Annecy Del Moral MTT

Embed Size (px)

Citation preview

  • 7/27/2019 Annecy Del Moral MTT

    1/48

    Particle approximation of multiple object filtering problems

    P. Del Moral

    INRIA Bordeaux & IMB & CMAP Polytechnique Univ. New South Wales, Sydney (Jan. 2014)

    IMACS Monte Carlo, July 15-19, 2013Some hyper-refs

    Mean field simulation for Monte Carlo integration. Chapman & Hall, Series : Maths and Stat. (2013).

    Particle approximations of a class of branching distribution flows arising in multi-target tracking.SIAM Control. & Opt. (2011). (joint work with Caron, Doucet, Pace)

    On the Conditional Distributions of Spatial Point Processes.

    Advances in Applied Probability (2011). (joint work with Caron, Doucet, Pace).

    On the Stability & the Approximation of Branching Distribution Flows, with Applications to NonlinearMultiple Target Filtering.Stochastic Analysis and Applications (2011). (joint work with Caron, Pace, Vo).

    Comparison of implementations of Gaussian mixture PHD filters. FUSION (2010).(joint work with Caron, Pace, Vo).

    More references on the website http://www.math.u-bordeaux1.fr/delmoral/index.html [+ Links]

    http://hal.archives-ouvertes.fr/docs/00/46/41/30/PDF/RR-7233.pdfhttp://hal.archives-ouvertes.fr/docs/00/46/41/27/PDF/RR-7232.pdfhttp://hal.archives-ouvertes.fr/docs/00/46/41/27/PDF/RR-7232.pdfhttp://hal.inria.fr/docs/00/51/65/07/PDF/RR-7376.pdfhttp://hal.inria.fr/docs/00/51/65/07/PDF/RR-7376.pdfhttp://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5711953&tag=1http://www.math.u-bordeaux1.fr/~delmoral/index.htmlhttp://www.math.u-bordeaux1.fr/~delmoral/index.htmlhttp://www.math.u-bordeaux1.fr/~delmoral/index.htmlhttp://www.math.u-bordeaux1.fr/~delmoral/index.htmlhttp://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=5711953&tag=1http://hal.inria.fr/docs/00/51/65/07/PDF/RR-7376.pdfhttp://hal.archives-ouvertes.fr/docs/00/46/41/27/PDF/RR-7232.pdfhttp://hal.archives-ouvertes.fr/docs/00/46/41/30/PDF/RR-7233.pdfhttp://find/
  • 7/27/2019 Annecy Del Moral MTT

    2/48

    Contents

    Introduction/notation

    Multiple objects branching signals

    Multiple targets filtering models

    General measure valued equations

    Particle association measures

    http://goforward/http://find/http://goback/
  • 7/27/2019 Annecy Del Moral MTT

    3/48

    Introduction/notationDefense Industrial Research projectSome basic notationSpatial Branching modelsFirst moments recursion

    Multiple objects branching signals

    Multiple targets filtering models

    General measure valued equations

    Particle association measures

    http://find/http://goback/
  • 7/27/2019 Annecy Del Moral MTT

    4/48

    2 Industrial research project

    1. Defense industrial Contract : ALEA INRIA team & DCNS (2009)

    2. National Research project : ANR PROPAGATION[2,3Me] (2009-2012):

    Passive radar tracking and optronics liabilities for the protection of

    coastal infrastructures

    ALEA INRIA team DCNS SIS, THALES, ECOMER, EXAVISION

    Project members : + D. Arrivault, Fr. Caron, M. Pace. Visiting researchers :

    D. Clark, A. Doucet, J. Houssineau, S.S. Sing, B.N. Vo.

    http://www.polemerpaca.com/Securite-et-surete-maritime/Protection-maritime-etendue-et-rapprochee/PROPAGATIONhttp://www.polemerpaca.com/Securite-et-surete-maritime/Protection-maritime-etendue-et-rapprochee/PROPAGATIONhttp://www.polemerpaca.com/Securite-et-surete-maritime/Protection-maritime-etendue-et-rapprochee/PROPAGATIONhttp://www.polemerpaca.com/Securite-et-surete-maritime/Protection-maritime-etendue-et-rapprochee/PROPAGATIONhttp://www.polemerpaca.com/Securite-et-surete-maritime/Protection-maritime-etendue-et-rapprochee/PROPAGATIONhttp://www.polemerpaca.com/Securite-et-surete-maritime/Protection-maritime-etendue-et-rapprochee/PROPAGATIONhttp://find/
  • 7/27/2019 Annecy Del Moral MTT

