e and 192ipositionswerealsolocated.

Thesymbolsm, w, and nrepresentparametersthatindicateincompleteoccupancyoftheA,XandYsites,respectively.VacancieshavenotbeenfoundtooccurattheBsite(Borodin&Nazarenko1957,vanWambeke1970). Compositionswith a substantial concentra-tionofvacanciesattheAsitehavebeendescribedas“defect pyrochlores”.However, it is undesirable togivethistermofficialstatusinthiscontext,sinceitisnon-specific, and likely to be used to describe otherdeviations from the ideal structureandstoichiometry.Lumpkin&Ewing (1992, 1995), Ercit&Robinson(1994),Bruggeret al.(1997),andNasraoui&Waeren-borgh (2001) noted vacancies at theX site in someextreme cases of secondary alteration.According toLumpkin&Ewing (1995), the following ranges areencountered:m=0to1.7,w=0to0.7,andn=0to1.Actually,m canrangeupto2(Ercitet al.1994,Bruggeret al.1997).

Hogarth et al. (2000), among others, discussedthe distribution of cations at the structural sites ofpyrochlore-supergroupminerals.Syntheticpyrochloreshaveamuchmorevariablechemicalcompositionthannaturalexamples(Subramanianet al.1983).

For structural reasons,A can be subdivided intoconstituentswithoutlone-pairelectrons(e.g.,Na,Ca),whichoccupy16d,andstereoactivecations(e.g.,Sb3+),which occupy less symmetrical positions displacedslightly from16d, e.g., 96g. For the purpose of thisnomenclature,no subdivision ismade.This approachhas its analogues in the nomenclature of silicateminerals. For instance, theA site of the amphiboleformula represents general or special positions, andtheC“site”consistsofthecombinationofthecrystal-chemicallysimilarMltoM3sites.

The pyrochlore structure (Fig. 1) is an essentialbuildingblockforothermineralsandmineralgroups,suchasalunite(Goreaud&Raveau1980)orpittongite(Greyet al.2006).

THenewSCHeMeOfnOMenClaTure

Inthepresentwork,anewschemeofnomenclaturebasedontheionsattheA,BandY sitesispresented.Thenewnamesarecomposedoftwoprefixesandoneroot name (identical to the nameof the group). Fivegroups are recommended, on the basis of the atomicproportions of theB-site atomsNb,Ta, Sb,Ti, andW.Therecommendedgroupsarepyrochlore, micro-lite, roméite, betafite, and elsmoreite, respectively.According to this new scheme, thepyrochlore super-groupnowalsoincludesmineralspecieswithWorSb5+asthedominantcationattheB site.Thesespecieswereonceregardedastungstatesorantimonatesratherthanconventionaloxides,but theycontainW6+orSb5+ inoctahedralcoordinationwithoxygen,andtheresultingoctahedraarepolymerizedtoformtheframeworkofthepyrochlorestructure.Furthermore,theWandSbspeciesshowvariousdegreesofsolidsolutionwith“conven-tional”membersof thesupergroup(Brugger&Gieré1999).ThedeterminationofapropergroupismadebythedominantvalenceatB,notbya single,dominantion.Thatis,thenumbersofalltetravalentcationsaresummedtogiveatotalnumberofM4+,thenumbersofallpentavalentcationstogiveasumM5+,andsoon.Forthispurpose,agroupofatomswiththesamevalencestateareconsidered tobeasingleconstituent (Hatert&Burke2008).

IfM4+>M5+andM4+>M6+,thenthegroupis:Betafite,ifTiisthedominantM4+cation.IfM5+>M4+andM5+>M6+,thenthegroupis:Pyrochlore,ifNbisthedominantM5+cation,Microlite,ifTaisthedominantM5+cation,Roméite,ifSbisthedominantM5+cation.IfM6+>M4+andM6+>M5+,thenthegroupis:Elsmoreite,ifWisthedominantM6+cation.

New root nameswere required for the newW- andSb5+-dominantpyrochloregroups.InaccordancewithHogarth (1977), roméitewill be the root name forspeciesoftheSb5+-dominantpyrochloregroupbecausethis is the name of the Ca–Na-dominant species.However, asnoCa–NamemberhasbeenestablishedfortheW-dominantpyrochloregroup,wehadtochoosearootnameamongthefourspeciesthatwereconsid-ered valid: ferritungstite, alumotungstite, elsmoreite,and jixianite.The three first names are defined anddistinguishedonthebasisofminorconstituentsattheAandB sites(cf.Ercit&Robinson1994,Williamset al.2005).Inallthree,vacanciesaredominantatA,andWisthedominantspeciesofthedominantvalenceatB,sobythecriteriaproposedhere,thesenamesrefertothesamespecies.Ferritungstitewouldhavehistoricalprecedence, as itwas described in 1911bySchaller.

Page 5: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 677

Jixianite,describedin1979byLiuJianchang,referstothemineralwithPbdominantatAandWatB.However,thereisaproblemwith“ferritungstite”astherootnameforaspeciesoftheW-dominantpyrochloregroup:thenameerroneouslyimpliesdistinctcrystallographicrolesforWandFe3+inthestructureofferritungstite.Infact,Fe3+ismerelyasubordinatecationattheW-dominantB siteoftheferritungstitestructure(Ercit&Robinson1994), as isAl in the alumotungstite structure (≡ ferritungstitewith subordinateAl:Ercit&Robinson1994).Thenamecouldbejixianite,butinabsenceofacrystal-structurestudy,itisnotpossibletoknowthedominantanionof thedominantvalenceat theY siteofthismineral.Consequently,thenameforthisgroup,andtherootnameforallspeciesofthisgroup,willbeelsmoreite.Asamineralgroupconsistsoftwoormoreminerals(Millset al.2009),elsmoreitecannotreallybeconsidered,fornow,asamineralgroup.Hydrokenoels-moreiteshouldbedesignatedasanunassignedmemberofthepyrochloresupergroup,becausethereisnoothermembertoallowagrouptobeestablished.

Extensivesolid-solutionexistsamongNb-,Ta-,andTi-dominant pyrochlores.Hogarth (1977) delimitedthe betafite group from theNb andTa groups at the33%markinordertoplacemorecompositionsinthesparsely populatedfield of betafite.Wepropose herethat all group divisions be rearranged in accordancewiththedominantvalenceatB,notbyasingle,domi-nant ion (seeFig.2).Figures2 and3wereextractedfroma preliminaryversionof this proposalmadebythepreviouscommittee.Certainly,theyincluderesultsof bothmicroprobe andwet-chemical analyses.Thetwopoints near theTi corner belong to betafite- androméite-groupminerals.Their apparent position inthe far apex of the triangle is a projection artefactdue to the absence of a Sb5+ corner in the diagram:Ti andSb in nearly equal proportions are the domi-nantB-site cations in theseminerals,withNb andTa almost completely absent. For example, one ofthe oxycalciobetafite compositions is (Ca0.872Ce0.609Mn0.415Na0.051□0.053)S2.000(Ti1.126Sb0.783Nb0.037W0.033Fe0.013V0.008)S2.000O6(O0.634F0.068□0.053) (Brugger&Gieré1999).Pyrochlore-typephaseswithca. 2Tiarewellknownsynthetically[e.g.,CaUTi2O7(Dicksonet al. 1989),Y2Ti2O7 (Matteucci et al. 2007)], but theclusteringofnaturalcompositionsnear (Nb,Sb):Ti=1:1suggestsentropystabilizationatthemiddleofthesolid-solutionseries.RelativelackofTi–Tasolidsolu-tionisanimportantandinterestingdifferencebetweenTaandNb.

The new scheme of nomenclature based on twoprefixes and a root name allows one to use the rootnames without prefixes, or with only one prefix[e.g.,“plumboelsmoreite”] to specify at least a groupformineralsthathavenotbeenfullyanalyzed.Thefirstprefixwill refer to the dominant anion (or cation) ofthedominantvalence[orH2Oor□]attheY site.Thesecondprefixwill refer to thedominantcationof the

dominantvalence[orH2Oor□]at theA site.GiventheClassicalGreekderivationof“oxy-”,“hydro-”and“hydroxy-”,wesuggest“keno-”torepresent“vacancy”,from theGreekkno,meaning “empty”.The termkeno- has been previously suggested by Permingeat(invanWambeke1971)asaprefixmodifierforcation-deficientmembersofthepyrochloresupergroup.Wherethefirst andsecondprefixesareequal, thenonlyoneprefixisapplied(“hydropyrochlore”,not“hydrohydro-pyrochlore”).Theonlyproblemisthatwemightwanttouse“hydropyrochlore”tomeananypyrochloreinthegroupofspecieswithH2OattheYsitesandunspecifiedA-siteoccupancies.

Hogarth (1977) assigned species names incorpo-rating prefixes thatwere determined by theA-sitecompositionofthepyrochloreformula.Theseprefixeswere used to define names of new specieswhere acation other thanCaorNamadeupmore than20%of the total number ofA-site cations. The prefixspecifiedthedominantcationthatisnotNaorCa.Forexample,amemberofthepyrochloregroupwith25%Pbwouldbenamedplumbopyrochlore.Thisapproachhasbeenmodifiedinthenewsystemofnomenclatureto reflect current knowledge of the crystal chemistryof pyrochlore-supergroupminerals, and also to bringpyrochlore nomenclature into better consistencywithcurrentbestpracticeforcomplexsolid-solutions(Hatert&Burke2008).Like theB sites, theA sitesofpyro-chlorescancontainspeciesofseveraldifferentcharges.Theycanalsocontainaneutralmolecularspecies,H2O,andvacancies.ConsistentwiththeprocedurefortheB site,itispossibletogroupA-sitespeciesintovalencegroupsM1+,M2+ and soon, and a zero-chargegroupforH2O and vacant sites.The second prefix is thendeterminedby thedominantspeciesof thedominant-valencegroup,asfollows.

The zero-charge group

The occupancy of theA position in pyrochlore-supergroupmineralsbycations is insomecasesverylow(<50%).Wherethezero-chargegroupexceedsanyvalencegroupoftheAsite,thesecondprefix“keno”isproposedforspeciesinwhich□exceedsH2O,andthesecondprefix“hydro”isproposedforspeciesinwhichH2Oexceeds□.

