41
UNIVERSIDADE FEDERAL DE JUIZ DE FORA FACULDADE DE ENGENHARIA PÓS-GRADUAÇÃO EM ENGENHARIA DE SEGURANÇA DO TRABALHO JEAN SOARES CHOUCAIR Cálculo da energia incidente para escolha adequada da vestimenta de proteção ao arco elétrico Juiz de Fora 2011

Monografia - Cálculo Da Energia Incidente Para Escolha Adequada Da Vestimenta De Proteção Ao Arco Elétrico-Jean Soares Choucair

Embed Size (px)

DESCRIPTION

Apresenta-se neste trabalho as metodologias internacionalmente reconhecidas para o cálculo da energia incidente quando da ocorrência de arcos elétricos, além de determinar-se ainda a fronteira de segurança ao mesmo para cada uma das metodologias em questão, diferenciando esta das zonas de segurança delimitadas em norma afim. Em seguida explana-se a respeito da correta e adequada escolha das vestimentas de proteção ao referido fenômeno físico. Através de extensa e pertinente pesquisa bibliográfica, discorre-se a respeito do estado da arte em termos da referida determinação da energia oriunda dos arcos, tratando-se ainda das demais normas de análise do desempenho das vestimentas de proteção ao arco elétrico ao longo de sua vida útil, em relação às atitudes de conservação do equipamento como processos de lavagens, etc. Apresenta-se ainda algumas estatísticas relativas a acidentes ocorridos em virtude da ocorrência do fenômeno arco elétrico nas imediações do Sistema Elétrico de Potência (SEP) em algumas das empresas a ele ligadas ou relacionadas.

Citation preview

UNIVERSIDADE FEDERAL DE JUIZ DE FORA FACULDADE DE ENGENHARIA

PÓS-GRADUAÇÃO EM ENGENHARIA DE SEGURANÇA DO TRABALHO

JEAN SOARES CHOUCAIR

Cálculo da energia incidente para escolha adequada da vestimenta de proteção

ao arco elétrico

Juiz de Fora 2011

i

JEAN SOARES CHOUCAIR

Cálculo da energia incidente para escolha adequada da vestimenta de proteção

ao arco elétrico

Monografia apresentada ao curso de Pós-

Graduação em Engenharia de Segurança do

Trabalho da Universidade Federal de Juiz de

Fora como requisito parcial para obtenção

do título de Engenheiro de Segurança do

Trabalho.

Área de concentração: Engenharia de

segurança do trabalho.

Orientador: Paschoal Roberto Tonelli

Juiz de Fora 2011

ii

JEAN SOARES CHOUCAIR

Cálculo da energia incidente para escolha adequada da vestimenta de proteção

ao arco elétrico

Monografia apresentada ao curso de pós-graduação em Engenharia de Segurança do Trabalho da Universidade Federal de Juiz de Fora como requisito parcial para obtenção do título de Engenheiro de Segurança do Trabalho.

Aprovada em 20 de agosto de 2011. Por:

_____________________________________________ Prof. MSc. Paschoal Roberto Tonelli (Orientador)

Universidade Federal de Juiz de Fora

_____________________________________________ Prof. MSc. Affonso Paulo Mendes

Universidade Federal de Juiz de Fora

Juiz de Fora 2011

iii

DEDICATÓRIA

Dedico este trabalho às pessoas que mais amo: minha mãe Celis, minha irmã

Geandra e minha noiva Elisa. Obrigado pelo carinho e pela paciência durante todo

esse curso em que tive que abrir mão dos momentos com vocês para agora concluir

mais esta etapa de minha vida. Amo vocês...

iv

“Viver é negócio muito perigoso.” João Guimarães Rosa (1908-1967)

v

RESUMO

CHOUCAIR, Jean Soares. Cálculo da energia incidente para escolha adequada

da vestimenta de proteção ao arco elétrico. 2011. 40 p. Trabalho de Conclusão

de Curso (Pós-Graduação em Engenharia de Segurança do Trabalho)-Faculdade de

Engenharia, Universidade Federal de Juiz de Fora, Juiz de Fora, 2011.

Apresenta-se neste trabalho as metodologias internacionalmente

reconhecidas para o cálculo da energia incidente quando da ocorrência de arcos

elétricos, além de determinar-se ainda a fronteira de segurança ao mesmo para

cada uma das metodologias em questão, diferenciando esta das zonas de

segurança delimitadas em norma afim. Em seguida explana-se a respeito da correta

e adequada escolha das vestimentas de proteção ao referido fenômeno físico.

Através de extensa e pertinente pesquisa bibliográfica, discorre-se a respeito do

estado da arte em termos da referida determinação da energia oriunda dos arcos,

tratando-se ainda das demais normas de análise do desempenho das vestimentas

de proteção ao arco elétrico ao longo de sua vida útil, em relação às atitudes de

conservação do equipamento como processos de lavagens, etc. Apresenta-se ainda

algumas estatísticas relativas a acidentes ocorridos em virtude da ocorrência do

fenômeno arco elétrico nas imediações do Sistema Elétrico de Potência (SEP) em

algumas das empresas a ele ligadas ou relacionadas.

Palavras-chave: Energia incidente. Arco elétrico.

vi

ABSTRACT

This paper presents the internationally recognized methodologies for

calculating the incident energy upon the occurrence of electrical arcs, and

determines the flash protection boundary for each of the methodologies in question,

distinguing this of security zones defined in related standard. It explains about the

correct and proper choice of protective clothing to that physical phenomenon.

Through extensive research and relevant literature research, explains too about the

state of the art in accordance with the determination of energy from the arches,

aiming the other standards of performance for protective clothing to the electric arc

along its life related to the conservational attitudes as washing processes, etc.. It also

presents some statistics related to accidents due to the occurrence of arcing

phenomenon in the vicinity of the Electric Power System (EPS) in some of its related

companies or correlated.

