44

Click here to load reader

Vulcanizacao teoria metodos

Embed Size (px)

Citation preview

Page 1: Vulcanizacao teoria metodos

Vulcanização Teoria e Métodos

Valdemir José Garbim

Page 2: Vulcanizacao teoria metodos

www.cenne.com.br

Í N D I C E - Vulcanização Teoria e Métodos – Histórico ....................................................... 01 - Aprimoramentos ................................................................................................. 01 - Aceleradores de Vulcanização – Descoberta ..................................................... 02 - Primeiras Formulações de Borracha .................................................................. 02 - Vulcanização – Mudança de Estado .................................................................. 03 - Tempo e Velocidade de Vulcanização ............................................................... 03 - Coeficiente de Temperatura de Vulcanização .................................................... 04 - Espessura da Parede ........................................................................................ 04 - Ingredientes de Vulcanização da Borracha ....................................................... 06 - Ativadores de Vulcanização ............................................................................... 06 - Agentes de Vulcanização ................................................................................... 06 - Enxofre ............................................................................................................... 07 - Doadores de Enxofre ......................................................................................... 08 - Tabela n º 01 – 4 (Doadores de Enxofre) ........................................................... 09 - Agentes de Cura não Sulforosos ...................................................................... 10 - Óxidos Metálicos ................................................................................................ 10

Peróxidos ........................................................................................................... 11 - Cura por Resinas .............................................................................................. 11 - Aceleradores de Vulcanização ........................................................................... 11 - Gráficos – Curva Reométrica – Típica ............................................................... 12 - Scorch ............................................................................................................... 13

Cura ................................................................................................................... 13 - Platô ................................................................................................................... 13

Reversão ........................................................................................................... 14 - Classificação dos Aceleradores ......................................................................... 14 - Tabela n º 02 – 4 (Aceleradores Orgânicos) ..................................................... 15 - Gráfico Comparativo da Ação Energética dos Aceleradores ............................. 16 - Combinação de Aceleradores ............................................................................ 16 - Grupo de Aceleradores – Informações Gerais ................................................... 17 - Aminas e Aldeido Aminas .................................................................................. 17 - Guanidinas ......................................................................................................... 18 - Tiazóis ................................................................................................................ 18 - Sulfenamidas ..................................................................................................... 19 - Tiurãns ............................................................................................................... 20 - Ditiocarbamatos ................................................................................................. 21 - Outros Aceleradores .......................................................................................... 21 - Tiureias .............................................................................................................. 21 - Xantatos ............................................................................................................. 22 - Retardadores de Vulcanização .......................................................................... 22 - Conclusão .......................................................................................................... 23 - Tabela n º 03 – 4 (Alguns Aceleradores Amínicos) ............................................ 24

Page 3: Vulcanizacao teoria metodos

www.cenne.com.br

- Tabela n º 04 – 4 (Alguns Aceleradores do Grupo Guanidinas) ......................... 26 - Tabela n º 05 – 4 (Alguns Aceleradores do Grupo dos Tiazois) ......................... 28 - Tabela n º 06 –4 (Alguns Aceleradores do Grupo das Fulfenamidas)................ 29 - Tabela n º 07 – 4 (Alguns Aceleradores do Grupo dos Tiurãns) ....................... 30 - Tabela n º 08 – 4 (Alguns Aceleradores do Grupo dos Ditiocarbamatos) .......... 32 - Tabela n º 09 – 4 (Peróxidos para Borracha) ..................................................... 33 - Tabela n º 09 –4/A (Orientações Básicas de uso dos Peróxidos ....................... 34

Page 4: Vulcanizacao teoria metodos

www.cenne.com.br

VULCANIZAÇÃO - TEORIA E MÉTODOS

HISTÓRICO Pelo que se conhece de mais remoto sobre a descoberta da borracha, remonta a época da aventura de Colombo em busca das Américas. Marinheiros da esquadra de Cristóvão Colombo observaram diversos objetos confeccionados pelos nativos da América Central, empregando uma seiva que chamavam de “CAUCHUC” (árvore que chora) e, era colhida através de escoriações na casca de determinadas árvores. Com a manipulação daquele material, de aspecto leitoso, os nativos faziam bolas, revestiam seus barcos impermeabilizando-os, confeccionavam botas, moldando a seiva nos seus próprios pés, e muitos outros artigos. Muito tempo depois, também na civilização, fazia-se uso da seiva da árvore, “látex”, muito usado na aplicação por espalmação, sobre tecidos de algodão, posteriormente secados, com o objetivo de tornar o tecido mais resistente a água e ao tempo, porém, observava-se que em épocas mais frias, o tecido espalmado tornava-se mais rígido e duro e no calor, ficava muito pegajoso, então, era aplicado finas camadas de talco ou carbonato de cálcio ou ainda enxofre, para que os tecidos não grudassem entre si. Porém, em 1839, Charles Goodyear, observou que adicionando o enxofre ao látex e submetendo a mistura a altas temperaturas ocorria uma completa modificação nas características daquele material, tornando-se elástico, podendo alongar-se mais de 1000% seu tamanho original sem se romper, ainda, a pegajosidade não mais ocorria , e o material se tornava muito mais estável à diferenças de temperaturas climáticas. Era então descoberto o fenômeno da vulcanização.

Page 5: Vulcanizacao teoria metodos

www.cenne.com.br

APRIMORAMENTOS

A borracha utilizada na experiência por Goodyear, mais tarde receberia o nome de Borracha Natural. A experiência observada continha 100 phr de borracha natural e 8 phr de enxofre, e

demorava cerca de 5 horas a uma temperatura em torno de 150°C para ocorrer a

completa vulcanização, tempo demasiadamente longo, para utilização deste material para fins industriais. Verificava-se também que a borracha mostrava-se má condutora de calor, pois, seu aquecimento era lento, assim, foi adicionado também 5 phr de um óxido metálico, obtendo-se significativa redução no tempo de vulcanização, caindo de 5 para 3 horas,

a 140°C. Foi usado o óxido de zinco.

ACELERADORES DE VULCANIZAÇÃO - DESCOBERTA

Embora observados ótimos resultados na diminuição do tempo de vulcanização, com a adição do óxido de zinco, ainda assim, era demasiadamente longo, o que inviabilizava, muitas vezes o uso da borracha, porém, já em 1906, um pesquisador chamado “Oenslanger”, descobriu que com a adição da anilina, juntamente com a borracha, enxofre e óxido de zinco, o tempo de vulcanização era reduzido de horas, para minutos, nascendo assim o primeiro ingrediente acelerador de vulcanização da borracha. A anilina, devido ao índice de toxidade que promovia aos compostos de borracha, foi logo substituída por seus derivados com menor toxidade.

PRIMEIRAS FORMULAÇÕES DE BORRACHA

Os interesses dos pesquisadores aumentaram, bem como, de pessoas interessadas na industrialização de compostos de borracha, pois, já possuíam grande domínio da transformação pela reação de vulcanização, principalmente porque os tempos de

Page 6: Vulcanizacao teoria metodos

www.cenne.com.br

processamento estavam sob controle, e, os primeiros automóveis e bicicletas mostravam promissor mercado, no uso da borracha para os pneumáticos. As primeiras formulações de borracha, constituía de; 100 phr de Borracha Natural, em combinação com; 5 phr de Óxido de Zinco, 3 phr de Enxofre, 2 phr de Ácido Esteárico, e, inicialmente a Carbanilina; depois em 1921 outros aceleradores orgânicos, como o MBTS, MBT, etc, proporcionaram a grande arrancada para estudos muito mais avançados, pois, observavam, os pesquisadores que além da redução nos tempos de vulcanização, uma formulação adequadamente desenvolvida apresentava ainda resultados vantajosos nos produtos finais, como :

- Maior resistência ao envelhecimento. - Melhores propriedades físicas. - Maior facilidade de processamento. - Maior estabilidade ao calor e ao frio. - Maior resistência à luz. - Possibilidade de armazenamento por longos períodos de tempo.

VULCANIZAÇÃO - MUDANÇA DE ESTADO

A Borracha Natural é constituída de gigantescas cadeias macromoleculares chamadas de polímeros, (poli = muitas; meros = partes), principalmente formados de hidrocarbonetos naturais que possuem a singular característica de não se comportarem tão rígidos como os corpos sólidos, nem tão fluídos como os líquidos, permitindo grande mobilidade e movimento sob a ação de algum esforço externo. Compostos de borracha, quando submetido à altas temperaturas, sob pressão, durante certo período de tempo, mudam de estado, passando de plástico e altamente deformável, para elásticos, devido ao fenômeno da vulcanização. Para que possamos entender um pouco melhor o efeito físico-químico da vulcanização, vamos imaginar que as macromoléculas da borracha no estado cru mostram-se como se fossem um emaranhado de cordas, em que as cordas deslizam-

Page 7: Vulcanizacao teoria metodos

www.cenne.com.br

se uma sobre as outras, sem nenhuma ligação (amarramento) que as unam, ( ver esquema Figura 1 ) porém, após o efeito da vulcanização, certos pontos das macromoléculas reticulam-se amarrando-se ou ligando-se entre si, como que, se as cordas, se transforma-se numa gigantesca rede de pescador, tridimensional. ( conforme Figura 2 ). A vulcanização provoca, através do enxofre ou agentes de cura, as ligações cruzadas (cross-link) normalmente nos pontos de insaturação entre dois ou mais átomos de carbono pertencentes a diferentes macromoleculares, ou na mesma cadeia molecular ( ver Figura 3 ). Também, o termo vulcanização é empregado em ligações cruzadas provocadas por óxidos metálicos, peróxidos, aminas, etc, onde muito comumente também denomina-se de cura.