The dominant valence rule

TheHogarth (1977) rules of nomenclature thatreflectthechemicalcompositionattheApositionhavebeenmodified to conform to thedominant-valence rule.Consequently,whereneutral speciesarenot thelargestvalence-basedgroupattheA position,asecondprefixisnowtobeappliedforthedominantcationofthedominantvalence.ThereisanaturalclusteringofcompositionsnearNa=Ca=1apfu(Fig.3),acharge-balancingrequirementformembersoftheB5+groups.

Page 6: the pyrochlore supergroup of minerals: nomenclature

678 THeCanaDianMineralOGiST

fiG.2. Pyrochlore-supergroupminerals,B-sitecomposition.

aa

b

Page 7: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 679

Hence,inHogarth(1977),ifthedominantcationwaseitherCa orNa, no prefixwas used, and dominanceof either of these cationswas not indicated. Prefixeswereonlyusedtoindicatesubstantialamountsofothercations. Inorder to regain consistency, it is proposedhere to use secondprefixes fromnowon in order toindicateCaandNapredominance.

The pyrochlore supergroup presents complexitiesin the specification of end-member formulae, andalsowhether single-species names should correspondto single chemical end-members. For some species,a single unambiguous charge-balanced end-memberformula cannot exist. For example, the fluornatro-microlite ofWitzkeet al. (IMA#98–018) existswithcomposition(Na1.15Ca0.70Bi0.15)S2Ta2O6F.Useofonlydominantspeciesateachsitesuggeststheideal“end-member”formulaNa2Ta2O6F,whichisnotelectrostati-callyneutralandhenceisphysicallyimpossible.Intherealmineral,theheterovalentsubstitution2Ca2+=Bi3++Na+ takes place, so it is intermediate between thetwo charge-balanced end-membersNaCaTa2O6F andNa1.5Bi0.5Ta2O6F.Thesecompositionshavecomponentsofmorethanonevalenceononlyonesite,andthusareend-members in the senseofHawthorne (2002).Theboundarybetween these two endmembers is locatedat 50mol.%, and corresponds to the compositionNa1.25Ca0.5Bi0.25Ta2O6F.Theexampleaboveisclosetothisboundary,buthasNaCaTa2O6Fpredominant.Giventhestrongclusteringofpyrochlorecompositionsnearthisendmember,itistemptingtofindawaytodefine

thisendmemberascorrespondingtoonespeciesdespitethe50:50mixedoccupancyoftheAsites,inwhichcasefluornatromicrolitewouldbeaBi-richexampleofthisspecies.We agree that it is unfortunate that a singlecompositionfield,withnomajorchangeinpropertiesorparagenesisandwithcompositionsclusteringaroundthe 50:50mark, should be broken intoNa-dominantandCa-dominant halves.However, the division ofthe composition field does not really present a newnomenclaturaldifficulty.AstheA-siteandY-sitecontentof pyrochlore cannot be establishedwithout analysis,secondprefixescanonlybeusedwithconfidence foranalyzed specimens.Compositions that are near the50:50 composition canbe explicitlyflagged as being“near the 50:50mark”.Root nameswithout prefixesarerecommendedforincompletelyanalyzedmaterial.

Rigorousadherencetotheprincipleofusingasingledominantspeciesinadominant-valencegroupproducesamismatchbetweenspeciesandendmembersinpyro-chlores.Thecharge-balancedend-memberNaCaTa2O6Fisnotatthecenterofthecompositionfieldofaspecies,butmarks the boundary between fluornatromicro-lite and fluorcalciomicrolite. Conversely, neither ofthese species names canbe associatedwith a uniquecharge-balancedend-member.Theformula(Na1.5Bi0.5)Ta2O6Fisanexampleofonepossibleend-memberforfluornatromicrolite,with neutralitymaintainedby thesubordinateBi3+ at theA site.Theminor substituentneednot beBi: (Na1.5Y0.5)Ta2O6F and (Na1.667U0.333)Ta2O6Fareexamplesofendmembersthatwouldshare

fiG.3. Pyrochlore-supergroupminerals,A-sitecomposition.

Page 8: the pyrochlore supergroup of minerals: nomenclature

680 THeCanaDianMineralOGiST

the same name in our scheme. In order tomaintainsimplicity and avoidproliferationof names, only thepredominantNa is used to determine species, andwe have a “one-to-many”mapping between namesand some endmembers. These endmembers cancollectively be represented as (Na,#)2Ta2O6F,where“#”isunderstoodtomeanasubordinateamountofanunspecifiedcharge-balancingcomponent.Thesituationisanalogousforfluorcalciomicrolite,althoughthe“#”componentsforthatspecieswouldhaveachargelessthan+1 rather than in excess of +2. In this scheme,the “fluornatromicrolite” composition above clearlypertainstofluornatromicrolite,withCaandBiasminorcharge-balancingcomponents.Mismatchofspeciesandendmembersarisesbecause themultiplicityof theAsite(Na,Ca,etc.)istwicethemultiplicityofthenon-frameworkanion site (F,OH,O,H2O), and themostcommonB-site andY-site components require 50:50occupancyofAbytwodifferentvalences.Thisproblemarisesinmanycomplexsolid-solutions,andoursolu-tionforthepyrochloresmayprovideatemplateforthenomenclatureofothermineralgroups.

Nomenclaturebasedonthedominantelementinadominant-valence group is simple and reproducible.Thisisnot truefor thealternativeschemeofoneendmemberisequaltoonename,whichisanotherreasonfor rejecting thatmodel. Inmultidimensionalcoupledsolutions,particularlywherethereareseveraldifferentvalence-groupsatmorethanonesite,itisnoteasytodefine a rigorous, reproducibleway of extracting aunique dominant end-member.An example is shownbelow.

Consideraformulasuchas(Na1.1Ca0.4Y0.2U0.2□0.1)(Nb1.7Ti0.3)O6(OH).Ourrulesquicklyleadtothename“hydroxynatropyrochlore”.However, it is possible topartitionthevariouscationssoastofindagreatmanyend-memberswithinit,forexample:

0.08(□1.25U0.75)Nb2O6(OH)+0.14(NaU)Ti2O6(OH)+0.02Ca2(NbTi)O6(OH)+0.40(Na1.5Y0.5)Nb2O6(OH)+0.36(NaCa)Nb2O6(OH)

but this isnotauniquedecompositionof theformulainto “Hawthornian” end-members. The followingdecomposition also corresponds to the same overallformula:

0.10(□Y)Nb2O6(OH)+0.60(Na1.67U0.33)Nb2O6(OH)+0.10(CaY)Ti2O6(OH)+0.10Ca2(NbTi)O6(OH)+0.10(NaCa)Nb2O6(OH)

inwhich only two out of five end-members are thesame, but their proportions are quite different!Even

identifyingthesingledominantend-memberunambigu-ously is not possiblewithout careful definition of anelaborate procedure.The simplicity and reliability ofourcurrentschememakeitpreferable.

Variability at the Y site

Pyrochlore-supergroupminerals show a variableY-site composition. In the past, variations inY-siteoccupancywerenotreflectedinspeciesnomenclature,inpartowingtoalackofknowledgeofthestructuralchemistryofpyrochlore,butalsoowingtodifficultieswiththedeterminationofsome Yspecies.Asthedomi-nantconstituentat theY positioncannowcommonlybe establishedviaEPMAand structure analysis, it isreasonable to indicate the composition of this site inthe nomenclature.Rouse et al. (1998) demonstratedthe presence of structural (OH) groups by infraredspectroscopy.Thedominant-valencerule isalsovalidforanionicsites(Hatert&Burke2008).Hence,asetofprefixesistobeusedtoindicatethedominantspeciesofthedominant-valencegroupattheYsite.AccordingtoLumpkinet al.(1986),amajordifficultyisthedeter-mination ofwhether the “water” is present asOHormolecularH2O.Borodin&Nazarenko(1957)assumedatotalofsevenanionsandcalculatedtheamountofOHnecessary to achieve charge balance.Excess “water”wasallocatedasH2O. Ingeneral, thisprocedurewillnotalwaysbevalidbecauseofanionvacanciesattheYsite(Pyatenko1959,Aleshin&Roy1962,Subramanianet al.1983,Chakoumakos1984).AssumptionsinvolvedincalculatingstructuralformulaemainlyaffectO,OH,H2O,andY-sitevacancies.Thereadershouldbeawareoftheseuncertaintiesinthefollowingdiscussion.Somecasesmaybeanalyzed:

1)Ifthesumofcationvalencesisgreaterthan13.5,OwillnecessarilybethedominantspeciesattheYsite,forreasonsofchargebalance.

2)IfFexceeds0.5apfu,FwillbeconsideredasthedominantspeciesattheYsite.Theunderlyingassump-tionisthatFordersatY,whichmaynotbecorrectineverycase.Asubsetofdataconsistingof32oxyfluoridepyrochloreswas considered separately byChakou-makos(1984)todetermineifanyoneofthreepossibleanion configurationswould yield better calculatedvaluesofthecelledgeascomparedwiththeobservedvalues.Thethreeanionconfigurationsconsideredwere:(1)A2B2(O6F),OandFdisorderedoverX andY; (2)A2B2(O5F)O,OandFdisorderedoverX,andOatY,and(3)A2B2X6Y,fullyorderedwithOatXandFatY.

Theregressionstatisticsforthecalculatedversustheobservedcell-edgeforthesethreecaseswerenotsignifi-cantly different.Although arguments of electrostaticneutrality and calculations ofMadelung energy rankthe fully ordered case as themost likely distributionofanions,thecelledgedoesnotappeartobesensitive

Page 9: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 681

enough todistinguish among the three configurationsofanions.