Keywords: Incident energy. Electric arc.

vii

LISTA DE FIGURAS

Figura 1: Arco elétrico..............................................................................................................16�

Figura 2: Queimadura por arco elétrico....................................................................................17�

Figura 3: Queimadura elétrica clássica.....................................................................................18�

Figura 4: Percentual de sobrevivência de vítimas de queimaduras ..........................................19�

Figura 5: Acidentados com arco elétrico por ano.....................................................................20�

Figura 6: Acidentados com arco elétrico por área....................................................................20�

Figura 7: Acidentados com arco elétrico por instalação...........................................................21�

Figura 8: Acidentados com arco elétrico por nível de tensão...................................................21�

Figura 9: Distâncias no ar que delimitam radialmente as zonas de risco, controlada e livre ...24�

Figura 10: Distâncias no ar que delimitam radialmente as zonas de risco, controlada e livre,

com interposição de superfície de separação física adequada..................................................25�

Figura 11: Limitação das zonas de aproximação .....................................................................29�

Figura 12: Limitação das zonas de aproximação .....................................................................36�

viii

LISTA DE QUADROS

Quadro 1: Fatores .....................................................................................................................33�

Quadro 2: Categorias de risco ..................................................................................................34�

ix

LISTA DE ABREVIATURAS

CLT – Consolidação das Leis do Trabalho

SSST – Secretaria de Segurança e Saúde no Trabalho

MTE – Ministério do Trabalho e Emprego

NR – Norma Regulamentadora

CIPA – Comissão Interna de Prevenção de Acidentes

GM – Gabinete do Ministro

ABNT – Associação Brasileira de Normas Técnicas

NBR – Norma Brasileira Registrada

ABA – American Burn Association

Funcoge – Fundação Comitê de Gestão Empresarial

IEEE – Institute of Electrical and Electronics Engineering

NFPA – National Fire Protection Association

ASTM – American Society for Testing and Materials

ATPV – Arc Thermal Performance Value

x

SUMÁRIO

1 INTRODUÇÃO .......................................................................................................11�

1.1 CONSIDERAÇÕES INICIAIS ..........................................................................11

1.2 JUSTIFICATIVA...............................................................................................12

1.3 OBJETIVOS.....................................................................................................14

1.4 ESTRUTURA DO TRABALHO ........................................................................14

2 O ARCO ELÉTRICO ..............................................................................................15�

2.1 QUEIMADURAS ..............................................................................................16

2.2 ESTATÍSTICAS ...............................................................................................19

3 METODOLOGIAS APLICÁVEIS ............................................................................22�

3.1 MODELO DE RALPH H. LEE..........................................................................22

3.2 MODELO DA NFPA 70E .................................................................................26

3.3 MODELO DO IEEE Std 1584 ..........................................................................29

3.4 COMPARAÇÕES ENTRE MODELOS.............................................................33

4 VESTIMENTA DE PROTEÇÃO .............................................................................35�

5 CONCLUSÃO.........................................................................................................37�

REFERÊNCIAS.........................................................................................................38�

11

1 INTRODUÇÃO

1.1 CONSIDERAÇÕES INICIAIS

A eletricidade é um fenômeno físico há muito conhecido pelo homem.

Acredita-se que tenha sido o filósofo grego Thales de Mileto quem tenha descoberto,

ainda no século VI a.c, a propriedade do âmbar, uma resina vegetal fossilizada, de

atrair palha, fragmentos de madeira, poeira, entre outros quando atritado a um

pedaço de lã de ovelha. Do nome em grego de tal mineralóide, o âmbar, (��������,

transliterando-se, elétron), deriva o nome do referido fenômeno. Ainda assim,

somente a partir do fim do século XVI que essa área do conhecimento físico passa a

ser objeto de estudo com afinco e rigor científico por parte de diversos grandes

nomes da história das ciências e, devido a isso, em um intervalo de alguns séculos

experimenta um crescimento vertiginoso no conhecimento de suas causas e efeitos.

A partir do fim do século XIX a energia elétrica passa a ser utilizada de forma

extensiva, tornando-se rapidamente uma das formas de energia mais largamente

utilizada pelo homem e hoje nos é essencial à vida moderna, quer seja no âmbito do

trabalho, quer no conforto de nossos lares. Devido a isso é amplamente aceita como

fonte de energia sem que em muitas das vezes se conheça, contudo, os riscos a seu

emprego envolvidos e, dessa forma, não é tratada com as precauções necessárias.

O risco envolvido com a eletricidade mais amplamente conhecido é o choque

elétrico, quer seja pela ampla bibliografia disponível acerca do assunto, quer seja

por conhecimento prático de causa, pois, de acordo com Kindermann (2005, p. 2),

pode-se considerá-lo um evento corriqueiro e que cada pessoa já o tenha recebido

pelo menos uma vez.

Os campos eletromagnéticos oriundos da larga utilização da eletricidade

também são capazes de ocasionar diversos danos ao homem. A larga utilização de

sistemas de energia elétrica e principalmente de serviços de telecomunicações, faz

com que, por vezes, se deva tomar precauções com relação às radiações não-

12

ionizantes, havendo no Brasil, inclusive, legislação pertinente que limite a exposição

a estes campos, a Lei nº 11.934 de 5 de maio de 2009.

Muito antes do conhecimento da eletricidade, porém, o raio já submetia os

homens e demais animais aos riscos de origem elétrica, de forma direta ou indireta.

Foi somente no final do século XVIII que se comprovou a natureza elétrica das

descargas atmosféricas, através do famoso e controverso experimento da pipa

empinada durante uma tempestade, sugerido por Benjamin Franklin em carta ao seu

amigo Peter Collinson, datada de 19 de Outubro de 1752.

A outra grande causa de injúrias ao ser humano em virtude da eletricidade é a

ocorrência de arcos elétricos que por vezes provocam queimaduras das mais graves

às vítimas. Este risco é objeto de estudo nessa pesquisa bibliográfica que visa

explanar sobre o estado da arte das metodologias de prevenção e controle deste

risco quanto à correta especificação das vestimentas de proteção específica.

1.2 JUSTIFICATIVA

A legislação trabalhista brasileira reconhece o perigo que a eletricidade

oferece ao trabalhador, através de diversos dispositivos legais. A Constituição

Federal (BRASIL, 1988), em seu artigo 7º enuncia que “São direitos dos

trabalhadores urbanos e rurais, além de outros que visem à melhoria de sua

condição social”, em seu inciso XXIII “adicional de remuneração para as atividades

penosas, insalubres ou perigosas, na forma da lei”. A Consolidação das Leis do

Trabalho (CLT), no Capítulo V “Da segurança e da medicina do trabalho” seção XIII

“Das atividades insalubres ou perigosas” artigo 193 complementa:

São consideradas atividades ou operações perigosas, na forma da regulamentação aprovada pelo Ministério do Trabalho, aquelas que, por sua natureza ou métodos de trabalho, impliquem o contato permanente com inflamáveis ou explosivos em condições de risco acentuado.

E neste, ainda que não se trate do tema previamente citado e objeto deste

estudo, a Lei nº 7.369 de 20 de Setembro de 1985 “Institui salário adicional para os

13

empregados no setor de energia elétrica, em condições de periculosidade” e o

Decreto nº 93.412 de 14 de Outubro de 1986 tem em seu caput:

Revoga o Decreto nº 92.212, de 26 de Dezembro de 1985, regulamenta a Lei nº 7.369 de 20 de Setembro de 1985 que institui salário adicional para empregados do setor de energia elétrica em condições de periculosidade e dá outras providências.

Equivalentam-se, então, as atividades que se dão em contato com a

eletricidade àquelas que dão direito à percepção do adicional de periculosidade.

