55
UNIVERSIDADE DE MOGI DAS CRUZES JOSÉ AUGUSTO NECCHI JUNIOR DESENVOLVIMENTO DE DISPOSITIVO A VÁCUO PARA SISTEMA FECHADO DE LANGENDORFF Mogi das Cruzes, SP 2006

UNIVERSIDADE DE MOGI DAS CRUZES JOSÉ AUGUSTO NECCHI JUNIORlivros01.livrosgratis.com.br/cp027765.pdf · UNIVERSIDADE DE MOGI DAS CRUZES JOSÉ AUGUSTO NECCHI JUNIOR DESENVOLVIMENTO

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • UNIVERSIDADE DE MOGI DAS CRUZES

    JOSÉ AUGUSTO NECCHI JUNIOR

    DESENVOLVIMENTO DE DISPOSITIVO A VÁCUO PARA

    SISTEMA FECHADO DE LANGENDORFF

    Mogi das Cruzes, SP

    2006

  • Livros Grátis

    http://www.livrosgratis.com.br

    Milhares de livros grátis para download.

  • UNIVERSIDADE DE MOGI DAS CRUZES

    JOSÉ AUGUSTO NECCHI JUNIOR

    DESENVOLVIMENTO DE DISPOSITIVO A VÁCUO PARA

    SISTEMA FECHADO DE LANGENDORFF

    Prof. Orientador: Dr. Carlos Marcelo Gurjão de Godoy

    Mogi das Cruzes, SP

    2006

    2

    Dissertação de Mestrado apresentada à Comissão da Pós-Graduação do Mestrado em Engenharia Biomédica da Universidade de Mogi das Cruzes para obtenção do Título de Mestre em Engenharia Biomédica.

  • 3

  • DEDICATÓRIA

    Dedico este trabalho primeiramente à Deus, fonte de toda vida. À todos aqueles que

    me incentivaram e ajudaram nesta conquista, em especial, à minha mulher Lúcia Helena e aos

    meus pais, José Augusto e Josely.

    4

  • AGRADECIMENTOS

    Ao meu orientador Professor Carlos Marcelo Gurjão de Godoy pela dedicação e

    críticas construtivas que muito me ajudaram.

    Aos colegas do laboratório, Kleber, Alessandra, Juliana.

    Aos colegas, que muito me ajudaram neste trabalho, Diego Basile Colugnati, Maurício

    Marques de Oliveira e João Viannei Effting Jr.

    À Fabiyane da Silva pela ajuda nas horas difíceis; e à todos os funcionários.

    Agradeço à todos que, de alguma forma, me apoiaram e incentivaram nesta conquista.

    Muito Obrigado.

    5

  • RESUMO

    O objetivo do presente estudo foi desenvolver um sistema de re-circulação baseado a vácuo (SRBV) e testá-lo em uma preparação de Langendorff com e sem o coração isolado. Os testes realizados sem o coração isolado mostraram que o SRBV é capaz de re-circular até 25ml/min (para volumes maiores que 100 ml). Os testes realizados com o coração isolado na condição de circulação fechada mostraram que a freqüência cardíaca, pressão ventricular esquerda e perfusão miocárdica têm uma diminuição importante após 30 minutos do começo do experimento com um volume de perfusão de 100ml, e após 60 minutos para um volume de perfusão de 200 ml, em relação à condição de circulação aberta. Adicionalmente, um teste realizado em circulação aberta por 60 minutos, fechada por 30 minutos e novamente aberta, mostrou que os mesmos parâmetros apresentam um decréscimo importante, não tendo uma recuperação quando a circulação foi aberta. Concluiu-se que o SRBV é eficiente para preparação de Langendorff em circulação fechada. No entanto, para circulação fechada com volumes de 100 ml e 200 ml, há perda significativa dos parâmetros cardíacos após 20 e 60 minutos respectivamente. Esta condição é irreversível e pode estar relacionada a um efeito cumulativo de substâncias liberadas pelo tecido cardíaco.

    Palavras-chave: Langendorff, Coração Isolado, Circulação Fechada, Re-circulação

    6

  • ABSTRACT

    The purpose of the present study was to develop a vacuum-based re-circulatory system (VBRS) and test it on a Langendorff preparation with or without the isolated heart. The tests performed without the isolated heart showed that VBRS is capable to re-circulate up to 25ml/min (volumes higher than 100ml). The tests performed with isolated heart in loop circulation condition showed that heart rate, left ventricular pressure and myocardial perfusion had an important decrease after 30 minutes from the beginning of the experiments to a 100ml circulation volume, and after 60 minutes to a 200ml circulation volume, in relation to the open circulation condition. Additionally, it was performed a test in open circulation for 60 minutes, followed by loop circulation for 30 minutes and again in open circulation, showing an important decrease in the same parameters, but without recuperation even after opening the circulation. We concluded that the VBRS is an efficient device for Langendorff preparation working in loop circulation. However, for loop circulation volumes of 100ml and 200ml, important cardiac parameters are worsen significantly after 20 and 60 minutes respectively. This condition is irreversible and may be related to a cumulative effect of substaces released by the cardiac tissue.

    Keywords: Langendorff, Isolated heart, Loop circulation, Re-circulation.

    7

  • LISTA DE ILUSTRAÇÕES

    Figura 1 Princípio de funcionamento das bombas peristálticas (esmagamento do circuito para impelir a solução)...................................................................... 11

    Figura 2 Ilustração das câmaras cardíacas, válvulas e grandes vasos........................... 13Figura 3 Montagem experimental para coração isolado de sapo, desenvolvida por

    Carl Ludwig e Elias Cyon.............................................................................. 17Figura 4 Montagem experimental para coração-pulmão de mamífero, desenvolvida

    por Henry Newell Martin............................................................................... 18Figura 5 Montagem experimental para coração isolado de mamífero, desenvolvida

    por Oscar Langendorff................................................................................... 19Figura 6 Montagem experimental utilizada em trabalhos atuais, seguindo os

    princípios propostos por Langendorff em 1895............................................. 21Figura 7 Esquema da montagem experimental de Langendorff................................... 23Figura 8 Dispositivo comercial (Radnoti Simple Myocite/langendorff -Isolated

    Heart System) para montagem experimental de Lagendorff, que utiliza a re-circulação da solução de perfusão por meio de bomba peristáltica........... 24

    Figura 9 Esquema da montagem experimental para perfusão de coração isolado em circuito fechado. Câmara de vácuo (A); reservatório de perfusão (B); câmara de perfusão (C).................................................................................. 26

    Figura 10 Funcionamento da torneira de vias................................................................. 29Figura 11 Representação esquemática do funcionamento da válvula passiva. 11(a)

    Válvula aberta, permitindo o gotejamento para o reservatório B. 11(b) Válvula fechada por meio de sucção do vácuo gerado na câmara A............. 30

    Figura 12 Foto da montagem experimental completa..................................................... 31Figura 13 Câmara de perfusão e sistema de aquisição do eletrograma cardíaco e

    pressão ventricular.......................................................................................... 34Figura 14 Tempo de atividade do coração isolado na montagem experimental em

    cada um dos 3 grupos estudados (“aberta“, “fechada 100ml“ e “fechada 200ml“)........................................................................................................... 37

    Figura 15 Freqüência cardíaca média (com erro padrão) nos grupos “fechada” e “aberta 100ml”, “aberta 200ml” e no experimento “aberta-fechada-aberta”ao longo do tempo de experimento..................................................... 38

    Figura 16 Pressão ventricular esquerda média (com erro padrão), nos grupos “fechada” e “aberta 100ml”, “aberta 200ml” e no experimento “aberta-fechada-aberta”ao longo do tempo de experimento....................................... 39

    Figura 17 Perfusão miocárdica média (com erro padrão), nos grupos fechada-aberta”ao longo do tempo de experimento.................................................... 40

    Figura 18 Normalização dos valores de freqüência cardíaca, pressão ventricular e perfusão para o grupo com circulação aberta................................................. 41

    Figura 19 Normalização dos valores de freqüência cardíaca, pressão ventricular e perfusão para o grupo com circulação fechada (volume = 100ml)................ 41

    Figura 20 Normalização dos valores de freqüência cardíaca, pressão ventricular e perfusão para o grupo com circulação fechada (volume = 200ml)................ 42

    8

  • LISTA DE ABREVIATURAS E SIGLAS

    bpm Batimentos por minutocm CentímetroCO2 Dióxido de Carbonog Grama(s)KH Krebs-Henseleitmin Minuto(s)ml Mililitro(s)mmHg Milímetros de Mercúrioº C Graus CelsiusO2 OxigêniopH Potencial hidrogeniônicorpm Rotações por minuto

    9

  • SUMÁRIO

    1 APRESENTAÇÃO............................................................................................................. 102 INTRODUÇÃO.................................................................................................................. 132.1 O SISTEMA CARDIOVASCULAR.............................................................................. 132.2 O ESTUDO DA FUNÇÃO DO CORAÇÃO.................................................................. 142.3 MODELOS EXPERIMENTAIS PARA ESTUDO IN VITRO DO CORAÇÃO............ 152.4 O ESTUDO DO CORAÇÃO ISOLADO........................................................................ 162.4.1 A Montagem Experimental de Langendorff................................................................. 182.4.2 Circulação Retrógrada.................................................................................................. 222.4.3 Circulação Aberta versus Circulação Fechada (ou Re-circulação).............................. 222.5 CUIDADOS COM A MONTAGEM.............................................................................. 242.6 OBJETIVOS.................................................................................................................... 252.6.1 Geral............................................................................................................................. 252.6.2 Específicos.................................................................................................................... 253 MÉTODOS......................................................................................................................... 263.1 PRINCÍPIO DE FUNCIONAMENTO DA MONTAGEM............................................ 263.2 MONTAGEM EXPERIMENTAL.................................................................................. 273.3 DETALHAMENTO DO FUNCIONAMENTO DA MONTAGEM EXPERIMENTAL................................................................................................................ 273.3.1 Funcionamento da Torneira de 3 Vias.......................................................................... 293.3.2 Funcionamento da Válvula Passiva.............................................................................. 303.4 TESTES DA MONTAGEM............................................................................................ 303.4.1 Testes de Estabilidade.................................................................................................. 323.4.2 Testes do Coração in vitro na montagem..................................................................... 323.4.2.1 Solução de Perfusão.................................................................................................. 333.5 AQUISIÇÃO DE SINAIS............................................................................................... 333.6 APRESENTAÇÃO DOS RESULTADOS...................................................................... 354 RESULTADOS.................................................................................................................. 364.1 TESTES DE ESTABILIDADE....................................................................................... 364.2 TESTES DO CORAÇÃO IN VITRO NA MONTAGEM............................................... 365 DISCUSSÃO...................................................................................................................... 436 CONCLUSÕES.................................................................................................................. 46REFERÊNCIAS.................................................................................................................... 47

    10

  • 1 APRESENTAÇÃO

    Desde que Langendorff descreveu sua técnica de perfusão em 1895, corações isolados

    de mamíferos foram usados em numerosos estudos que levaram à importantes descobertas

    sobre fisiologia, farmacologia e cirurgia cardíaca (HILL et al., 2005).