3) If the sumof cation valences is less than 13.5andFis less than0.5apfu,O,OH,F,H2Oor□canbethedominantspeciesattheYsite.Forexample,anNa-dominantmicrolite samplewithavalencesumofcationsequalto12.72mayhaveaformulaendingwith…O6.00(□0.45F0.37O0.17)S1.00,…O6.00[(H2O)0.45F0.37O0.17]S1.00,…O6.00[F0.37(OH)0.35□0.28]S1.00, or…[O5.72(OH)0.28]S6.00[(OH)0.63F0.37]S1.00.The name ofthisspecieswouldbekenonatromicrolite,hydronatro-microlite,fluornatromicrolite,orhydroxynatromicrolite,respectively.All theseoptionsmaybeequallycorrectwithoutadditional information.If,forsomereason, itis not possible to know the dominant species of thedominantvalenceattheY site,wesuggestthatanamewiththeanionprefixsuppressed,suchas“natromicro-lite”beapplied.

Thenewnomenclaturesystem,therefore,resultsinmineralnamesofthetype:

yaroot

whererootisthenameofthegroup,determinedbythedominantspeciesofthedominant-valencegroupattheBsite,yindicatesthedominantspeciesofthedominant-valencegroupattheYsite,andaindicatesthedominantspeciesofthedominant-valencegroupattheAsite.

CalCulaTiOnOfTHefOrMula

Basis for formula calculation

VacanciescanoccuratanyoftheA,XandY sites,buthavenotbeenfoundtooccurattheB site.Conse-quently,pyrochlore formulae shouldbe calculatedonthebasisofanidealnumberofBcations(2apfu).Seethesectionentitled“Theformula”foralistoftypicalB-sitecationstobeusedinthenormalization.

The Si content

Pyrochlore-supergroupmineralsthatexhibithighSicontentsarefairlycommoningeochemicallyevolvedparageneses.The presence and structural role of Siin the structure of pyrochlore-supergroupmineralshave been longdebated but have beenonly partiallyresolved.DifferentexplanationshavebeeninvokedtoclarifythewayinwhichSiisincorporatedintonaturalpyrochlores,includingthepresenceofSiasadispersedcrystallineoramorphoussilicatephase(Hogarth1977,Hogarth&Horne1989,Voloshinet al.1989),anditspresenceasanessentialpartofthestructure.DespitetheabsenceoftetrahedralsitessuitableforSiincorporationin the pyrochlore structure, octahedralSi is possible:Si(OH)62–isstableatlowpressureandtemperatureinthaumasite,Ca3[Si(OH)6][SO4][CO3]•12H2O(Edge&

Taylor 1971).The real restriction on the occurrenceof[6]Siincrystalstructuresisthecrowdingofcationsaroundoxygen ions (O’Keeffe&Hyde1981).UsingTEM–EDX investigations combinedwith crystal-chemicalconsiderations,Bonazziet al.(2006)showedthatasignificantfraction(30–50%)oftheSidetectedbyEMPAdoes in fact occupy theoctahedral sites ofthe pyrochlore structure,whereas a larger fraction(50–70%)ofSi is concentrated in radiation-damagedportionsofthesample.Onthebasisofthisobservation,wecouldperhapsrecommendthatinthecalculationofaformula,nomorethan50%SibeattributedtoB.Never-theless,weprefernorecommendationonhowtoallotSi.TheincorporationornotofSiintothepyrochlore-supergroupmineral structure should be investigated,butlowSicontentscanbeincludedasaB-sitecationorassumedtobeduetocontaminantphases,andthisprobablywill notmodify the name of themineral.Syntheticpyrochlore-likephaseshavealsobeenshowntocontainSi at theB site (Reidet al. 1977).Resultsof two chemical analyses of pyrochlore-supergroupminerals presented byUheret al. (1998) showSi asthedominantcationofthedominantvalenceatB.Ifitisprovedthatall theanalyzedSiisreallyat thissite,thenanewpyrochloregroupwillexistandanewrootnamewillhavetobecreated.

The content of Cs, Rb and K

For stereochemical reasons, thevery largeCs,RbandKcationsprefer the8b (Y) site.TheyshouldnotbeassignedtotheA positionoftheformula.Chemistsrefertopyrochlore-supergroupmineralswithveryhighnumbersofvacanciesatAandabundantCs,RbandKatY as “inverse pyrochlores” (Ercitet al. 1993).NomineralwithapredominanceofthesecationsatYhasbeendescribed.

The content of F, OH and H2O

Themaximum amount ofH2O in the pyrochlorestructure iscontrolledby thecationoccupancyof theA site;themaximumcontentofH2Orangesfrom1.00H2Opfuforidealpyrochlores(twoAcationspfu, i.e., m =0)to1.75H2OpfuforA-deficientpyrochlores(noAcations,i.e.,m=2;Ercitet al.1994).LowA-sitecationcontent, high displacement-parameters for theY-siteconstituents, and the site splitting observed in somecasesfortheYsiteindicatethatthe“O”attheY sitescanbeH2O.Ercitet al.(1994)foundthatH2Omoleculeswereactuallydisplacedawayfromtheideal8bY sites,and partially occupied higher-multiplicity positionsnearby.Displacementsattained0.57Åalongapproxi-mate<112>directionsto96gY’,orasimilardistancealong<111>to32eY”positions.A192iposition(Y’’’)very close toY’was also located by Philippo et al.

Page 10: the pyrochlore supergroup of minerals: nomenclature

682 THeCanaDianMineralOGiST

(1995). Such displacements allow optimal distancesbetweenA-andY-sitespeciestobemaintained.

ForanormalpyrochloreAB2X6Y,inwhichAandBarecations,andXandYareanions,therearenostereo-chemicalconstraintsonthemaximumoccupanciesoftheAandYsites.However,forpyrochlore-supergroupminerals with H2O at both theA andY sites, themaximumoccupanciesofbothsitesarelimitedowingtotheshortseparationbetweentheidealAandY sites,which is in the neighborhood of 2.3Å (Ercit et al.1994). Partial occupancyof theA site andpositionaldisorder ofH2OatA and Y sites permit stableO...OseparationsforneighboringH2Ogroupsinpyrochlore.Ercitet al.(1994)foundthatpositionaldisorderresultedin eight fractionally occupiedA’ sites around eachA site,displacedfromtheidealsitebyabout0.11Åalong<111>directions.FiveoftheeightaretooclosetotheoffsetY’ andY” positions to represent stableO...OseparationsforH2Ogroups;however,threeoftheeightaresufficientlydistanttorepresentstableintermoleculardistances (averaging 2.74Å). Philippo et al. (1995)reportedadifferentschemeofdisplacement,inwhichH2Opartially occupiesA” sites displaced fromA by0.75Åalong<100>.ForsyntheticA-cation-freepyro-chlore,themaximumH2Ocontentpfumaybelimitedby the need to avoid closeH2O ...H2Odistances: ifthereisoneH2OgrouppfuattheY site,thentherecanbeonly3/8H2Ogroupsat theA site.Thisconstrainttranslatestoamaximumof1.75H2OpfuforA-cation-freepyrochlore.PreviousrefinementsofthestructuresofH2O-bearing pyrochlore have shownH2Oonly inthevicinityoftheY site(e.g.,Groultet al.1982).AsnosyntheticornaturalpyrochlorehasbeenfoundwithallH2OorderedatA,wepresumethattheY siteanditsdisplacedvariantsarethepreferredlocationsforH2O,andthatH2OonlyenterstheA sitesifY cannotaccom-modatemoreH2O.ThemaximumamountofH2Opfuinthepyrochlorestructureisthusgivenas1+(3m/8).ForanidealpyrochlorewithfullA-siteoccupancies(m=0),therecanbenomorethan1H2Opfu;asdescribedabove, the limit for A-deficientpyrochlore (m=2) is1.75H2Opfu(Ercitet al.1994).

If there is a large deficit of cations atA and theanalyticaltotalisverylow,wecouldsuspectthepres-enceofH2OatAsitesofthemineral.Wecancalculatethemaximumpossible amount of structuralH2O inthemineralandcompareitwiththeanalyticaldeficitsinEPMAdata.ButoneshouldneitherassumethatallH2Oinactinide-bearing,radiation-damagedpyrochlore-supergroupminerals is structural, nor that analyticaldeficits in EPMA data for pyrochlore-supergroupminerals are attributable to structuralH2O.Much oftheH2O inmetamict or semi-metamict pyrochlore-supergroupmineralsisadsorbed,andthusnotstructural.Inthisregard,itisinterestingtonotethatchemicaldata

ongeologicallyyoung,non-metamictU-richpyrochlore(Hogarth&Horne1989) indicate lowH2Ocontents.If theH2O content has been established directly andaccurately,e.g.,byTGA,thenitmayindeedbeshownthatsomeH2OmustoccupytheA sites.Unfortunately,wecannotmonitorthecontentofaneutralspeciesotherthanbydensitymeasurements,or fromdeterminationoftheelectrondensityinastructure,neitherofwhichwouldbevery accurate in thepresenceof significantheavy atoms. For nomenclature purposes, itwill beimportant to know theH2O content inA only if thetotalnumberofanyvalencegroupofA-sitecationsisexceededby the zero-chargegroup.Twopossibilitiesexist:(1)thecationdeficitiscomprisedmainlyofH2O,and(2)thedeficitmainlyinvolvesactualsite-vacancies.Ifitisnotpossibletoprovewhichofthetwoscenariosis correct, the expression “zero-valence-dominantspecies”canbeused.

naMeSOfPYrOCHlOre-SuPerGrOuPSPeCieS

The new names are presented below, in groupsdistinguished by the dominantB cation. For eachgroup, a table is shown indicating the combinationsof dominant species of the dominant-valence groupat theA site and dominant species of the dominant-valencegroupattheY siteforwhichthereisevidenceof amineral.With each table, a series of referencesis given for the corresponding species or potentialspecies. Complete descriptions aremissing for themajority of the pyrochlore-supergroup species.Thesevennamesmarkedwithanasterisk(*)refertovalidmineralspeciesbecauseoftheircompletedescriptions.Fluornatromicrolite is an IMA-approvedmineral, butthe complete description has not yet been published.Theother20names refer tominerals thatneed tobecompletelydescribedinordertobeapprovedasvalidspecies.For these, thereareonlychemicalorcrystal-structuredata.Typespecimensneedtobedefinedanddeposited inpublicmineralogicalmuseums.Potentialcandidates for several other species exist, but arenot characterizedwell enough for anyofficial status.Ancientchemicaldataderivedbywet-chemicalanal-ysescommonlyrepresentamixtureofminerals.Thesedatawerenotusedhere.Alldatausedwereacquiredby electron-microprobe analysis or were obtainedby crystal-structure refinements.We also verifiedthe scarcity of crystal-chemical data in the literature.Crystal-structure determinationweremade for onlynine pyrochlore-supergroupminerals.The names ofthesespeciesaremarkedwithadagger(†)inthetables.Aseriousproblemisidentifiedwiththeroméite-groupminerals,becauseofanerroneousassumptionthatalltheSbispentavalent.