Page 8: Vulcanizacao teoria metodos

www.cenne.com.br

Page 9: Vulcanizacao teoria metodos

www.cenne.com.br

TEMPO E VELOCIDADE DE VULCANIZAÇÃO

Podemos observar que o tempo de vulcanização apresenta influencias significativas nas propriedades finais do composto vulcanizado, como por exemplo; se o tempo de cura for aumentado, as propriedades mecânicas como a Tensão de Ruptura, Módulo e Dureza também tendem a aumentar, porém, a Deformação Permanente à Compressão, e Alongamento, tendem a diminuir. Também, a quantidade de energia térmica, “calor”, fornecida para que ocorra a vulcanização, influencia no tempo, sendo mais veloz a temperaturas maiores. Fatores muito importantes devem ser considerados para determinar a velocidade ou tempo de vulcanização, pois, não é possível obter-se valores ótimos de todas as propriedades do artefato utilizando um mesmo tempo de vulcanização, também, o tipo de acelerador empregado no composto pode ser mais ou menos energéticos o que poderá promover maior ou menor velocidade de vulcanização. A temperatura de vulcanização, se for maior, poderá provocar a vulcanização mais

rapidamente, porém, temperaturas muito elevadas, acima de 210°C tendem a

queimar a superfície do artefato ( de diversos tipos de borrachas ) antes que ocorra a reação físico-química de vulcanização. Temperaturas altas são normalmente usadas para vulcanizar artefatos de finas espessuras de parede em curtos períodos de tempo. Baixas temperaturas, além de demandarem largos períodos de tempo para vulcanização, ainda poderá comprometer algumas características do artefato, por não promover curas completas.

Faixas de temperaturas entre 135°C a 200°C que oferecem melhores resultados para

grande maioria de tipos de borracha. Devemos sempre ter em conta que menores temperaturas são normalmente usadas com aceleradores de ação mais lenta e em artigos espessos. Resumindo, podemos dizer que o melhor tempo, ou velocidade de cura é aquele que permite combinar as melhores propriedades mecânicas pretendidas do artefato. Também chamado de tempo de cura técnica. É muito importante, a cada nova formulação desenvolvida, ensaiar diversas combinações de tempo e temperatura, para obter a cura técnica ideal.

Page 10: Vulcanizacao teoria metodos

www.cenne.com.br

COEFICIENTE DE TEMPERATURA DE VULCANIZAÇÃO

Empiricamente, os Tecnologistas em Borracha utilizam um artifício para partir com seus ensaios em busca da taxa ótima de cura, seja, a razão tempo / temperatura.

Este artifício consiste na relação de que, a cada 10°C de aumento de temperatura de

vulcanização, a razão de cura é duplicada, este artifício é comumente chamado de coeficiente de temperatura de vulcanização. Vale mais uma vez lembrar que cada composição exibe suas características próprias, e condutibilidade térmica intrínsecas, desta forma reforça-nos a dizer que o coeficiente de temperatura de vulcanização é somente um artifício empírico.

ESPESSURA DA PAREDE DO ARTEFATO

Outro método, também empírico é o que normalmente se usa para calcular o tempo de vulcanização de um artefato prensado ( moldado ) em função da propagação de calor na espessura da parede do artefato.

Este método consiste em considerar que à uma temperatura de 150°C, aplicada pelos

platôs da prensa ou molde ao artefato, demanda aproximadamente 5 minutos para se conduzir (atravessar) uma espessura de parede de borracha de 6 mm até a linha de centro, pois, os dois platôs estão aquecidos, ou todo o molde esta aquecido, assim podemos usar a seguinte equação abaixo

Ttv = ( e x 0,84 ) + ( T90 – T5 ) Onde:

Ttv ..... tempo teórico de vulcanização (min) e ........ maior espessura de parede do artefato (mm) T90 ..... tempo de vulcanização na curva reométrica, ( vulcan. 90%) = minutos. T5 ....... tempo de vulcanização na curva reométrica, ( vulcan. 5% ) = minutos.

Page 11: Vulcanizacao teoria metodos

www.cenne.com.br

Caso o artefato seja como um cilindro revestido com borracha, e vulcanizado em autoclave onde o calor deverá se propagar a partir da superfície externa até atravessar toda espessura de parede (camada) ainda equalizar a temperatura em toda massa de borracha, podemos usar a equação abaixo EQ.2.

EQ.2.

Onde: Ttv ..... tempo teórico de vulcanização do cilindro em autoclave (horas) PB ...... peso total de borracha do cilindro (kg) DB ...... diâmetro bruto de borracha sobre o cilindro (cm) LB ....... comprimento total de borracha sobre o cilindro (cm) T0 ....... tempo de vulcanização do corpo de prova ou do reômetro (segundos) Com as equações acima podemos calcular o tempo teórico para os dois processos e tipos diferentes de artefatos, porém, se desejar saber precisamente o tempo real de vulcanização, o melhor é construir dispositivos específicos, de forma que seja possível a inserção de eletrodos ou termopares, em posições devidamente definidas na espessura da camada de borracha, e seja desenvolvido um minucioso acompanhamento na evolução da gradiente de temperatura até sua total equalização, e verificar qual o tempo demandado para tal ocorrência, porém, é sabido que para cada composição diferente ou método distinto de vulcanização, também serão distintas as condições e razões de cura.

INGREDIENTES DE VULCANIZAÇÃO DA BORRACHA

Praticamente, os sistemas de vulcanização de composições de borrachas convencionais são constituídos pela combinação dos seguintes ingredientes. - Ativadores de vulcanização; - Agentes de vulcanização; - Aceleradores da vulcanização.

Ttv = PB 2 . 8,6.107 + T0 . 2,78.10-4

DB.LB( )[ ]{ }

Page 12: Vulcanizacao teoria metodos

www.cenne.com.br

ATIVADORES DE VULCANIZAÇÃO

Os ativadores de vulcanização, são usados nas composições de borrachas mais convencionais com o objetivo de ativar rapidamente os aceleradores de forma a acentuar a velocidade da vulcanização dos compostos. Os sistemas de ativadores mais comuns usados em composições de borrachas convencionais é a combinação de um óxido metálico com um ácido graxo. Normalmente o óxido de zinco em teores entre 3 a 5 PHR, e o ácido esteárico (estearina) na proporção entre 1 a 3 PHR, é o sistema de ativadores de vulcanização mais usado. Menos comuns, mas que também produzem bons resultados é o emprego de outros óxidos metálicos como; o óxido de magnésio, óxido de chumbo, sais básicos de chumbo; e ainda ácidos oléicos como; ácidos láuricos, palmiticos etc. Entende-se basicamente que a ativação da vulcanização ocorre da seguinte maneira:- Várias são as teorias que buscam a explicar a reação de vulcanização da borracha, aqui, adotemos a abordada pelo pesquisador “ Krebs “ . Antes vale entender que basicamente o Enxofre adicionado aos compostos de borracha encontra-se no formato de anéis cíclicos, contendo oito átomos ligados entre si e estáveis. A teoria de “Krebs” sugere que é necessário romper o anel octógono do Enxofre fracionando-o em fragmentos contendo um átomo individual cada, em que, estes átomos combinam-se nos pontos de insaturação das macromoléculas elastoméricas ligando-as quimicamente. O rompimento do anel octógono do Enxofre pode ocorrer pela influência de energia térmica ou por reações químicas devidas aos ativadores. Entende-se que a atividade catiônica do Óxido de Zinco ativa o rompimento do anel de Enxofre em fragmentos derivados e, estes por sua vez são solubilizados pelo Ácido Esteárico que combinam com os agentes aceleradores formando os chamados Sais Complexos que rapidamente reagem nas insaturações das cadeias poliméricas, facilitando as reticulações, ou Vulcanização. Na reação de vulcanização os átomos de Enxofre podem combinar de diversas maneiras, como vemos na Figura 3, acima, ( ligações Monosulfidricas, Disulfídricas, Polisulfidricas, etc. )

Page 13: Vulcanizacao teoria metodos

www.cenne.com.br

AGENTES DE VULCANIZAÇÃO

Agentes de vulcanização são ingredientes adicionados às composições de borracha responsáveis por promover as reticulações (crosslink) entre as macromoléculas dos elastômeros, no ato da vulcanização, de forma a transformar o composto, inicialmente com características plásticas, para elásticas, como as desejadas nos artefatos finais. Como já estudamos, existem diversas famílias diferentes de borracha, cada qual com seu tipo químico específico, da mesma forma deverá ser utilizado o tipo e a quantidade mais adequado de agente de vulcanização para cada tipo de borracha. Podemos classificar os agentes de vulcanização em três categorias, sendo: - Enxofre. - Doadores de Enxofre. - Não Sulforosos.

ENXOFRE

O enxofre foi o primeiro agente de vulcanização para borracha, sendo ainda hoje o mais comumente usado, quando desejamos a cura (vulcanização) de elastômeros que possuem cadeias moleculares insaturadas. No ato da vulcanização, seja, quando o composto de borracha está sob presença de altas temperaturas, o enxofre reage com as ligações olefílicas das cadeias moleculares principais; ou, dependendo do tipo de borracha, com as cadeias periféricas das moléculas da borracha formando as reticulações, ocorrendo daí a cura, ou mudança para o estado elástico, do composto. Em uma análise mais aprofundada podemos dizer que, os átomos do enxofre reagem com os átomos das duplas ligações olefílicas de carbono, bem como, com os adjacentes, formando as ligações cruzadas (reticulações) entre as moléculas do elastômeros. O enxofre mais empregado em compostos de borracha é o tipo solúvel, ou também chamado de enxofre rômbico.

