4º Relatório Físico-Química Experimental - Jardim de Silicato

Embed Size (px)

Citation preview

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    1/16

    1. Objetivo

    O objetivo deste relatório está em documentar os experimentos realizados

    durante as últimas aulas práticas de físico-química. Estes estudos visam analisar o

    fenômeno da osmose através de um experimento intitulado “ jardim de silicato”.Também é objetivo determinar os pontos de fusão e solidificação do naftaleno puro e

    em mistura com enxofre, bem como determinar a massa molecular do enxofre pelo

    efeito criométrico, calculando o erro experimental.

    2. Introdução

    Propriedades Coligativas:

    Propriedades coligativas são as propriedades de uma solução que possuem a

    característica comum de não dependerem da natureza do soluto presente, e sim da

    relação numérica entre o número de moléculas do soluto e o número total de

    moléculas presentes, ou seja, da concentração de partículas do soluto [3]. Essas

    propriedades são provenientes da mesma causa: das alterações nas características

    termodinâmicas dos compostos quando estes estão em solução, em relação aos seus

    estados puros. Estão incluídas, dentre essas propriedades, o abaixamento da pressão

    de vapor, a elevação do ponto de ebulição (elevação ebulioscópica), o abaixamento do

    ponto de solidificação (abaixamento crioscópico) e a pressão osmótica.

     As propriedades coligativas de soluções de não-eletrólitos fornecem um meio

    para determinar a massa molar de um soluto. Em teoria, qualquer uma das quatro

    propriedades é adequada para esse fim, mas, na prática, só a pressão osmótica e o

    abaixamento crioscópico são utilizadas, pois sofrem variações mais pronunciadas [2].

      A Equação 1 representa o potencial químico de um solvente em solução (µ),

    onde  μº  é o potencial químico do solvente puro, uma função de T  e  p, e x  é a fração

    molar do solvente na solução [3].

      (1)

     A figura 1, que represente o diagrama de µ  em função de T , ilustra o

    abaixamento crioscópico e a elevação ebulioscópica.

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    2/16

     

    Fig 1 -: diagrama de  μ  em função de T ; as linhas cheias referem-se ao solvente puro (Fonte:

    Castellan, 1986).

    Sendo o soluto não volátil, ele não participa da fase gasosa, de modo que a

    curva para o vapor em equilíbrio com a solução coincide com a do vapor puro.

     Admitindo que o sólido contém apenas o solvente, a sua curva mantém-se a mesma.

    No entanto, como o líquido contém um soluto, o µ do solvente sofre um abaixamento

    de   em cada temperatura, representado pela linha pontilhada no diagrama.Com isso, ocorre que o ponto de ebulição da solução é maior que o do solvente puro

    (elevação ebulioscópica), enquanto que o ponto de solidificação da solução é menor

    que o do solvente puro (abaixameto crioscópico). No diagrama, os novos pontos deinterseção são os pontos de solidificação (T’ s) e de ebulição (T’ eb) [3].

     Abaixamento da pressão de vapor:

    Para entender o porquê da pressão de vapor de uma solução ser inferior à do

    solvente puro, é preciso relembrar que uma das forças orientadoras dos processos

    químicos e físicos é o aumento de desordem. Assim, quanto maior for a desordem

    criada, mais favorável será o processo. Vale lembrar também que a vaporização

    aumenta a desordem de um sistema porque as moléculas no vapor estão menos

    ordenadas que no líquido. Uma vez que uma solução é mais desordenada que um

    solvente puro, a diferença entre a desordem da solução e a do vapor é menor que a

    diferença entre o solvente puro e o vapor. Portanto, devido ao fato de as moléculas do

    solvente terem uma menor tendência para passarem para a fase de vapor a partir de

    uma solução do que a partir de um solvente puro, a pressão de vapor da solução é

    inferior à do solvente [2].

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    3/16

      Se ambos os componentes de uma solução são voláteis, a pressão de vapor

    da solução será a soma das pressões parciais individuais, conforme Lei de Dalton,

    expressa pela Equação 2.

      (2)

    Neste caso, a lei de Raoult, resumida pelas Equações 3 e 4, continua a ser

    válida:

      (3)

      (4)

    onde P A e PB são as pressões parciais dos componentes A e B sobre a solução, Pº A e

    PºB  são as pressões de vapor das substâncias puras e X A  e XB  são suas frações

    molares [3].