Page 11: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 683

Minerals of the pyrochlore group (Table 1)

In the listings that follow, the name attributedby the author or authors isshownissquarebrackets.

fluornatropyrochloreP.M.Kartashov(unpublisheddata)

oxynatropyrochloreHogarth&Horne(1989):anal.3[uranpyrochlore]isoxynatropyrochlore;anal.1,2and4[uranpyrochlore],5and6[uranoanpyrochlore]are“natropyrochlore”.Knudsen (1989): at least three reported compositions are oxynatropyrochlore[pyrochlore].Chukanovet al.(1999):theformulaonpage41[bismutopyrochlore].

hydroxycalciopyrochloreBonazziet al.(2006)[pyrochlore]:onlybycrystal-structurestudywasitpossibletoconfirmahydroxycalciopyrochlorecomposition.

fluorcalciopyrochloreThereareseveralexamplesofanalyzedfluorcalciopyrochlore[pyrochlore]intheliterature,e.g.,Hogarth(1961),Ohnenstetter&Piantone(1992),Nasraouiet al.(1999),Nasraoui&Bilal(2000),Seifertet al.(2000),Thompsonet al.(2002),Leeet al.(2006).ThecrystalstructureoffluorcalciopyrochlorewasdeterminedbyBonazziet al.(2006).

oxycalciopyrochloreThereareseveralexamplesofanalyzedoxycalciopyrochloreintheliterature,e.g.,Hogarth(1961),Černýet al.(1979)[thetype“stibiobetafite”],Williams(1996),Chukanovet al. (1999) [formulaonpage40],Mokhovet al. (2008) [Moon].Thetypespecimenof“stibiobetafite”describedbyČernýet al.(1979)shouldbeconsideredasthetypespecimenofoxycalciopyrochlore.

Page 12: the pyrochlore supergroup of minerals: nomenclature

684 THeCanaDianMineralOGiST

fluorstrontiopyrochloreFranchini et al. (2005): The “strontiopyrochlore” Ja–13 (first point) isfluorstrontiopyrochlore.

oxyplumbopyrochloreVoloshin&Pakhomovskiy(1986),theiranal.1,Table3.1.

kenoplumbopyrochloreVoloshin&Pakhomovskiy(1986),theiranal.20,Table3.1.

oxyyttropyrochlore-(Y)Tindle&Breaks(1998):sample96–29.

fluorkenopyrochloreKartashovet al.(1998):“strontiopyrochlore”4,and“ceriopyrochlore”8.Schmittet al.(2002):AM206Pclg1–s2rim.

hydropyrochloreThetypesampleof“kalipyrochlore”ofvanWambeke(1978)andthatofErcitet al. (1994)[crystalstructuredetermined]arehydropyrochlore.Thetypespecimenof“kalipyrochlore”describedbyvanWambeke(1978)shouldbeconsideredasthetypespecimenofhydropyrochlore.

Notethatpotentialcandidatesfor“fluorhydropyrochlore”exist[Nasraoui&Bilal(2000),thefirst“kalipyrochlore”andthefirst“ceriopyrochlore”samplesoftheirTable4;Xieet al.(2006),grain1Pyc–Iandgrain3Pyc–I)]

Minerals of the microlite group (Table 2)

Page 13: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 685

fluornatromicroliteThe IMAproposal 98–018 for fluornatromicrolite (Witzke et al. 1998)wasapproved,butthecompletepaperisonlynowinpress.SomedatawerepublishedbyAtencio(2000).ChemicalcompositionsthatcorrespondtofluornatromicrolitefromotheroccurrencesareavailableinthepapersbyOhnenstetter&Piantone(1992),Belkasmiet al.(2000),Huanget al.(2002)andBaldwinet al.(2005).

fluorcalciomicroliteThere are several compositions of fluorcalciomicrolite in the literature, e.g.,Lumpkinet al.(1986),Baldwin(1989),Ohnenstetter&Piantone(1992),Tindle&Breaks(1998),Huanget al.(2002),Geisleret al.(2004),Tindleet al.(2005).

oxycalciomicroliteČernýet al.(2004)[stibiomicrolite];Guastoniet al.(2008)[microlite].

oxystannomicroliteVorma&Siivola(1967)[sukulaite];Ercitet al. (1987)[stannomicrolite].Thetypespecimenof“sukulaite”describedbyVorma&Siivola(1967)shouldbeconsideredasthetypeforoxystannomicrolite.

kenoplumbomicroliteBindiet al.(2006b):crystal-structurestudyofkenoplumbomicrolite.

oxystibiomicroliteGroatet al.(1987):thetypesampleof“stibiomicrolite”;Novák&Černý(1998).Thetypespecimenof“stibiomicrolite”describedbyGroatet al.(1987)shouldbeconsideredasthetypespecimenofoxystibiomicrolite.

hydrokenomicroliteM.B.Andrade&D.Atencio(unpublisheddata).

hydromicroliteM.B.Andrade&D.Atencio(unpublisheddata).

hydroxykenomicroliteErcitet al.(1993):crystal-structurestudyof“cesstibtantite”.Thetypespecimenof“cesstibtantite”describedbyVoloshinet al.(1981)shouldbeconsideredasthetypespecimenofhydroxykenomicrolite.

Page 14: the pyrochlore supergroup of minerals: nomenclature

686 THeCanaDianMineralOGiST

Minerals of the betafite group (Table 3)

oxycalciobetafiteMeyer&Yang (1988) [yttrobetafite-(Y)]: noH2O reported in the analyticalresults,asthisisalunarmineral;Brugger&Gieré(1999);Cámaraet al.(2004):crystalstructuredetermined.

oxyuranobetafiteMokhovet al.(2008),fromtheMoon.

Minerals of the roméite group (Table 4)

Page 15: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 687

fluornatroroméiteMatsubaraet al.(1996):crystalstructuredetermined.

hydroxycalcioroméiteRouseet al. (1998) andZubkova et al. (2000): crystal structure determined[“lewisite”].Thetypespecimenof“lewisite”describedbyHussak&Prior(1895)shouldbeconsideredasthetypespecimenofhydroxycalcioroméite.

fluorcalcioroméiteBruggeret al.(1997),Uheret al.(1998),Brugger&Gieré(1999).

oxycalcioroméiteChristy&Gatedal(2005).

oxyplumboroméiteChristy&Gatedal(2005)[bindheimite].

Minerals of the elsmoreite group (Table 5)

hydrokenoelsmoreiteSchaller (1911) [“ferritungstite”]; Sahama (1981) [“alumotungstite”];Ercit&Robinson(1994)[“ferritungstite”]:crystalstructuredetermined;Williamset al.(2005)[“elsmoreite”].Thetypespecimenof“elsmoreite”describedbyWilliamset al.(2005)shouldbeconsideredasthetypespecimenofhydrokenoelsmoreite.

COrreSPOnDenCeBeTweenOlDanDnewnaMeS

Allthefollowingmineralnamesshowninitalicsshouldbediscarded,astheydonotcorrespondtodistinctspeciesinthenewclassification.Notethatthereisnotaone-to-onecorrelationbetweenthenewnamesandthetraditionalnamesintheliterature.

Page 16: the pyrochlore supergroup of minerals: nomenclature

688 THeCanaDianMineralOGiST

Kalipyrochlore

KalipyrochloreofvanWambeke(1978) is insufficientlyK-rich towarrant thename “kalipyrochlore”.The type sample and that of Ercit et al. (1994) areexamplesofhydropyrochlore,withH2OdominantatboththeAandY sites.Addi-tionaldataforsamplesfromthetypeoccurrencearegivenbyWallet al.(1996).

Strontiopyrochlore

Strontiopyrochlore of Lapin et al. (1986), Lottermoser&England (1988),Voloshinet al.(1989),Wallet al.(1996),Kartashovet al.(1998),Chakhmou-radian&Mitchell(1998,2002),andFranchiniet al.(2005)[exceptfluorstron-tiopyrochlore]areCa-orzero-valent-dominantpyrochlore.

Bariopyrochlore

BariopyrochloreofJägeret al.(1959)[“pandaite”],Knudsen(1989),Wallet al.(1996),Williamset al.(1997),Subbotin&Subbotina(2000),andBindiet al.(2006a)areallzero-valent-dominantpyrochlore.

Plumbopyrochlore

Plumbopyrochlore of Skorobogatova et al. (1966),Kartashov et al. (1992),Voloshinet al.(1993),Kovalenkoet al.(1995),andXieet al.(2006)is“plum-bopyrochlore”. Plumbopyrochlore of Chakhmouradian&Mitchell (2002),Wanget al. (2003), andBeurlenet al. (2005) is zero-valent-dominant pyro-chlore.PlumbopyrochloreofVoloshin&Pakhomovskiy(1986)correspondstooxyplumbopyrochlore [their anal. 1,Table 3.1], kenoplumbopyrochlore [theiranal.20,Table3.1]and“plumbopyrochlore”[severalcompositions].

Bismutopyrochlore

BismutopyrochloreofChukanovet al. (1999)andErcitet al. (2003) is zero-valent-dominantpyrochlore.

Ceriopyrochlore-(Ce)

Ceriopyrochlore-(Ce) ofWeidmann&Lenher (1907), vanWambeke (1980),Wallet al.(1996),Chakhmouradian(1996),andZurevinski&Mitchell(2004)isCa-orzero-valent-dominantpyrochlore.