    Um grande número de modelos experimentais de coração isolado tem sido proposto e

    modificado, sendo ainda necessárias melhorias para um modelo ideal de estudo da função do

    coração (AN et al., 2002). Na área de pesquisa cardiovascular, muita atenção tem sido dada

    ao desenvolvimento de modelos experimentais mais simples e eficientes, que sejam menos

    propensos às variações das respostas, mas que atendam às complexas exigências do sistema

    cardíaco (WIECHERT et al., 2003).

    A relação entre a atividade mecânica, o consumo de Oxigênio (O2) e a utilização de

    substratos pelo coração pode ser melhor estudada utilizando-se preparações de coração

    isolado, pois não há ação dos pulmões ou outros tecidos (NEELY et al., 1967) e o coração

    isolado não está sujeito ao controle do sistema autonômico (CHEN et al., 1987).

    O coração isolado perfundido é um modelo valioso e de fácil execução (WANG et al.,

    2002; OLIVEIRA, 2005), sendo reconhecidamente um modelo apropriado para o estudo da

    função cardíaca (INAMDAR et al., 1994; WIECHERT, 2003), principalmente por causa de

    sua simplicidade (MARTINS et al., 2000). Atualmente, o coração isolado tem sido

    largamente utilizado pela indústria farmacêutica como primeira linha de testes de triagem

    farmacológica (screening) (CURTIS, 1998).

    A montagem de coração isolado perfundido com solução re-circulante, ou seja, em um

    circuito fechado de circulação, apresenta a vantagem de necessitar de um volume menor de

    solução. Esta vantagem é de extrema importância nos estudos que utilizam drogas ou

    fármacos de alto custo.

    Para que o sistema de perfusão possa re-circular a solução, é necessária uma bomba de

    recalque que, no entanto, oferece contato com partes mecânicas móveis, ou bomba

    peristáltica, que promove a circulação por meio da compressão da mangueira do circuito de

    circulação. Estas bombas necessitam, por si só, de um determinado volume de solução para

    poder efetuar sua ação de bombeamento, aumentando o volume de solução efetivamente

    necessário para perfundir o coração (CANELAS et al., 2003).

    As bombas peristálticas são reconhecidamente os equipamentos mais utilizados para a

    circulação de soluções em sistemas fechados de perfusão. Estas necessitam de um ajuste do

    11

  • fluxo a ser utilizado, sendo a solução impulsionada pela aplicação de movimentos

    peristálticos gerados pelo rotor da bomba (MATOS et al., 2001). A figura 1 ilustra o princípio

    de funcionamento de uma bomba peristáltica.

    Figura 1: Princípio de funcionamento das bombas peristálticas (esmagamento do circuito para impelir a solução). Fonte: Circulation Technology Inc, 2006.

    Ainda, os tubos flexíveis sofrem pressão intermitente dos roletes e, quando submetidos

    a longos períodos de operação, apresentam gradual queda da vazão por fadiga e deformação,

    bem como aumento da permeabilidade a gases. O custo destas bombas pode chegar a

    US$1,500 (MATOS et al., 2001). Além disso, prolongamentos no circuito e o contato com

    partes mecânicas móveis e fixas favorecem áreas de contaminação.

    Em vista das limitações técnicas impostas pelas bombas que promovem a re-

    circulação em sistema de perfusão de coração isolado de Langendorff, nos propusemos a

    desenvolver um sistema de re-circulação que fosse baseado em outro princípio que não fosse

    o bombeamento de solução, e que viabilizasse a minimização do volume total da solução

    circulante. Este novo tipo de sistema de re-circulação seria especialmente importante

    12

  • para estudos com fármacos de alto custo, permitindo ampliar a reprodutibilidade dos

    experimentos. A seguir, serão apresentados os aspectos teóricos relacionados a este trabalho.

    13

  • 2 INTRODUÇÃO

    2.1 O SISTEMA CARDIOVASCULAR

    O sistema cardiocirculatório desenvolveu-se ao longo da evolução dos animais para

    resolver o problema de difusão de O2 e nutrientes entre o ambiente e o interior das células

    (SILVERTHORN, 2003). Este é um sistema fechado, que nos vertebrados deriva de um

    sistema ancestral comum, semelhante ao dos cefalocordados, com adição de um coração

    central, circulação hepática e capilares (AIRES, 1999).

    A função primordial do coração é agir como uma bomba contrátil, ejetando sangue e

    mantendo uma pressão adequada para que ocorra a circulação (HOLDEN et al., 1995).

    O coração de mamífero é uma estrutura complexa, sendo constituído anatomicamente

    por 4 câmaras, sendo 2 átrios e 2 ventrículos, constituídos por células miocárdicas contráteis.

    Há também um grupo de células diferenciadas, que formam um tecido especializado na

    gênese e condução do impulso elétrico por todo tecido cardíaco, e este é modulado por sua

    inervação simpática e para simpática (GUYTON e HALL, 1997; AIRES, 1999). A figura 2

    ilustra a divisão das câmaras e outras estruturas cardíacas.

    Figura 2: Ilustração das câmaras cardíacas, válvulas e grandes vasos. Fonte: modificado de Netter (1992).

    14

  • Mecanismos especiais do coração mantêm sua ritmicidade e transmitem potenciais de

    ação por toda musculatura cardíaca (GYUTON e HALL, 1997). Ou seja, juntamente com essa

    massa muscular contrátil existem estruturas especializadas na gênese e condução da atividade

    elétrica, constituídas por tecido muscular modificado (AIRES, 1999).

    Mesmo o coração tendo esta capacidade intrínseca de geração da sua atividade

    elétrica, quase todas as funções do sistema cardiovascular são reguladas ou moduladas pelo

    sistema nervoso autônomo, por meio da sua divisão simpática e parassimpática (TAYLOR,

    1994). A ação humoral também exerce um papel importante na regulação das funções

    cardiovasculares, podendo causar arritmias ou alterações hemodinâmicas (KIM et al.,

    2004).

    2.2 O ESTUDO DA FUNÇÃO DO CORAÇÃO

    O estudo da função do coração é complexo e vários esforços têm sido feitos para criar

    modelos experimentais mais simples e eficientes, que sejam menos propensos às respostas

    compensatórias, mas que supram o complexo contexto do funcionamento cardíaco

    (WIECHERT et al., 2003).

    Existem diversas maneiras de se realizar os estudos experimentais com o

    coração. Estudos clínicos são aqueles realizados com seres humanos, o que muitas vezes

    inviabiliza certos tipos de pesquisa, tais como induções de arritmias, testes de drogas, ou

    mesmo técnicas de transplante. Para tentar resolver este problema, vários modelos biológicos

    foram propostos:

    - Animal In Vivo

    - Animal com o tórax aberto (Open Chest)

    - Coração Isolado

    - Tecido Cardíaco Isolado

    - Células Cardíacas Isoladas

    Segundo Su e Narayanan (1992), a inter-relação dos vários fatores que controlam as

    funções cardíacas tornam difícil, ou quase impossível, estudos das alterações intrínsecas do

    coração, inclusive as relacionadas ao envelhecimento do miocárdio no organismo

    intacto.

    15

  • 2.3 MODELOS EXPERIMENTAIS PARA ESTUDO IN VITRO DO

    CORAÇÃO

    Os modelos de estudo com coração in vitro, como é o caso do coração isolado

    perfundido, têm a vantagem de não sofrer a ação do sistema nervoso central e ação hormonal

    de outros sistemas (AN et al., 2002).

    Os modelos experimentais com corações isolados têm sido amplamente utilizados em

    estudos para a compreensão dos mecanismos fisiológicos do coração, compreensão de

    mecanismos fisiopatológicos de diversas patologias, estudos da resposta cardíaca frente à

    estímulos externos e estudos farmacológicos na atividade cardíaca (INAMDAR et al.,

    1994).

    Comumente, corações de pequenos mamíferos, como ratos, coelhos e cobaias, têm

    sido largamente utilizados em modelos de estudos de lesão miocárdica na reperfusão pós-

    isquemia (DI-NÁPOLI et al., 1998, WANG et al., 2001). A utilização de animais como

    modelo experimental ainda não foi totalmente esgotada em estudos fisiológicos e

    patofisiológicos (WANG et al., 2002). A tabela 1 relaciona alguns estudos e preparações

    biológicas utilizadas com modelos animais.

    Tabela 1: Estudos e preparações biológicas utilizadas com animais experimentais.

    Estudo Preparação Animal Utilizado Autor(es) Ano

    Lesão Miocárdica – Farmacologia

    Coração Isolado Galinha McCallum et al. 1989

    Fisiologia Coração Isolado Sapo Knight et al. 1989Lesão Miocárdica – Farmacologia

    Coração Isolado Rato – Sprague-Dawley

    Li et al. 1996

    Farmacologia Coração Isolado Rato – Wistar Rett et al. 1997Fisiologia –

    FarmacologiaCoração Isolado Rato –Wistar Vassallo et al. 1998

    Fisiologia – Farmacologia

    Tecido Atrial Isolado

    Rato – Wistar Bassani et al. 1999

    Fisiopatologia Coração Isolado Rato – Wistar De-Angelis et al. 2000Fisiologia Coração Isolado Rato Kaneko et al. 2000

    Eletrofisiologia Células Ventriculares

    Rato – Wistar Gomes et al. 2001

    Eletrofisiologia Coração Isolado Rato – Wistar Sabo et al. 2001

    16

  • Eletrofisiologia Tecido Atrial Isolado

    Rato – Wistar Godoy et al. 2002

    Farmacologia Coração Isolado Rato Assis et al. 2003Fisiologia Coração Isolado Porco Petrucci-Jr et al. 2003

    Lesão Miocárdica – Farmacologia

    Coração Isolado Coelho – Norfolk Souza et al. 2004

    Lesão miocárdica In Vivo Cão Sant’Ana-Jr et al. 2005

    2.4 O ESTUDO DO CORAÇÃO ISOLADO

    A montagem experimental com coração isolado mais utilizada em pesquisas é a de

    Langendorff. O modelo clássico de Langendorff, proposto em 1895 para estudo do coração,

    permite medidas da função cardíaca em condições relativamente fisiológicas (WIECHERT et

    al., 2003), uma vez que neste modelo o coração é mantido sob pressão de perfusão constante

    de solução (An et al., 2002). Assim, há mais de um século, Langendorff introduziu uma

    técnica clássica que se tornou uma montagem convencional, tanto para o ensino, quanto para

    pesquisa da função cardíaca (INAMDAR et al., 1994).