Ainda, a Portaria nº 25, da Secretaria de Segurança e Saúde no Trabalho

(SSST) vinculada ao Ministério do Trabalho e Emprego (MTE), de 29 de Dezembro

de 1994, inclui, através do Artigo 2º, parágrafo único, na Norma Regulamentadora

(NR) nº 5 “Comissão Interna de Prevenção de Acidentes” (CIPA) como Anexo IV, a

Tabela I constante no anexo da referida portaria, onde na coluna de riscos de

acidentes, grupo 5 (cor azul), a eletricidade encontra-se entre outros fatores de risco.

A NR-10 “Segurança em instalações e serviços em eletricidade”, com redação

dada pela Portaria nº 598, do Gabinete do Ministro (GM) vinculado ao MTE, de 07 de

Dezembro de 2004, é muito clara em seu item 10.1.2:

Esta NR se aplica a todas as fases de geração, transmissão, distribuição e consumo, incluindo as etapas de projeto, construção, montagem, operação, manutenção das instalações elétricas e quaisquer trabalhos realizados nas suas proximidades, observando-se as normas técnicas oficiais estabelecidas pelos órgãos competentes e, na ausência ou omissão destas, as normas internacionais cabíveis.

Assim sendo, nota-se que o conteúdo da referida norma aborda atividades de

todos os segmentos de um sistema elétrico de potência, conforme definição dada

pela Associação Brasileira de Normas Técnicas (ABNT) em sua Norma Brasileira

Registrada (NBR) 5460 “Sistemas elétricos de potência – Terminologia” de 30 de

Abril de 1992 em seu item 3.613 “Sistema elétrico (de potência)”, no subitem 3.613.1

“Em sentido amplo, é o conjunto de todas as instalações e equipamentos destinados

à geração, transmissão e distribuição de energia elétrica.”.

14

1.3 OBJETIVOS

Este trabalho tem como intuito explanar acerca das metodologias existentes para a

mensuração da energia térmica liberada por falhas elétricas do tipo arco elétrico e,

apresentar ainda as especificidades de cada uma, determinando-se, em seguida, as

distâncias seguras à percepção de energia suficiente capaz de causar queimaduras

de 3º grau incuráveis.

1.4 ESTRUTURA DO TRABALHO

O presente trabalho encontra-se dividido da seguinte forma:

Parte 1 – Nessa seção faz-se uma breve contextualização da temática e são

apresentados objetivos da pesquisa, justificativa para sua elaboração e sua

estrutura.

Parte 2 – O Arco Elétrico. Nesta seção discorre-se a respeito desse fenômeno físico,

explicitando-se brevemente suas características, injúrias possíveis de causar e ainda

apresenta-se estatísticas relativas aos acidentes relacionados ao exposto no âmbito

nacional.

Parte 3 – Metodologias Aplicáveis: É a principal seção do trabalho, na qual

apresenta-se as três metodologias internacionalmente reconhecidas de

quantificação da energia térmica incidente a uma dada distância da fonte do arco

elétrico.

Parte 4 – Vestimenta de Proteção: Aqui encontrar-se-a uma breve introdução à

especificação de equipamentos de proteção individual do tipo vestimenta de

proteção ao arco elétrico.

Parte 5 – Conclusão: Discorre-se a respeito dos resultados encontrados e também

tece-se alguns comentários pertinentes a respeito da normatização em vigor no país.

15

2 O ARCO ELÉTRICO

O arco elétrico, ou como por vezes também referenciado arco voltaico,

segundo Lee (1982, p. 246), é o termo aplicado à substancial passagem da corrente

elétrica através do que previamente fora o ar. Ou ainda, é o fluxo de corrente através

do caminho consistindo do material vaporizado dos terminais (LEE, 1982, p. 247).

Na definição de Neal, Bingham & Doughty (1997, p. 1042), é a passagem da

corrente elétrica entre dois eletrodos através do ar ionizado. Segundo Ayello et al

(2010, p. 1), o “arco voltaico pode ser definido como um curto-circuito através do ar”.

Para Almeida & Goecking (2009, p. 18):

O arco elétrico é um fenômeno da eletricidade, inerente aos sistemas elétricos, que pode liberar calor intenso e controlado nos casos de soldas elétricas e fornos industriais ou com liberação de pequena quantidade de calor como nos casos de interruptores para lâmpadas. (2004, p. 4).

O arco elétrico é uma fonte de calor extremo que pode alcançar 20000 K nos

terminais do arco e 13000 K em sua parte intermediária, respectivamente 4 e 2,6

vezes mais altas que a superfície do sol, estimada em 5000 K, sendo assim a

segunda mais poderosa fonte de calor na terra, ficando atrás somente de alguns

tipos de raio laser que podem atingir 100000K (BALIGA & PFENDER, 1975 apud

LEE, 1982, p. 247; BROWN & CADICK, 1980 apud LEE, 1982, p. 247). Conforme

salienta-se JGB em seu website:

A quantidade de energia produzida por arcos elétricos pode ultrapassar 100 cal/cm²/s. Isto é uma quantidade muito grande de calor. Para se ter idéia da magnitude deste valor, a pele humana exposta a esta quantidade de energia atingiria, em 1/2 segundo, a temperatura de 500 ºC e a água ali contida aumentaria seu volume algo ao redor de 500 vezes. Este efeito seria similar ao de uma explosão, pela quase instantaneidade da expansão. O ar aquecido pela passagem desta enorme quantidade de energia também expandiria seu volume ao redor de 2,5 vezes. Outra explosão. Esta segunda explosão atingiria o corpo com um pequeno retardo em relação ao calor que seria praticamente instantâneo (velocidade da luz). Estes dois efeitos combinados tornam o arco elétrico um dos mais graves e terríveis riscos a que o ser humano pode ser submetido.

A figura 1 mostra o momento da ocorrência de um arco elétrico em ensaio

laboratorial.

16

Figura 1: Arco elétrico

Fonte: Almeida & Goecking (2009, p. 13)

2.1 QUEIMADURAS

A queimadura é a lesão dos tecidos orgânicos causada por um trauma de

origem térmica que pode se apresentar por uma bolha ou flictema até respostas

sistêmicas relacionadas à extensão e profundidade das lesões (GOMES, SERRA &

MACIEIRA, 2001, apud RIBEIRO & FERRANTI, 2005, p. 14). Ou ainda:

[...] é uma lesão causada por agentes térmicos, químicos, elétricos ou radioativos que agem no tecido de revestimento do corpo humano, podendo destruir parcial ou totalmente a pele e seus anexos, até as camadas mais profundas (MENEZES & SILVA, 1988, apud RIBEIRO & FERRANTI, 2005, p. 14).