    O abaixamento da pressão de vapor do solvente provocado por um soluto não

    volátil implica em um abaixamento da temperatura de congelamento (crioscópico) e

    em uma elevação da temperatura de ebulição (ebulioscópica). Estes dependem do

    equilíbrio que se estabelece entre o solvente na solução e o solvente puro, sólido ou

    gasoso. O equilíbrio entre o solvente na solução e o solvente líquido puro pode ser

    estabelecido mediante um aumento da pressão sobre a solução que seja o suficiente

    para que o  μ  do solvente na solução atinja o valor do  μ  do solvente puro, de modo que

    se igualem. A esta pressão adicional que é requerida sobre a solução dá-se o nome

    de pressão osmótica [3].

    Elevação Ebulioscópica

    O ponto de ebulição de uma solução é a temperatura na qual a sua pressão devapor se iguala à pressão atmosférica exterior. Uma vez que a presença de um soluto

    não volátil abaixa a pressão de vapor de uma solução, isto deve afetar também o

    ponto de ebulição dessa solução. Com isso, a pressão de vapor da solução será mais

    baixa que a do solvente puro e a curva de equilíbrio líquido-vapor para a solução ficará

    abaixo da curva do solvente puro [2], conforme mostra a figura 2, que exemplifica a

    situação descrita.

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    4/16

     Fig 2- Diagrama de fases, ilustrando a elevação ebulioscópica e o abaixamento crioscópico de

    soluções aquosas (Fonte: Castellan, 1986).

    Pela análise gráfica, pode-se observar que o ponto de ebulição da solução é

    mais elevado que o da água pura. Com isso, pode-se definir a elevação do ponto deebulição como sendo:

      (5)

    onde TE é o ponto de ebulição da solução e ToE corresponde ao ponto de ebulição do

    solvente puro (Chang, 2006).

    Como o valor da elevação do ponto de ebulição é proporcional ao

    abaixamento da pressão de vapor, também será proporcional à molalidade da solução[2]. Uma expressão que fornece uma relação simples entre a elevação ebulioscópica

    (ΔTE) e a concentração molar (W) de um soluto em uma solução ideal diluída é

    descrita pela Equação 6.

      (6)

    onde KE  é a constante ebulioscópica e depende somente das propriedades do

    solvente puro. Esta relação é muitas vezes usada para determinar a massa molar dosoluto dissolvido [3].

    Rearranjando-se a Equação 1, tem-se:

      (7)

    Como μº é o potencial químico do líquido puro, então μ μ , onde

     ΔGvap  é a energia de Gibbs de ebulição molar do solvente puro na temperatura T. Assim, tem-se a Equação 8.

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    5/16

      (8)

    Relacionando o ponto de vaporização de uma solução ideal (T) com o ponto de

    vaporização do solvente puro (T0), o calor de ebulição do solvente (H) e a fração molar

    do solvente na solução (x), tem-se a Equação 9.

      (9)

     A Equação 9 exprime a lei da solubilidade ideal, na qual indica que a

    solubilidade de uma substância é a mesma em todos os solventes com os quais forma

    uma solução ideal e que depende somente das propriedades desta substância. O

    ponto de fusão da substância pura e o calor latente de fusão baixos favorecem um

    aumento da solubilidade [3].

     Abaixamento Crioscópico:

    O congelamento envolve a transição de um estado mais desordenado para

    outro mais ordenado e, para que isso aconteça, deve-se remover energia do sistema.

    Uma vez que uma solução tem maior grau de desordem que o solvente, para criar

    ordem, é preciso remover mais energia da solução do que do solvente puro. Portanto,

    a solução tem um ponto de congelamento mais baixo que o seu solvente puro. Assim,pode-se definir o abaixamento do ponto de congelamento como sendo:

     Analisando a figura 2, mostrado no item anterior, pode-se observar que o ponto de

    ebulição da solução é mais elevado que o da água pura. Com isso, pode-se definir a

    elevação do ponto de ebulição como sendo:

      (10)

    onde TC é o ponto de congelamento da solução e ToC corresponde ao do solvente puro

    [2].

    Novamente, como o abaixamento crioscópico (ΔTC) é proporcional à

    concentração da solução, a expressão que fornece uma relação simples entre estes

    termos é descrita pela Equação 11.