    5/48

    Lebesgue integral on a measurable state space E

    (, f) =(measure, function) (M(E) Bb(E))

    (f) =

    (dx) f(x)

    Delta-Dirac Measure at a E

    = a

    a

    (f) = f(x) a(dx) = f(a)Normalization of a positive measure M+(E) (when (1) = 0)

    (dx) := (dx)/(1) = probability P(E)

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    6/48

    Lebesgue integral on a measurable state space E

    (, f) =(measure, function) (M(E) Bb(E))

    (f) =

    (dx) f(x)

    Delta-Dirac Measure at a E

    = a

    a

    (f) = f(x) a(dx) = f(a)Normalization of a positive measure M+(E) (when (1) = 0)

    (dx) := (dx)/(1) = probability P(E)

    Example = 10 Law(X)

    (1) = 10 & = Law(X) & (f) = E(f(X))

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    7/48

    Q(x, dy) integral operator from E into E

    Two operator actions :

    f Bb(E) Q(f) Bb(E) and M(E) Q M(E)

    with

    Q(f)(x) = Q(x, dx)f(x)

    [Q](dx) =

    (dx)Q(x, dx) ( [Q](f) := [Q(f)] )

    and the composition

    (Q1Q2)(x, dx) = Q1(x, dx)Q2(x, dx)Q Markov operator Q(1) = 1 =unit function notation : M or K (Markov transitions-kernel/Stochastic matrices)

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    8/48

  • 7/27/2019 Annecy Del Moral MTT

    9/48

    Boltzmann-Gibbs transformation : G 0 s.t. (G) > 0

    G()(dx) =1

    (G)

    G(x) (dx)

    Bayes rule (with fixed observation y)

    (dx) = p(x)dx and G(x) = p(y|x)

    G()(dx) =

    1

    p(y)p(y|x) p(x)dx = p(x|y) dx

    http://find/http://goback/
  • 7/27/2019 Annecy Del Moral MTT

    10/48

    Boltzmann-Gibbs transformation : G 0 s.t. (G) > 0

    G()(dx) =1

    (G)

    G(x) (dx)

    Bayes rule (with fixed observation y)

    (dx) = p(x)dx and G(x) = p(y|x)

    G()(dx) =

    1

    p(y)p(y|x) p(x)dx = p(x|y) dx

    Restriction

    (dx) = P(X dx) = p(x)dx and G(x) = 1A(x)

    G()(dx) =1

    P(X A) 1A(x) p(x)dx = P(X dx | X A)

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    11/48

    Boltzmann-Gibbs transformation : G 0 s.t. (G) > 0

    G()(dx) =1

    (G)G(x) (dx)

    (non unique) Markov transport equation

    G()(dy) =

    (dx)S(x, dy) G() = S

    Example 1 : (G 1) accept/reject/recycling/interacting jumps

    S(x, dy) = G(x)x(dy) + (1 G(x)) G()(dy)

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    12/48

    Boltzmann-Gibbs transformation : G 0 s.t. (G) > 0

    G()(dx) =1

    (G)G(x) (dx)

    (non unique) Markov transport equation

    G()(dy) =

    (dx)S(x, dy) G() = S

    Example 1 : (G 1) accept/reject/recycling/interacting jumps

    S(x, dy) = G(x)x(dy) + (1 G(x)) G()(dy)

    Note :

    S1N

    1jN Xj

    (Xi, dy)

    = G(Xi)Xi(dy) + (1 G(Xi))

    1jNG(Xj)

    1kN G(Xk)

    Xj(dy)

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    13/48

    Other examples of transport equations G() = SExample 2 : s.t. G 1 a.e.

    S(x, dy) = G(x) x(dy) + (1 G(x)) G()(dy)

    Example 3 : a s.t. G > a

    S

    (x, dy) =a

    (G)

    x(dy) + 1

    a

    (G) Ga()(dy)Example 4 : G

    S(x, dy) = (x) x(dy) + (1 (x)) [GG(x)]+ ()(dy)

    with the acceptance rate

    (x) = [G G(x)]/(G)

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    14/48

    Spatial Branching models (time index n N, state spaces En) 3 ingredients : Gn(x)

    1, n(dx)

    0, and Mn(xn1, dxn) Markov.