Dos diversos tipos de lesões por acidentes, a queimadura ocupa o segundo

lugar em freqüência no mundo, ficando atrás tão somente das fraturas

(MAGALHÃES, MAURICIO & SANTANA, 2008, apud SOUZA, 2009, p. 17). Sua

importância, entretanto, se dá não só pela freqüência com que ocorre, mas

17

principalmente pela severidade das seqüelas funcionais, estéticas e psicológicas

que é capaz de acometer às vítimas, além da grande taxa de mortalidade associada

(MAGALHÃES, MAURICIO & SANTANA, 2008, apud SOUZA, 2009, p. 17). A figura

2 apresenta um exemplo de queimadura ocasionada em virtude da ocorrência de

arco elétrico.

Figura 2: Queimadura por arco elétrico

Fonte: Acervo pessoal

A queimadura de etiologia elétrica está entre as mais graves lesões possíveis

de acometer as vítimas de acidentes. É uma queimadura de quarto grau e é,

segundo O’Sullivan & Schmitz (1993, p. 592, apud RIBEIRO & FERRANTI, 2005, p.

21):

[...] uma queimadura de 4º grau envolve uma completa destruição de todos os tecidos, desde a epiderme até e inclusive o tecido ósseo subjacente. Este tipo de queimadura ocorre normalmente em resultado do contato com eletricidade. Classicamente haverá uma ferida de entrada, que estará carbonizada e deprimida. Onde a eletricidade deixou o corpo, haverá também uma ferida de saída que normalmente exibe bordas explosivas. Se a corrente for forte o suficiente, também pode ocorrer fraturas do osso subjacente. A pele ao longo do curso da queimadura não branqueará, serão necessárias umas extensas incisões cirúrgicas e, possivelmente amputação, para que o paciente retorne certo grau de capacidade funcional

18

[...]. As queimaduras elétricas são extremamente imprevisíveis, tornando o tratamento e prognóstico muito difícil.

A figura 3 apresenta um corte esquemático de uma queimadura elétrica de 4º

grau onde nota-se a profundidade do acometimento causado pela mesma.

Figura 3: Queimadura elétrica clássica

Fonte: O’ Sullivan & Schmitz (1993, p. 593, apud RIBEIRO & FERRANTI, 2005, p. 22)

Diferentemente da queimadura causada por qualquer outra fonte de calor

externa, a queimadura proveniente do arco elétrico queima internamente com mais

intensidade do que externamente (OLIVEIRA, 2007, apud SOUZA, 2009, p. 17).

Assim, deve-se treinar todos os profissionais envolvidos com eletricidade com

intuito de diminuir os riscos de exposição às queimaduras originadas por arcos

elétricos. A NR-10 (MTE, 2004) preconiza em seu item 10.8.8:

Os trabalhadores autorizados a intervir em instalações elétricas devem possuir treinamento específico sobre os riscos decorrentes do emprego da

19

energia elétrica e as principais medidas de prevenção de acidentes em instalações elétricas, de acordo com o estabelecido no Anexo II desta NR. (210.082-7/I=4).

Segundo estudo da American Burn Association (ABA), realizado nos Estados

Unidos da América no período de 1991 a 1993 e revisado em 2002, a possibilidade

de sobrevivência de vítimas de lesões por queimaduras varia de acordo com a

idade, conforme gráfico à Figura 4 (OLIVEIRA, 2007; NEITZEL, 2008, p. 2, apud

SOUZA, 2008, p. 18).

Figura 4: Percentual de sobrevivência de vítimas de queimaduras

Fonte: Oliveira (2007, apud SOUZA 2008, p. 18)

2.2 ESTATÍSTICAS

Atualmente, no Brasil, não se dispõe de estatísticas oficiais de ocorrências de

arcos elétricos no âmbito do trabalho, tampouco relativo a acidentes domésticos de

mesma natureza. A Fundação Comitê de Gestão Empresarial (Funcoge), porém,

realliza pesquisas anuais junto às, hoje, 67 empresas a ela ligadas e que atuam na

área de abrangência do Sistema Elétrico de Potência (SEP) e que, através das

20

quais, responde por 90% de toda a energia elétrica gerada, transmitida, distribuída e

consumida do país. As informações consolidadas relativas a essa pesquisa são

divulgadas aqui às figuras 5 a 8 que apresentam dados relativos a ocorrência de

arcos elétricos.

Figura 5: Acidentados com arco elétrico por ano

Fonte: FUNCOGE (2011)

Figura 6: Acidentados com arco elétrico por área

Fonte: FUNCOGE (2011)

21

Figura 7: Acidentados com arco elétrico por instalação

Fonte: FUNCOGE (2011)

Figura 8: Acidentados com arco elétrico por nível de tensão

Fonte: FUNCOGE (2011)

22

3 METODOLOGIAS APLICÁVEIS

Atualmente não há normalização técnica nacional que verse sobre qual das

metodologias existentes e aceitas que se adotar a respeito da quantificação da

energia liberada pelo arco elétrico em vista da especificação adequada da

vestimenta de proteção ao mesmo. Faz-se necessário então utilizar-se bases

normativas internacionais para a proteção do trabalhador. Isto porque, como rege o

código de defesa do consumidor (BRASIL, 1990) em sua seção IV, "Das Práticas

Abusivas", no artigo 39 que determina, dentre outros, que “é vedado ao fornecedor

de produtos ou serviços, dentre outras práticas abusivas" em seu inciso VIII,

colocar, no mercado de consumo, qualquer produto ou serviço em desacordo com as normas expedidas pelos órgãos oficiais competentes ou, se normas específicas não existirem, pela Associação Brasileira de Normas Técnicas ou outra entidade credenciada pelo Conselho Nacional de Metrologia, Normalização e Qualidade Industrial (Conmetro).

Além disso, como já previamente mencionado, a própria NR-10 (MTE, 2004)

enuncia em seu item 10.1.2:

Esta NR se aplica a todas as fases de geração, transmissão, distribuição e consumo, incluindo as etapas de projeto, construção, montagem, operação, manutenção das instalações elétricas e quaisquer trabalhos realizados nas suas proximidades, observando-se as normas técnicas oficiais estabelecidas pelos órgãos competentes e, na ausência ou omissão destas, as normas internacionais cabíveis.

A seguir, apresentar-se-á as metodologias vigentes para a correta

especificação das vestimentas de proteção dos trabalhadores em eletricidade.

3.1 MODELO DE RALPH H. LEE

Ralph H. Lee publicou em maio de 1982 na revista do “Institute of Electrical

and Electronics Engineering” (IEEE), “IEEE Transactions on Industry Applications” o

23

artigo “The Other Electrical Hazard: Electric Arc Blast Burns”. Tal fato é tido como

sendo a primeira pesquisa de como ingressar em áreas de risco associado ao arco

elétrico (INSHAW & WILSON, 2005, p. 146). Ammerman, Sen & Nelson (2009, p. 43)

concordam que este artigo é tido como a mais importante pesquisa acerca do

fenômeno do arco elétrico em ambientes abertos.