Page 14: Vulcanizacao teoria metodos

www.cenne.com.br

O enxofre insolúvel, ou amorfo, é empregado com menor freqüência por ser muito mais caro, porém, este tipo de enxofre permite que os compostos mantenham por muito mais tempo sua adesividade (tack) superficial, pois, não tende ao afloramento. Os teores de enxofre como agente de vulcanização nos compostos de borracha, podem variar de 0,5 a 3,5 PHR, exceto quando se deseja obter o ebonite, onde o nível poderá chegar a 30 PHR (ver módulo sobre borracha natural). O aumento no teor de enxofre num composto de borracha poderá implicar em: Tempo ótimo de vulcanização ---------------------- não altera. Tendência à pré-vulcanização ---------------------- aumenta. Tensão de ruptura -------------------------------------- aumenta. Dureza ----------------------------------------------------- aumenta. Módulo ----------------------------------------------------- aumenta. Alongamento à ruptura -------------------------------- diminui. Resistência ao rasgamento -------------------------- diminui. Resiliência ------------------------------------------------ aumenta. Deformação Permanente à Compressão --------- aumenta. Calor em trabalho dinâmico --------------------------- aumenta. Na vulcanização de um composto de borracha, o enxofre pode se combinar de muitas formas para promover uma enorme rede reticulada. Pode ser observado ligações cruzadas em forma de; monossulfetos, dissulfetos, polissulfetos, sulfetos cíclicos, e polissulfetos cíclicos, ( ver Figura 3 ). Dependendo do teor de enxofre adicionado ao composto, nem todos os átomos de enxofre se combinam com os do elastômeros, porém, é dado como satisfatório quando ocorre no mínimo uma ligação cruzada (reticulação) para cada aproximadamente 200 unidades de monômero na cadeia estrutural da borracha vulcanizada.

Page 15: Vulcanizacao teoria metodos

www.cenne.com.br

Quanto mais reticulada estiver a estrutura macromolecular de um composto vulcanizado, tanto menor mobilidade haverá, seja, será mais rígido, duro, menos flexível, e, quando a estrutura estiver totalmente ligada pelo enxofre, obteremos a ebonite.

DOADORES DE ENXOFRE

Determinados tipos de ingredientes aceleradores de vulcanização contém enxofre em suas estruturas constitucionais. Esses ingredientes, são adicionados aos compostos de borracha, e decompõem-se liberando o enxofre, ocorrendo então a vulcanização da borracha. Chamamos a tais ingredientes de “Doadores de Enxofre”. Quando se usa Doadores de Enxofre nas composições, o teor de enxofre elementar pode ser reduzido ou até mesmo eliminado. As composições com baixos teores de enxofre elementar, normalmente são conhecidas como; compostos com sistema de cura “semi-eficiente”; e, às composições onde não é usado o enxofre elementar, empregando somente doadores de enxofre, denomina-se sistema de cura “eficiente”. Como pode-se perceber, os doadores de enxofre que, no ato da vulcanização, libera os átomos de enxofre, que combinarão com os átomos da cadeia carbônica da borracha e promoverão as reticulações necessárias para mudança de estado do composto. Artigos fabricados com composições convencionais de borracha, seja, usando enxofre elementar, apresentam baixas propriedades de resistência ao calor e envelhecimento, isto devido a grande quantidade de ligações polissulfídricas que ocorrem nas cadeias moleculares do elastômeros. Se for importante requisito do artefato, uma grande resistência ao envelhecimento e calor, o uso de ingredientes doadores de enxofre, em proporções devidamente dosadas, oferecem ótimos resultados, pois a estabilidade térmica de tais ingredientes e muito superior, além de proporcionarem aos compostos menor tendência à reversão.

Page 16: Vulcanizacao teoria metodos

www.cenne.com.br

Porém, compostos com sistema de cura “eficiente” ou “semi-eficiente” apresentam prejuízo nas propriedades de resistência a fadiga dinâmica, talvez, devido a menor quantidade de ligações polissulfídrica nos artigos vulcanizados. Vale também informar que o custo dos compostos usando sistemas de cura “eficiente” ou “semi-eficiente” é ligeiramente mais elevado. A tabela nº 01, abaixo apresenta alguns ingredientes aceleradores orgânicos doadores de enxofre, bem como o teor de enxofre possível de ser liberado durante a vulcanização.

TABELA N°01

DOADORES DE ENXOFRE

NOME COMERCIAL

NOME TÉCNICO

TEOR DE ENXOFRE

%

SULFAZAN R

DISSULFETO-DE-DIMORFOLINILA

31

TETRONE A

HEXASSULFETO-DE-DIPENTAMETILTIURÃ

35

TMTD

DISSULFETO-DE-

TETRAMETILTIURÃ

13

CPB ( UNIROYAL)

DISSULFETO-DE-DIBUTILXANTATO

21

-

DISSULFETO-DE-ALQUIFENOL

23

Page 17: Vulcanizacao teoria metodos

www.cenne.com.br

AGENTES DE CURA NÃO SULFOROSOS

ÓXIDOS METÁLICOS

Alguns tipos de borracha como, o Policloropreno, Hypalon, ( Hypalon, Marca registrada DuPont ), Nitrílicas Carboxiladas, entre outras, que apresentam átomos ativos na estrutura molecular hidrocarbônica são curadas através de óxidos metálicos, como os, óxidos de zinco, óxido de magnésio, óxido de chumbo (litargírio), sais dibásicos de chumbo, etc. Os óxidos metálicos reagem com os átomos ativos das cadeias moleculares da borracha promovendo certas interações iônicas energéticas, formando ligações fortes na estrutura molecular semelhante as resultantes do efeito de vulcanização, assim, também chamamos a tal fenômeno de cura, vulcanização ou reticulações das macromoléculas elastoméricas.

PERÓXIDOS

Podemos empregar os peróxidos orgânicos para vulcanização tanto de borrachas com cadeias moleculares insaturadas como saturadas, muito embora usa-se normalmente em borrachas de cadeias saturadas (EPM, Silicone, etc.) Na cura com peróxidos acontecem as reticulações carbono / carbono, ( ver Figura 4 ), iniciando nos átomos de carbono terciário contidos em toda cadeia molecular dos elastômeros.

Page 18: Vulcanizacao teoria metodos

www.cenne.com.br

Na seqüência deste módulo, veremos a Tabela 09, onde serão apresentados alguns tipos de peróxidos mais usados, destes, o Peróxido de Dicumila é o mais consumido pelas indústrias de artigos de borracha. Numa análise um pouco mais pormenorizada da reação de cura por peróxidos, podemos dizer que quando adicionados aos compostos de borracha, e submetidos a altas temperaturas, os radicais peróxidos subtraem átomos de hidrogênio terciários das cadeias moleculares formando as ligações carbono-carbono. Normalmente a cura com peróxidos promove aos artefatos melhor resistência ao calor e ao envelhecimento, pois as reticulações são mais estáveis e a energia de ligação carbono / carbono é muito superior do que as enxofre / carbono . Não é aconselhável o uso de peróxidos como agente de cura quando nos processos de vulcanização existir possível presença de oxigênio, ou quando no composto tiver plastificantes aromáticos e/ou antioxidantes, pois, poderá comprometer a cura do artefato, não curando ou degradando-o. Também, sistemas de cura com peróxidos, são prejudicadas, se no composto existir ingredientes ácidos, antes, é melhor equilibrar o pH do composto.

Page 19: Vulcanizacao teoria metodos

www.cenne.com.br

É comum em compostos curados por peróxidos, também adicionar certos coagentes para peróxidos como: TAC, TAIC, TRIM, HVA – 2, etc, estes ingredientes permitem obter-se cura bastante homogênea em toda massa de borracha, além de melhor eficácia do Peróxido, reduzindo ainda o tempo de cura.

CURA POR RESINAS

Algumas substância bi-funcionadas como determinados tipos de resinas, que veremos abaixo, também são usadas como agentes de cura para certos tipos de borracha, são elas:- - Resinas epoxi; para diversos elastômeros - P. quinona-dioxima; para cura de elastômeros de polisobutilenos - Trietileno-tetramina; para cura de elastômeros poliacrílicos - Hexametileno-diamina; para cura de elastômeros fluorados, butílicos, etc - Resina-fenol-formaldeido, para cura de elastômeros de etileno propileno,

polisobutileno, polisopreno, etc.

ACELERADORES DE VULCANIZAÇÃO

Os aceleradores de vulcanização, são ingredientes adicionados aos compostos de borracha, que tem como principal objetivo reduzir significativamente o tempo de vulcanização dos artefatos, sem detrimento de suas características ótimas requeridas, pelo contrário, melhorando ainda mais as propriedades, em especial, a resistência ao envelhecimento, dos artefatos. A atividade, ou eficiência, dos aceleradores numa composição de borracha, pode ser facilmente verificada, com o uso de aparelhos como o “Reômetro Monsanto”, ou “Curômetros” que medem a resistência oferecida pelas moléculas da borracha na passagem do estado plástico para o elástico, em função do tempo demandado. Num composto de borracha pode ser usado um único ingrediente acelerador, ou uma combinação de vários tipos de aceleradores.