    Branching rule (spawning) :

    Random mapping x gn(x) N offsprings, with E(gn(x)) = Gn(x)

    survival rates en(x) + cemetery states : Gn en(x)Gn(x)

    Spontaneous births: Spatial Poisson with intensity n(dx) Free motion between branching times : Mn-evolutions

    Random occupation measure (after the n-th evolution step)

    Xn =Nn

    i=1

    Xin

    En := {types, locations, labels, excursions, paths,. . . }

    S i l B hi d l ( i i d N E )

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    15/48

    Spatial Branching models (time index n N, state spaces En) First moment recursion = branching intensity distribution

    n+1(f) := E (X

    n+1(f)) = n(Qn+1(f)) + n+1(f)

    withQn+1(x, dy) = Gn(x)Mn+1(x, dy)

    S ti l B hi d l (ti i d N t t E )

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    16/48

    Spatial Branching models (time index n N, state spaces En) First moment recursion = branching intensity distribution

    n+1(f) := E (X

    n+1(f)) = n(Qn+1(f)) + n+1(f)

    withQn+1(x, dy) = Gn(x)Mn+1(x, dy)

    Sketched proof (n = 0): Xn+1 =Nn+1i=1

    Xin+1 =

    Nni=1

    gin(Xin)

    j=1

    Xi,jn+1

    E (Xn+1(f) | Xn, gn(Xn)) =Nn

    i=1

    gi

    n(Xi

    n) Mn+1(f)(Xi

    n)

    E (

    Xn+1(f)

    | Xn) =

    Nn

    i=1Gn(X

    in) Mn+1(f)(X

    in) =

    Xn(Qn+1(f))

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    17/48

    Continuous time models

    Geometric clocks exponential rates time mesh(tn tn1) 0

    Xn = XtnGn = survival

    [spawning

    mean offsprings + (1

    spawning)

    1]

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    18/48

    Continuous time models

    Geometric clocks exponential rates time mesh(tn tn1) 0

    Xn = XtnGn = survival

    [spawning

    mean offsprings + (1

    spawning)

    1]

    (tn tn1) 0 G = 1 + V dt and M = Id + L dt and tn t

    d

    dtt(f) = t(L

    V(f)) + t(f) with LV = L + V

    Schrodinger operator

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    19/48

    n = 0 Classical Feynman-Kac models

    Feynman-Kac representation ( Application domains)

    n+1(f) = 0(1) E0

    f(Xn+1)

    0pnGp(Xp)

    Particle approximations = Genetic type algo = Particle filters = ...

    Qn+1(x, dy) = Gn(x) Selection potential

    Mn+1(x, y)

    Mutation transition

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    20/48

    Introduction/notation

    Multiple objects branching signalsEvolution equationsStability propertiesThree typical scenariosAn extended Feynman-Kac modelMean field particle interpretationsSome convergence results

    Multiple targets filtering models

    General measure valued equations

    Particle association measures

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    21/48

    More general spatial Branching models (hyp. 0 = 0)

    n = n1Qn + n and n := n/n(1)

    (n(1), n) := p,n (p(1), p)

    Some problems Problem 1: Mass n(1) unstable n(1) or n(1) 0 as n Problem 2: Xn =

    Nni=1 Xin generally NOT POISSON random field.

    Problem 3:

    non degenerate numerical sampling method?

    Problem 4: non degenerate approximation ofn?

    Th i M M G G [ ]

    http://find/http://goback/
  • 7/27/2019 Annecy Del Moral MTT

    22/48

    Three scenarios Mn = M, Gn = G [g, g+], n = 1. G = 1 := M (independent of)

    n(1) = 0(1) + n(1) and n tv = O(1/n)2. g+ < 1 := /(1) with given by

    :=n0

    Qn Poisson equation (Id Q) =

    and|n(f) (f)| |n(f) (f)| c gn+ f

    Th i M M G G [ ]