Ele determinou um modelo teórico, baseado em equações de transferência de

calor, para calcular a mínima distância de segurança ao ponto de falha obtendo-se a

seguinte fórmula:

2,65C BFD MVA t= ⋅ ⋅

Onde:

DC: Distância ao ponto de falha para uma queimadura curável em ft;

MVABF: Potência de curto-circuito sólido simétrico no ponto de falha em MVA;

t: Tempo de extinção do arco em s.

A essa distância aqui representada pela variável DC, Tomiyoshi (2000, p. 5)

chama de “área segura” e Almeida & Goecking (2009, p. 63) nomeiam-na “fronteira

de proteção contra arco elétrico”, ou ainda, “limite de aproximação segura” (2009, p.

46).

O tempo de extinção do arco pode ser obtido a partir de um estudo de

coordenação e seletividade da proteção ao sistema elétrico, a partir de curvas

características dos dispositivos como disjuntores e/ou fusíveis. De acordo com

Tomiyoshi (2004, p. 4), “A metodologia de cálculo da corrente de curto-circuito é

consagrada e conhecida na engenharia elétrica.”.

A NR-10 (MTE, 2004) cria e define espaços físicos para as condições de

exposição de pessoas, advertidas ou não, através do conceito de zonas de risco,

controlada e livre, como ilustra as figuras 9 e 10. Em seu glossário, no item 30,

define-se a zona de risco como sendo:

24

Entorno de parte condutora energizada, não segregada, acessível inclusive acidentalmente, de dimensões estabelecidas de acordo com o nível de tensão, cuja aproximação só é permitida aos profissionais autorizados e com a adoção de técnicas e instrumentos apropriados de trabalho.

Já no item 31, a zona controlada é conceituada como:

Entorno de parte condutora energizada, não segregada, acessível, de dimensões estabelecidas de acordo com o nível de tensão, cuja aproximação só é permitida a profissionais autorizados.

Figura 9: Distâncias no ar que delimitam radialmente as zonas de risco, controlada e livre

Fonte: MTE (2004, p. 14)

25

Figura 10: Distâncias no ar que delimitam radialmente as zonas de risco, controlada e livre, com

interposição de superfície de separação física adequada Fonte: MTE (2004, p. 15)

Onde:

PE: ponto da instalação energizado;

ZR: zona de risco;

ZC: zona controlada;

ZL: zona livre;

SI: superfície isolante construída com material resistente e dotada de todos

dispositivos de segurança.

A área segura ou fronteira de proteção contra arco elétrico difere

significativamente daquelas encontradas enunciadas à NR-10 (MTE, 2004)

supracitadas pois, aquelas, referem-se ao risco elétrico relativo aos choques tão

somente e não ao arco elétrico, como o caso desta.

A equação obtida é aplicável a quaisquer casos, independentemente dos

níveis de tensão e/ou correntes de curto-circuito envolvidos. Através desse

26

desenvolvimento, de acordo com Tomiyoshi (2000, p. 5) “muitos ferimentos foram

evitados posicionando-se as pessoas na área segura, porém continuava o risco para

os que necessitavam trabalhar perto dos equipamentos, dentro da área de risco”.

Ainda de acordo com Tomiyoshi (2000, p. 5):

Como os estudos de A. M. Stoll e M. A. Chianta, publicado em 1969, concluiu que o máximo valor de energia radiante que uma pessoa, exposta durante 1 segundo poderia suportar sem sofrer queimadura do segundo grau é 1,2 cal/cm², valor conhecido como o limiar de queimadura do segundo grau, podemos introduzir a variável E (calor) na fórmula de Lee levando em consideração que na distância calculada a energia máxima é o limiar de queimadura, e fazendo as respectivas transformações para o sistema métrico obtém-se a fórmula:

2

5,117 kV kA tE

d⋅ ⋅ ⋅=

Onde:

E: Energia incidente em cal/cm²;

d: Distância ao ponto de falha em cm;

t: Tempo de extinção do arco em s;

kA: Corrente de curto-circuito sólido simétrico em kA;

kV: Tensão do arco em kV.

Segundo definições da National Fire Protection Association (NFPA, 2009),

entende-se como energia incidente a quantidade de energia disseminada sobre uma

superfície, a uma determinada distância da fonte que a originou, gerada durante a

ocorrência de um arco elétrico.

3.2 MODELO DA NFPA 70E

Os primeiros a expressar o efeito direcional do arco em relação a

configuração fechada em invólucros foram Thomas E. Neal, Allen H. Bingham e

Richard L. Doughty com a publicação de “Protective Clothing Guidelines for Electric

27

Arc Exposure” (1997, p.1045) na mesma revista da publicação de Lee, em julho de

1997 (INSHAW & WILSON, 2004, p. 4; INSHAW & WILSON, 2005, p. 146;

AMMERMAN, SEN & NELSON, 2007, p. 2; AMMERMAN, SEN & NELSON, 2009, p.

44).

Em seguida, a publicação de Richard L. Doughty, Thomas E. Neal & H.

Landis Floyd II, “Predicting Incident Energy to Better Manage the Electric Arc Hazard

on 600 V Power Distribution Systems” (2000, p. 263), ainda na mesma revista

supracitada, em sua edição de janeiro de 2000, desenvolveram um conjunto de

equações semi-empíricas para 2 configurações típicas (ANDREWS, JONES &

McCLUNG, 2001, p. 13; INSHAW & WILSON, 2004, p. 4; INSHAW & WILSON,

2005, p. 146; AMMERMAN, SEN & NELSON, 2007, p. 2; AMMERMAN, SEN &

NELSON, 2009, p. 44) com as seguintes condições de contorno:

• Curto-circuito trifásico;

• Extinção do arco em 6 ciclos;

• Distância entre eletrodos de 1,25 in;

• Invólucro cúbico de 20 in de aresta, com uma das faces abertas.

Segundo Inshaw & Wilson (2004, p. 4; 2005, p. 146), Jones, McClung &

Andrews (2001, p. 1170), Andrews, Jones & McClung (2001, p. 13), a partir desse

artigo, desenvolveu-se ainda a edição de 2000 da 70E “Standard For Electrical

Safety In The Workplace”, que é existente desde 1979 (ANDREWS, JONES &

McCLUNG, 2001, p. 10; McCLUNG & ANDREWS, 2001, p. 1167; AMMERMAN,

SEN & NELSON, 2007, p. 1; AMMERMAN, SEN & NELSON, 2009, p. 43), tendo

sido elaborada para assistir a OSHA (Occupational Safety and Health

Administration) no tocante à segurança elétrica, em consonância com a NEC

(National Electric Code). Na edição de 1991 começa a se referir a arcos elétricos e

somente em 1995 que a referida norma passou a tratar especificamente de proteção

contra o arco elétrico (AMMERMAN, SEN & NELSON, 2007, p. 2; AMMERMAN,

SEN & NELSON, 2009, p. 43), Em sua edição mais recente (2009) prescreve para

os cálculos da energia incidente o seguinte conjunto de equações, aplicáveis a

tensão inferior a 0,60 kV, com corrente de curto-circuito sólido simétrico entre 16 –

50 kA:

• Para configuração aberta:

28

( )8938,00076,00016,05271 29593,1 +⋅−⋅⋅⋅⋅= −bfbfi IItDE

• Para configuração fechada, exceto uma das faces do invólucro:

( )9675,53453,00093,07,1038 24738,1 +⋅−⋅⋅⋅⋅= −bfbfi IItDE

Onde:

Ei: Energia incidente em cal/cm²;

D: Distância ao ponto de falha em in;

t: Tempo de extinção do arco em s;

Ibf: Corrente de curto-circuito sólido simétrico em kA dentro dos limites de

aplicabilidade de cada equação.