Page 20: Vulcanizacao teoria metodos

www.cenne.com.br

Diversos são os fatores que o Tecnologista Formulador de borracha deve levar em conta na escolha do sistema de aceleração para a composição, sendo; a relação teor de acelerador com o do enxofre, tipo químico de acelerador, velocidade de cura desejada, segurança de pré-vulcanização, compatibilidade dos aceleradores com o tipo de borracha, possibilidade de exudação, toxidade, (no caso de artigos para fins alimentícios), etc. Como referencia da influência do aumento da quantidade de acelerador num composto de borracha podemos dizer que: - Tendência de pré-vulcanização --------------------------------------------------------- aumenta - Tempo de vulcanização --------------------------------------------------------------------- diminui - Dureza e módulos -------------------------------------------------------------------------- aumenta - Tensão de ruptura -------------------------------------------------------------------------- aumenta - Alongamento à ruptura --------------------------------------------------------------------- diminui - Deformação permanente à compressão ----------------------------------------------- diminui - Desenvolvimento de calor em trabalho dinâmico ------------------------------------ diminui Além das informações referentes as alterações de algumas propriedades dos compostos, como vimos acima, é muito importante também conhecermos algumas características reoméricas que ocorrem com a borracha durante a reação de cura, para isso, vamos analisar o gráfico abaixo para entendermos o efeito dos aceleradores aos compostos.

Page 21: Vulcanizacao teoria metodos

www.cenne.com.br

Page 22: Vulcanizacao teoria metodos

www.cenne.com.br

GRÁFICO - CURVA REOMÉTRICA TÍPICA

Olhando o gráfico acima verificamos que para um composto de borracha atingir as características ótimas no estado elástico deverá desenvolver basicamente três fases, durante a reação de vulcanização, em que o acelerador desempenha importante papel em cada fase, sendo:

SCORCH (Tempo de Segurança) Como scorch, denominamos o tempo demandado para aquecer o composto a uma determinada temperatura, que faz com que a viscosidade da borracha diminua permitindo menor plasticidade e maior fluidez, de maneira que o composto preencha perfeitamente toda cavidade do molde, ou, conforme-se atendendo as características geométricas desejadas, antes do início da vulcanização. Neste estágio, o acelerador a ser escolhido, deverá permanecer inativo durante o tempo pré-estabelecido pelo Tecnologista Formulador dando assim segurança de processamento.

Page 23: Vulcanizacao teoria metodos

www.cenne.com.br

CURA (Vulcanização)

O tempo de cura ou vulcanização, é o intervalo de tempo que a efetividade dos aceleradores promovem a mudança de estado do composto, de plástico para elástico, desejado. A ação do acelerador, que reage quimicamente na composição devido ao calor, poderá ser mais energética, (em menor tempo) ou de atividade lenta, dependendo do tipo de acelerador empregado. Ainda, dependendo do tipo de artefato, espessura de parede do mesmo, e condutibilidade térmica da borracha, que como se sabe é muito baixa, podemos usar aceleradores rápidos de ação retardada, ou adicionar também às composições, ingredientes retardadores de cura, de maneira a controlarmos os intervalos de tempo de vulcanização conforme desejarmos.

PLATÔ Quando ocorrida a vulcanização, ou seja, que o artefato atingiu suas propriedades ótimas desejadas, dizemos que as características reológicas estão no platô da curva reométrica.

REVERSÃO

Dependendo do tipo de borracha, tempo, temperatura e mesmo do tipo de acelerador usado, os compostos após vulcanizados poderão iniciar o processo de reversão, ou seja, é o estágio em que o composto começa a perder as propriedades mecânicas ótimas obtidas, o que é indesejável. Obs:- Quando formularmos compostos para fabricação de artigos espessos é

aconselhável utilizar aceleradores de ação lenta, bem como promover a vulcanização com temperaturas mais baixas, ainda se possível, dependendo da composição, aumentar os níveis de óxidos metálicos, pois, estes são melhores condutores de calor.

Page 24: Vulcanizacao teoria metodos

www.cenne.com.br

CLASSIFICAÇÃO DOS ACELERADORES

Os aceleradores orgânicos, usados nas composições de borracha, são divididos e classificados segundo suas características químicas, e ação energética de velocidade de cura. Com referência à velocidade de cura promovida pelos aceleradores temos à disposição os tipos; de ação lenta, ação média, semi-rápida, rápida com início retardado, muito rápida, e ultra rápida. O grupo químico bem como algumas marcas comerciais de tais aceleradores poderão ser vistos na Tabela 02 , a seguir.

TABELA 02

ACELERADORES ORGÂNICOS

GRUPO QUÍMICO

ALGUMAS MARCAS

COMERCIAIS

CLASSIFICAÇÃO

FUNCIONAL

VELOCIDADE DE

CURA

ALDEIDO AMINAS

HMT

VULKACIT H

SECUNDÁRIO

INíCIO RAPIDO COM SEQÜÊNCIA LENTA

GUANIDINAS

T.P.G. D.P.G.

D.O.T.G.

SECUNDÁRIO

LENTA A MÉDIA

TIAZOIS

MBT

MBTS ZMBT

PRIMÁRIO

SEMI-RÁPIDA

SAULFENAMIDAS

VULKACIT AZ

TBBS VULKACIT CZ

PRIMÁRIO

RÁPIDO DE INÍCIO

RETARDADO

TIURÃNS

TMTM TMTD TETD

SECUNDÁRIO

MUITO-RÁPIDA

DITIOCARBAMATOS

ZDC

ZBDC ZEDC

SECUNDÁRIO

ULTRA-RÁPIDO

Page 25: Vulcanizacao teoria metodos

www.cenne.com.br

Para uma melhor interpretação da velocidade de cura dos aceleradores nas composições de borracha, abaixo mostramos algumas curvas reométricas típicas de um composto de borracha natural contendo 50 PHR de negro de fumo tipo HAF, tendo percentuais normais de ativadores e agentes de cura, somente mudando o grupo químico dos aceleradores; seja:

GRÁFICO COMPARATIVO DA AÇÃO ENERGÉTICA DOS ACELERADORES

COMBINAÇÃO DE ACELERADORES Como podemos observar pelo gráfico acima, alguns tipos e grupos químicos de aceleradores oferecem velocidades de cura lenta, porém com um bom platô, outros, oferecem velocidade de cura muito rápidas, quando usados sozinhos ou como único acelerador, nos compostos.

CZ

MBTS DPG

TMTD ZDMC

CBS CZ

Page 26: Vulcanizacao teoria metodos

www.cenne.com.br

É muito comum, os Tecnologistas em Borracha, usar combinações de dois ou mais tipos de aceleradores às composições, normalmente um acelerador de ação média ou lenta, chamado de “Acelerador Primário” em conjunto com outro (outros) de ação muito rápida, denominado de “Acelerador Secundário”, pois, este último (secundário) assume a função de iniciadores (catalizadores), dos aceleradores primários. Assim, consegue-se a soma das qualidades e resultados dos dois tipos de aceleradores. Uma regra empírica, porém, que fornece bons resultados é utilizar a seguinte proporção entre o “Acelerador Primário” e os Secundários, seja, para cada 1 phr de Acelerador Primário, combinar de 0,1 a 0,25 phr de Acelerador Secundário.

GRUPOS DE ACELERADORES - INFORMAÇÕES GERAIS

AMINAS E ALDEIDO AMINAS

As aminas provocam o início da vulcanização muito rapidamente, porém, tende a completar lentamente. A resistência ao envelhecimento de compostos vulcanizados com aminas é muito pobre. Aceleradores do grupo das aminas são normalmente usados como secundário, quando se emprega como aceleradores primários os Tiazóis, Tiurãns, Sulfenamidas e Ditiocarbanatos. Quando usados os Tiazóis, como aceleradores primários, é muito comum o emprego

do Hexametileno Tetramina (HMT) como secundário pois, consegue-se curas moderadas, melhor resistência ao envelhecimento, conserva a cor dos artefatos claros sob a ação da luz solar.

Também o “HMT” funciona como ativador de cura em compostos carregados com sílicas. Composições destinadas a fabricação de artefato borracha / metal, não aconselha-se o emprego de aceleradores amínicos, pois, poderá ocorrer descolamento. Aceleradores do grupo das aminas sofrem certo retardamento de cura quando, aos compostos, for adicionado também a estearina. Não é aconselhável o uso de aminas em artigos claros ou coloridos, pois, poderá ocorrer descoloração, nem tampouco em artefatos que terão contato com produtos alimentícios.

Page 27: Vulcanizacao teoria metodos

www.cenne.com.br

As aminas sozinhas possuem muito pouca ação de aceleração em elastômeros de cadeias saturadas. Para composições contendo cargas ou ingredientes ácidos, que tendem a retardar a velocidade de cura, o uso da combinação de Vulkacit TR (Polietileno-Poliamina) com DOTG (Diortotolil-Guanidina) oferecem muito bom resultado, porém, torna-se extremamente ativo, podendo comprometer a segurança de pré-vulcanização. Peças técnicas onde são exigidas altas propriedades mecânicas como, elevados módulos, alta elasticidade e resiliência, resistência ao envelhecimento e ótimas características dinâmicas, podemos usar o Butiraldeido-Amina-Anilina (Vulkacit 576). Este acelerador também apresenta alta eficiência em compostos de ebonite, ou em composições com altos níveis de borracha regenerada. O Carbamato de Hexametileno Diamina ( Diak 1- Marca Registrada DuPont ) oferece boa segurança de cura para compostos de elastômeros fluorados. O uso do Diak 3 ( Diak 3 - Marca Reg. DuPont ),também apresenta ótima eficiência neste tipo de elastômeros. A Tabela 03 , no final deste módulo apresenta alguns tipos de aceleradores do grupo das aminas, mais comuns.