Yttropyrochlore-(Y)

Yttropyrochlore-(Y)ofKalita(1957)[“obruchevite”],andErcitet al.(2003)isazero-valent-dominantmineral.Yttropyrochlore-(Y)ofTindle&Breaks(1998)isoxyyttropyrochlore-(Y).

Uranpyrochlore

Forall recordedcasesofuranpyrochlore,U isnot thedominantcationof thedominantvalenceatA,exceptforsample9fromKhibinastudiedbyChakhmou-radian&Mitchell (2002).Nevertheless, it is not possible to know the domi-nant anionof thedominantvalenceat theY siteof thismineral. It shouldbereferredas“uranopyrochlore”.UranpyrochloreofHogarth&Horne (1989) is“natropyrochlore”.

Stannomicrolite

ThestannomicrolitespeciesofErcitet al. (1987)[“sukulaite”ofVorma&Siivola(1967)]isoxystannomicrolite.ThestannomicroliteofUheret al.(2008)isCa-orzero-valent-dominantmicrolite.

Page 17: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 689

Plumbomicrolite

The plumbomicrolite of Safiannikoff& vanWambeke (1961), Beurlen et al. (2005) andUher et al. (2008) is zero-valent-dominantmicrolite. Theplumbomicrolite ofBindi et al. (2006b) is, by crystal-structure refinement,kenoplumbomicrolite.

Stibiomicrolite

The type sample for stibiomicrolite (Groatet al. 1987) and also the sampleofNovák&Černý(1998)arenowtobeclassifiedasoxystibiomicrolite.TwocompositionsbyČernýet al.(2004)areoxycalciomicrolite,andoneis“calcio-microlite”.ThestibiomicroliteofBeurlenet al.(2005)iszero-valent-dominantmicrolite.

Bismutomicrolite

Thecompositionclaimedfortheoriginalbismutomicrolite[“westgrenite”](vonKnorring&Mrose 1963) probably refers to amixture.Thebismutomicrolitestudied byErichsendeOliveiraet al. (1970) andTindle&Breaks (1998) iszero-valent-dominantmicrolite.

Bariomicrolite

ThebariomicrolitespeciesofHogarth(1977),the“rijkeboerite”ofvanderVeen(1963),istoopoorinBatowarrantthisname.Thetypesampleapparentlyhas□dominantattheApositionandH2OattheYposition,andassuchisprob-ablyhydrokenomicrolite.ThebariomicrolitestudiedbyBeurlenet al.(2005)isprobablyalsohydrokenomicrolite.

Uranmicrolite

Nosamplesdescribedasuranmicrolite(“djalmaite”ofGuimarães1939)(e.g.,Baldwin1989,Rubet al.1998,Tindle&Breaks1998,Novák&Černý1998,Zhanget al.2004,Breiteret al.2007,vanLichterveldeet al.2007,Uheret al.2007)arerichenoughinUtowarrantastatusasaseparatespecies.

Cesstibtantite

Cesstibtantitewas described originally atVasinMyl’kMountain inVoronieTundry,theKolaPeninsula,Russia,byVoloshinet al.(1981).Otheroccurrenceswere described inManitoba,Canada, byErcitet al. (1985), atMt.Holland,Australia,byNickel&Robinson(1985),andatUtö,Sweden,bySmedset al.(1999).ThecrystalstructureofcesstibtantitefromVasinMyl’kMountainandManitobawas solvedbyErcitet al. (1993).Both arenow tobe classified ashydroxykenomicrolite.The two other samples are also zero-valent-dominantmicrolite,butitisnotpossibleprovethattheyarehydroxykenomicrolite.

Natrobistantite

NatrobistantitestudiedbyVoloshinet al.(1983)andbyBeurlenet al.(2005)arebothzero-valent-dominantmicrolite.

Calciobetafite

Hogarth(1977)definedbetafiteasauranium-richTi-dominantpyrochlore,hencethe origin of calciobetafite, a calcium-dominantTi-rich pyrochlore (Mazzi&Munno1983).However, all publishedanalyticaldataon (non-defect) betafitehaveCainexcessofU[exceptthemineralfromtheMoonstudiedbyMokhovet al.(2008)(oxyuranobetafite)];consequently,bycurrentstandards,betafiteisdefinedas a calcium-richandTi-dominantpyrochlore.This renders thename

Page 18: the pyrochlore supergroup of minerals: nomenclature

690 THeCanaDianMineralOGiST

calciobetafite redundant,andhas theaddedeffectofbringingmembersof thebetafitegroupinlinewiththeothergroups(furthermore,typecalciobetafiteisNb-dominant,notTi-dominant,andbelongstothepyrochloregroup).

Stibiobetafite

Černý et al. (1979) defined stibiobetafite as the Sb3+ analogue of betafite;however,thetypesamplehasNb+Ta>Tiapfu,andCaisthedominantspeciesofthedominant-valencegroupattheAsite.Thetypesampleisnowtobeclassifiedasoxycalciopyrochlore.ItisnotpossibletocalculatetheformulaofstibiobetafitestudiedbyTindle&Breaks(1998)owingtoerrorsinthetableofanalyticaldata.

Plumbobetafite

Plumbobetafite ofGanzeevet al. (1969) is zero-valent-dominant pyrochlore.PlumbobetafiteofVoloshinet al.(1993)is“plumbobetafite”.

Yttrobetafite-(Y)

Yttrobetafite-(Y)ofKalita (1959)andLiferovich&Mitchell (2005)arezero-valent-dominantpyrochlore.Yttrobetafite-(Y) fromtheMoon(Meyer&Yang1988)isoxycalciobetafite.

Lewisite

Crystal-structure studies (Rouse et al. 1998, Zubkova et al. 2000) proved“lewisite”tobehydroxycalcioroméite.

Stetefeldtite

Veryoldreferences(Riotte1867,Mason&Vitaliano1953).Probably“argento-roméite”.Thismaterialneedstobeexaminedchemicallyandstructurally.

Stibiconite

Originalmaterial describedbyBeudant (1837).Probably “stibioroméite”.Noelectron-microprobe data are available.Thismaterial needs to be examinedchemicallyandstructurally.

Bindheimite

OriginalmaterialdescribedbyDana (1868).Onlywith thedataofChristy&Gatedal(2005)isitpossibletocorrelatethismineralwithoxyplumboroméite.

Monimolite

Theproblematicalspeciesmonimolite(Igelström1865,Mason&Vitaliano1953)isalmostcertainlyidenticalwithoxyplumboroméite,butneedsre-examination.

Bismutostibiconite

ThemineralwasdescribedbyWalenta (1983).Thechemicaldataareconsid-eredinadequateowingtoastandardlessenergy-dispersionspectroscopy(EDS),withallSbassumedtobe5+,andresultsoftheanalysisnormalizedto100%.Itprobablyis“bismutoroméite”.Needsachemicalandstructuralinvestigation.

Partzite

Arents (1867). Probably “cuproroméite”.No electron-microprobe data.Thismaterialneedstobeexaminedchemicallyandstructurally.

Page 19: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 691

Ferritungstite and alumotungstite

Ferritungstite (Schaller 1911, Ercit&Robinson 1994) and alumotungstite(Sahama1981)arehydrokenoelsmoreite.

Jixianite

Jixianite(Liu1979)is“plumboelsmoreite”.Intheabsenceofacrystal-structurestudy,itisnotpossibletoknowthedominantanionofthedominantvalenceattheYsiteofjixianite.

THefOrMulaOfSeleCTeDSPeCieS

Formulae are given inTable 6 for all 28 pyrochlorespecies forwhichwehave analytical evidence.Notethat subordinatecomponentsat theA,B,XorY siteshavenonomenclaturalsignificance.Weshowspecificexamplesherethataretypicaloftheminorcomponentsobserved, but anyof these couldbe replacedby “#”,indicatinganunspecifiedheterovalentspeciesrequiredforchargebalance.

inDexOfMineralnaMeS

We show in Table 7 the correspondence betweenpublishednames(withreferences)andthenewnamesproposed,withanindicationoftherecommendedfateoftheoldname.

aCKnOwleDGeMenTS

WeacknowledgeStuartMills,DanaGriffen,BillBirch,FrédéricHatert,ErnstBurke,RobertF.Martin,AndreyBulakhandallmembersoftheIMACommis-sion onNewMinerals,Nomenclature andClassifi-cation for their helpful suggestions and comments,and FAPESP (Fundação deAmparo à Pesquisa doEstadodeSãoPaulo) forfinancialsupport (processes2008/04984–7and2009/09125–5).

referenCeS

aleSHin,e.&rOY,r. (1962):Crystal chemistry of pyro-chlore.American Ceramic Society Journal45,18-25.

arenTS,a.(1867):Partzite,anewmineral.American Journal of Science93,362.

aTenCiO,D. (2000):Type Mineralogy of Brazil (first ed.).MuseudeGeociências,Universidade deSãoPaulo, SãoPaulo,Brazil.

BalDwin, J.r. (1989):Replacementphenomena in tantalummineralsfromrare-metalpegmatitesinSouthAfricaandNamibia.Mineralogical Magazine53,571-581.

BalDwin, J.r.,Hill, P.G., finCH,a.a., vOnKnOrrinG,O.&Oliver,G.J.H. (2005):Microlite–manganotantaliteexsolutionlamellae:evidencefromrare-metalpegmatite,Karibib,Namibia.Mineralogical Magazine69,917-935.

BelKaSMi,M., CuneY,M., POllarD, P.J.&BaSTOul,a.(2000):Chemistry of theTa–Nb–Sn–Woxidemineralsfrom theYichun raremetal granite (SEChina): geneticimplicationsandcomparisonwithMoroccanandFrenchHercynian examples.Mineralogical Magazine64, 507-523.

BeuDanT, f.S. (1837):Traité élémentaire de Minéralogie(deuxièmeédition).CarilianJeune,Libraire,Paris,France.