A NFPA 70E incorporou ainda, desde sua edição de 1995, a fórmula teórica

de Ralph H. Lee para determinação da distância de segurança, uma forma de

reconhecimento e constatação da eficiência e aplicabilidade da mesma na proteção

envolvendo atividades de risco ao arco elétrico (TOMIYOSHI, 2000, p. 4).

Ainda assim, pode-se determinar um conjunto de equações relativas a esse

método especificamente, que nos levará à determinação da distância de

aproximação segura. Isso dar-se-á em função de isolar-se nas equações o termo

relativo à distância em questão e aplicar-se naquele da energia incidente o valor tido

como limiar de queimadura de segundo grau (1,2 cal/cm²). Feito isso obtém-se o

seguinte:

• Para configuração aberta:

( )9593,1

1

2 8938,00076,00016,052712,1

���

���

+⋅−⋅⋅⋅=

bfbf IItD

• Para configuração fechada, exceto uma das faces do invólucro:

29

( )4738,1

1

2 9675,53453,00093,07,10382,1

���

���

+⋅−⋅⋅⋅=

bfbf IItD

A NFPA (2004) define ainda o conceito de zona proibida. A figura 11 denota

esse conceito juntamente com as demais zonas já conhecidas e estabelecidas.

Figura 11: Limitação das zonas de aproximação

Fonte: NFPA (2004)

3.3 MODELO DO IEEE Std 1584

De acordo com Almeida & Goecking (2009, p. 56), esse método é baseado

em equações empíricas obtidas através de medições diversas obtidas em testes

laboratoriais. Segundo Tomiyoshi (2004, p. 5), como principal diferença para a

metodologia adotada pela NFPA 70E que foi baseado no modelo teórico de Ralph H.

Lee (1982), o novo modelo apresentado pela IEEE Std 1584 (2002) “Guide For

Performing Arc-Flash Hazard Calculations” é baseado em ensaios realizados,

levando-se em consideração diversos fatores que influenciam diretamente na

30

energia incidente liberada sob a forma de calor quando da ocorrência da falha,

sendo eles:

• Tempo de extinção do arco;

• Distância ao ponto de falha;

• Tensão;

• Corrente de curto-circuito sólido simétrico;

• Relação X/R do circuito;

• Distância dos eletrodos;

• Número de fases envolvidas no arco;

• Aterramento do sistema (isolado ou aterrado);

• Configuração do arco (aberto ou fechado);

• Tamanho e formato do invólucro;

• Configuração dos eletrodos (em triângulo, alinhados, etc.);

• Distância dos eletrodos ao invólucro;

• Freqüência elétrica.

Aplicou-se então um método estatístico conhecido como DOE (Design Of

Experiments) para reduzir quantidade de variáveis aplicáveis, para assim, reduzir-se

a quantidade de ensaios necessários. Dessa forma, através dessa análise estatística

extensiva (GAMMON & MATTHEWS, 2005, p. 29) o resultado da modelagem foi

alcançado para as seguintes condições de contorno e limitações:

• Tensão entre 208 – 15.000 V;

• Freqüência elétrica de 50 ou 60 Hz;

• Corrente de curto-circuito sólido entre 700 – 106.000 A;

• Aterramento do sistema sólido ou isolado, com ou sem resistência;

• Configuração do arco em local aberto ou em invólucro fechado;

• Distância entre condutores entre 13 – 152 mm;

• Curto-circuito trifásico.

Essa norma apresenta um conjunto de equações para obter-se a energia

incidente. Primeiramente, calcula-se a corrente do arco elétrico:

• Para tensão entre 0,208 – 1 kV:

31

( ) ( ) ( )( )bfbfbf IGIVGVIKaI log00304,0log5588,0000526,00966,0log662,010 ⋅⋅−⋅⋅+⋅+⋅+⋅+=

• Para tensão entre 1 – 15 kV:

( )( )bfI

aI log983,000402,010 ⋅+=

Onde:

Ia: Corrente de arco em kA;

K: Fator de configuração, aberta (-0,153) ou fechada (-0,097);

Ibf: Corrente de curto-circuito sólido simétrico em kA;

V: Tensão em kV;

G: Distância dos condutores em mm, ver Quadro 1.

Em seguida, valendo-se do valor encontrado para a corrente de arco

esperada, calcula-se o valor da energia incidente normalizada, que vem a ser aquela

padronizada nos ensaios laboratoriais, antes da entrada dos dados relativos a cada

caso (condições de contorno específicas), ou seja, para tempo de extinção do arco

de 200 ms e para distância ao ponto de falha de 610 mm:

( )( )GIKK

NaE ⋅+⋅++= 0011,0log081,12110

Onde:

EN: Energia incidente normalizada em J/cm²;

K1: Fator de configuração, aberta (-0,792) ou fechada (-0,555);

K2: Fator de aterramento, sólido (-0113) ou isolado com ou sem resistência

(0);

Ia: Corrente de arco em kA;

G: Distância dos condutores em mm, ver Tabela 1.

Finalmente, introduzindo-se as variáveis tempo e distância e os coeficientes

de ajuste sobre a energia normalizada, determina-se então a energia incidente como

sendo:

32

X

Nf Dt

ECE ��

�⋅��

�⋅⋅⋅= 6102,0

184,4

Onde:

E: Energia incidente em J/cm²;

Cf: Fator de cálculo da tensão, 0,208 - 1 kV (1,5) ou 1 – 15 kV (1,0);

EN: Energia incidente normalizada em J/cm²;

t: Tempo de extinção do arco em s;

X: Fator de distância, ver Quadro 1.

Fazendo-se o caminho contrário daquele realizado para o modelo de Ralph H.