GUANIDINAS

A principal característica apresentada ao composto, quando empregado Guanidinas como aceleradores, é a velocidade lenta a média de vulcanização, estas apresentam segurança à pré-vulcanização semelhante as Sulfenamidas. Também, aceleradores do grupo das Guanidinas promovem aos compostos muito baixa resistência ao envelhecimento, ainda apresentando curvas reomátricas de platôs pequenos. Obtém-se propriedades muito melhoradas, se as Guanidinas forem empregadas como acelerador secundário em combinação com Tiazóis. Também o teor de enxofre deverá ser mais elevado quando se usa este tipo de acelerador. Outros tipos de aceleradores secundários não são aconselháveis, quando usado Guanidinas com aceleradores primários. As Guanidinas são consideradas como aceleradores manchantes, em compostos para artigos claros, ainda, não são indicadas para peças que farão contato com produtos alimentícios.

Page 28: Vulcanizacao teoria metodos

www.cenne.com.br

A Tabela 4, mostra alguns tipos de Guanidinas, bem como, suas características gerais.

TIAZÓIS

Os aceleradores do grupo Tiazóis apresentam uma velocidade de cura intermediária, sendo menor que os Ditiocarbamatos e maior que as Sulfenamidas. Compostos curados com Tiazóis oferecem ótima resistência ao envelhecimento e curvas reométricas de grande platô. Para obter-se resistência ao envelhecimento ainda melhor, diminui-se o teor de enxofre na composição, adicionando-se também um acelerador secundário como por exemplo um Tiuran. Aceleradores do grupo dos Tiazóis são os mais consumidos pelas indústrias de artefatos de borracha, principalmente como acelerador primário em combinação com Tiurãns, Sulfenamidas e Ditiocarbamatos, pois, apresenta velocidade elevadas de cura, bem como, propriedades mecânicas apreciáveis (dureza, tensão de ruptura, resiliência, alongamento, etc). Compostos claros acelerados com Tiazóis, podem sofrer uma ligeira mudança de coloração quando expostos a luz solar. Os Tiazóis produzem artefatos inodóros, e, em quantidade muito reduzidas, abaixo de 0,6 phr, podem ser usado em compostos para produtos alimentícios. A tabela 05 mostra alguns tipos de Tiazóis, comumente usados em compostos de borracha.

SULFENAMIDAS

Os aceleradores do grupo das Sulfenamidas, nas realidade são produtos obtidos através da reação do Mercaptobenzotiazol com substâncias básicas, que, quando misturadas aos compostos de borracha, e estes submetidos as condições de vulcanização, à partir do aquecimento a certos níveis de temperatura, tais substâncias se decompõem e promove a cura rapidamente, por isso, as Sulfenamidas são chamadas de aceleradores rápidos porém de início retardado. Os aceleradores do grupo das Sulfenamidas oferecem aos compostos grande segurança de pré-cura e garante que o início da vulcanização somente ocorrerá quando toda massa do artefato tiver atingido a temperatura de vulcanização. Embora o tempo para início vulcanização seja retardado, o efeito de cura após disparado, é bastante rápido, sendo assim, as Sulfenamidas muito indicadas para

Page 29: Vulcanizacao teoria metodos

www.cenne.com.br

acelerar compostos que serão processados por moldagem de transferência ou injeção, pois, propicia elevado tempo de scorch facilitando a fluidez da borracha em cavidades complicadas, nos moldes. As Sulfenamidas promovem aos artefatos altos módulos, boa resistência ao envelhecimento, e curvas com platôs apreciáveis. Composições usando Sulfenamidas como acelerador primário, combinada com Tiurãns ou Ditiocarbamatos como acelerador secundário permite a diminuição do nível de enxofre (0,5 a 1,0 PHR) desta forma obtêm-se; melhora na resistência ao envelhecimento, baixa Deformação Permanente à Compressão, boa resistência à fadiga dinâmica e menor geração de calor interno, em trabalhos dinâmicos. Artigos claros em que as Sulfenamidas são usadas como acelerador, tendem a mudar a coloração quando submetidos a luz solar, também, este tipo de acelerador, embora não exudem mesmo se usado em altos teores, conferem aos artefatos um sabor amargo, o que impede que se use em peças para contato com produtos alimentícios. Quando usado processos de vulcanização por vapor direto, ou qualquer meio úmido, a decomposição das substâncias básicas contidas nas Sulfenamidas ocorrem imediatamente, tornando-a um acelerador muito ativo, ideal para artigos extruzados e vulcanizados em túneis contínuos, pois, evita deformação do perfil. A Tabela 06 apresenta alguns tipos de Sulfenamidas mais usadas em compostos de borracha.

TIURÃNS

Os aceleradores do grupo Tiurãns são considerados de ação muito rápida, classificando-se, como aceleradores secundários, apresentam melhor segurança de processamento e pré-vulcanização, que os Ditiocabamatos. A característica de alta atividade dos Tiurãns pode ser reduzida, ou ligeiramente retardada, quando este é combinado com os aceleradores primários do grupo dos Tiazóis ou Sulfenamidas, além de diminuir a tendência ao afloramento. A combinação de Ditiocarbamatos ou Aminas, com os Tiurãns aumenta ainda mais sua velocidade de vulcanização, nos compostos de borracha. Aceleradores do grupo Tiurãns podem ser usados em compostos para fabricação de artigos que terão contato com produtos alimentícios. Também, este tipo de acelerador produz ótimos resultados em artefatos claros ou translúcidos, pois, não são

Page 30: Vulcanizacao teoria metodos

www.cenne.com.br

manchantes. Vale informar que os Tiurãns tendem a promover certo cheiro característico ao artefato, tão logo vulcanizado, assim, dependendo da aplicação da peça, é conveniente, antes de utilizá-la, promover pós-cura, armazenando-a em lugar ventilado à temperatura ambiente por um período de aproximadamente 250 horas. Nas composições de borracha que necessitem de alta resistência ao envelhecimento, como já estudamos, devemos empregar baixos níveis de enxofre, acrescentando doadores de enxofre; o Dissulfeto de Tetrametil Tiurãn (TMTD) se presta com vantagem para tal finalidade, porém, como este passa a funcionar como agente de vulcanização, seu teor na composição será maior. Quando se deseja composições eficientes, ( sem enxofre elementar ), usando como doador de enxofre o TMTD, aconselha-se também empregar uma Tiureia (NA-22) como acelerador secundário, para conseguir uma perfeita eficácia de cura. O uso de Sulfenamidas, como aceleradores primários e Tiurãns, como aceleradores secundários, requer pequenos teores de enxofre, caso contrário, poderá ocorrer prejuízo no alongamento e tensão de ruptura, dos artefatos. Muito embora, a ação da luz solar não afete a cor de artefatos vulcanizados com Tiurãns, este tipo de acelerador tem a tendência de aflorar para a superfície do artefatos, provocando um aspecto esbranquiçado, isto porque, os sub-produtos resultantes da decomposição dos Tiurãns, no ato da vulcanização, são muito pouco solúveis na borracha. A Tabela 07, apresenta alguns tipos de Tiurãn mais usados em composições de borracha.

DITIOCARBAMATOS

Os aceleradores do grupo dos Ditiocarbamatos são considerados como ultra-aceleradores, pois, produzem velocidades de vulcanização extremamente elevadas, efeito que torna os compostos de muito baixa segurança à pre-cura, levando o Tecnologista em Borracha a tomar cuidados especiais, e observar criteriosamente a temperatura (o mais baixas possíveis) durante o processamento da composição. Este grupo de aceleradores, principalmente os oriundos dos sais de zinco podem funcionar como primários ou secundários em combinação com Tiazóis e Sulfenamidas, onde, os Ditiocarbamatos deverão entrar com baixos teores, porque, devido sua alta atividade poderá provocar reversão, o que diminuirá sobre maneira a tensão de ruptura e alongamento. Os Ditiocarbamatos de Zinco, quando usados sozinhos, permite a elaboração de compostos para artigos que terão contato com produtos alimentícios; também, produzem artigos claros e translúcidos, não sendo manchantes, nem tampouco afetados pela luz-solar.

Page 31: Vulcanizacao teoria metodos

www.cenne.com.br

A solubilidade de aceleradores do grupo Ditiocarbamatos nos compostos de borracha, é pequena, o que obriga uso de baixos teores, pois, tendem a aflorar para superfície do artefato. Quando empregado Ditiocarbamato de Zinco, como acelerador primário, bons resultados são obtidos se usados os Tiurãns como secundários. Os Ditiocarbamatos de Zinco em combinação com aceleradores básicos ( Diaminas ) produzem altíssimas velocidades de cura, sendo assim empregada, tal combinação quando se deseja produzir colas cemento auto-vulcanizantes. A combinação de Ditiocarbamatos de Zinco como acelerador primário, ( teores um pouco maior) com Tiazóis como aceleradores secundários produzem curas apreciáveis em compostos de borrachas de baixa insaturação, como os EPDMs e as Butílicas, neste caso podendo diminuir o teor de enxofre. A Tabela 08, apresenta alguns tipos de Ditiocarbamatos mais usados em composições de borracha.

OUTROS ACELERADORES

TIUREIAS

São ingredientes normalmente usado para aumentar a velocidade de vulcanização dos compostos de Policloprenos. A combinação de 1 phr de Etileno Tiureia ( NA-22 ) com TMTM (1 phr ) melhora a segurança de processamento e pré-vulcanização de compostos de Policloropreno carregado com negro de fumo. Em composições de Policloropreno carregadas com caulim ou cargas minerais, o efeito de segurança a pré-vulcanização e conferida com o emprego de 1 phr de NA-22 (Etileno Tiureia) e 1 phr de MBTS.

XANTATOS

Os aceleradores do grupo dos Xantatos são extremamente ativos e produzem ultra-velocidade de vulcanização, não sendo usados em compostos de borracha para fabricação de peças, seu uso se restringe a aplicação em composições de colas cemento, para cura a temperatura ambiente, ou compostos com latex. Além dos aceleradores acima estudados, que são os mais comuns, ainda muitos outros existem em cada grupo ou tipo químico, de uso muitas vezes específicos, o que, os próprios fornecedores, indicados pelas tabelas abaixo, poderão informar, segundo singular aplicação.