    O desenvolvimento do coração isolado perfundido foi um processo de estudo que se

    arrastou por mais de 100 anos. Dificilmente qualquer outro procedimento metodológico tenha

    tomado tanto tempo para se aprimorar, ou tenha tido tanta riqueza de resultados para o

    conhecimento dos princípios sobre a função miocárdica, regulação do fluxo coronariano e

    metabolismo cardíaco (ZIMMER, 1998).

    O pioneiro nas pesquisas de órgãos isolados foi Carl Ludwig, que juntamente com

    outros fisiologistas, estava determinado a provar que somente as forças físicas e químicas

    eram responsáveis pelos processos fisiológicos. Em 1846, Ludwig e Wild, um aluno seu,

    conectaram a aorta de um animal morto com a artéria carótida de um animal vivo (doador),

    mantendo a perfusão coronária do animal receptor. Esta preparação de coração podia até ser

    estimulada, mas não era possível parar os batimentos e depois reanimar a função do coração

    (ZIMMER, 1998).

    O próximo passo foi realizado por Carl Ludwig e Elias Cyon, que retiraram o coração

    e mantiveram-no completamente isolado por um longo período de tempo. O animal utilizado

    foi o sapo, que tinha a vantagem de não ter circulação coronariana e ter apenas um ventrículo.

    Esta montagem está ilustrada na figura 3. Os problemas com a utilização de corações de

    17

  • mamíferos já eram conhecidos desde 1846 por Wild e Ludwig. Assim, os estudos realizados

    até 1880 eram com coração isolado de sapo.

    Figura 3: Montagem experimental para coração isolado de sapo, desenvolvida por Carl Ludwig e Elias Cyon. Fonte: Adaptado de Zimmer, 1998, p. 205.

    Um grande progresso foi obtido por Henry Newell Martin, ao conseguir usar corações

    de mamíferos, com um modelo de preparação de coração-pulmão. Inicialmente, um gato ou

    cão anestesiado e curarizado era artificialmente ventilado, e a circulação sistêmica era

    excluída, exceto por uma cânula na artéria subclávia esquerda, que era conectada à um

    manômetro. Todo sangue ejetado pelo ventrículo esquerdo era bombeado para as coronárias.

    A circulação coronariana acabava no átrio direito, escoando para o ventrículo direito, e

    bombeado, via artéria pulmonar, para um pulmão e ser oxigenado, retornando ao coração

    18

  • esquerdo (ZIMMER, 1998). A montagem experimental de Martin está ilustrada na figura 4.

    Figura 4: Montagem experimental para coração-pulmão de mamífero, desenvolvida por Henry Newell Martin. Fonte: Adaptado de Zimmer, 1998, p. 207.

    Dando continuidade, Oscar Langendorff foi o responsável por retirar o coração de

    mamíferos, perfundí-los e mantê-los vivos por várias horas. Ele, sem dúvida, fez uma grande

    distinção entre o seu método e o método de Martin, atraindo a atenção e mostrando toda a

    relevância de seu método.

    2.4.1 A Montagem Experimental de Langendorff

    Os experimentos originais de Langendorff foram realizados, em sua maioria, em gatos,

    e também em coelhos e cães. Para a perfusão era utilizado sangue sem fibrinogênio, das

    mesmas espécies estudadas. O elemento chave daquela montagem era a cânula de perfusão,

    19

  • que era inserida na aorta do coração, e este ficava suspenso dentro de uma câmara. A cânula

    estava conectada a uma garrafa que continha sangue, e era constantemente abastecida por um

    reservatório logo acima. Tanto a câmara onde estava o coração, quanto a garrafa de sangue,

    estavam imersos em água, que podia ser aquecida por um bico de Bunsen; o fluxo do coração

    escoava em um outro reservatório (ZIMMER, 1998). A montagem original de Langendorff

    está ilustrada na figura 5.

    Figura 5: Montagem experimental para coração isolado de mamífero, desenvolvida por Oscar Langendorff. Fonte: Adaptado de Zimmer, 1998, p. 208.

    Uma das primeiras e mais surpreendentes observações de Langendorff foi que o

    coração isolado, que na sua visão parecia estar morto ou morrendo, podia recuperar sua

    atividade pela reperfusão. O coração recuperava o automatismo e mantinha-se por horas.

    Assim, em 1895, Langengorff descreveu um modelo de coração isolado de mamífero

    perfundido de um modo retrógrado através da aorta por uma coluna de Ringer-lactato. Esta

    preparação foi o primeiro modelo para estudo direto da ação farmacológica de diferentes

    substâncias no coração (TROUVE e NAHAS, 1985).

    De acordo com Trouve e Nahas (1985), a freqüência cardíaca era a única variável que

    podia ser mensurada com alguma precisão. A força de contração, ou função inotrópica, e

    fluxo coronariano foram difíceis de serem medidos com estabilidade e precisão. Nos anos

    seguintes, o fluxo coronariano foi medido aproximadamente por meio de amostras do

    20

  • gotejamento. A força de contração do miocárdio ou a pressão podiam ser medidas de três

    maneiras:

    • Transdutor de força;

    • Medidas da pressão de uma coluna de líquido de um balão inserido no ventrículo;

    • Medidas da pressão intraventricular por médias de um cateter inserido na câmara

    ventricular.

    A técnica introduzida por Langendorff envolve a canulação da aorta, o que submete o

    coração a uma circulação retrógrada, isto é, o líquido a ser perfundido entra pela aorta, passa

    pelas coronárias, átrio direito, ventrículo direito e sai pelas aberturas finais nas artérias

    pulmonares (INAMDAR et al., 1994).

    Segundo Inamdar et al. (1994), vários estudos foram feitos para analisar as vantagens

    e desvantagens do modelo de perfusão retrógrada de Langendorff. Estes estudos levaram às

    várias modificações, tais como o envolvimento de sistemas computadorizados para aquisição,

    armazenamento e processamento dos dados experimentais, as quais melhoram a técnica no

    que se refere aos ensaios eletrofisiológicos e hemodinâmicos.

    Atualmente, vários estudos têm sido realizados com corações isolados, utilizando a

    técnica descrita por Langendorff, acrescida de melhoramentos, como é o caso do trabalho

    realizado por Assis et al. (2003), cuja montagem experimental segue o proposto de

    Langendorff, e está ilustrada na figura 6.

    A maioria dos estudos utiliza solução de perfusão sem hemoglobina, como é o caso da

    solução de Krebs-Henseleit (KH), que requer uma alta tensão de O2 e alta taxa de perfusão no

    fluxo coronariano. Contudo, os experimentos que utilizam a solução de perfusão de KH têm a

    vantagem de ter baixo custo, simplicidade e ainda evitam a formação de trombos

    (BENDJELID et al., 2003).

    Existem diversas maneiras de preparar a montagem experimental com o coração

    isolado. Uma maneira é anestesiar o animal por inalação de agentes anestésicos ou injeção

    intravenosa ou intraperitoneal de agentes; ou realizar a concussão cerebral ou decapitação

    (SUTHERLAND e HEARSE, 2000).

    21

  • Figura 6: Montagem experimental utilizada em trabalhos atuais, seguindo os princípios propostos por Langendorff em 1895. Fonte: Assis et al., 2003, p. 84.

    Goes et al. (1993) realizaram um estudo com corações isolados para demonstrar a

    influência de agentes anestésicos no metabolismo celular, capaz de causar arritmias. Por outro

    lado, segundo Sutherland e Hearse (2000) a decapitação ou concussão causam uma maior

    ação das catecolaminas e outros fatores circulantes. A tabela 2 relaciona alguns estudos e os

    métodos de remoção do coração.

    Tabela 2. Métodos de sacrifício para remoção do coração do animal em alguns estudos.

    Caracterização do Estudo Método de sacrifício do animal

    Autor(es) Ano

    Fisiologia - Farmacologia Decapitação Schmidlin et al. 1992Fisiologia Decapitação Su e Narayanan 1992

    Fisiologia Anestesia profunda Ahmad et al. 1996

    22

  • Fisiologia Concussão Cerebral Süzer et al. 1997Fisiologia Anestesia Boucher et al. 1998Fisiologia Anestesia Felaco et al. 2000

    Eletrofisiologia Concussão Cerebral Godoy et al. 2002Lesão Miocárdica –

    eletrofisiologiaAnestesia Yamaguchi et al. 2003

    Fisiologia - Farmacologia Anestesia Dobsak et al. 2003

    2.4.2 Circulação Retrógrada

    A preparação do coração isolado, de acordo com o modelo de Langendorff, envolve a

    canulação da aorta, que deve ser fixada a um reservatório de perfusão contendo solução

    devidamente oxigenada. Esta solução é então distribuída em um sentido retrógrado pela aorta.

    O fluxo pode ser constante, oferecido por meio de bomba de recalque ou bomba peristáltica;

    ou pode ser utilizada uma coluna de perfusão (pressão hidrostática), que geralmente varia

    entre 60-100mmHg. Em ambos os casos a válvula aórtica é forçada a romper-se e a solução

    passa diretamente para o óstio coronário, perfundindo também toda a massa ventricular

    esquerda, e sendo drenada para o átrio direito pelo seio coronário, deixando o coração pelas

    aberturas das artérias pulmonares (INAMDAR et al., 1994; SUTHERLAND e HEARSE,

    2000).

    2.4.3 Circulação Aberta versus Circulação Fechada (ou Re-circulação)

    Embora exista uma grande variedade, as preparações de coração isolado são baseadas

    em adaptações do modelo descrito originalmente descrito por Langendorff. Este modelo pode,

    de maneira simplificada, ser resumido como sendo um reservatório de solução de perfusão,

    uma coluna de perfusão, uma câmara de perfusão, e sistemas de coleta de dados, como

    transdutores de pressão, força, etc. (SUTHERLAND e HEARSE, 2000). Neste modelo mais

    simples, a solução de perfusão é desprezada após perfundir o coração. A figura 7 ilustra um

    esquema da montagem de Langendorff, com circulação aberta ou não re-circulante, ou seja, a

    solução é desprezada após perfunfir o coração.

    23

  • Figura 7: Esquema da montagem experimental de Langendorff. Fonte: Adaptado de Sutherland e Hearse, 2000, p.3.

    Normalmente, os estudos metabólicos são desenvolvidos em modelos experimentais

    in vitro com solução de perfusão não-recirculante para coração, o que demanda grandes

    volumes de solução perfundida (BENDJELID et al., 2003). Uma outra maneira de se realizar

    a montagem é promover uma re-circulação da solução de perfusão, ou seja, após perfundir o

    coração, a solução é levada para o reservatório de perfusão, para novamente perfundir

    o coração. Este sistema é principalmente usado quando a solução de perfusão é o

    próprio sangue. A figura 8 ilustra um sistema com re-circulação, disponível

    comercialmente.