      (11)

    onde KC é a constante crioscópica e W é a concentração do soluto em unidades de

    molalidade [2].

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    6/16

    Mais uma vez, rearranjando-se a Equação 1, tem-se:

      (12)

    Como μº é o potencial químico do líquido puro, então μ μ , onde ΔGfus é a energia de Gibbs de fusão molar do solvente puro na temperatura T. Assim,

    tem-se a Equação 13.

      (13)

    Nota-se que A Equação 13 tem a mesma forma funcional que a Equação 8,

    com a diferença no sinal do segundo membro. Deste modo, a álgebra que segue é

    idêntica à usada na dedução das fórmulas da elevação ebulioscópica, exceto pelo fato

    de que o sinal é trocado em cada termo que contém  ΔG  ou  ΔH, o que significa,

    simplesmente, que, enquanto o ponto de solidificação diminui, o de ebulição aumenta

    [3].

    Com isso, a Equação 14 é análoga à Equação 9.

      (14)

    Para que ocorra o abaixamento do ponto de congelamento, ao contrário do queacontece na elevação do ponto de ebulição, a restrição para solutos não voláteis não

    se aplica. Quando uma solução se congela, é possível observar que o componente

    sólido que se separa é o solvente puro. [2]

    Pressão Osmótica:

    Muitos processos químicos, e até biológicos, dependem da passagem seletiva

    de moléculas de um solvente de uma solução diluída para outra mais concentrada,

    através de uma membrana porosa, a fim de que se atinja o equilíbrio. Esta membrana

    é semipermeável, que permite a passagem das moléculas do solvente, mas impede a

    passagem das de soluto. Esta movimentação do solvente de uma solução mais diluída

    para outra mais concentrada até que se atinja o equilíbrio é denominada osmose.

    (Chang, 2006).

     A pressão osmótica de uma solução é a pressão necessária para impedir este

    processo de osmose; é a pressão hidrostática resultante da diferença de níveis da

    solução mais concentrada e da mais diluída [2;3].

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    7/16

       A pressão osmótica (π) pode ser estimada em uma dada temperatura. Para a

    dedução de sua fórmula, é preciso tomar como referência a lei dos gases ideais e

    assumir, por analogia, que:

      (15)Rearranjando a Equação 15, tem-se:

      (16)

      (17)

    onde M corresponde a concentração do soluto na solução. A Equação 17 é conhecida

    como a equação de van’t Hoff para a pressão osmótica.  Por ser análoga a lei dosgases ideais, isso indica que a pressão osmótica é consequência, como nos gases, do

    bombardeamento das partículas sobre a membrana [1].

    Considerando que todas as propriedades coligativas dependem somente do

    número de partículas de soluto em solução, portanto, assim como a elevação do ponto

    de ebulição e o abaixamento do ponto de congelamento, a pressão osmótica é

    diretamente proporcional à concentração da solução. Se duas soluções possuem a

    mesma pressão osmótica, estas são denominadas isotônicas; se não possuem a

    mesma pressão osmótica, a solução mais diluída é denominada hipotônica e a maisconcentrada, hipertônica [2].

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    8/16

    3. Materiais e reagentes

      Jardim de Silicato

    o  Béquer de 500 mL

    o  Água destilada

    o  Solução aquosa de Silicato de Sódio a 50%

    o  Cloreto de Cobalto

    o  Sulfato de Níquel

    o  Sulfato de Ferro II

    o  Nitrato de Cálcio

    o  Sulfato Cúprico

      Propriedades coligativas

    o  Tubo de ensaio

    o  Béquer de 250 mL

    o  Termômetro

    o  Tela de amianto

    o  Tripé

    o  Bico de Bünsen

    o  Suporte

    o  Garras

    o  Balança analítica

    o  Béqueres de 50 mL

    o  Espátula

    o  Almofariz de porcelana

    o  Naftaleno

    o  Enxofre

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    9/16

    4. Procedimento Experimental

      Jardim de Silicato

    Em um béquer de 500 mL, foram colocados 200 mL da solução concentrada desilicato de sódio a 50% e 200 mL de água destilada, completando assim um volume de

    400 mL. Após este procedimento, foram adicionados, a esta solução, os maiores

    cristais encontrados nos frascos dos seguintes sais: cloreto de cobalto, sulfato de

    níquel, sulfato de ferro II, nitrato de cálcio e sulfato cúprico. Observou-se a formação

    de precipitados e eventuais mudanças de cor. Anotou-se estas observações para

    análise futura.