Page 32: Vulcanizacao teoria metodos

www.cenne.com.br

Alguns Peróxidos bem como dosagem e características de cura podem ser vistos na Tabela 09.

RETARDADORES DE VULCANIZAÇÃO

Os retardadores de vulcanização são substâncias que adicionadas às composições de borracha, tendem a retardar o início da reação de vulcanização. Neste grupo podemos indicar as substâncias ácidas que tendem a baixar o pH dos compostos. Os Ácidos, Benzóico, Salicílico, e Anidrido-Ftalico funcionam como retardadores. Também a Ciclohexiltioftalimida ( Santogard PVI da Flexsys ) ou a Difenilnitrosamina ( Vulkalent A da Bayer ), ou ainda, Vulkalent B/C, Vulkalent E/C e Vulkalent G, (Bayer) também se prestam como retardadores de vulcanização. Estes ingredientes, quando necessários, são usados nas composições em teores que variam de 0,1 a 0,8 PHR, dependendo do retardamento desejado.

CONCLUSÃO Neste módulo pudemos conhecer em profundidade um pouco maior as características e funcionalidades dos ingredientes que promovem a reação de cura, ou seja, mudança de estado, dos compostos de borracha, porém, como na realidade, o assunto “borracha” e uma ciência, somente com estudos, experiências, acompanhamentos, etc, é que se consegue obter melhores resultados nos desenvolvimentos, portanto, vale sempre a pena, a cada novo composto formulado, desenvolver os testes e ensaios, registrando os dados e aprimorando os estudos, e se possível, sempre divulgando aos colegas Tecnologistas, somente assim, conseguiremos a evolução desta atraente ciência.

POR: V. J. Garbim

High Performances Elastomers Specialist

Page 33: Vulcanizacao teoria metodos

24

TABELA 03

ALGUNS ACELERADORES AMÍNICOS

NOME QUÍMICO

PESO ESPEC. kg/dm

3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

HEXAMETILENO-TETRAMINA

1,2

PÓ-BRANCO

VULKACIT H ------------ BAYER COHEDUR H-30 ---------- BAYER HEXAMET. TETRAM. - -R.T.Vanderbilt ACETO HMT

ACELERADOR USADO EM COMBINAÇÃO COM TIAZOIS PARA CURA A ALTAS TEMPERATURAS, PRODUZ EFEITO RETARDADO. PODE SER USADO COMO ATIVADOR EM COMPOSTOS CONTENDO SÍLICAS.

POLIETILENO POLIAMINA

0,99

LÍQUIDO MARROM

VULKACIT TR ---------- BAYER

USADO SOZINHO OU EM COMBINAÇÃO COM D.ºT.G. EM COMPOSTOS COM INGREDIENTES ÁCIDOS COMO FACTIS CURTIÇAS, ETC.

BUTIRALDEIDO ANILINA

0,99

PÓ-BRANCO

VULKACIT 576 --------- BAYER ACELERATOR 808 ----- R.T.Vanderbilt BEUTENE ---------------- UNIROYAL A-32 ----------------------- MONSANTO

USADO EM PEÇAS TÉCNICAS DE ALTA PERFORMANCE EM TRABALHOS DINÂMICOS. TAMBÉM EMPREGADO PARA CURA DE EBONITES, EPDM E BORRACHAS BUTÍLICAS. OFERECE ARTEFATOS DE ALTA-RESILIÊNCIA.

BUTIRALDEIDO BUTILAMINA

0,86

LÍQUIDO AMBAR-

VERMELHO

ACELERATOR 833 ----- R.T.Vanderbilt

USADO SOZINHO OU EM COMBINAÇÃO COM ACELERADORES ÁCIDOS. PRODUZ ALTA EFICIÊNCIA EM COLA-CIMENTO DE POLICLOROPRENO AUTO-VULCANIZANTE. ACELERADOR MANCHANTE.

Page 34: Vulcanizacao teoria metodos

25

TABELA 03 - CONTINUAÇÃO

NOME QUÍMICO

PESO ESPEC.

kg/dm3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

FORMALDEIDO-CLORETO DE ETILA-

AMONIA

1,10

LÍQUIDO MARROM

TRIMENE BASE -------- UNIROYAL

OFERECE ÓTIMAS TAXAS DE CURA QUANDO COMBINADO COM TIAZOIS, GUANIDINAS E TIURÃNS, NÃO USAR ESTEARINA NA COMPOSIÇÃO. ACELERADOR LEVEMENTE MANCHANTE.

N-N-DICINAMILIDENO 1,6-HEXANODIAMINA

1,09

PÓ-CASTANHO

DIAK N° 3 ----------------DUPONT DOW

ACELERADOR USADO EM BORRACHAS FLUORADAS, OFERECE MELHOR SEGURANÇA DE PROCESSAMENTO, MELHOR QUE O DIAK N°1.

CARBAMATO DE HEXAMETILENO

DIAMINA

1,15

PÓ-BRANCO

DIAK N° 1 ----------------DUPONT DOW

AGENTE DE VULCANIZAÇÃO PARA BORRACHAS FLUORADAS, OFERECE MELHOR SEGURANÇA DE PROCESSAMENTO QUE O HMT.

CARBAMATO DE ETILENO DIAMINA

1,37

PÓ-BRANCO

DIAK N° 2 ----------------DUPONT DOW

AGENTE DE VULCANIZAÇÃO PARA BORRACHAS FLUORADAS, OFERECE MELHOR SEGURANÇA DE PROCESSAMENTO QUE O DIAK N° 1.

Page 35: Vulcanizacao teoria metodos

26

TABELA 04

ALGUNS ACELERADORES DO GRUPO GUANIDINAS

NOME QUÍMICO

PESO ESPECÍFICO

kg/dm3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

DIFENIL GUANIDINA

1,19

PÓ-BRANCO

DPG ------------------------- RHODIA DPG ------------------------- MONSANTO VULKACIT-D ------------- BAYER VULKACIT D/C ---------- BAYER

ACELERADOR DE AÇÃO LENTA, NORMALMENTE USADO SOZINHO EM ARTEFATOS DE GRANDE ESPESSURA TAMBÉM USADO COMO ACELERADOR SECUNDÁRIO EM COMBINAÇÃO COM TIAZOIS, EMPREGAR BAIXOS NÍVEIS DE ESTEARINA. É CONSIDERADO COMO ACELERADOR MANCHANTE.

DIORTOTOLIL GUANIDINA

1,20

PÓ-BRANCO

D.O.T.G. -------------------- R.T.Vanderbilt VULKACIT D.O.T.G. ---- BAYER D.O.T.G. -------------------- MONSANTO D.O.T.G. -------------------- RHODIA

DO GRUPO DAS GUANIDINAS, ESTE É O ACELERADOR DE MAIOR ATIVIDADE EM ALTAS TEMPERATURAS (ACIMA DE 150° C). MUITO USADO COMO ACELERADOR SECUNDÁRIO PARA TIAZOIS, TIURÃNS, SULFENAMIDAS E DITIOCARBAMATOS. PARA VULCANIZAÇÃO DE ARTIGOS DE GRANDE ESPESSURA, O D.O.T.G. PODE SER USADO SOZINHO, POIS, PROPORCIONA CURA LENTA OFERECE BOA SEGURANÇA DE PROCESSAMENTO E É LIGEIRAMENTE MANCHANTE.

Page 36: Vulcanizacao teoria metodos

27

TABELA 04

CONTINUAÇÃO

NOME QUÍMICO

PESO ESPECÍFICO

kg/dm3

COR

NOME COMÉRC./FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

ORTOTOLIL DIGUANIDINA

1,20

PÓ-BRANCO

VULKACIT 1000 --------- BAYER ACELERADOR 80 ------- RHODIA

ESTE ACELERADOR OFERECE VULCANIZAÇÕES COM VELOCIDADES MENORES QUE O D.P.G. E D.O.T.G.. PODE SER USADO COMO ACELERADOR PRIMÁRIO A NÍVEIS ACIMA DE 4 PHR. COMO ACELERADOR SECUNDÁRIO, CATALISA A AÇÃO DOS TIAZOIS, TIURÃNS, SULFENAMIDAS E DITIOCARBAMATOS. COM ALGUNS CUIDADOS, PODE SER USADO EM ARTIGOS QUE FAÇAM CONTATO COM PRODUTOS ALIMENTÍCIOS.

TRIFENIL

GUANIDINA

1,13

PÓ-CINZA

TRIFENYLGUANIDINE -- NATIONAL ANILINE TPG ---------------- ALLIED CHEMICAL

ACELERADOR RARAMENTE USADO, É MENOS ATIVO QUE OS ANTERIORES.

Page 37: Vulcanizacao teoria metodos

28

TABELA 05

ALGUNS ACELERADORES DO GRUPO DOS TIAZOIS

NOME QUÍMICO

PESO

ESPECÍFICO kg/dm

3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

2-MERCAPTOBEN

ZOTIAZOL

1,52

PÓ-AMARELO

MBT ---------------------- R.T.Vanderbilt THIOTAX ---------------- MONSANTO VULKACIT-MERCAPTO ---- BAYER ROTAX ----------- R.T. VANDERBILT MBT ------------------------ UNIROYAL MERTAX ---------------- MONSANTO

ACELERADOR MUITO USADO COMO PRIMÁRIO EM CONJUNTO COM TIURÃNS, SULFENAMIDAS, E DITIOCARBAMATOS, NÃO MANCHANTE, USADO EM COMPOSTOS DE BORRACHAS NATURAIS E SINTÉTICAS. OFERECE COMPOSTOS COM BOA SEGURANÇA DE PRÉ-VULCANIZAÇÃO, APRESENTA CURVAS COM GRANDE PLATÔ, TAMBÉM PODE SER USADO COM AMINAS E ALDEIDO-AMINAS, COMO PARA OUTROS TIPOS DE ACELERADORES PARA BORRACHAS INSATURADAS, REQUER O USO DE OX. DE ZINCO E ESTEARINA.