    24

  • Figura 8: Dispositivo comercial (Radnoti Simple Myocite/langendorff -Isolated Heart System) para montagem experimental de Lagendorff, que utiliza a re-circulação da solução de perfusão por meio de bomba peristáltica. Fonte: Adaptado de Radnoti Glass Technology, 2006.

    2.5 CUIDADOS COM A MONTAGEM

    Em um artigo publicado em 1904, Heymans e Kochmann já descreviam a importância

    de se manter constantes a temperatura e a pressão de perfusão nas montagens experimentais

    com coração isolado de mamíferos (HEYMANS e KOCHMANN, 1904).

    Além disso, diversos fatores podem ser os responsáveis por uma instabilidade, ou

    mesmo fracasso, na execução de estudos com o coração isolado. Segundo Sutherland e Hearse

    (2000), os problemas mais comuns com a montagem são:

    25

  • • Dificuldade para isolar o coração do animal (dificuldade técnica, demora e/ou lesão

    direta das estruturas cardíacas);

    • Erros no preparo da solução de perfusão;

    • Contaminação da montagem;

    • Contaminação da solução de perfusão ou seus componentes.

    Em vista dos problemas e dificuldades associados à contaminação da montagem e da

    solução de perfusão, vale lembrar que o sistema de re-circulação utilizando vácuo proposto

    neste trabalho é especialmente importante para estudos com drogas ou fármacos de alto custo,

    permitindo ampliar a reprodutibilidade e a qualidade dos experimentos.

    2.6 OBJETIVOS

    2.6.1 Geral

    Desenvolver e testar um sistema de re-circulação de solução por sucção a vácuo para

    uma montagem experimental de Langendorff.

    2.6.2 Específicos

    • Minimizar o custo da montagem experimental em relação às montagens disponíveis

    comercialmente.

    • Minimizar o volume total de solução de perfusão circulante no sistema, utilizando um

    princípio de re-circulação diferente dos disponíveis atualmente no mercado.

    • Testar o desempenho da montagem experimental em experimentos com coração

    isolado de rato.

    26

  • 3 MÉTODOS

    3.1 PRINCÍPIO DE FUNCIONAMENTO DA MONTAGEM

    A figura 9 ilustra a representação esquemática da montagem. A montagem

    experimental constitui-se de um sistema de perfusão para corações isolados (Langendorff) de

    rato em sistema fechado, e com circulação por meio de uma única bomba de vácuo. De

    maneira simplificada, a re-circulação da solução da câmara C para o reservatório B, que provê

    solução ao coração isolado, se dá através da câmara de vácuo A. Num primeiro momento, o

    vácuo gerado na câmara A suga o excesso de solução da câmara C. Num segundo momento, o

    vácuo da câmara A é “desligado” e a solução cai por gravidade para o reservatório B.

    Figura 9: Esquema da montagem experimental para perfusão de coração isolado em circuito fechado. Câmara de vácuo (A); reservatório de perfusão (B); câmara de perfusão (C).

    27

  • 3.2 MONTAGEM EXPERIMENTAL

    O desenvolvimento do projeto e a montagem experimental foram realizados no

    Laboratório de Eletrofisiologia Cardíaca (LEC) do Núcleo de Pesquisas Tecnológicas (NPT)

    da Universidade de Mogi das Cruzes (UMC).

    Na montagem experimental, os dispositivos fundamentais utilizados para constituir o

    sistema de re-circulação foram:

    - Compressor de ar (adaptado para gerar vácuo): marca MULT-HOBBY (modelo p600

    Plus). A finalidade deste aparelho foi manter o nível de solução e promover a circulação da

    solução no sistema.

    - Torneira de 3 vias acoplada à um motor giratório: a torneira de 3 vias foi acoplada ao

    eixo de um motor giratório com 3 rotações por minuto (rpm), ficando ligado constantemente,

    com a finalidade de abrir a passagem de vácuo para o sistema ou permitir a entrada de ar

    externo no sistema, de modo intermitente.

    - Válvula Passiva: esta válvula foi desenvolvida no próprio laboratório, tendo como

    finalidade permitir a passagem da solução de uma câmara para outra. A válvula consiste de

    um cilindro plástico de 1,5cm de altura e 1,5cm de diâmetro. Esta válvula é conectada no final

    da Câmara A, e permite o gotejamento da solução desta câmara para o Reservatório B. A

    porção superior interna deste cilindro é revestida por um material de borracha

    anatomicamente moldada para encaixar uma esfera de 1,2 cm de diâmetro que fecha um

    orifício de entrada de ar, e permite a adequada vedação do ar. Este orifício fica na parte

    central da borracha de revestimento superior e tem 2 mm de diâmetro. A porção inferior do

    cilindro tem uma abertura de 1,0 cm de diâmetro, para permitir o gotejamento da solução, e ao

    mesmo tempo impedir que a esfera passe do cilindro para o reservatório B. A esfera é de

    material plástico, com 1,2cm de diâmetro e peso de 0,78 g. Seu funcionamento é passivo,

    dependendo diretamente da posição em que a torneira de 3 vias se encontra.

    A seguir fazemos uma descrição do funcionamento deste sistema de re-circulação.

    3.3 DETALHAMENTO DO FUNCIONAMENTO DA MONTAGEM

    EXPERIMENTAL

    O funcionamento do sistema de circulação fechada proposto pode ser descrito da

    seguinte forma:

    28

  • - Inicialmente, o reservatório B é preenchido com solução fisiológica de KH, com

    temperatura de 34ºC. Esta solução é carbogenada (95% de O2 e 5% de CO2) constantemente

    para manter o pH em 7,4;

    - O reservatório B funciona como um “cata-bolhas”, não permitindo a passagem de

    bolhas de ar para o coração, e servindo ainda como uma via de infusão de drogas ou coleta de

    solução para análises;

    - O reservatório B fica aberto, permitindo a passagem constante de solução para

    perfundir o coração na câmara C.

    - O coração é isolado do tórax do animal e canulado pela aorta, para ser perfundido na

    câmara C;

    - Na câmara C existe um sistema de sucção (vácuo) para manter o nível da solução

    constante, além de um reservatório externo que contém água aquecida por uma resistência

    elétrica para manter a temperatura constante;

    - A bomba de vácuo funciona constantemente, porém conectada a torneira de 3 vias;

    - A torneira de 3 vias está ligada a um motor, que a faz girar (3 rpm). Assim, existem

    duas situações possíveis: ora o vácuo é gerado na câmara A; ora o ar externo entra na câmara

    A, dependendo da posição da torneira de 3 vias;

    - Na primeira situação (quando o vácuo é gerado na câmara A), a válvula passiva se

    fecha, promovendo uma sucção no excesso de solução da câmara C;

    - Em seguida, ocorre a segunda situação, na qual o vácuo é fechado e o ar externo

    entra na câmara A. Neste momento, a válvula passiva se abre, permitindo o gotejamento da

    solução da câmara A para a câmara B;

    - Ao longo do tempo, o processo se repete constantemente, transportando o excesso de

    solução da câmara C para a câmara A, e permitindo a passagem da solução da câmara A para

    a câmara B.

    Deste modo, o funcionamento do sistema pode ser esquematicamente dividido em 2

    momentos:

    1. Entrada de solução na câmara A;2. Saída de solução da câmara A para o reservatório B.

    Para a compreensão destes dois eventos, que tornam possível a re-circulação da

    solução utilizando apenas uma bomba de vácuo, é fundamental analisar o funcionamento das

    partes individuais do sistema de re-circulação desenvolvido.

    29

  • 3.3.1 Funcionamento da Torneira de 3 Vias

    A torneira de 3 vias fica acoplada ao eixo giratório de um motor, que fica ligado constantemente. Cada uma das 3 vias está conectada a uma parte do sistema, sendo uma via conectada à bomba de vácuo; outra via conectada a câmara A; e a outra via simplesmente aberta ao ar ambiente. A figura 10a ilustra as conexões da torneira de 3 vias. Deste modo, existem 2 situações que interferem diretamente no funcionamento do sistema:

    1. Vácuo aberto e ar externo fechado.2. Vácuo fechado e ar externo aberto.

    No momento em que o vácuo está aberto e o ar externo fechado, o vácuo é gerado na câmara A, promovendo o fechamento passivo da válvula, por sucção, e sugando o excesso de solução da câmara C. A figura 10b ilustra a situação em que o vácuo está aberto e a entrada de ar externo fechada.

    Quando o vácuo está fechado e o ar externo aberto, há entrada de ar ambiente na câmara A, abertura da válvula por gravidade, e escoamento da solução da câmara A para a câmara B. A figura 10c ilustra a situação em que o vácuo está fechado e a entrada de ar externo aberta.

    (a)

    (b)

    (c)

    Figura 10: Funcionamento da torneira de 3 vias. (a) Representação esquemática das conexões da torneira de 3 vias; (b) Vácuo aberto e ar externo fechado; (c) Vácuo fechado e ar externo aberto.

    30

  • 3.3.2 Funcionamento da Válvula Passiva

    Esta válvula está na base da câmara A, e permite o gotejamento da solução para o

    reservatório B, quando está aberta. Sua abertura ocorre quando a torneira de 3 vias fecha o

    vácuo e permite a entrada de ar externo na câmara A. Seu fechamento ocorre por sucção,

    quando o vácuo é gerado na câmara A, estando a torneira de 3 vias com vácuo aberto e a

    entrada de ar externo fechada. As figuras 11a e 11b ilustram o funcionamento da válvula

    passiva.

    (a) (b)

    Figura 11: Representação esquemática do funcionamento da válvula passiva. 11(a) Válvula aberta, permitindo o gotejamento para o reservatório B. 11(b) Válvula fechada por meio de sucção do vácuo gerado na câmara A.

    3.4 TESTES DA MONTAGEM

    A foto da montagem experimental completa, inclusive com o sistema de captação dos

    sinais está ilustrada na figura 12.

    Foram realizados testes de bancada com a montagem sem o coração e com o coração

    in vitro. Estes testes tiveram o intuito de verificar a estabilidade do sistema, bem como

    verificar o comportamento da atividade funcional do coração na própria montagem

    experimental.

    31

  • Figura 12: Foto da montagem experimental completa. Câmara de vácuo (A); reservatório de solução (B); câmara de perfusão (C); válvula passiva (1); coluna de perfusão (2); torneira de 3 vias acoplada ao motor giratório (3); eletrodos de captação de eletrograma (4); compressor de ar adaptado para gerar vácuo (5); osciloscópio (6); amplificador de sinal (7).