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    23/48

    Three scenarios Mn = M, Gn = G [g, g+], n = 1. G = 1 := M (independent of)

    n(1) = 0(1) + n(1) and n tv = O(1/n)2. g+ < 1 := /(1) with given by

    :=n0

    Qn Poisson equation (Id Q) =

    and|n(f) (f)| |n(f) (f)| c gn+ f

    Continuous time models G = eVt

    & M = L t + Id

    t(f) =

    t0

    E

    f(Xs) exp

    s

    0

    V(Xr)dr

    ds

    t

    Poisson equation L

    V = , with LV = L + V

    The 3 d sce a io (M M G G [ ] )

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    24/48

    The 3-rd scenario (Mn = M, Gn = G [g, g+], n = )

    g > 1

    (f) := Q(f)/Q(1) (independent of)

    limn

    1

    nlog n(1) = log (G) and n tv c en

    = [quasi-invariant meas., Yaglom meas., ground states, Feynman-Kacsg fixed points, infinite population stationary measure, . . . ]

    Hyper-refs :

    On the stability of interacting processes with applications to filtering and geneticalgorithms. (joint work with A. Guionnet) Annales IHP (2001).

    Particle approximations of Lyapunov exponents connected to Schrodinger operators andFeynman-Kac semigroups. (joint work with L. Miclo) ESAIM: P&S (2003).

    Particle Motions in Absorbing Medium with Hard and Soft Obstacles.

    (joint work with A. Doucet) Stochastic Analysis and Applications (2004).

    Nonlinear equations

    http://www.math.u-bordeaux1.fr/~pdelmora/ihp.pshttp://www.math.u-bordeaux1.fr/~pdelmora/ihp.pshttp://www.math.u-bordeaux1.fr/~pdelmora/exponent.pshttp://www.math.u-bordeaux1.fr/~pdelmora/exponent.pshttp://www.math.u-bordeaux1.fr/~pdelmora/exponent.pshttp://www.math.u-bordeaux1.fr/~pdelmora/obstacle.pshttp://www.math.u-bordeaux1.fr/~pdelmora/obstacle.pshttp://www.math.u-bordeaux1.fr/~pdelmora/exponent.pshttp://www.math.u-bordeaux1.fr/~pdelmora/exponent.pshttp://www.math.u-bordeaux1.fr/~pdelmora/ihp.pshttp://www.math.u-bordeaux1.fr/~pdelmora/ihp.pshttp://find/
  • 7/27/2019 Annecy Del Moral MTT

    25/48

    Nonlinear equations

    n+1 n(1) nQn+1 + n+1(1) n+1

    Nonlinear & interacting mass + proba measures equations

    n+1(1) = n(1) n(Gn) + n+1(1)

    n+1 = Gn (n)Mn+1,(n(1),n)

    with the Markov transitions:

    Mn+1,(m,)(x, dy) := n (m, ) Mn+1(x, dy) + (1 n (m, )) n+1(dy)

    and the collection of [0, 1]-parameters

    n (m, ) =m (Gn)

    m (Gn) + n+1(1)

    An extended Feynman Kac model

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    26/48

    An extended Feynman-Kac model

    nupdating n := Gn (n) = nSn,n prediction n+1 := nMn+1,(n(1),n)

    A couple of equations:

    The total mass evolution

    n+1(1) = n(1) n(Gn) + n+1(1)

    The nonlinear filtering/Feynman-Kac type conservative equations

    n+1 = nSn,n Mn+1,(n(1),n) := n Kn+1,(n(1),n) Markov transition

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    27/48

    Mean field interacting particle models

    Nn =1

    N 1iNin N n and Nn (1) N n(1)

    the total mass evolution [deterministic]

    Nn+1(1) := Nn (1)

    Nn (Gn) + n+1(1)

    Mean field particle model

    in+1 = r.v. with distribution Kn+1,(Nn (1),Nn )(in, dxn+1)

    (Local) Stochastic perturbation model:

    Nn+1 := Nn Kn+1,(Nn (1),Nn ) +

    1N

    WNn+1

    Theoretical convergence results

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    28/48

    g

    Independent local sampling error fluctuations

    (WNn )n0

    N iid centered Gaussian fields (Wn)n0

    Theoretical convergence results

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    29/48

    Independent local sampling error fluctuations

    (WNn )n0

    N iid centered Gaussian fields (Wn)n0

    Functional CLT(s) (withNn :=

    Nn (1) Nn

    )

    V,Nn :=

    N (Nnn) & V

    ,Nn :=

    N (Nn

    n)