Beurlen,H.,SOareS,D.r.,THOMaS,r.,PraDO-BOrGeS,l.e.&CaSTrO,C.(2005):Mineralchemistryoftantalatespe-ciesnewintheBorboremaPegmatiticProvince,northeastBrazil.Anais da Academia Brasileira de Ciências77,169-182.

BinDi,l.,PeTříčeK,v.,wiTHerS,r.l.,ZOPPi,M.&BOnaZZi,P.(2006a):Anovelhigh-temperaturecommensuratesuper-structureinanaturalbariopyrochlore:astructuralstudyby

Page 20: the pyrochlore supergroup of minerals: nomenclature

692 THeCanaDianMineralOGiST

Page 21: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 693

meansofamultiphasecrystalstructurerefinement.Journal of Solid State Chemistry179,729-738.

BinDi,l.,ZOPPi,M.&BOnaZZi,P.(2006b):PlumbomicrolitefromthePloskayaMountain,KeivyMassif,KolaPenin-sula,Russia:compositionandcrystalstructure.Periodico di Mineralogia75,51-58.

BOnaZZi,P.,BinDi,l.,ZOPPi,M.,CaPiTani,G.C.&OlMi,f.(2006): Single-crystal diffraction and transmission elec-tronmicroscopy studies of “silicified” pyrochlore fromNarssârssuk, Julianehaab district,Greenland.American Mineralogist91,794-801.

BOrODin, l.S.&naZarenKO, i.i. (1957):Chemical com-position of pyrochlore anddiadochic substitution in theA2B2X7molecule.Geokhimiya4, 386-400 (inRussian;transl.Geochemistry International4,330-349,1957).

BreiTer,K.,ŠKODa,r.&uHer,P. (2007):Nb–Ta–Ti–W–Sn-oxidemineralsasindicatorsofaperaluminousP-andF-richgraniticsystemevolution:Podlesí,CzechRepublic.Mineralogy and Petrology91,225-248.

BruGGer,J.&GierÉ,r. (1999):As,Sb,BeandCeenrich-ment inminerals frommetamorphosedFe–Mndeposit,

ValFerrera,EasternSwissAlps.Canadian Mineralogist37,37-52.

BruGGer,J.,GierÉ,r.,GraeSer,S.&MeiSSer,n. (1997):Thecrystalchemistryofroméite.Contributions to Miner-alogy and Petrology127,136-146.

CáMara,f.,williaMS,C.T.,DellavenTura,G.,OBerTi,r.&CaPrilli,e.(2004):Non-metamictbetafitefromLeCarcarelle(Vicovolcaniccomplex,Italy):occurrenceandcrystalstructure.Mineralogical Magazine68,939-950.

černý,P.,CHaPMan,r.,ferreira,K.&SMeDS,S.-a.(2004):GeochemistryofoxidemineralsofNb,Ta,Sn,andSbintheVaruträskgraniticpegmatite,Sweden: thecaseofan“anomalous”columbite–tantalite trend. American Miner-alogist89,505-518.

černý, P., HawTHOrne, f.C., laflaMMe, J.H.G.&Hin-THOrne,J.r.(1979):Stibiobetafite,anewmemberofthepyrochloregroupfromVežná,Czechoslovakia.Canadian Mineralogist17,583-588.

CHaKOuMaKOS,B.C. (1984): Systematics of the pyrochlorestructure type, idealA2B2X6Y. Journal of Solid State Chemistry53,120-129.

Page 22: the pyrochlore supergroup of minerals: nomenclature

694 THeCanaDianMineralOGiST

CHaKHMOuraDian,a.r. (1996): On the development ofniobium and rare-earthminerals inmonticellite–calcitecarbonatiteoftheOkaComplex,Quebec.Canadian Min-eralogist34,479-484.

CHaKHMOuraDian,a.r.&MiTCHell,r.H.(1998):Lueshite,pyrochlore andmonazite-(Ce) from apatite–dolomitecarbonatite, LesnayaVaraka complex,Kola Peninsula,Russia.Mineralogical Magazine62,769-782.

CHaKHMOuraDian,a.r.&MiTCHell,r.H.(2002):Newdataon pyrochlore- and perovskite-groupminerals from theLovozeroalkalinecomplex,Russia.European Journal of Mineralogy14,821-836.

CHriSTY,a.G.&GaTeDal,K. (2005): Extremely Pb-richrock-formingsilicatesincludingaberyllianscapoliteandassociatedminerals inaskarnfromLångban,Värmland,Sweden.Mineralogical Magazine69,995-1018.

CHuKanOv, n.v., SKriGiTil,a.M., KuZMina, O.v. &ZaDOv,a.e. (1999): Bismutopyrochlore (Bi, U, Ca,Pb)1+x(Nb,Ta)2O6(OH)•nH2O – a newmineral fromtheMika pegmatite vein (eastern Pamirs). Zapiski Vsesoyuznoye Mineralogichestogo Obshchestvo128(4),36-41(inRussian).

Dana, J.D. (1868):A System of Mineralogy (5th ed.). JohnWileyandSon,NewYork,N.Y.

DiCKSOn,f.J.,HawKinS,H.D.&wHiTe,T.J.(1989):Calciumuraniumtitanate–anewpyrochlore.Journal of Solid State Chemistry82,146-150.

eDGe,r.a.&TaYlOr,H.f.w. (1971):Crystal structure ofthaumasite, [Ca3Si(OH)6•12H2O](SO4)(CO3).Acta Crys-tallographicaB27,594-601.

erCiT,T.S.,černý,P.&HawTHOrne,f.C.(1985):Normalandinverse pyrochlore groupminerals.Geological Associa-tion of Canada – Mineralogical Association of Canada, Program with Abstracts10,A17.

erCiT,T.S.,černý,P.&HawTHOrne,f.C.(1993):Cesstibtan-tite–ageologic introduction to the inversepyrochlores.Mineralogy and Petrology48,235-255.

erCiT,T.S.,černý,P.&SiivOla, J. (1987):The composi-tionofstannomicrolite.Neues Jahrbuch für Mineralogie, Monatshefte,249-252.

erCiT,T.S.,GrOaT, l.a.&GaulT,r.a. (2003):Graniticpegmatites of theO’Grady batholith,N.W.T.,Canada:a case study of the evolution of the elbaite subtype ofrare-element granitic pegmatite.Canadian Mineralogist41,117-137.

erCiT,T.S.,HawTHOrne,f.C.&černý,P.(1994):Thestruc-tural chemistry of kalipyrochlore, a “hydropyrochlore”.Canadian Mineralogist32,415-420.

erCiT,T.S.&rOBinSOn,G.w. (1994):A refinement of thestructureof ferritungstite fromKalzasMountain,Yukon,

andobservationson the tungstenpyrochlores.Canadian Mineralogist32,567-574.

eriCHSenDeOliveira,O.,rOCHaBaPTiSTa,n.&BaPTiSTa,a. (1970):WestgrenitanopegmatitodeTromba,EstadodeGoiás.Anais da Academia Brasileira de Ciências42,41-44.

franCHini,M.,lira,r.,MeinerT,l,ríOS,f.J.,POKlePOviC,M.f., iMPiCCini,a.&MillOne,H.a. (2005):Na–Fe–Caalteration andLREE (Th–Nb):mineralization inmarbleandgranitoidsofSierradeSumampa,SantiagodelEstero,Argentina.Economic Geology100,733-764.

GanZeev,a.a.,efiMOv,a.f.&lYuBOMilOva,G.v.(1969):Plumbobetafite–anewmineralvarietyofthepyrochloregroup.Trudy Mineralogiches Muzeya, Akademiya Nauk SSSR19,135-137(inRussian).

GeiSler,T.,BernDT,J.,MeYer,H.-w.,POllOK,K.&PuTniS,a. (2004):Low-temperature aqueous alteration of crys-talline pyrochlore: correspondence between nature andexperiment.Mineralogical Magazine68,905-922.

GOreauD,M.&raveau,B.(1980):Aluniteandcrandallite:a structure derived from that of pyrochlore. American Mineralogist 65,953-956.

GreY,i.e.,BirCH,w.D.,BOuGerOl,C.&MillS,S.J.(2006):Unit-cell intergrowthofpyrochlore andhexagonal tung-sten bronze structures in secondary tungstenminerals.Journal of Solid State Chemistry179,3860-3869.

GrOaT,l.a.,černý,P.&erCiT,T.S.(1987):Reinstatementofstibiomicroliteasavalidspecies.Geoliska Föreningens i Stockholm Förhandlingar109,105-109.

GrOulT,D., PanneTier, J.&raveau,B. (1982):Neutrondiffraction study of the defect pyrochloresTaWO5.5,HTaWO6,H2Ta2O6,andHTaWO6•H2O.Journal of Solid State Chemistry41,277-285.

GuaSTOni,a.,Diela,v.&PeZZOTTa,f.(2008):VigezziteandassociatedoxidesofNb–Tafromemerald-bearingpegma-titesoftheVigezzoValley,WesternAlps,Italy.Canadian Mineralogist46,619-633.

GuiMarãeS,C.P. (1939):Djalmaita,umnovomineralradio-ativo.Annaes da Academia Brasileira de Sciencias11,347-350.

HaTerT, f.&BurKe, e.a.J. (2008):The IMA–CNMNCdominant-constituent rule revisited and extended.Cana-dian Mineralogist46,717-728.

HawTHOrne, f.C. (2002):The use of end-member charge-arrangements in defining newmineral species and het-erovalent substitutions in complexminerals. Canadian Mineralogist40,699-710.

HenDerSOn,S.J.,SHeBanOva,O.,HeCTOr,a.l.,MCMillan,P.f.&weller,M.T. (2007): Structural variations inpyrochlore-structuredBi2Hf2O7,Bi2Ti2O7 andBi2Hf2–xTixO7 solid solutions as a function of composition and

Page 23: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 695

temperature byneutron andx-raydiffraction and ramanspectroscopy.Chemistry of Materials19,1712-1722.

HOGarTH,D.D. (1961):A studyof pyrochlore andbetafite.Canadian Mineralogist6,610-633.

HOGarTH,D.D. (1977):Classification and nomenclature ofthepyrochloregroup.American Mineralogist62,403-410.