    32

  • 3.4.1 Testes de Estabilidade

    Os testes de estabilidade foram realizados sem o coração isolado para verificar a

    capacidade que a montagem apresentava em manter-se em funcionamento, sem que houvesse

    a falta de solução circulante no reservatório de perfusão (B), ou o acúmulo de solução na

    câmara de perfusão (C).

    O sistema foi considerado estável quando foi capaz de manter a solução re-circulando

    por um tempo de 120 min (2 horas). Assumimos este valor tendo em vista que o tempo

    máximo tipicamente esperado para se observar o efeito da adição (ou remoção) de um

    fármaco à solução de perfusão é de 40 min, o que perfaz um total de no mínimo 80 min para

    testar o efeito de um fármaco e sua reversibilidade.

    Os volumes de perfusão testados foram de 20, 50, 100 e 200 ml, e os fluxos de

    perfusão variaram de 5 a 25 ml/min para cada um dos volumes testados, ou seja, 5, 10, 15, 20

    e 25 ml/min. A tabela 3 mostra os volumes e fluxos de perfusão testados para verificar a

    estabilidade da montagem, sem o coração isolado.

    Tabela 3. Volumes e fluxos de perfusão testados na montagem, sem o coração isolado.

    Volumes de perfusão (ml) Fluxos de Perfusão Testados (ml/min)

    20 5 10 15 20 25

    50 5 10 15 20 25

    100 5 10 15 20 25

    200 5 10 15 20 25

    3.4.2 Testes do Coração In Vitro na Montagem

    Foram realizados testes experimentais utilizando o coração isolado de 14 ratos Wistar

    adultos machos, provenientes do biotério de animais para pesquisa da Universidade de Mogi

    das Cruzes. Os animais, com idade aproximada de 120 dias, peso de aproximadamente 275 g

    foram criados em condição de temperatura controlada a 22°C ± 2°C, ciclo de luz invertido,

    alimentação ad libitum, e mantidos em caixas com 4 a 5 animais.

    Os experimentos tinham o intuito de verificar o comportamento do coração isolado na

    33

  • montagem, com dois volumes de perfusão diferentes, sendo 100ml e 200ml.

    Os animais foram sacrificados por concussão cerebral, sendo o coração imediatamente

    removido do tórax, transportado até a montagem em solução aquecida de KH e canulado pela

    aorta. Iniciou-se então a perfusão retrógrada, e a contagem do tempo do experimento. Os

    animais foram divididos em 3 grupos:

    • grupo com 5 animais, no qual a circulação foi realizada de forma aberta, ou seja, sem a

    re-circulação da solução de perfusão (grupo “aberta”);

    • grupo com 5 animais, no qual foi realizada a circulação fechada (re-circulação, com

    um volume total de solução de perfusão de 100ml (grupo “fechada 100ml”);

    • grupo com 3 animais, no qual também foi realizada a re-circulação da solução, porém

    o volume total de solução foi dobrado, ou seja, 200ml (grupo “fechada 200ml”).

    Para avaliar os efeitos da circulação fechada sobre os parâmetros avaliados, e a

    possível irreversibilidade destes efeitos, foi realizado experimento com um único coração, no

    qual a circulação aberta foi realizada por 60 min e em seguida a circulação foi fechada

    (volume de re-circulação de 200 ml) por 30 min e então, novamente aberta. Este experimento

    foi denominado “aberta-fechada-aberta”.

    3.4.2.1 Solução de Perfusão

    Para a realização dos ensaios com o coração isolado foi utilizada solução fisiológica

    de Krebs-Henseleit com a seguinte composição (em mM): NaCl 126,4, KCl 4,6, KH2PO4 1,2,

    MgSO4 1,2, NaHCO3 13,6, Glicose 11,11, saturada com 95% de O2 e 5% de CO2 (carbogênio), com pH 7,4 a 34º C.

    3.5 PARÂMETROS AVALIADOS

    A partir do início da contagem do tempo de experimento foram avaliados, a cada 10

    minutos, 3 parâmetros, sendo eles a freqüência cardíaca, a pressão ventricular esquerda e o

    fluxo. Também foi registrado o tempo total que a montagem permaneceu com o coração

    isolado em atividade.

    A freqüência cardíaca foi obtida através dos sinais da atividade elétrica cardíaca

    captados por 2 eletrodos (Ag/AgCl) de captação e 1 eletrodo (Ag/AgCl) de referência

    34

  • (registro eletrográfico). Para a amplificação dos sinais foi utilizado um amplificador

    diferencial construído no próprio laboratório, com ganho de 10.000x, banda passante de 5 a

    100 Hz e filtro Notch 60Hz. Os sinais foram observados em um osciloscópio da marca

    Tektronix (modelo TDS 210).

    A pressão gerada no ventrículo foi registrada por meio de um transdutor de pressão

    (Narco Bio-Systems, modelo P100B), com amplificação do sinal em 10x. O amplificador do

    transdutor de pressão também foi construído no próprio laboratório. O sistema de captação do

    eletrograma e da pressão está ilustrado na figura 13.

    Figura 13: Câmara de perfusão e sistema de aquisição do eletrograma cardíaco e pressão ventricular.

    O fluxo de perfusão do coração foi obtido pela contagem das gotas de solução de

    perfusão no “cata-bolhas” instalado no reservatório de perfusão (B), durante 1 minuto.

    O tempo de viabilidade do coração em um experimento foi obtido a partir do momento

    de sua canulação na montagem até o momento em que este não exibisse mais atividade

    mecânica.

    35

  • 3.6 APRESENTAÇÃO DOS RESULTADOS

    Os testes de estabilidade da montagem foram analisados dentro de um período de 2

    horas, o qual foi arbitrariamente escolhido como sendo ideal para manutenção do coração nos

    experimentos. Os resultados de cada fluxo ajustado (5, 10, 15, 20 e 25 ml/min) para cada um

    dos volumes de perfusão (20, 50, 100 e 200 ml) foram expressos dentro deste intervalo. Caso

    o sistema re-circulante funcionasse inadequadamente (acúmulo ou falta de solução em um dos

    reservatórios) em um tempo inferior a 2 horas, este era considerado instável.

    Para os testes com coração isolado, montamos gráficos exibindo a freqüência cardíaca,

    pressão ventricular, taxa de perfusão em função do tempo de experimento e, o tempo total de

    experimento para cada um dos grupos estudados (aberta, fechada 100 ml, fechada 200 ml e

    aberta-fechada-aberta).

    36

  • 4 RESULTADOS

    4.1 TESTES DE ESTABILIDADE

    Para um volume de perfusão de 20 ml, o sistema manteve-se estável por 2 horas com

    fluxos de 5, 10 e 15 ml/min. A partir de fluxos de 20ml/min o sistema perdeu sua estabilidade

    por apresentar ausência de solução no reservatório de perfusão (B).

    Para um volume de perfusão de 50ml, o sistema manteve-se estável com fluxos de 5,

    10, 15 e 20 ml/min, apresentado falta de solução no reservatório de perfusão (B) para fluxos

    maiores que 25ml/min.

    Já com volumes de perfusão de 100 e 200 ml, o sistema manteve-se estável (por mais

    de 2 horas) com fluxos de 5 a 25 ml/min.

    Estes testes iniciais foram capazes de comprovar que o sistema pode manter-se estável

    por mais de 2 horas, com fluxo de 25ml/min para volumes de perfusão superiores a 100ml, ou

    mesmo volumes menores, desde que o fluxo também seja menor.

    A partir destes resultados, ou seja, da garantia que a montagem experimental era capaz

    de manter a solução circulando em um circuito fechado por mais de 2 horas, pode-se dar

    início aos testes experimentais com coração isolado de rato.

    4.2 TESTES DO CORAÇÃO IN VITRO NA MONTAGEM

    Em relação ao tempo total de experimento, o grupo “aberta” permaneceu com o

    coração em atividade por um tempo médio de 114 min (±13,4); o grupo “fechada 100ml”

    permaneceu por um tempo médio de 56 min (±5,5); e o grupo ”fechada 200ml” por um tempo

    médio de 96,7 min (±11,5). Estes resultados estão ilustrados na figura 14.

    O comportamento da freqüência média cardíaca ao longo do tempo de experimento no

    grupo “aberta” variou de 121,5 bpm a 144,7 bpm. Neste grupo, a freqüência média cardíaca

    ficou entre 144,7 bpm (±32,9) no início do experimento e 142 bpm (±23,5) no final de 2

    horas.

    37

  • Tempo de atividade do coração na montagem

    Figura 14. Tempo de atividade do coração isolado na montagem experimental em cada um dos 3 grupos estudados (“aberta”, “fechada 100ml” e “fechada 200ml”).

    O grupo “fechada 100ml” apresentou uma queda acentuada da freqüência cardíaca

    sendo necessário interromper os experimentos antes do tempo estipulado (2 horas). Neste

    grupo, a freqüência média caiu de 166,4 bpm (±34,6) no início do experimento para 21,0 (±

    21,0) bpm depois de 60 minutos.

    O grupo “fechada 200ml” também apresentou uma queda da freqüência média

    cardíaca, de 179,6 (±19,1) para 71,4 (±0,0) em um tempo aproximado de 96 min, sendo mais

    acentuada após 60 minutos de experimento. Este grupo também não atingiu o tempo

    estipulado de 2 horas.

    O experimento no qual foi realizada a circulação aberta-fechada-aberta houve uma

    queda menos pronunciada da freqüência cardíaca até cerca de 60 minutos, de 200 bpm para

    166 bpm, e em seguida uma queda mais acentuada até o final do experimento, chegando a

    38

  • 73,2 bpm no final de 2 horas. O comportamento da freqüência média cardíaca de cada grupo

    está ilustrado na figura 15.

    Freqüência cardíaca média

    Figura 15. Freqüência cardíaca média (com erro padrão) nos grupos “aberta”, “fechada 100ml”, “fechada 200ml” e no experimento “aberta-fechada-aberta” ao longo do tempo de experimento.

    Tanto a pressão ventricular esquerda, quanto a perfusão tiveram um comportamento

    semelhante ao longo dos experimentos. No grupo “aberta” a pressão variou entre 30,2 mmHg

    (±3,2) no início e 17,2 mmHg (±6,6) no final de 2 horas. A perfusão inicial foi de 6,1 ml/min

    (±1,0) e 3,9 ml/min (±0,1) no final. Ambas apresentaram uma tendência de estabilização após

    cerca de 50 minutos.

    No grupo “fechada 100ml” houve uma queda acentuada da pressão e da perfusão até

    60 minutos, quando o experimento foi interrompido. A pressão caiu de 21,4 mmHg (±9,5)

    para 4,2 mmHg (±2,1), e a perfusão caiu de 6,9 ml/min (±2,3) para 0,9 ml/min (±0,5).