    N V

    n & V

    n

    Theoretical convergence results

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    30/48

    Independent local sampling error fluctuations

    (WNn )n0

    N iid centered Gaussian fields (Wn)n0

    Functional CLT(s) (withNn :=

    Nn (1) Nn

    )

    V,Nn :=

    N (Nnn) & V

    ,Nn :=

    N (Nn

    n)

    N V

    n & V

    n

    Uniform cv results (under some mixing conditions on Mn)

    supn0

    ENn

    n (f)

    p

    c(p)/Np/2 (

    uniform concentration)

    Theoretical convergence results

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    31/48

    Independent local sampling error fluctuations

    (WNn )n0

    N iid centered Gaussian fields (Wn)n0

    Functional CLT(s) (withNn :=

    Nn (1) Nn

    )

    V,Nn :=

    N (Nnn) & V

    ,Nn :=

    N (Nn

    n)

    N V

    n & V

    n

    Uniform cv results (under some mixing conditions on Mn)

    supn0

    ENn

    n (f)

    p

    c(p)/Np/2 (

    uniform concentration)

    Unbiased particle total mass with variance (N n)

    E1 Nn (1)/n(1)

    2

    c n/N

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    32/48

    Introduction/notation

    Multiple objects branching signals

    Multiple targets filtering modelsConditioning principlesPHD filtering equationStability properties

    General measure valued equations

    Particle association measures

    Conditioning principles for marked point processes

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    33/48

    Poisson point process X with intensity (dx1) Q(x1, dx2) onE = (E1 E2)

    X:= mN(X1,X2) = 1iN

    (Xi1,Xi2) and Xj := mN(Xj) = 1iN

    Xij

    Conditioning principles for marked point processes

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    34/48

    Poisson point process X with intensity (dx1) Q(x1, dx2) onE = (E1 E2)

    X:= mN(X1,X2) = 1iN

    (Xi1,Xi2) and Xj := mN(Xj) = 1iN

    Xij

    2 Bayes rules: Normalization p(x2|x1) Markov operator p(x1|x2)

    Q(x1, dx2) =Q(x1, dx2)

    Q(x1,E2)and (dx1) Q(x1, dx2) = (Q) (dx2) Q(x2, dx1)

    Conditioning principles for marked point processes

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    35/48

    Poisson point process X with intensity (dx1) Q(x1, dx2) onE = (E1 E2)

    X:= mN(X1,X2) = 1iN

    (Xi1,Xi2) and Xj := mN(Xj) = 1iN

    Xij

    2 Bayes rules: Normalization p(x2|x1) Markov operator p(x1|x2)

    Q(x1, dx2) =Q(x1, dx2)Q(x1,E2)

    and (dx1) Q(x1, dx2) = (Q) (dx2) Q(x2, dx1)

    2 conditional distributions formulae:

    E (F1(X1) | X2 ) = F1 (mN(x1)) 1iN

    Q(Xi2, dx

    i1)

    E (F2(X2) | X1 ) =

    F2 (mN(x2))

    1iNQ(Xi1, dx

    i2)

    Conditioning principles for marked point processes

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    36/48

    g p p p p

    (X1,X2) = (X,Y), X Poisson Signal (dx) YPoisson Obs.

    (Xi = x) (Yi = y) (x) g(x, y) (dy) + (1 (x)) c(dy)

    Clutter Y Poisson with intensity (dy) = h(y) (dy)

    Conditioning principles for marked point processes

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    37/48

    (X1,X2) = (X,Y), X Poisson Signal (dx) YPoisson Obs.

    (Xi = x) (Yi = y) (x) g(x, y) (dy) + (1 (x)) c(dy)

    Clutter Y Poisson with intensity (dy) = h(y) (dy)

    Observables Y0 = Y 1=c ( = detection rate)

    (f) := E (X(f) | Yo)= ((1 )f) +

    Yo(dy) (1 (y)) g(y,.)()(f)

    with the conditional clutter probability density

    (y) = h(y)/[h(y) + (g(y, .))]