BIS(2,2-BENZOTIAZOL) DISSULFETO

1,50

PÓ-BEGE

MBTS ---------------------------RHODIA VULKACIT DM/L ------------- BAYER VULKACIT DM/ME ---------- BAYER MBTS -------------------- R.T.Vanderbilt THIOFIDE --------------- MONSANTO MBTS ----------------------- UNIROYAL ALTAX ----------------- R.T.Vanderbilt

ACELERADOR DE USO GERAL, OFERECE AOS COMPOSTOS MUITO BOA SEGURANÇA À PRÉ-VULCANIZAÇÃO, MELHOR QUE COM MBT. TAMBÉM APRESENTA CURVAS REOMÉTRICAS COM GRANDE PLATÔ, NORMALMENTE USADO COMO ACELERADOR PRIMÁRIO EM CONJUNTO COM TIURÃNS, TAMBÉM PODE SER USADO COMO ACELERADOR SECUNDÁRIO EM CONJUNTO COM DITIOCARBAMATOS. REQUER TEORES NORMAIS DE ENXOFRE, ÓXIDO DE ZINCO E ESTEARINA. O MBTS TAMBÉM É NORMALMENTE USADO COMO RETARDADOR EM COMPOSTOS DE POLICLOROPRENO CONTENDO CARGAS BRANCAS.

SAL DE ZINCO DO 2-

MERCAPTOBENZOTIAZOL

1,70

PÓ-BEGE

VULKACIT ZM ---------------- BAYER VULKACIT ZM5 -------------- BAYER MBTZN ------------------------- RHODIA ZENITE ----------------- R.T.Vanderbilt ZETAX ----------------- R.T.Vanderbilt BANTEX ----------------- MONSANTO OXAF ----------------------- UNIROYAL

ACELERADOR MUITO USADO EM LÁTEX DE NR POIS, AUXILIA TAMBÉM NA GELIFICAÇÃO TAMBÉM USADO EM BORRACHAS SÓLIDAS NATURAIS E SINTÉTICAS COMO ACELERADOR PARA PEÇAS CLARAS E COLORIDAS BRILHANTES, NÃO É MANCHANTE E OFERECE BOA RESISTÊNCIA AO ENVELHECIMENTO, DOS ARTEFATOS.

Page 38: Vulcanizacao teoria metodos

29

TABELA 06

ALGUNS ACELERADORES DO GRUPO DAS SULFENAMIDAS

NOME QUÍMICO PESO

ESPECÍFICO kg/dm

3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

N-CICLOHEXIL-2-

BENZOTIAZOL SULFENAMIDA

1,30

PÓ-CINZA CLARO

VULKACIT CZ --------------- BAYER CONAC S --------------- R.T.Vanderbilt DELAC-S ----------------- UNIROYAL DURAX ---------------- R.T.Vanderbilt SANTOCURE ---------- MONSANTO RHODIAFAX-16 ------------ RHODIA CBS ------ AMERICAN CYANAMID

ESTE ACELERADOR, EMBORA DE AÇÃO RETARDADA É O QUE MAIS RAPIDAMENTE INICIA A CURA, É DE ALTA ATIVIDADE, NÃO É MANCHANTE, OFERECE MUITO BOA RESISTÊNCIA À PRÉ-VULCANIZAÇÃO, FORNECE AOS ARTEFATOS MUITO BOAS QUALIDADES MECÂNICAS PRINCIPALMENTE QUANDO USADO COMO ACELERADOR PRIMÁRIO, EM COMBINAÇÃO COM TIURÃNS, POIS, TENDE A RETARDAR LIGEIRAMENTE A AÇÃO DESTE. É NECESSÁRIO O USO DE ÓXIDO DE ZINCO, ENXOFRE E ESTEARINA AOS COMPOSTOS. ACELERADOR MUITO EMPREGADO EM INDUSTRIAS DE PNEUMÁTICOS.

N-TERCIO-BUTIL-2-

BENZOTIAZOL SULFENAMIDA

1,30

PÓ-CASTANHO

VULKACIT NZ/EG ---------- BAYER TBBS ----- AMERICAN CYANAMID SANTOCURE NS ------ MONSANTO DELAC NS --------------- UNIROYAL

ACELERADOR DE AÇÃO RETARDADA, LIGEIRAMENTE MENOS ATIVO QUE O VULKACIT CZ, NÃO MANCHANTE, PROPORCIONA LARGO TEMPO DE SCORCH, PORISSO É MUITO USADO EM ARTIGOS DE FORMA GEOMÉTRICA COMPLICADA. OFERECE AOS ARTEFATOS MUITO BOAS PROPRIEDADES MECÂNICAS NORMALMENTE USADO COMO ACELERADOR PRIMÁRIO, EM CONJUNTO COM TIURÃNS OU DITIOCARBAMATOS É NECESSÁRIO O EMPREGO DE ÓXIDO DE ZINCO, ENXOFRE E ESTEARINA, EM NÍVEIS NORMAIS. ACELERADOR MUITO USADO EM COMPOSIÇÕES ALTAMENTE CARREGADAS.

N-N-DICICLO-HEXIL-2-

BENZOTIAZOL SULFENAMIDA

1,20

GRANULADO MARROM ESCURO

VULKACIT DZ/EGC -------- BAYER RHODIAFAX 30 ------------ RHODIA

ACELERADOR DE MUITO BAIXA ATIVIDADE, O QUE PROPORCIONA AO COMPOSTO ALTÍSSIMA SEGURANÇA À PRÉ-VULCANIZAÇÃO, TAMBÉM OFERECE TEMPO DE SCORCH BASTANTE LONGO, INTERESSANTE EM ARTIGOS COM FORMA GEOMÉTRICA COMPLICADA. ACELERADOR PRIMÁRIO, USADO EM COMBINAÇÃO COM TIURÃNS OU DITIOCARBAMATOS.

Page 39: Vulcanizacao teoria metodos

30

TABELA 07

ALGUNS ACELERADORES DO GRUPO DOS TIURÃNS

NOME QUÍMICO

PESO ESPECÍFICO

kg/dm3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

MONOSSULFETO DE TETRAMETILTIURÃM

1,40

PÓ-AMERELADO

TMTM-500 --------------------- RHODIA VULKACIT THIURAMMS --- BAYER MONEX -------------------- UNIROYAL MONEX NAUGETS ------ UNIROYAL MONO-THIURAD ------ MONSANTO THIONEX ----------------- R.T.Vanderbilt UNADS ------------------- R.T.Vanderbilt

ESTE ACELERADOR, NORMALMENTE SECUNDÁRIO NECESSITA DA PRESENÇA DE ENXOFRE NO COMPOSTO PARA BOA TAXA DE CURA, É UM ACELERADOR DE AÇÃO MUITO RÁPIDA, NÃO MANCHANTE É USADO COM TIAZOIS, SULFENAMIDAS, DITIOCARBAMATOS, AMINAS, ALDEIDO AMINAS, GUANIDINAS. OFERECE AOS ARTEFATOS BOA RESISTÊNCIA À PRÉ-CURA, ENVELHECIMENTO E BAIXA D.P.C.. O TMTM AINDA PODE SER USADO COMO RETARDADOR DE CURA DE COMPOSTOS DE POLICLOROPRENO CARREGADOS COM NEGRO DE FUMO.

DISSULFETO DE TETRAMETILTIURÃM

1,40

PÓ-BRANCO

TMTD -------------------- BANN QUIM. TUEX ----------------------- UNIROYAL VULKACIT-THIURÃM C ---- BAYER TMTD-501 --------------------- RHODIA METHYL TUADS ----- VANDERBILT THIURAD ---------------- MONSANTO

ACELERADOR SECUNDÁRIO NÃO MANCHANTE, DE USO GERAL, TAMBÉM USADO COMO DOADOR DE ENXOFRE PARA COMPOSIÇÕES EFICIENTES OU SEMI-EFICIENTES OFERECENDO MAIOR RESISTÊNCIA AO ENVELHECIMENTO E BAIXA D.P.C.. TAMBÉM TEM A TENDÊNCIA AO AFLORAMENTO. SE USADO COMO ÚNICO ACELERADOR, OFERECE VULCANIZAÇÕES MUITO RÁPIDAS DIMINUINDO A SEGURANÇA DE PRÉ-CURA. USADO COMO ACELERADOR SECUNDÁRIO PARA TIAZOIS. DITIOCARBAMATOS, SULFENAMIDAS E GUANIDINAS.

Page 40: Vulcanizacao teoria metodos

31

TABELA 07

ALGUNS ACELERADORES DO GRUPO DOS TIURÃNS

NOME QUÍMICO

PESO ESPECÍFICO

kg/dm3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

DISSULFETO DE TETRAETILTIURÃM

1,25

PÓ-MARROM CAMURÇA

SUPER-ACELER.481 -------- RHODIA ETHYL-THIURAD ------ MONSANTO ETHYL-TUADS ------- VANDERBILT ETHYL-TUEX ------------- UNIROYAL THIURAM E ------------- r.t.Vanderbilt

ACELERADOR NÃO MANCHANTE, DE USO GERAL PROPORCIONA MAIOR SEGURANÇA À PRÉ-CURA DO QUE O TMTD. OUTRAS CARACTERÍSTICAS, SIMILAR AO TMTD.