    39

    0 10 20 30 40 50 60 70 80 90 100 110 120 130

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    FRE

    QU

    ÊN

    CIA

    CA

    RD

    ÍAC

    A (b

    pm)

    TEMPO DE EXPERIMENTO (minutos)

    Fechada 100ml Fechada 200 ml Aberta Aberta-Fechada-Aberta

  • As figuras 16 e 17 ilustram, respectivamente, o comportamento da pressão ventricular

    média esquerda e da perfusão média ao longo do tempo nos experimentos. No grupo “fechada

    200ml” houve uma queda, menos pronunciada em relação ao grupo “fechada 100ml”, da

    pressão e da perfusão até cerca de 70 minutos. A pressão caiu de 29,9 mmHg (±1,1) para 22,9

    mmHg (±3,6). A perfusão caiu de 6,8 ml/min (±0,9) para 3,9 ml/min (±0,8). Após 70 minutos,

    tanto a pressão, quanto a perfusão, tiveram uma queda acentuada até a finalização do

    experimento. A pressão foi de 22,9 mmHg (±3,6) para 4,9 mmHg (±0,0), e a perfusão, de 3,9

    ml/min (±0,8) para 0,5 ml/min (±0,0).

    No experimento com circulação aberta-fechada-aberta a pressão e a perfusão tiveram

    uma queda até o final do experimento. A pressão inicial, de 33,6 mmHg caiu para 4,9 mmHg,

    e perfusão, de 6,8 ml/min para 0,8 ml/min.

    Pressão ventricular esquerda média

    Figura 16. Pressão ventricular esquerda média (com erro padrão) nos grupos “aberta”, “fechada 100ml”, “fechada 200ml” e no experimento “aberta-fechada-aberta” ao longo do tempo de experimento.

    40

    0 10 20 30 40 50 60 70 80 90 100 110 120 1300

    5

    10

    15

    20

    25

    30

    35

    PR

    ES

    O V

    EN

    TRIC

    ULA

    R (m

    mH

    g)

    TEMPO DE EXPERIMENTO (minutos)

    Fechada 100ml Fechada 200ml Aberta Aberta-Fechada-Aberta

  • Perfusão média

    Figura 17. Perfusão média (com erro padrão) nos grupos “aberta”, “fechada 100ml”, “fechada 200ml” e no experimento “aberta-fechada-aberta”.ao longo do tempo de experimento.

    Os valores obtidos também foram normalizados para que se pudesse fazer uma análise

    da relação entre comportamento das variáveis estudas. Assim, para cada grupo (circulação

    aberta, circulação fechada 100ml e circulação fechada 200ml) foi construído um gráfico

    normalizado, com os valores da freqüência cardíaca, pressão ventricular esquerda e perfusão,

    em função do tempo do experimento. As figuras 18, 19 e 20 ilustram estes valores, para cada

    um dos grupos, respectivamente.

    41

    0 10 20 30 40 50 60 70 80 90 100 110 120 1300

    2

    4

    6

    8P

    ER

    FUS

    ÃO

    (ml/m

    in)

    TEMPO DE EXPERIMENTO (minutos)

    Fechada 100ml Fechada 200ml Aberta Aberta-Fechada-Aberta

  • Figura 18. Normalização dos valores de freqüência cardíaca, pressão ventricular e perfusão para o grupo com circulação aberta.

    Figura 19. Normalização dos valores de freqüência cardíaca, pressão ventricular e perfusão para o grupo com circulação fechada (volume = 100ml).

    42

    0 20 40 60 80 100 1200,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    CIRCULAÇÃO ABERTA

    FRE

    QU

    ÊN

    CIA

    -PR

    ES

    O-P

    ER

    FUS

    ÃO

    (Nor

    mal

    izad

    as e

    m re

    laçã

    o a

    t=10

    min

    )

    DURAÇÃO DO EXPERIMENTO (min)

    FREQUÊNCIA PRESSÃO PERFUSÃO

    0 20 40 60 80 100 1200,0

    0,2

    0,4

    0,6

    0,8

    1,0

    CIRCUITO FECHADO (VOLUME=100ml)

    FRE

    QU

    ÊN

    CIA

    -PR

    ES

    O-P

    ER

    FUS

    (N

    orm

    aliz

    adas

    em

    rela

    ção

    a t=

    10m

    in)

    DURAÇÃO DO EXPERIMENTO (min)

    FREQUÊNCIA PRESSÃO PERFUSÃO

  • Figura 20. Normalização dos valores de freqüência cardíaca, pressão ventricular e perfusão para o grupo com circulação fechada (volume = 200ml)

    43

    0 20 40 60 80 100 1200,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4CIRCULAÇÃO FECHADA (VOLUME=200ml)

    FRE

    QU

    ÊN

    CIA

    -PR

    ES

    O-P

    ER

    FUS

    ÃO

    (Nor

    mal

    izad

    as e

    m re

    laçã

    o a

    t=10

    min

    )

    DURAÇÃO DO EXPERIMENTO (min)

    FREQUÊNCIA PRESSÃO PERFUSÃO

  • 5 DISCUSSÃO

    O sistema de re-circulação a vácuo desenvolvido e testado neste trabalho foi

    idealizado para mitigar limitações técnicas impostas pelas bombas de circulação, para

    minimizar custos e para minimização do volume total da solução circulante.

    As montagens experimentais com coração isolado, normalmente utilizam um fluxo

    constante de perfusão através de bombas de infusão ou por meio de bombas peristálticas

    (SUTHERLAND e HEARSE, 2000). Contudo, no que se refere ao processo de re-circulação

    da solução de perfusão para montagem de Langendorff, ainda tem-se mantido principalmente

    a utilização de bombas de infusão, as quais exibem características positivas em relação à

    precisão na perfusão mas que, por outro lado, também exibem diversas limitações.

    Nestas bombas, conforme mencionado na introdução deste trabalho, a solução é

    impulsionada pela aplicação de movimentos peristálticos gerados pelo rotor da bomba, sofrem

    gradual queda de vazão por fadiga e deformação, bem como permeabilidade a gases e,

    adicionalmente, podem chegar a U$1,500 (MATOS et al., 2001). Além disso,

    prolongamentos no circuito e o contato com partes mecânicas móveis e fixas favorecem áreas

    de contaminação. A tabela 5 mostra alguns estudos realizados com sistema fechado de

    circulação de solução de perfusão, os tipos de bombas utilizados e os seus custos, em dólares.

    Tabela 4. Alguns estudos com coração isolado que utilizaram circulação fechada. A tabela indica o tipo de solução usada para perfusão e o dispositivo de re-circulação de solução utilizado nestes estudos e o custo destes dispositivos.

    Solução de Perfusão Dispositivo de Re-circulação Autor e Ano

    Custo do Dispositivo*

    (U$)

    KH Bomba peristáltica (505 Harvard Apparatus)

    Neely et al., 1967 599,00

    KH Bomba peristáltica (Masterflex Cole Parmer)

    Truove e Nahas, 1985 380,00

    Sangue Bomba peristáltica (Manostat Varistaltic Pump)

    Schwarse et al., 1991 395,00

    Sangue Bomba peristáltica Deng et al., 1994 ≅ 320,00Sangue Bomba peristáltica Martins et a.l, 2000 ≅ 320,00

    KH (Bio-Console Medtronic Inc.) Hill et al., 2005 1.000,00KH Dispositivo à Vácuo (compressor /

    torneira de 3 vias / motor giratório)Presente estudo 30,00

    * Valores em dólares, cotados em junho de 2006.

    44

  • A montagem desenvolvida neste estudo utiliza um sistema de sucção da solução de

    perfusão por meio de um compressor de ar adaptado para gerar vácuo. Este sistema não

    envolve a utilização de bombas peristálticas ou bombas de recalque e não oferece contato com

    partes mecânicas que sofrem esmagamento. Adicionalmente, não há até o momento na

    literatura relatos de sistemas que promovam a re-circulação de soluções utilizando este

    método.

    Os testes em bancada do sistema de re-circulação a vácuo desenvolvido neste trabalho

    mostraram que este pode manter-se estável por no mínimo 2 horas, com fluxos de até

    25ml/min para volumes de perfusão superiores a 100 ml, ou mesmo volumes menores, desde

    que o fluxo também seja menor.

    Outro problema com modelos experimentais de coração isolado é o grande volume de

    solução de perfusão necessário, de acordo com o equipamento utilizado (SUTHERLAND e

    HEARSE, 2000). De acordo com Bendjelid et al (2003), as montagens de coração isolado (in

    vitro) que utilizam perfusão não re-circulante requerem grandes volumes de perfusão,

    inviabilizando alguns tipos de estudos.

    O volume total de solução de perfusão utilizada nas montagens com circulação aberta

    (sem re-circulação) depende do tempo total do experimento, podendo ultrapassar 2 litros em

    experimentos com mais de 2 horas. No grupo “aberta”, o volume de solução utilizada nos

    experimentos foi cerca 1,5 litros. Em sistemas fechados (com re-circulação), este valor é de

    cerca de 1 litro, como descrito por Chen (1987) e Silva (2003). Como o sistema se mostrou

    eficaz com volumes a partir de 100 ml, esta diferença representa uma redução de 90% no

    volume total re-circulante, ou 80% para um volume de 200 ml.

    Adicionalmente, os dados experimentais obtidos com corações isolados mostraram

    que, em relação ao grupo “aberta”, há uma diminuição importante da freqüência cardíaca, da

    pressão ventricular esquerda e da perfusão depois de 20 min do início dos experimentos para

    volumes re-circulantes de 100 ml e, depois de 60 min para volumes de 200 ml. Assim, os

    resultados indicam que experimentos que necessitam de volumes menores de solução (pelo

    alto custo de drogas, por exemplo), podem ser realizados neste sistema, nos primeiros 60

    minutos de funcionamento, com um volume de solução de 200 ml.

    A diminuição dos parâmetros avaliados pode estar relacionada ao efeito cumulativo de

    algum substrato liberado pelo próprio coração (por exemplo, catecolaminas liberadas pelas

    terminações nervosas seccionadas; formação de radicais livres; etc.). Segundo Stutherland e

    45

  • Hearse (2000), a concussão cerebral e decapitação como técnica de sacrifício causam uma

    maior liberação de catecolaminas e outros fatores circulantes.

    Em estudo realizado por Pasini et al. (1999), verificou-se que há uma liberação de

    lactato e creatino-fosfoquinase pelo coração isolado, mas segundo o autor, estes substratos

    não afetaram os parâmetros funcionais do coração isolado. Por outro lado, o volume total de

    solução de perfusão não foi descrito no referido trabalho.