      Propriedades Coligativas

    Primeiramente, em um almofariz, pulverizou-se o naftaleno, enquanto que, em

    um béquer de 250 mL, colocou-se água até completar ¾ de seu volume e, com o

    auxílio de um bico de Bunsen, um tripé e uma tela de amianto, começou-se a aquecê-

    la. Depois, foram pesados, em um béquer de 50 mL e com a ajuda de uma balança

    analítica, 8,49 g deste naftaleno pulverizado. Após isso, esta alíquota de naftaleno foi

    transferida para um tubo de ensaio, no qual foi depositado sobre a água quente para

    ser aquecido em banho-maria. Um termômetro foi acoplado a este tubo, a fim de que atemperatura do naftaleno fosse monitorada. Com isso, anotou-se as temperaturas de

    fusão e solidificação do naftaleno.

     Após este procedimento, pesou-se 2,02 g de enxofre, também em um béquer

    de 50 mL e com o auxílio da balança. Esta alíquota foi transferida para o mesmo tubo

    usado no aquecimento e resfriamento do naftaleno, com este já sólido. Colocou-se

    este tubo novamente no banho-maria e, ao longo do aquecimento, agitou-se o

    conteúdo do tubo com o termômetro, a fim de que as diferentes substâncias sejam

    misturadas. Novamente, anotou-se as temperaturas de fusão e solidificação, agora damistura de naftaleno e enxofre.

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    10/16

    5. Resultados e Discussões 

      Jardim de Silicatos:

    Durante este experimento foi verificado a formação de precipitados através da

    reação de sais hidratados em solução de metassilicato de sódio 50%

    (Na2O.SiO2 .5H2O ou Na2SiO3). Os sais utilizados eram em grande maioria de metais

    de transição por serem coloridos, mas sais incolores também foram usados sendo

    observado o mesmo efeito. O importante é que os sais escolhidos possuam íons

    metálicos que gerem silicatos insolúveis.

    Somente silicatos de metais alcalinos são solúveis em meio aquoso, estes são

    hidrolisados resultando em soluções alcalinas [5].

     

    O ácido formado é o ácido metassilícico que possui características gelatinosasdevido à presença de água em sua estrutura [11].

       

    O mecanismo proposto para explicar o fenômeno observado envolve o

    processo osmótico que é dependente do caráter semipermeável do precipitado

    gelatinoso em volta do cristal quando este entra em contato com a solução de silicato.

    Na medida em que os sais vão sendo adicionados, estes se dissociam e o

    silicato presente na solução reage com cada um dos íons metálicos, e os cristais que

    ficam submersos na solução aquosa de silicato, são envolvidos pela camada

    gelatinosa de precipitado de silicatos hidratados quase que simultaneamente [9]. 

     A superfície destes silicatos insolúveis se comportam como uma membranasemipermeável no qual a osmose, passagem do solvente do meio menos concentrado

    para o mais concentrado, pode ocorrer. Assim, esta camada entre o precipitado e os

    cristais permite a passagem de solvente, no caso a água e impede a passagem do sal

    [12].

    O interior da membrana possui maior concentração de sal e uma menor

    concentração de água quando comparada com o meio aquoso externo. Devido a essa

    diferença a osmose ocorre, ou seja, a água se propaga no interior da membrana de

    forma a igualar as concentrações internas e externas [12].

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    11/16

      Depois de um período de tempo, a entrada de água causa a dilatação da

    membrana e o aumento da pressão em seu interior acaba provocando sua ruptura e

    os cristais do sal passa a entrar em contanto novamente com a solução de silicato e

    mais precipitado gelatinoso se forma. Todo o processo se repete permitindo que os

    precipitados de silicato continuem crescendo tanto lateralmente quanto de forma

    ascendente [12].

    O crescimento ocorre sob forma de seções tubulares. Estes tubos podem

    crescer para comprimentos cem vezes maiores que o seu diâmetro inicial se

    desenvolvido livremente. A ruptura da membrana e o subsequente crescimento

    continua até que os cristais dos sais sejam completamente dissolvido dentro do

    invólucro de gel inicial [9].