HOGarTH,D.D.&HOrne,J.e.T.(1989):Non-metamictura-noanpyrochloreanduranpyrochlorefromtuffnearNdale,Fort Portal area,Uganda.Mineralogical Magazine53,257-262.

HOGarTH,D.D.,williaMS,C.T.&JOneS,P.(2000):Primaryzoning in pyrochlore groupminerals from carbonatites.Mineralogical Magazine64,683-697.

HuanG,xiaOlOnG,wanG,ruCHenG,CHen,xiaOMinG,Hu,Huan&liu,CHanGSHi (2002):VerticalvariationsinthemineralogyoftheYichuntopaz–lepidolitegranite,JiangxiProvince,southernChina. Canadian Mineralogist40,1047-1068.

HuSSaK, e.& PriOr,G.T. (1895): Lewisite and zirkelite,twonewBrazilianminerals.Mineralogical Magazine11,80-88.

iGelSTröM,l.J. (1865):Nya och sällsyntamineralier frånVermland.Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar22,227-229.

JäGer, e., niGGli, e.& van Derveen,a.H. (1959):Ahydrated barium–strontiumpyrochlore in a biotite rockfromPandaHill,Tanganyika.Mineralogical Magazine32,10-25.

KaliTa,a.P. (1957):On thecompositionofobruchevite–ahydrateduranium–yttriumvarietyofpyrochlore.Doklady Akademii Nauk SSSR117,117-120(inRussian).

KaliTa,a.P. (1959): New data on someminerals of theAlakurtti veins.Trudy Inst. Mineral. Geokhimii Kristal-lokhimii Redkikh Elementov2,164-172(inRussian).

KarTaSHOv,P.M.,MOKHOv,a.v.&KOvalenKO,v.i.(1998):RareearthSr-pyrochlorefromWesternMongolia:thefirstfind in associationwith alkalic granites.Doklady Earth Sciences359,510-513.

KarTaSHOvP.M.,vOlOSHina.v.&PaKHOMOvSKYYa.a.(1992):On plumbopyrochlore fromWesternMongolia. Doklady Akademii Nauk SSSR322, 1137-1140 (inRus-sian).

KnuDSen,C. (1989): Pyrochlore groupminerals from theQaqarssuk carbonatite complex. In Lanthanides,Tanta-lumandNiobium(P.Möller,P.Černý&F.Saupé,eds.).Springer-Verlag,Berlin,Germany(80-99).

KOvalenKO,v.i.,TSarYeva,G.M.,GOreGlYaD,a.v.,Yar-MOlYuK,v.v.,TrOiTSKY,v.a.,HerviG,r.l.&farMer,G.l. (1995):The peralkaline granite-relatedKhaldzan–

Buregteyraremetal(Zr,Nb,REE)deposit,westernMon-golia.Economic Geology90,530-547.

laPin,a.v.,MalYSHev,a.a., PlOSHKO,v.v.&CHerePiv-SKaYa,G.Ye. (1986): Strontiopyrochlore from lateriticcrusts ofweathering of carbonatites.Doklady Akademii Nauk SSSR290,1212-1217(inRussian).

lee,Mi JunG,lee, JOnG iK,GarCia,D.,MOuTTe, J.,wil-liaMS,C.T.,wall,f.&KiM,YeaDOnG(2006):PyrochlorechemistryfromtheSokliphoscorite–carbonatitecomplex,Finland: implications for the genesis of phoscorite andcarbonatiteassociation.Geochemical Journal40,1-13.

liferOviCH,r.P.&MiTCHell,r.H. (2005): CompositionandparagenesisofNa-,Nb-andZr-bearingtitanitefromKhibina,Russia, and crystal-structure data for syntheticanalogues.Canadian Mineralogist43,795-812.

liu JianCHanG (1979): Jixianite Pb(W,Fe3+)2(O,OH)7 – anew tungstenmineral.Acta Geologica Sinica53, 46-49(inChinese).

lOTTerMOSer,B.G.&enGlanD,B.M.(1988):Compositionalvariation in pyrochlores from theMt.Weld carbonatitelaterite,WesternAustralia.Mineralogy and Petrology38,37-51.

luMPKin,G.r.,CHaKOuMaKOS,B.C.&ewinG,r.C.(1986):Mineralogy and radiation effects ofmicrolite from theHardingpegmatite,TaosCounty,NewMexico.American Mineralogist71,569-588.

luMPKin,G.r.&ewinG,r.C.(1992):Geochemicalalterationofpyrochloregroupminerals:microlitesubgroup.Ameri-can Mineralogist77,179-188.

luMPKin,G.r.&ewinG,r.C. (1995): Geochemical altera-tionofpyrochloregroupminerals:pyrochlore subgroup.American Mineralogist80,732-743.

MaSOn,B.&viTalianO,C.J.(1953):Themineralogyoftheantimonyoxides and antimonates.Mineralogical Maga-zine30,100-112.

MaTSuBara, S., KaTO,a., SHiMiZu,M., SeKiuCHi, K.&SuZuKi,Y. (1996):Romeite fromGozaishomine, Iwaki,Japan.Mineralogical Journal18(4),155-160.

MaTTeuCCi,f.,CruCiani,G.,DOnDi,M.,BalDi,G.&Bar-ZanTi,a.(2007):Crystalstructuralandopticalpropertiesof Cr-dopedY2Ti2O7 andY2Sn2O7 pyrochlores.Acta Materialia55,2229-2238.

MaZZi, f.&MunnO,r. (1983):Calciobetafite (newmin-eral of the pyrochlore group) and relatedminerals fromCampi Flegrei, Italy; crystal structures of polymignyteandzirkelite:comparisonwithpyrochloreandzirconolite.American Mineralogist68,262-276.

MeYer,C.&YanG, S.v. (1988):Tungsten-bearing yttro-betafite in lunar granophyre.American Mineralogist73,1420-1425.

Page 24: the pyrochlore supergroup of minerals: nomenclature

696 THeCanaDianMineralOGiST

MillS,S.J.,HaTerT,f.,niCKel,e.H.&ferrariS,G.(2009):Thestandardisationofmineralgrouphierarchies:applica-tiontorecentnomenclatureproposals.European Journal of Mineralogy21,1073-1080.

MOKHOv,a.v.,KarTaSHOv,P.M.,BOGaTiKOv,O.a.,aSHiKH-Mina,n.a.,MaGaZina,l.O.&KOPOrulina,e.v.(2008):Fluorite,hatchettolite,calciumsulfate,andbastnasite-(Ce)in the lunar regolith fromMareCrisium.Doklady Earth Sciences422(1),1178-1180.

naSraOui,M.&Bilal, e. (2000): Pyrochlores from theLueshe carbonatite complex (Democratic Republic ofCongo): a geochemical record of different alterationstages.Journal of Asian Earth Sciences18,237-251.

naSraOui,M.,Bilal, e.&GiBerT,r. (1999): Fresh andweatheredpyrochlorestudiesbyFouriertransforminfraredspectroscopycoupledwiththermalanalysis.Mineralogical Magazine63,567-578.

naSraOui,M.&waerenBOrGH,J.C.(2001):Fespeciationinweatheredpyrochlore-groupmineralsfromtheLuesheandAraxá(Barreiro)carbonatitesby57FeMössbauerspectros-copy. Canadian Mineralogist39,1073-1080.

niCKel,e.H.(1992):Solidsolutionsinmineralnomenclature.Canadian Mineralogist30,231-234.

niCKel, e.H.&rOBinSOn,B.w. (1985):Kimrobinsonite,a new tantalummineral fromWesternAustralia, and itsassociationwith cesstibtantite.Canadian Mineralogist23,573-576.

nOváK,M.&černý, P. (1998):Niobium–tantalum oxidemineralsfromcomplexgraniticpegmatitesintheMolda-nubicum, Czech Republic: primary versus secondarycompositionaltrends.Canadian Mineralogist36,659-672.

OHnenSTeTTer,D.&PianTOne,P.(1992):Pyrochlore-groupmineralsintheBeauvoirperaluminousleucogranite,Mas-sifCentral.France.Canadian Mineralogist30,771-784.

O’Keeffe,M.&HYDe,B.G.(1981).Theroleofnonbondedforcesincrystals.InStructureandBondinginCrystals(M.O’Keeffe&A.Navrotsky,eds.).JohnWiley&Sons,NewYork,N.Y.(227-254).

PHiliPPO,S.,nauD, J.,DeClerq, J.P.&feneau-DuPOnT, J.(1995):StructurerefinementandX-raypowderdiffractiondata for kalipyrochlore (K,Sr,Na,Ca,H2O)2–m(Nb,Ti)2–xO6–wY1–nwith(0<m<0.8,x~0.2,w=0and0.2<n<1).Powder Diffraction10,180-184.

PYaTenKO,Yu.a. (1959): Some aspects of the chemicalcrystalIographyofthepyrochlore-groupminerals.Kristal-lografiya4,204-208(inRussian,transl.Soviet Physics – Crystallography4,184-186,1960).

reiD,a.f.,li,C.&rinGwOOD,a.e. (1977):High-pressuresilicate pyrochlores, Sc2Si2O7 and In2Si2O7Journal of Solid State Chemistry20,219-226.

riOTTe,e.n.(1867):Stetefeldtit,einneuesMineral.Berg- und HuettenmÆnnische Zeitung26,253-254.

rOuSe, r.C., Dunn, P.J., PeaCOr,D.r.&wanG liPinG(1998): Structural studies of the natural antimonianpyrochlores. I.Mixed valency, cation site splitting, andsymmetry reduction in lewisite. Journal of Solid State Chemistry141,562-569.

ruB,a.K., STeMPrOK,M.&ruB,M.G. (1998):TantalummineralizationintheapicalpartoftheCínovec(Zinnwald)granitestock.Mineralogy and Petrology63,199-222.

SafianniKOff,a.&vanwaMBeKe,l.(1961):Surunetermeplombifèredugroupepyrochlore–microlite.Bulletin de la Société française de Minéralogie et de Cristallographie84,382-384.

SaHaMa,T.G. (1981):The secondary tungstenminerals, areview.Mineralogical Record12,81-83.