DISSULFETO DE DIPENTAMETILENO-

TIURÃM

1,39

PÓ-BRANCO

SUPER-ACELER.471 -------- RHODIA ROBAC P.T.D. ---------- ROBINSONS- BROTHERS

ACELERADOR MAIS INDICADO PARA COMPOSTOS DESTINADOS A ARTEFATOS QUE TERÃO CONTATO COM PRODUTOS ALIMENTÍCIOS. NÃO MANCHANTE. USADO EM MAIORES TEORES, FUNCIONA COMO DOADOR DE ENXOFRE PARA VULCANIZAÇÕES EFICIENTES E SEMI-EFICIENTES, OFERECE AOS COMPOSTOS VULCANIZADOS, ALTA RESISTÊNCIA AO ENVELHECIMENTO E BAIXA D.P.C.

Page 41: Vulcanizacao teoria metodos

32

TABELA 08

ALGUNS ACELERADORES DO GRUPO DOS DITIOCARBAMATOS

NOME QUÍMICO

PESO ESPECÍFICO

kg/dm3

COR

NOME COMERCIAL/FORNEC.

CARACTERÍSTICAS/APLICAÇÕES

DIMETIL-DITIOCARBAMATO DE ZINCO ZMDC

1,70

PÓ-BRANCO

DMDZN 1605 -------------------- RHODIA VULKACIT-L --------------------- BAYER EPTAC 1 ------------------ R.T.Vanderbilt METHASAN --------------- MONSANTO METHYL-ZIMATE ------ R.T.Vanderbilt METHAZATE --------------- UNIROYAL

ACELERADOR MAIS ENERGÉTICO QUE OS TIURÃNS, NÃO MANCHANTE, PARA USO EM ARTIGOS CLAROS E BRILHANTES. OFERECE ALTA-VELOCIDADE DE CURA A BAIXAS TEMPERATURAS, PODE SER USADO EM COMPOSTOS PARA ARTIGOS EM CONTATO COM PRODUTOS ALIMENTÍCIOS. ACELERADOR SECUNDÁRIO PARA TIURÃNS.

DIETIL-DITIOCARBAMATO

DE ZINCO ZEDC

1,50

PÓ-BRANCO

DEDZN 1505 --------------------- RHODIA ETHASAN ------------------ MONSANTO VULKACIT LDA ----------------- BAYER ETHAZATE ------------------ UNIROYAL ETHYL-ZIMATE -------- R.T.Vanderbilt ZDC --------------------------------- ROBAC

ACELERADOR NÃO MANCHANTE, DE VELOCIDADE RÁPIDA DE CURA, USADO COMO ACELERADOR PRIMÁRIO (SOZINHO) OU SECUNDÁRIO COM TIURÃNS, CARACTERÍSTICAS E APLICAÇÕES SIMILARES ÀS DO DMDZN.

DIBUTIL-

DITIOCARBAMATO DE ZINCO ZBDC

1,23

PÓ-BRANCO

BUTAZATE ------------------ UNIROYAL BUTIL-ZIMATE --------- R.T.Vanderbilt VULKACIT LDB ----------------- BAYER EPTAC 4 ------------------------ DU-PONT SUPER ACELER.4005 --------- RHODIA

ACELERADOR SEMELHANTE AO ADC, PORÉM, MAIS VELOZ, OFERECE BOAS PROPRIEDADES MECÂNICAS AOS ARTEFATOS E BOA RESISTÊNCIA AO ENVELHECIMENTO.

DIETIL-

DITIOCARBAMATO DE TELÚRIO

1,42

PÓ-ALARANJADO

TELURAC ---------------- R.T.Vanderbilt PERKACIT TDEC ----------------- AKZO

ACELERADOR USADO NORMALMENTE EM COMPOSTOS DE EPDM, BUTIL E OUTRAS BORRACHAS DE BAIXA INSATURAÇÃO. PODE SER EMPREGADO COMO PRIMÁRIO EM CONJUNTO COM TIAZOIS EM COMPOSTOS COM EPDM ONDE OS ARTEFATOS ESTÃO SUJEITOS A ALTAS TEMPERATURAS.

DIMETIL

DITIOCARBAMATO DE SELÊNIO

1,57

PÓ-AMARELO

METHYL SELENAC --- R.T.Vanderbilt

ESTE TIPO DE ACELERADOR É USADO EM CONJUNTO COM TIAZOIS PARA COMPOSTOS CONTENDO BAIXO ENXOFRE E QUE OS ARTEFATOS DEVAM OFERECER GRANDE RESISTÊNCIA AO CALOR.

Page 42: Vulcanizacao teoria metodos

33

TABELA 09

PERÓXIDOS PARA BORRACHA

Nome Comercial

Nome Químico

Substância Ativa %

Temperatura de Cura º C

Quantidade de uso PHR

Características Gerais

Trigonox 101 – 50 D Vanox DBPH – 50 Luperox 101 XL

2,5 BIS ( Tert-Butylperoxy) –

2,5 Dimethylhexane

50

175/185

5 a 10

Para uso geral, artigos prensados extrusados calandrados, etc. vulcanizadas

em temperaturas elevadas.

Perkadox 14-40-B Vulcup 40 KE

BIS (Tert –Butylperoxy

isopropyl) Benzene

40

175/180

3 a 7

Para uso em artigos prensados extrusados, calandrados, etc.

curados em temperatura elevadas

Perkadox – BC-40-K Dicup 40R Varox DCP-R

Dicumyl – Peroxide

40

170/175

4 a 10

Para artefatos gerais prensados, extrusados calandrados, etc. bastante compatível com negro de fumo, custo

apreciável.

Trigonox – 17-40B Varox 230 XL

Butyl 4,4-BIS (Tert-Butyl

Peroxy) Valerate

40

160/165

4 – 12

Para artigos prensados, extrusados, calandrados etc., vulcanizados em

temperaturas mais reduzidas.

Trigonox –29-40B Varox 231 XL

1,1-BIS (Tert-Butyl Peroxy) – 3,3,5 – Trimethylcyclohexane

40

145/150

4 a 10

Para artefatos de espessura mais grossa com cura em velocidades lenta a média.

Lucidol S – 50S Cadox – BCP/BS Luperco AST

Dibenzoyl Peroxide

50

105/110

5 a 10

Cura em baixa temperatura.

Perkadox PD-50S CadoxTS-50 Luperco CST

BIS (2,4 – Dichloro Benzoil)

Peroxide

50

90/100

5 a 10

Cura em baixa temperatura

Page 43: Vulcanizacao teoria metodos

34

TABELA 09 ( Complemento )

ORIENTAÇÕES BÁSICAS DE USO DOS PERÓXIDOS

Peróxido

Nome comercial

TIPO DE POLÍMERO (Qtde. de Peróxido em PHR)

Subst. Ativa %

Vulcanização

T 90

NR BR CR SBR NBR HNBR EPM EPDM

CPE EVA SILICONE Tempo X Temp. (Min.) (º C)

Trigonox 101 – 50 D Varox DBPH – 50 Luperox 101 XL

1,9 a

3,9

0,8 a

1,8

1,0 a

2,6

1,6 a

2,5

2,3 a

3,9

5,8 a

9,7

5,8 a

9,7

5,8 a

9,0

2,3 a

4,5

1,0 a

1,9

50

24 a 170

8 a 180

Perkadox 14 – 40 B Valcup 40 KE

Varox 802 – 40 KE

1,3 a

2,5

0,5 a

1,2

0,6 a

1,7

1,1 a

2,3

1,5 a

2,5

3,8 a

6,3

3,8 a

6,3

3,8 a

5,9

1,5 a

3,0

0,4 a

0,8

40

22 a 170

10 a 180

Perkadox BC – 40 K Dicup 40 R

Varox DCP - R

2,0 a

4,1

0,9 a

1,9

1,0 a

2,7

1,7 a

3,7

2,4 a

4,1

6,1 a

10,1

6,1 a

10,1

6,1 a

9,5

2,4 a

4,7

1,0 a

2,0

40

10 a 170

4 a 180

Trigonox 17 – 40 B Varox 230 XL

2,5 a

5,0

1,1 a

2,3

1,3 a

3,3

2,1 a

4,6

2,9 a

5,0

7,5 a

12,5

7,5 a

12,5

7,5 a

11,7

2,9 a

5,8

- / -

40

11 a 160

5 a 170

Trigonox – 29 – 40 B 2,3 1,0 1,1 1,9 2,6 6,8 6,8 6,8 2,6 16 a 140

COAGENTE PARA PERÓXIDOS: TAC = Triallyl Cyanurate TAIC = Triallyl Isocyanurate TRIM = Trimethylol Propane Trimethacrylate HVA-2 = M-Phenylene Dimaleimide EDMA = Ethylene Glycol Dimethacrylate

Adicionar de 1 a 3 PHR em conjunto

com Peróxido p/ composto de EPM,

EPDM ou CPE

Page 44: Vulcanizacao teoria metodos

35

Varox 231 XL a 4,5

a 2,1

a 3,0

a 4,1

a 4,5

a 11,3

a 11,3

a 10,6

a 5,3

- / - 40 7 a 150

Lucidol S – 50 S Cadox BCP/BS Luperco AST

-/-

-/-

-/-

-/-

-/-

-/-

-/-

-/-

-/-

-/-

50

22 a 100

7 a 110

Perkadox PD – 50 S Cadox TS 50 Luperco CST

-/-

-/-

-/-

-/-

-/-

-/-

-/-

-/-

-/-

-/-

50

10 a 90

4 a 100