Lee (1982), partindo-se das equações da energia incidente, pode-se obter uma

equação para determinação da distância de aproximação segura, através de

algumas simples manipulações algébricas na fórmulas em questão. Para tal, aplica-

se nas fórmulas o valor limiar de queimadura de segundo grau no lugar da energia

incidente, obviamente convertendo-se para as unidades de medida apropriadas (1,2

cal/cm² = 5,0 J/cm²), obtendo-se:

XX

Nf

tECD

1

0,5610

2,0184,4 �

���

����

�⋅��

�⋅⋅⋅=

33

Tensão

[kV]

Tipo de

equipamento

Distância

típica dos

condutores

[mm]

Fator de

distância

Aberto 10 - 40 2,000

Disjuntor 32 1,473

Painel/CCM 25 1,641 0,208 - 1

Cabo 13 2,000

Aberto 102 2,000

Disjuntor 13 - 102 0,973 1 - 5

Cabo 13 2,000

Aberto 13 - 153 2,000

Disjuntor 153 0,973 5 - 15

Cabo 13 2,000

Quadro 1: Fatores Fonte: Ammerman, Sen & Nelson (2007, p. 4)

3.4 COMPARAÇÕES ENTRE MODELOS

De acordo com Almeida & Goecking (2009, p. 65), “os métodos mais

utilizados para o segmento industrial são: NFPA 70E e IEEE Std 1584” e, além

disso, ambos os métodos apresentam valores aproximados de energia incidente,

quando para níveis de tensão até 600 V.

Vale notar que, devido as peculiaridades das instalações, no SEP, os

métodos apresentados não são indicados, fazendo-se necessário utilizar-se de

métodos específicos, com condições de contorno distintas, muitas vezes elaborados

em softwares proprietários, como o Arc Pro® e o Heat Flux® (ALMEIDA &

GOECKING, 2009, p. 59-61).

Em tempo, a NFPA (2004) define ainda o conceito de graus de risco em

função do nível de energia incidente estabelecida pelos cálculos realizados, isso

para qualquer dos modelos explanados previamente. Para cada grau de risco há um

34

valor teto de energia incidente. Esses valores são apresentados ao quadro 2 abaixo,

adaptado da Tabela 130.7 (C)(9) da referida publicação:

Resistência mínima ao

arco elétrico Categoria

de risco [J/cm²] [cal/cm²]

0 5,00 1,2

1 16,74 4

2 33,47 8

3 104,60 25

4 167,36 40

Quadro 2: Categorias de risco Fonte: NFPA (2004)

Vale ressaltar que, embora somente a metodologia do IEEE expresse a

energia liberada em unidades de medida do SI (Sistema Internacional), ou seja,

J/cm², e assim de acordo com a Resolução nº 12 do Conmetro de 12 de outubro de

1988, as demais metodologias objeto deste estudo apresentam seus resultados em

cal/cm² que, segundo Shipp et al (2009) é a mais comumente encontrada na

literatura técnica disponível.

Segundo Ammerman, Sen & Nelson (2007, p. 2), em 2006, IEEE e NFPA

concordaram em colaborar em uma iniciativa de pesquisa conjunta para melhorar o

compreendimento do fenômeno do arco elétrico.

35

4 VESTIMENTA DE PROTEÇÃO

No Brasil, a NR-6 (MTE, 1978) “Equipamentos de Proteção Individual – EPI”

rege o assunto. O seu item 6.1 define:

Para fins de aplicação desta Norma Regulamentadora – NR, considera-se Equipamento de Proteção Individual – EPI, todo dispositivo ou produto, de uso individual utilizado pelo trabalhador, destinado à proteção de riscos suscetíveis de ameaçar a segurança e a saúde no trabalho.

A obrigatoriedade do fornecimento dos mesmos por parte do empregador,

além de sua adequação aos riscos é explicitada em 6.3:

A empresa é obrigada a fornecer aos empregados, gratuitamente, EPI adequado ao risco, em perfeito estado de conservação e funcionamento nas seguintes circunstâncias: a) sempre que as medidas de ordem geral não ofereçam completa proteção contra os riscos de acidentes do trabalho ou de doenças profissionais e do trabalho; b) enquanto as medidas de proteção coletiva estiverem sendo implantadas; e, c) para atender a situações de emergência.

A NR-10 (MTE, 2004) está em consonância com a NR-6 (MTE, 1978) já que,

em seu item 10.2.9 “Medidas de proteção coletiva”, no subitem 10.2.9.1 lê-se:

Nos trabalhos em instalações elétricas, quando as medidas de proteção coletiva forem tecnicamente inviáveis ou insuficientes para controlar os riscos, devem ser adotados equipamentos de proteção individual específicos e adequados às atividades desenvolvidas, em atendimento ao disposto na NR 6. (210.022-3/I=4)

Além disso, no item subseqüente, 10.2.9.2 exige-se:

As vestimentas de trabalho devem ser adequadas às atividades, devendo contemplar a condutibilidade, inflamabilidade e influências eletromagnéticas. (210.023-1/I=4)

Segundo Tomiyoshi (2000, p. 6):

Conhecendo-se o total de calor irradiado, a escolha da proteção se resume em identificar o material que suporta o calor incidente sem permitir que do lado protegido o mesmo não atinja o valor limite que causa queimadura do segundo grau.

36

Ainda de acordo com Tomiyoshi (2000, p. 7), em 1998 fora publicada a norma

“American Society for Testing and Materials” (ASTM) F 1959 “Standard Test Method

For Determining The Arc Thermal Performance Value Of Material For Clothing” que

estabelecia critérios para a medição do desempenho de proteção dos materiais

quando sujeitos a arcos elétricos. A essa característica fora dado o nome de “Arc

Thermal Performance Value” (ATPV), que vem a ser a máxima energia incidente que

o tecido suporta sem permitir que se exceda o limiar de queimadura do segundo

grau. A figura 12 ilustra essa condição, esquematicamente.

Figura 12: Limitação das zonas de aproximação

Fonte: Tomiyoshi (2004, p. 4)

A medição dessa característica, porém, muitas vezes é de difícil obtenção,

devido à combustão do tecido, principalmente, às vezes antes de se alcançar o

ATPV. Para esses casos, definiu-se um valor equivalente que é o valor médio dos 5

valores máximos de energia incidente que não provoca aberturas na camada interna

maiores que 0,5 in² em área ou 1 in de comprimento (TOMIYOSHI, 2000, p. 7). A

essa outra característica chama-se “Breakopen Threshold Energy”, à qual

usualmente caracteriza-se por EBT.

Além dessas especificidades, deve-se levar em conta a vida útil do material e

a continuidade da proteção em função das lavagens sofridas. Essas características

devem ser discriminadas pelo fornecedor da vestimenta, em conjunto com o

fornecedor dos tecidos constituintes das mesmas.

37

5 CONCLUSÃO

As conseqüências para os acidentes ocorridos na ocasião de arcos elétricos

são demasiado custosas, tanto do ponto de vista financeiro quanto do custo

incalculável de perdas de vidas humanas.