SCHaller,w.T.(1911):Ferritungstite,anewmineral.Ameri-can Journal of Sciences182,161-162.

SCHMiTT,a.K.,TruMBull,r.B.,DulSKi,P.&eMMerMann, r. (2002): Zr–Nb–REEMineralization in peralkalinegranites from theAmisComplex,Brandberg (Namibia):evidence formagmatic pre-enrichment frommelt inclu-sions.Economic Geology97,399-413.

SeiferT,w.,KäMPf,H.&waSTernaCK,J.(2000):Composi-tionalvariationinapatite,phlogopiteandotheraccessorymineralsof theultramaficDelitzsch complex,Germany:implicationforcoolinghistoryofcarbonatites.Lithos53,81-100.

SKOrOBOGaTOva,n.v., SiDOrenKO,G.a.,DOrOfeeva,K.a.&STOlYarOva,T.i.(1966):Plumbopyrochlore.Geologiya Mestorozhdenii Redkikh Elementov 30,84-95(inRussian).

SMeDS,S.-a.,černý,P.&CHaPMan,r.(1999):Niobiancal-ciotantiteandplumboan–stannoancesstibtantitefromtheislandofUtö,StockholmArchipelago,Sweden.Canadian Mineralogist37,665-672.

SuBraManian,M.a.,aravaMuDan,G.,&raOSuBBa,G.v.(1983):Oxidepyrochlores–a review.Progress in Solid State Chemistry15,55-143.

SuBBOTin,v.v.&SuBBOTina,G.f.(2000):Pyrochlore-groupminerals fromphoscorites and carbonatites of theKolaPeninsula.Vestnik Moscow State University3, 273-284(inRussian).

THOMPSOn,r.n., SMiTH,P.M.,GiBSOn,S.a.,MaTTeY,D.P.&DiCKin,a.P. (2002):AnkeritecarbonatitefromSwart-booisdrif,Namibia: thefirst evidence formagmatic fer-rocarbonatite.Contributions to Mineralogy and Petrology143,377-395.

TinDle,a.G.&BreaKS,f.w.(1998):OxidemineralsoftheSeparationRapidsrare-elementgraniticpegmatitegroup,northwesternOntario.Canadian Mineralogist36,609-635.

Page 25: the pyrochlore supergroup of minerals: nomenclature

THePYrOCHlOreSuPerGrOuPOfMineralS:nOMenClaTure 697

TinDle,a.G., SelwaY, J.B.&BreaKS,f.w. (2005):Liddi-coatiteandassociatedspeciesfromtheMcCombespodu-mene-subtyperare-elementgraniticpegmatite,northwest-ernOntario,Canada. Canadian Mineralogist43,769-793.

uHer, P.,černý, P.&CHaPMan,r. (2008): Foordite–tho-reaulite,Sn2+Nb2O6–Sn2+Ta2O6:compositionalvariationsandalterationproducts.European Journal of Mineralogy20,501-516.

uHer, P.,černý, P.,CHaPMan,r.,HaTár, J.&MiKO,O.(1998):EvolutionofNb,Ta-oxidemineralsinthePrašivágranitic pegmatites, Slovakia. II.External hydrothermalPb,Sboverprint. Canadian Mineralogist36,535-545.

uHer, P., ŽiTňan, P.&OZDín,D. (2007): PegmatiticNb–Ta oxideminerals in alluvial placers from Limbach,BratislavaMassif,westernCarpathians, Slovakia: com-positional variations and evolutionary trend.Journal of Geosciences52,133-141.

vanDerveen,a.H. (1963):Astudyofpyrochlore.Verhan-delingen van het Koninklijk Nederlands geologisch mijn-bouwkundig genootschap, Geologische serie22,1-188.

vanliCHTervelDe,M.,Salvi,S.,BÉZiaT,D.&linnen,r.l.(2007):Texturalfeaturesandchemicalevolutionintanta-lumoxides:magmaticversushydrothermaloriginsforTamineralization in theTancoLowerPegmatite,Manitoba,Canada.Economic Geology102,257-276.

vanwaMBeKe,l.(1970):Thealterationprocessesofthecom-plextitano-niobo-tantalatesandtheirconsequences.Neues Jahrbuch für Mineralogie, Abhandlungen112,117-149.

vanwaMBeKe,l.(1971):Theproblemofcationdeficienciesinsomephosphatesduetoalterationprocesses.American Mineralogist56,1366-1384.

vanwaMBeKe,l. (1978):Kalipyrochlore,anewmineralofthepyrochloregroup.American Mineralogist63,528-530.

vanwaMBeKe, l. (1980): Lattrapite and ceriopyrochlore,newmineralsfortheFederalRepublicofGermany. Neues Jahrbuch für Mineralogie, Monatshefte, 171-174.

vOlOSHin,a.v.,Men’SHiKOv,Yu.P.,PaKHOMOvSKiY,Ya.a.& POleZHaeva, l.i. (1981): Cesstibtantite, (Cs,Na)SbTa4O12 – a newmineral from granitic pegmatites.Zapiski Vsesoyuznoye Mineralogichestogo Obshchestvo110,345-351(inRussian).

vOlOSHin,a.v.&PaKHOMOvSKiY,Ya.a. (1986):Minerals and Evolution of Mineral Formation in Amazonite Pegma-tites of Kola Peninsula.Nauka,Leningrad,Russia.

vOlOSHin,a.v., PaKHOMOvSKiY,Ya.a.&BaKHCHiSaraY-TSev,a.Y.(1993):PlumbobetafiteinamazonitepegmatitesofwesternKeyv (Kola Peninsula).Mineralogicheskiy Zhurnal15(2),76-80(inRussian).

vOlOSHin,a.v., PaKHOMOvSKiY,Ya.a., PuSHCHarOvSKiY,l.Yu.,naDeZHina,T.n., BaKHCHiSaraYTSev,a.Y.&KOBYaSHev,Yu.S. (1989): Strontiumpyrochlore: com-

positionandstructure.Novye Dannye Mineral. SSSR36,12-24(inRussian).

vOlOSHin,a.v., PaKHOMOvSKiY,Ya.a., STePanOv,v.i.& TYuSHeva, f.n. (1983): Natrobistantite (Na,Cs)Bi(Ta,Nb,Sb)4O12–anewmineral fromgraniticpegma-tites.Mineralogicheskiy Zhurnal5(2),82-86(inRussian).

vOnKnOrrinG,O.&MrOSe,M.e. (1963):Westgreniteandwaylandite, two new bismuthminerals fromUganda.Geological Society of America, Special Paper73, 256-257(abstr.).

vOrMa,a.&SiivOla,J.(1967):Sukulaite–Ta2Sn2O7–andwodginite as inclusions in cassiterite in the granite peg-matiteinSukula,Tammela,inSWFinland.Bulletin de la Commission géologique de Finlande229,173-187.

xie,l.,wanG,r.C.,wanG,D.Z.&qiu,J.S.(2006):AsurveyofaccessorymineralassemblagesinperalkalineandmorealuminousA-typegranitesofthesoutheastcoastalareaofChina. Mineralogical Magazine70,709-729.

walenTa,K. (1983):Bismutostibiconit, ein neuesMineralderStibiconitgruppe ausdemSchwarzwald.Chemie der Erde42,77-81.

wall,f.,williaMS,C.T.,wOOlleY,a.r.&naSraOui,M.(1996):PyrochlorefromweatheredcarbonatiteatLueshe,Zaire.Mineralogical Magazine60,731-750.

wanG,ruCHenG,fOnTan,f.,CHen,xiaOMinG,Hu,Huan,liu,CHanGSHi,xu,SHiJin&DeParSeval,P. (2003):AccessorymineralsintheXihuashanY-enrichedgraniticcomplex, southern China: a record ofmagmatic andhydrothermalstagesofevolution.Canadian Mineralogist41,727-748.

weiDMann, S.&lenHer,v. (1907):Marignacite, a newvarietyofpyrochlorefromWausau,Wisconsin.American Journal of Science173,287-292.

williaMS,C.T.(1996):Theoccurrenceofniobianzirconolite,pyrochlore and baddeleyite in theKovdor carbonatitecomplex,KolaPeninsula,Russia.Mineralogical Magazine60,639-646.

williaMS,C.T.,wall, f.,wOOlleY,a.r.,&PHilliPO, S.(1997):Compositional variation in pyrochlore from theBingo carbonatite,Zaire.Journal of African Earth Sci-ences25,137-145.

williaMS,P.a.,levereTT,P.,SHarPe,J.l.,COlCHeSTer,D.M.&ranKin, J. (2005):Elsmoreite, cubicWO3•0.5H2O, anewmineral species fromElsmore,NewSouthWales,Australia.Canadian Mineralogist43,1061-1064.

wiTZKe,T.,STeinS,M.DOrinG,T.,SCHuCKMann,w.,weG-ner,r.& POllMann,H. (1998): Fluornatromicrolite.IMACNMMNSubmission98–018.Now inpress (Can. Mineral.48).

ZHanG,a.C.,wanG,r.C.,Hu,H.,ZHanG,H.,ZHu,J.C.&CHen,x.M.(2004):ChemicalevolutionofNb–Taoxides

Page 26: the pyrochlore supergroup of minerals: nomenclature

698 THeCanaDianMineralOGiST

and zircon from theKoktokayNo. 3granitic pegmatite,Altai, northwesternChina.Mineralogical Magazine68,739-756.

ZuBKOva, n.v., PuSHCHarOvSKY, D.Yu.,aTenCiO, D.,araKCHeeva,a.v.&MaTiOli, P.a. (2000):The crystalstructure of lewisite, (Ca,Sb3+,Fe3+,Al,Na,Mn,□)2(Sb5+,Ti)2O6(OH).Journal of Alloys and Compounds296,75-79.

ZurevinSKi, S.e.&MiTCHell,r.H. (2004): Extreme com-positional variation of pyrochlore-groupminerals at theOkaCarbonatiteComplex,Quebec: evidenceofmagmamixing? Canadian Mineralogist42,1159-1168.

Received June 12, 2010.