    O experimento com circulação aberta-fechada-aberta, apesar de ter sido feito em um

    único coração isolado, sugere que o possível efeito cumulativo de substratos é irreversível,

    visto que após abrirmos novamente a circulação, os parâmetros continuaram a cair.

    Ainda em relação às limitações das montagens para Langendorff comercialmente

    disponíveis, deve-se levar em consideração o custo destes equipamentos. A empresa norte-

    americana Radnoti Glass Technology disponibiliza sua lista de preços na internet. A

    montagem para corações isolados (Langendorff), sem as bombas para a re-circulação custa

    US$ 5.182,00. O sistema completo, com as bombas, custa US$ 10.891,22, ou seja, um

    acréscimo de US$ 5.709,22 (valores em dólares, cotados em maio de 2006). O equipamento

    desenvolvido no presente estudo tem um custo total, incluindo o compressor de ar para gerar

    vácuo, os equipos, a torneira de 3 vias e o motor giratório, inferior a US$ 100,00. Isto

    representa 1% do valor de um sistema disponível comercialmente.

    Além disso, o sistema desenvolvido apresenta como vantagem a sua versatilidade de

    uso. O sistema é fácil manuseio e não utiliza mecanismos eletrônicos para seu funcionamento.

    Por outro lado, o gotejamento da solução na válvula passiva está exposto ao ar ambiente, o

    que poderia inviabilizar outros tipos de ensaios, como por exemplo, aqueles com substâncias

    voláteis, ou que tenham suas características alteradas pelo contato com ar ambiente. O sistema

    também não permite o controle do fluxo da perfusão do coração, o que poderia ser

    interessante em alguns tipos de estudos.

    46

  • 6 CONCLUSÕES

    O dispositivo proposto neste trabalho tem a vantagem de ser de baixo custo, não

    oferecer à solução circulante contato com partes mecânicas de compressão, como é o caso das

    bombas de infusão ou bombas peristálticas, podendo ser utilizada com baixos volumes de

    solução de perfusão, de acordo com a necessidade e o tempo do experimento.

    Assim, a montagem experimental proposta se mostrou eficiente para a realização de

    experimentos e estudos com coração isolado (Langendorff), realizando a re-circulação da

    solução de maneira adequada, mas sem a necessidade de altos investimentos.

    No entanto, novos estudos com tempos e volumes de perfusão diferentes são

    necessários para avaliar possíveis alterações no sistema de re-circulação, como por exemplo

    alterações decorrentes de alguma substância inibitória cumulativamente liberada pelo próprio

    tecido cardíaco (ex: acetilcolina) na solução re-circulante.

    Esperamos que este novo tipo de sistema de re-circulação possa ser útil para outros

    estudos, inclusive com fármacos de alto custo, permitindo ampliar a reprodutibilidade dos

    testes experimentais.

    47

  • REFERÊNCIAS

    AHMAD, M.; ZEITLIN, I.J.; PARRAT, J.R.; KOLAR, F. Kinin release from normally perfused and ischaemic isolated rat hearts: effect of strain. Immunopharmacology, v. 33, p. 297-298, 1996.

    AIRES, M.M. Fisiologia, 2 ed, Rio de Janeiro: Guanabara Koogan, 1999.

    AN, M.Y.; CANEL, E.P.; JANG, I.H.; REVEL, D.; FOSSUM, T.W.; CHUNG, N.S.; JANIER, M.F. Development and evaluation of a new apparatus for continuos perfusion of isolated perfused pig heart. J. Vet. Sci., v. 3, n. 3, p. 219-232, 2002.

    ASSIS, N.L.N.; GOMES, O.M.; GARCIA, S.L.M.; VALLE, G.G. Efeitos da associação propafenoma: propofol na contratilidade miocárdica, freqüência cardíaca, fluxo coronariano e incidência de arritmias em corações isolados de ratos. Arq. Bras. Cardiol., v. 82, n. 1, p. 82-87, 2003.

    BASSANI, J.W.M.; GODOY, C.M.G.; BASSANI, R.A. Effect of ryanodine on sinus node recovery time determined in vitro. Braz. J. Med. Biol. Res., v. 32, n. 8, p. 1039-1043, 1999.

    BENDJELID, K.; CANET, E.; GASCHE, Y.; ANDRE-FOUET, X.; REVEL, D.; JANIER, M. Slaughterhouse blood as a perfusate for studying myocardial function under ischemic conditions. Braz. J. Med. Biol. Res., v. 6, n. 1, p. 39-44, 2003.

    BOUCHER, F.; TANGUY, S.; BESSE, S.; TRESALLET, N.; FAVIER, A.; LEIRIS, J. Age-dependent changes in myocardial susceptibility to zero flow ischemia and reperfusion in isolated perfused hearts: relation to antioxidant status. Mechanisms of Aging and Development, v. 103, p. 301-316, 1998.

    CANELAS, D.O.; HERMINI, A.H.; CLIQUET-JR, A. Metodologia para avaliação de desempenho essencial de bombas de infusão. In: Congresso de Metrologia, 2003, Recife. Anais do Congresso de Metrologia, Recife: Sociedade Brasileira de Metrologia, 2003.

    CHEN, V.; CHEN, Y.; DOWNING, E. An improved isolated working rabbit heart preparation using red cell enhanced perfusate. The Yale Journal of Biology and Medicine, v. 60, p. 209-219, 1987.

    CIRCULATORY TECHNOLOGY INC. Disponível em: http://www.cirtec.com/bhinfo.htm. Acesso em: 08 Jul. 2006.

    CURTIS, M.J. Characterisation, utilization and clinical relevance of isolated perfused heart models of ischaemia-induced ventricular fibrillation. Cardiovascular Research, v. 39, p. 194-215, 1998.

    48

  • DE-ANGELIS, K.L.D.; OLIVEIRA, A.R.; DALL-AGO, P.; PEIXOTO, L.R.A.; GADONSKI, G.; LACCHINI, S.; FERNANDES, T.G.; IRIGOYEN, M.C. Effects of exercise training on autonomic and myocardial dysfunction in streptozotocin-diabetic rats, Braz. J. Med. Biol. Res., v. 33, p. 635-641, 2000.

    DENG, Q.; SCICLI, A.G.; LAWTON, C.; SILVERMAN, N.A. A simplified blood-perfused isolated heart preparation. J. Thorac. Cardiovasc. Surg., v. 108, p. 1158-1159, 1994.

    DI-NÁPOLI, P.; CONTEGIACOMO, G.; DI-CRECCHIO, A.; DI-MUZIO, M.; TILOCA, P.; TACCARDI, A.A.; MAGGI, A.; BARSOTTI, A. Ischaemic preconditioning of rat myocardium: effects on postischaemic coronary endothelium hyperpermeability and microcirculatory damage. J. Clin. Bas. Cardiol., v. 1, p. 37-41, 1998.

    DOBSAK, P.; SIEGELOVA, J.; EICHER, J.C.; JANCIK, J.; SVACINOVA, H.; VASKU, J.; KUCHTICKOVA, S.; HORKY, M.; WOLF, J.E. Melatonin protects against ischaemia-reperfusion injury and inhibits apoptosis in isolated working rat heart. Patophysiology, v. 9, p. 179-187, 2003.

    FELACO, M.; GRILLI, A.; GORBUNOV, N.; DI-NAPOLI, P.; DE-LUTIIS, M.A.; DI-GIULIO, C.; TACCARDI, A.A.; BARSOTTI, A.; BARBACANE, R.C.; REALE, M.; CONTI, P. Endothelial NOS expression and ischaemia-reperfusion in isolated working rat heart from hypoxic and hyperoxic conditions. Biochimica and Biophysica Acta, v. 1524, p. 203-211, 2000.

    GODOY, C.M.G.; GALVÃO, K.M.; BACARIN, T.A.; FRANCO, G.R. The effects of electrode position on the excitability of rata tria during postnatal development. Physiol. Meas., v. 23, p. 649-659, 2002.

    GOES, S.; FREIRE-MAIA, L.; ALMEIDA, A.P. Effects of anesthetics on the incidence and duration of reperfusion arrythmias in isolated rat heart. Braz. J. Med. Biol. Res., v. 26, p. 1091-1095, 1993.

    GOMES, P.A.P.; BASSANI, R.A.; BASSANI, J.W.M. Electric field stimulation of cardiac myocytes during postnatal development. IEEE Transactions on Biomedical Engineering, v. 48, n. 6, p. 630-636, 2001.

    GUYTON, A.C.; HALL, J.E. Tratado de Fisiologia Médica. 9ª ed, Rio de Janeiro: Guanabara Koogan, 1997.

    HEYMANS, J.F.; KOCHMANN, M. Une nouvelle méthode de circulation artificialle à travers le coeur isolé demammifere. Arch. Internat. de Pharmacodynamie et Thérapie., v. 13, p. 379-386, 1904.

    HILL, A.J.; LASKE, T.G.; COLES-JR, J.A.; SIGG, D.C.; SKADSBERG, N.D.; VINCENT, S.A.; SOULE, C.L.; GALLAGHER, W.J.; IAIZZO, P.A. In vitro studies of human hearts. Ann. Thorac. Surg., v. 79, p. 168-177, 2005.

    49

  • HOLDEN, A.V.; POOLE, M.J.; TUCKER, J.V. Reconstructing the heart. Chaos, Solitons and Fractals, v. 5 n. 3/4, p. 691-704, 1995.

    INAMDAR, N.; VENKATARAMAN, B.V.; ALEEM, A. A simple improved perfusion apparatus for isolated hearts. Indian Journal of Pharmacology, v. 26, p. 262-265, 1994.

    KANEKO, T.; TANAKA, H.; OYAMADA, M.; KAWATA, S.; TAKAMATSU, T. Three distinct types of Ca2+ waves in Langendorff-perfused rat heart revealed by real-time confocal microscopy. Circ. Res., v. 86, p. 1093-1099, 2000.

    KNIGHT, V.A.; RICHARDSON, D.R.; MAKOBA, B. Use of frog ventricule to examine mechanical and electrical activity of heart. Am. J. Physiol., v. 256, n. pt3, p. S9-S13, 1989.

    LI, X.S.; URIUDA, Y.; WANG, Q.D.; NORDLANDER, R.; SJÖQUIST, P.O.; PERNOW, J. Role of l-argenine in preventing myocardial and endothelial injury following ischaemia/reperfusion in the rat isolated heart. Acta Physiol. Scan., v. 156, p. 37-44, 1996

    MARTINS, A.S.; SILVA, M.A.M.; MATSUBARA, B.B.; ARAGON, F.; PADOVANI, C.R. Standardization of an experimental model of parabiotic isolated heart in rabbits. Acta Cir. Bras., v. 15, n. 3, p. 00-00 , 2000.