    Uma grande variedade de sais metálicos, exceto aqueles do grupo 1A,

    mostram este tipo de crescimento embora, dependendo das condições, a taxa de

    crescimento, tamanho e forma podem ser consideravelmente diferentes. As variáveis

    incluem o tipo de cátion do sal e do ânion da solução, que além de silicato pode ser

    aluminatos, boratos, fosfatos,cianoferratos, etc. Além da concentração da solução

    aquosa, sendo esta um fator importante. Para um determinado tipo de sal existe uma

    faixa de concentrações que produz o crescimento de forma mais eficaz [10].

    Em soluções concentradas de silicato, a membrana formada em torno dos

    cristais é densa e tem dificuldade de romper para produzir crescimentos secundários.

    Quando a solução é mais diluída, a membrana de gel possui um caráter mais elástico

    permitindo rupturas e regenerações sucessivas dos revestimentos gelatinosos.

    Finalmente, se a diluição for excessiva, chega um ponto em que o material precipitado

    forma uma massa esponjosa ao redor dos cristais dissolvidos [9].

    Reação Simplificada:

     A reação simplificada abaixo ocorre para todos os sais utilizados noexperimento. A tabela 1, abaixo, mostra as mudanças de cores observada, com

    exceção do nitrato de cálcio. Essa mudança está relacionada com alteração no

    número de água de hidratação.

       

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    12/16

    Tabela 1 - Coloração dos Sais antes e após a reação com silicato 

    Reagentes Cores antes da reação Cores após a reação

    CoCl2.6H2O  Rosa Avermelhado Azul Escuro

    FeSO4.7H2O  Verde Claro Verde Escuro

    CuSO4.5H2O   Azul Azul ClaroNiSO4.6H2O  Verde Azulado Verde Claro

    Ca(NO3)2.4H2O  Branco  Branco 

    O cloreto de cobalto hexahidratado, por exemplo, quando em solução se

    dissocia da seguinte forma:

     

    Quando reage com íons silicato ocorre uma reação de substituição do ligante,

    no qual o grupo de saída é o solvente (água) e o grupo de entrada é outro ligante

    (silicato) [7]. Assim, o cobalto quando perde duas moléculas de água passa de um

    rosa intenso para um azul escuro.

     

    Rosa Azul

      Propriedades Coligativas:

    Foram pesados exatamente 8,4898 g de Naftaleno e 2,0202 g de Enxofre. O

    quadro abaixo mostra as temperaturas de fusão e solidificação medidas com o

    termômetro durante o experimento.

    Quadro 1 - Temperaturas de Fusão e Solidificação do naftaleno pura e da mistura com enxofre

    Reagentes Temp. de fusão Temp. de solidificação

    Naftaleno 82°C 79°C

    Naftaleno + Enxofre 94°C 73°C

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    13/16

    Cálculo da Massa do Enxofre:

    Utilizando as equações 10 e 11 apresentadas na introdução é possível calcular

    a massa molecular experimental do enxofre.

      (10)

      (11)

    em que W é a concentração do soluto em unidade de molalidade e Kc é a constante

    crioscópica do solvente. Para o naftaleno Kc é 6,94 K.kg/mol [6].

    Substituindo as temperaturas de solidificação do solvente puro e da mistura, a

    constante crioscópica e as massas do naftaleno e do enxofre determina-se MM1.

     

     

     

     

     

    275 24 g/mol 

    Calculo do Erro:

    O Enxofre possui mais formas alotrópicas do qualquer outro elemento. Essas

    formas diferem no grau de polimerização do enxofre e na estrutura cristalina.As duas

    forma cristalinas ma comuns são o enxofre-α ou rômbico, estável à temperatura

    ambiente e o enxofre- ou monoclínico, que é estável em temperaturas acima 95,5 ºC.

    Essas duas formas se interconvertem quando aquecidos ou esfriados

    lentamente e possuem anéis S8  não planos, com uma conformação de coroa que

    diferem apenas no modo de empacotamento dos anéis no cristal [4].

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    14/16

      Sabendo que massa molecular experimental do enxofre é 275,24 g/mol e que

    a massa molecular esperada é de 256,52 g/mol (32,065 x 8) o erro relativo é

    calculado.

     

     

     

     A figura 3 abaixo demonstra como o enxofre reduz a temperatura de

    solidificação do naftaleno.