    Ex.: full detect and no clutter = 1 & h = 0 Yo = Y

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    38/48

    Conditional mean number of targets and their distributions

    (1) = Y(1)and

    (f) := (f)

    (1) = Y(dy) =Y/Y(1)g(y,.)()(f) Bayes rule

    with := /(1)

    Single target Yo

    = Y Classical filtering updating equations = g(Y,.)()

    PHD filt i ti [Si l b hi d l (Q )]

    http://find/http://goback/
  • 7/27/2019 Annecy Del Moral MTT

    39/48

    PHD filtering equation [Signal branching model (Qn, n)]

    Hyp.: Xn+1 Poisson n+1 = nQn + n with obs. Y0n+1 as before

    = PHD filtering equations:

    n+1 := nQn + nn(f) := n((1 n)f) + Yon (dy) (1 n (y)) ngn (y,.)(n)(f)

    A class of measure valued equations PHD; Bernoulli filters, etc.

    n+1 = nQn+1,n

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    40/48

    Stability properties of meas. valued equations

    n = n/n(1) Nonlinear semigroup (n(1), n) = p,n(p(1), p)

    Stability Theorem :

    p,n(m

    , )

    p,n(m, )

    c e(np)

    Regularity prop. 3 natural conditions on the PHD filter/model

    1. small clutter intensities

    2. high detection probability

    3. high spontaneous birth rates

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    41/48

    Introduction/notation

    Multiple objects branching signals

    Multiple targets filtering models

    General measure valued equationsNonlinear evolution equationsMean field particle approximation

    Particle association measures

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    42/48

    Mean field particle models

  • 7/27/2019 Annecy Del Moral MTT

    43/48

    Mean field particle models

    Nn =1

    N 1iNin N n and Nn (1) N n(1)

    with

    Nn+1(1) = Nn (1) Nn (Gn,Nn (1)Nn )

    in+1 = random var. with law Kn+1,(Nn (1)Nn )(in, dx)

    Same theorems as before with uniform convergence estimates

    Mean field particle models

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    44/48

    Mean field particle models

    Nn =1

    N 1iNin N n and Nn (1) N n(1)

    with

    Nn+1(1) = Nn (1) Nn (Gn,Nn (1)Nn )

    in+1 = random var. with law Kn+1,(Nn (1)Nn )(in, dx)

    Same theorems as before with uniform convergence estimates

    Abstract general models

    numerical scheme with local errors Interacting Kalman type filters particle associations measures ( GM-PHD)

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    45/48

    Introduction/notation

    Multiple objects branching signals

    Multiple targets filtering models

    General measure valued equations

    Particle association measures

    Association measures [ = 1 & h = 0 & Qn = Mn]

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    46/48

    Ex. : Computable (exact or approximate) filters

    The mappings ynn+1() := gn(yn,.

    )()Mn+1

    {Kalman, EKF, Ensemble Kalman filters, particle filters,. . . }

    Initial association measure

    1 :=

    Y0(dy0) y01 (0) N1 :=

    YN0 (dy0) y01 (0)

    for instance

    YN0 =1

    N

    1iN

    Yi0 i.i.d. samples from Y0 or (if possible) YN

    0 = Y0

    Particle association measures [ = 1 & h = 0 & Qn = Mn]

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    47/48

    2 Y1(dy1)

    y12 (

    N1 )

    =

    Y1(dy1) YN0 (dy0)

    y01 (0)(g1(y1, .))YN0 (dy0) y01 (0)(g1(y1, .)) [y12 y01 ] (0)

    YN

    0,1(d(y0, y1)) [y1

    2 y0

    1

    ] (0)

    for instance

    YN0,1 =1

    N

    1iN

    (Yi0,1,Yi1,1)

    i.i.d. samples from the N Y1(1) supported measures

    Y1(dy1) YN0 (dy0)y01 (0)(g1(y1, .))YN0 (dy0) y01 (0)(g1(y1, .)) (y0,y1)

    and so on ...

    Particle association measures - Track management

    http://find/
  • 7/27/2019 Annecy Del Moral MTT

    48/48

    Association particle tree genealogies

    Nn+1

    := YN0,n(d(y0, . . . , yn)) ynn+1 . . . y01 (0)with

    YN0,n :=1

    N

    1iN

    (Yi0,n,Yi1,n,...,Yin,n)

    Stochastic models and cv analysis :

    General case :

    (miss-detect, survival, spontaneous birth) = as before virtual obs.

    Abstract models of the form n+1 = nQn+1,n . Mean field particle models Association particle measures. Lp-bounds Concentration sub-Gaussian inequalities.

    http://find/