    MATOS, R.C.; GUTZ, I.G.R.; ANGNES, L. Propulsor pneumático versátil e isento de pulsação para sistemas de análise em fluxo. Quím. Nova, v. 24, n. 6, p. 795-798, 2001.

    MCCALLUM, T.; BADYLAK, S.F.; VAN-VLEET, J.F.; REED, W.M. Furazolidone-induced injury in the isolated perfused chicken heart. Am. J. Vet. Res., v. 50, n. 7, p. 1183-1185, 1989.

    NEELY, J.R.; LIEBERMEISTER, H.; BATTERSBY, E.J.; MORGAN, H.E. Effect of pressure development on oxygen consumption by isolated heart. Am. J. Physiol., v. 212, p. 804-814, 1967.

    NETTER, F.H. The Ciba Collection of Medical Illustrations – Heart. 4th ed, Summit, USA, 1992.

    OPIE, L.H. Coronary flow rate and perfusion pressure as determinants of mechanical function and oxidative metabolism of isolated perfused rat heart. J. Physiol., v. 180, p. 529-541, 1965.

    OLIVEIRA, M.M. Estudo de alterações causadas por campos elétricos de latas intensidades sobre corações isolados de ratos. Universidade de Mogi das Cruzes, 75 p., 2005.

    PASINI, E.; SOLFRINI, R.; BACHETTI, T.; MARINO, M.; BERNOCCHI, P.; VISIOLI, F.; FERRARI, R. The blood perfused isolated heart: characterization of the model. Basic Res. Cardiol., v. 94, n. 3, p. 215-222, 1999.

    50

  • PETRUCCI-JR, O.; OLIVEIRA, P.P.M.; CARMO, M.R.; VIEIRA, R.W.; BRAILE, D.M. Standardization of an isolated pig heart preparation with parabiotic circulation: methodological considerations. Braz. J. Med. Biol. Res., v. 36, p. 649-659, 2003.

    RADNOTI GLASS TECHNOLOGY. Simple Myocite/langendorff -Isolated Heart System. Disponível em: http://www.radnoti.com/iph/120108.html. Acesso em: 01 Jul. 2006.

    RETT, K.; MAERKER, E.; RENN, W.; GILST, W.V.; HAERING, H.U. Perfusion-independent effect of bradykinin and fosinoprilate on glucose transport in Langendorff rat hearts. Am. J. Cardiol., v. 80, n. 3A, p.143A-147A, 1997.

    SABO, M.Z.; GODOY, C.M.G.; GOMES, P.A.P. Desenvolvimento e testes de um estimulador elétrico de alta potência para estimulação por campo elétrico em coração isolado de rato. Revista Brasileira de Engenharia Biomédica, v. 17, n. 1, p. 13-17, 2001.

    SANT’ANA-JR, O.; NOGUEIRA, R.J.; MURAD, N.; LOPES, A.C.; TUCCI, P.J.F. A depressão miocárdica pós-isquemia-reperfusão não altera a resposta cardíaca à elevação da freqüência de contrações. Arq. Bras. Cardiol., v. 84, n. 1, p. 38-43, 2005.

    SCHMIDLIN, O.; GARCIA, J.; SCHWARTZ, B. The effects of aging on the electrophysiologic and hemodynamic responses to nifedipine in isolated perfused hearts. J Cardiovasc. Pharmacol., v. 20, n. 2, p. 223-229, 1992.

    SCHWARSE, H.; MACHO, P.; DOMENECH, R. Efecto de la presion de perfusion coronária sobre la distension de la pared ventricular. Rev. Chilena de Cardiol., v. 10, n. 2, p. 69-78, 1991.

    SILVA, F.J. Desenvolvimento de uma montagem experimental para estudos fisiológicos de corações isolados. Universidade de Mogi das Cruzes, 71 p., 2003.

    SILVERTHORN, D.U. Fisiologia Humana – Uma Abordagem Integrada. 2ª ed, São Paulo: Manole, 2003.

    SOUZA, A.R.; SILVA, M.A.M.; ANDRADE, R.R.;OLIVEIRA, R.A.; MARTINS, A.S. Uso precoce e tardio de dopamina após isquemia miocárdica. Ver. Bras, Cir, Cardiovasc., v. 19, n. 3, p. 309-313, 2004.

    SUTHERLAND, F.J.; HEARSE, D.J. The isolated blood and perfusion fluid perfusaed heart. Pharmacol. Res., v. 41, n. 6, p. 613- 627, 2000.

    SU, N.; NARAYANAN, N. Enhanced chronotropic and inotropic responses of rat myocardium to cholinergic stimulus with aging. Can. J. Physiol. Pharmacol., v. 70, p. 1618-1624, 1992.

    SÜZER, Ö.; DIRI, E.; KONUKOGLU, D.; ÖZÜNER, Z. The role of isocolloidoosmotic synthetic colloid addition to St. Thomas Hospital cardioplegic solution for cardioprotection in isolated rat hearts. Pharmacological Research, v. 36, n. 1, p. 9-15, 1997.

    51

  • TAYLOR, A.A. Autonomic control of cardiovascular function: clinical evaluation in health and disease. J. Clin. Pharmacol., v. 34, p. 363-374, 1994.

    TROUVE, R.; NAHAS, G. Cardiac Dynamics of the Langendorff perfused heart. Proceedings of the Society for Experimental Biology and Medicine. v. 180, p. 303-311, 1985.

    VASSALLO, P.F.; STEFANON, I.; ROSSONI, L.V.; TUCCI, P.J.F.; VASSALO, D.V. The left ventricular contractility of the rat heart is modulated by changes in flow and α1-adrenoceptor stimulation. Braz. J. Med. Biol. Res., v. 31, p. 1356-1359, 1998.

    WANG, Q.D.; SWÄRDH, A.; SJÖQUIST, P.O. Relationship between ichaemic time and ischaemia/reperfusion injury in isolated Langendorff-perfused mouse hearts. Acta Physiol. Scan., v. 171, p. 123-128, 2001.

    WANG, Q.D.; TOKUNO, S.; VALEN, G.; SJÖQUIST, P.O.; THORÉN, P. Cycling fluctuations in the cardiac performance of the isolated Langendorff-perfused mouse heart: pyruvate abolishes the fluctuations and has an anti-ischaemic effect. Acta Physiol. Scan., v. 175, p. 279-287, 2002.

    WIECHERT, S.; EL-ARMOUCHE, A.; RAU, T.; ZIMMERMANN, W.H.; ESCHENHAGEN, T. 24-h Langendorff-perfused neonatal rat heart used to study the impact of adenoviral gene transfer. Heart Circ. Physiol., v. 285, p. H907-H914, 2003.

    YAMAGUCHI, H.; WEIL, M.H.; TANG, W.; KAMOHARA, T.; JIN, X.; BISERA, J. Myocardial dysfunction after electrical defibrillation. Ressuscitation, v. 54, p. 289-296, 2002.

    ZIMMER, H.G. The isolated perfused heart and its pionners. News Physiol. Sci., v. 13. p. 203-210, 1998.

    52

  • Livros Grátis( http://www.livrosgratis.com.br )

    Milhares de Livros para Download: Baixar livros de AdministraçãoBaixar livros de AgronomiaBaixar livros de ArquiteturaBaixar livros de ArtesBaixar livros de AstronomiaBaixar livros de Biologia GeralBaixar livros de Ciência da ComputaçãoBaixar livros de Ciência da InformaçãoBaixar livros de Ciência PolíticaBaixar livros de Ciências da SaúdeBaixar livros de ComunicaçãoBaixar livros do Conselho Nacional de Educação - CNEBaixar livros de Defesa civilBaixar livros de DireitoBaixar livros de Direitos humanosBaixar livros de EconomiaBaixar livros de Economia DomésticaBaixar livros de EducaçãoBaixar livros de Educação - TrânsitoBaixar livros de Educação FísicaBaixar livros de Engenharia AeroespacialBaixar livros de FarmáciaBaixar livros de FilosofiaBaixar livros de FísicaBaixar livros de GeociênciasBaixar livros de GeografiaBaixar livros de HistóriaBaixar livros de Línguas

    http://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.brhttp://www.livrosgratis.com.br/cat_1/administracao/1http://www.livrosgratis.com.br/cat_1/administracao/1http://www.livrosgratis.com.br/cat_1/administracao/1http://www.livrosgratis.com.br/cat_1/administracao/1http://www.livrosgratis.com.br/cat_1/administracao/1http://www.livrosgratis.com.br/cat_1/administracao/1http://www.livrosgratis.com.br/cat_1/administracao/1http://www.livrosgratis.com.br/cat_2/agronomia/1http://www.livrosgratis.com.br/cat_2/agronomia/1http://www.livrosgratis.com.br/cat_2/agronomia/1http://www.livrosgratis.com.br/cat_2/agronomia/1http://www.livrosgratis.com.br/cat_2/agronomia/1http://www.livrosgratis.com.br/cat_2/agronomia/1http://www.livrosgratis.com.br/cat_2/agronomia/1http://www.livrosgratis.com.br/cat_3/arquitetura/1http://www.livrosgratis.com.br/cat_3/arquitetura/1http://www.livrosgratis.com.br/cat_3/arquitetura/1http://www.livrosgratis.com.br/cat_3/arquitetura/1http://www.livrosgratis.com.br/cat_3/arquitetura/1http://www.livrosgratis.com.br/cat_3/arquitetura/1http://www.livrosgratis.com.br/cat_3/arquitetura/1http://www.livrosgratis.com.br/cat_4/artes/1http://www.livrosgratis.com.br/cat_4/artes/1http://www.livrosgratis.com.br/cat_4/artes/1http://www.livrosgratis.com.br/cat_4/artes/1http://www.livrosgratis.com.br/cat_4/artes/1http://www.livrosgratis.com.br/cat_4/artes/1http://www.livrosgratis.com.br/cat_4/artes/1http://www.livrosgratis.com.br/cat_5/astronomia/1http://www.livrosgratis.com.br/cat_5/astronomia/1http://www.livrosgratis.com.br/cat_5/astronomia/1http://www.livrosgratis.com.br/cat_5/astronomia/1http://www.livrosgratis.com.br/cat_5/astronomia/1http://www.livrosgratis.com.br/cat_5/astronomia/1http://www.livrosgratis.com.br/cat_5/astronomia/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_6/biologia_geral/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_7/ciencia_politica/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1http://www.livrosgratis.com.br/cat_11/comunicacao/1http://www.livrosgratis.com.br/cat_11/comunicacao/1http://www.livrosgratis.com.br/cat_11/comunicacao/1http://www.livrosgratis.com.br/cat_11/comunicacao/1http://www.livrosgratis.com.br/cat_11/comunicacao/1http://www.livrosgratis.com.br/cat_11/comunicacao/1http://www.livrosgratis.com.br/cat_11/comunicacao/1http://www.livrosgratis.com.br