    Fig 3 - Abaixamento do Ponto de Congelamento (Fonte: Adaptado de Atkins, 2011)

    Os potenciais químicos do solvente sólido puro e do solvente líquido puro

    diminuem com a temperatura, e o ponto de interseção, onde o potencial químico do

    líquido fica acima daquele do sólido, marca o ponto de congelamento do solvente

    puro. Um soluto diminui o potencial químico do solvente líquido, mas não altera o do

    sólido. Como resultado, o ponto de interseção se desloca para a esquerda,

    diminuindo, dessa modo, o ponto de congelamento [8].

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    15/16

    6. Conclusões

    Na experiência do jardim de silicato, pôde-se verificar, na prática, o fenômeno

    da osmose. No estágio inicial ocorre formação do precipitado gelatinoso, ou seja de

    uma membrana semipermeável, que por diferença de pressão osmótica permite adifusão de moléculas de água para o interior da membrana que leva a sua ruptura. A

    ruptura da membrana leva a um processo de expansão em forma tubular. Foi

    observado que com o passar do tempo a membrana endurece sendo possível

    movimentar todo o sistema sem desestabilizar os cristais já formados.

    Foi obsevado também a formação de bolhas que pareciam acelerar o

    crescimento dos cristais de alguns sais. Como não ocorre liberação de gás em

    nenhuma das reações envolvidas essas bolhas de ar podem ser consequência do

    experimento ter sido realizado em um recipiente aberto para atmosfera.

    Já na experiência da determinação dos pontos de fusão e solidificação da

    naftalina pura e em mistura com enxofre, pôde-se observar os efeitos da elevação do

    ponto de fusão e do abaixamento do ponto de congelamento devido a presença de um

    soluto na solução. Desta forma, é plausível, usar esse efeito em laboratório para

    avaliar o grau de pureza de um composto sólido.

     Ainda através das propriedades coligativas, mais precisamente das

    temperaturas de fusão e ebulição encontradas nas duas etapas do procedimento, é

    possível descobrir a massa molar do soluto e, em comparação com o valor informado

    pela literatura, o erro experimental.

    Vários são os fatores que podem ocasionar erros experimentais, desde erros

    relativos ao arredondamento de valores utilizados para os cálculos até erros

    propriamente operacionais. Diversos são os erros operacionais que podem afetar uma

    prática laboratorial, por exemplo, erros na pesagem dos solutos causados pela má

    calibração da balança e erro na determinação das temperaturas do sistema.

  • 8/17/2019 4º Relatório Físico-Química Experimental - Jardim de Silicato

    16/16

    7. Referências

    1. BUENO, Willie A. et al. Química Geral. São Paulo: McGraw-Hill do Brasil, 1978.

    2. CHANG, Raymond. Química Geral: Conceitos Essenciais. São Paulo: McGraw-

    Hill, 2006.

    3. CASTELLAN, Gilbert. Fundamentos de Físico-química. São Paulo: Livros

    Técnicos e Científicos Editora, 1986.

    4. Lee, J.D - Química Inorgânica não tão Concisa. 5ªed. São Paulo: Blücher,

    1999.

    5. Vogel, Arthur - Química Analítica Qualitativa. 5ªed. São Paulo: Mestre Jou,

    1981

    6. Atkins, Peter; De Paula, Julio - Físico Química, vol 1. 9ª ed. Rio de Janeiro:

    LTC, 2014

    7. Duward F. Shriver; Atkins, Peter - Química Inorgânica. 4ªed. Porto Alegre:

    Bookman, 2008

    8. Atkins, Peter; De Paula, Julio - Fundamentos - 5ª ed. Rio de Janeiro: LTC,

    2011

    9. R.D. Coatman, N.L. Thomas; D.D. Double - Department of Metallurgy andScience of Materials. University of Oxford, Parks Road, Oxford UK - Journal ofMaterial Science, Volume 15, Issue 8, August 1980.

    10. Julyan H. E. Cartwright; Juan Manuel García-Ruiz; María Luisa Novellay;

    Fermíın Otálora - Formation of Chemical Gardens - J. Colloid Interface Sci,2002

    11. www.pqcorp.com/Portals/1/docs/Sodium%20and%20Potassium%20silicates%20brochure%20ENG%20oct%202004.pdf

    http://link.springer.com/journal/10853/15/8/page/1http://link.springer.com/journal/10853/15/8/page/1