As vestimentas de proteção devem ser selecionadas de acordo com

detalhada análise do sistema elétrico. A sobreproteção, entretanto, também deve ser

evitada em virtude de significar maior peso sobre o trabalhador com impacto

negativo no conforto e na facilidade de execução de suas tarefas, além de tentá-lo a

sua não-utilização ou utilização de forma errônea.

Enquanto não realizar-se experimentos em condições fora daquelas

explanadas nas metodologias constantes da seção supracitadas, Tomiyoshi (2004,

p. 5) recomenda o emprego do modelo teórico de Ralph H. Lee (1982), ainda que,

de acordo com Almeida & Goecking (2009, p. 56), o método do IEEE seja “mais

realista que o método conservativo [...], não levando a uma proteção excessiva do

trabalhador”.

Ademais, faz-se necessário uma condensação das normas técnicas

internacionais em uma única, abrangendo completamente as condições de contorno

possíveis de se encontrar, por exemplo os sistemas elétricos em corrente contínua,

passo este que já foi iniciado com a intenção, pelo menos, de ambas entidades,

IEEE e NFPA, maiores expoentes na normalização do cálculo da energia incidente

oriunda de arcos elétricos.

Em tempo, no Brasil, faz-se necessário uma orientação legal e formal mais

específica quanto, não só às metodologias de cálculo da energia incidente bem

como da análise de desempenho das vestimentas de proteção. Uma atitude que

seria de bom grado, também, é haver o acompanhamento de acidentes envolvendo

arco elétrico também por parte de todas as empresas que se utilizam de energia

elétrica, quer tenham em seus quadros profissionais que atuam com eletricidade

diretamente ou não, no caso de ocorrência com pessoal inadvertido.

38

REFERÊNCIAS

ALMEIDA, Aguinaldo Bizzo de; GOECKING, Reyder Knupfer. Manual técnico sobre vestimentas de proteção ao risco de arco elétrico e fogo repentino. Rio de Janeiro: Publit, 2009. 121 p. AMMERMAN, Ravel F.; SEN, P.K.; NELSON, John P. Arc Flash Hazard Incident Energy Calculations A Historical Perspective and Comparative Study of The Standards: IEEE 1584 and NFPA 70E. In: Petroleum and Chemical Industry Technical Conference, 2007. 13 p. AMMERMAN, R.F.; SEN, P.K.; NELSON, J.P. Electrical Arcing Phenomena: a historical perspective and comparative study of the standards IEEE 1584 and NFPA 70E. IEEE Industry Applications Magazine, p. 42-52, May/June 2009. ANDREWS Joseph J.; JONES Ray A.; & McCLUNG L. Bruce. NFPA 70E: Upadating Electrical Safety Requeriments For Employee Workplaces. IEEE Industry Applications Magazine, p. 9-16, May/June 2001. AYELLO Fernando; ZANIRATO Eduardo; TANINGA Roberto & ROCHA Geraldo. Sistema de Proteção Contra Arco Voltáico Em Painéis De Média E Baixa Tensão. Artigo da Schweitzer Engineering Laboratories, 2010. BRASIL. Constituição (1988). Constituição da República Federativa do Brasil. Brasília, DF, Senado, 1988. BRASIL. Ministério do Trabalho e Emprego. Gabinete do Ministro. Portaria nº 3.214 de 08 de junho de 1978. NR 6 – Equipamento de proteção individual, Brasília, DF. 7 p. BRASIL. Ministério do Trabalho e Emprego. Gabinete do Ministro. Portaria nº 598 de 07 dezembro de 2004. NR 10 – Segurança em instalações e serviços em eletricidade, Brasília, DF. 13 p. DOUGHTY, Richard L.; NEAL, Thomas E.; FLOYD II, H. Landis. Predicting Incident Energy to Better Manage the Electric Arc Hazard on 600 V Power Distribution Systems. IEEE Industry Applications Magazine, v. 36, p. 257-269, Jan./Feb. 2000.

39

FUNCOGE. Relatório 2010: Estatísticas de Acidentes no Setor Elétrico Brasileiro. Disponível em: <http://www.funcoge.org.br/csst/relat2010/index_pt.html>. Acesso em: 10 ago. 2011. GAMMON Tammy; MATTHEWS John H. IEEE 1584-2002: incident energy factors and simple 480 V incident energy equations. IEEE Industry Applications Magazine, p. 23-31, Jan./Feb. 2005. INSHAW Christopher; WILSON Robert A. Arc Flash Hazard Analysis And Mitigation. In: Western Protective Relay Conference, Spokane, WA, 2004. INSHAW Christopher; WILSON Robert A. Arc Flash Hazard Analysis And Mitigation. In: Protective Relay Engineers Annual Conference, 58th, 2005. p. 145-157. JGB. Arcos Elétricos: Vestimentas para proteção contra queimaduras por arcos elétricos. Disponível em: <http://www.jgb.com.br/site/produtos/catalogo_arcos_eletricos.pdf>. Acesso em: 10 ago. 2011. LEE, Ralph H. The Other Electrical Hazard: Electric Arc Blast Burns. IEEE Transactions On Industry Applications Magazine, v. 1A-18, n. 3, p. 246-251, May/June 1982. KINDERMANN, Geraldo. Choque elétrico. 3. ed. Porto Alegre, RS: UFSC, 2005. 207 p. NEAL, Thomas E; BINGHAN, Allen H.; DOUGHTY Richard L. Protective Clothing Guidelines for Electric Arc Exposure. IEEE Transactions On Industry Applications Magazine, v. 33, n. 4, p. 1041-1054, July/Aug. 1997. NATIONAL FIRE PROTECTION ASSOCIATION. 70E: Standard for Electrical Safety Requirement for Employee Workplace, 2000. RIBEIRO, Fernanda Zacchi; FERRANTI, Juliana. Intervenção fisioterapêutica na mão queimada por choque elétrico. Trabalho de Conclusão de Curso (Graduação em Fisioterapia). Batatais: Centro Universitário Claretiano, 2005. 86 p.

40

SHIPP, David D.; VILCHECK, William S.; ANGELINI, Frank J.; COSTA, Luiz Felipe O. Arco Elétrico na Indústria Petroquímica. O Setor Elétrico, n. 37, fev. 2009. SOUZA, Fábio da Costa. Vestimenta de proteção contra queimaduras provocadas por arcos elétricos para trabalhadores que atuam em instalações e serviços em eletricidade. Trabalho de Conclusão de Curso (Pós-Graduação em Engenharia de Segurança do Trabalho). São Paulo: Universidade Nove de Julho, 2009. 79 p. TOMIYOSHI, Luiz Kazunori. Proteção contra queimaduras por arcos elétricos estimativa de energia e escolha da roupa de proteção. São Paulo: 2000. TOMIYOSHI, Luiz Kazunori. Vestimenta de proteção contra queimaduras por arcos elétricos. São Paulo: 2004.