13
ENGENHARIA MECÂNICA TURMA– 7ª SÉRIE A autor Haroldo Henrique Botan RA: 1054023162 coautor1 Leandro Ap. Sampaio RA: 5006153740 coautor2 Thiago Augusto RA: 1041967095 coautor3 Jonathan Prado de Souza RA: 1072136849 coautor4 Rômulo Regiani RA: 1073131050 Coautor5 Rodolfo Regiani RA: 1073131007 Anhanguera Educacional S.A. Correspondência/Contato Av. Eduardo Andrea Matarazzo, 891 Ribeirão Preto, São Paulo CEP 14.030-971 [email protected] Coordenação Instituto de Pesquisas Aplicadas e Desenvolvimento Educacional - IPADE Artigo Original / Informe Técnico / Resenha Atividade prática supervisionada de elementos de máquinas. Resumo Elementos de máquinas são os elementos encontrados em todas as máquinas existentes. Com esses elementos obtemos o funcionamento e a vida útil das máquinas através de eixos, parafusos, mancais, engrenagens etc. Estudar elementos de máquinas é muito importante porque descreve os tipos principais de uniões por soldagem encontrados na prática e os esforços que sofrem. A partir da estimativa da resistência, seja para o carregamento estático ou dinâmico, demonstra como projetar a união, permitindo o cálculo das dimensões das soldas ou da segurança em utilizar soldas previamente dimensionadas. 09/04/ 12 DESAFIO Elementos de máquinas são os elementos encontrados em todas as máquinas existentes. Com esses elementos obtemos o funcionamento e a vida útil das máquinas através de eixos, parafusos, mancais, engrenagens etc. Na maioria das vezes esses elementos seguem normas de padronização, podendo ocorrer variações para ajuste ou melhoramento do

ATPS elementos de máquinas

Embed Size (px)

DESCRIPTION

cálculos para construção de um guindaste

Citation preview

Page 1: ATPS elementos de máquinas

ENGENHARIA MECÂNICA TURMA– 7ª SÉRIE A autor Haroldo Henrique Botan RA:

1054023162 coautor1 Leandro Ap. Sampaio RA: 5006153740 coautor2 Thiago Augusto RA:

1041967095 coautor3 Jonathan Prado de Souza RA: 1072136849 coautor4 Rômulo Regiani

RA: 1073131050

Coautor5 Rodolfo Regiani RA: 1073131007

Anhanguera Educacional S.A.

Correspondência/Contato

Av. Eduardo Andrea Matarazzo, 891 Ribeirão Preto, São Paulo CEP 14.030-971

[email protected]

Coordenação

Instituto de Pesquisas Aplicadas e Desenvolvimento Educacional - IPADE

Artigo Original / Informe Técnico / Resenha

Atividade prática supervisionada de elementos de máquinas.

Resumo

Elementos de máquinas são os elementos encontrados em todas as máquinas existentes. Com

esses elementos obtemos o funcionamento e a vida útil das máquinas através de eixos,

parafusos, mancais, engrenagens etc. Estudar elementos de máquinas é muito importante

porque descreve os tipos principais de uniões por soldagem encontrados na prática e os

esforços que sofrem. A partir da estimativa da resistência, seja para o carregamento estático ou

dinâmico, demonstra como projetar a união, permitindo o cálculo das dimensões das soldas ou

da segurança em utilizar soldas previamente dimensionadas.

09/04/12

DESAFIO Elementos de máquinas são os elementos encontrados em todas as máquinas

existentes. Com esses elementos obtemos o funcionamento e a vida útil das máquinas através

de eixos, parafusos, mancais, engrenagens etc. Na maioria das vezes esses elementos

seguem normas de padronização, podendo ocorrer variações para ajuste ou melhoramento do

processo das máquinas. Como desafio para esta ATPS, a equipe foi designada para encontrar

uma solução de transporte de uma carga fabricada. Essa equipe deve construir um guindaste

para transportar um conjunto de caixas que foram fabricadas para dentro do container. No

momento essa empresa está em contenção de custos e não pode fazer a aquisição de um

Page 2: ATPS elementos de máquinas

guindaste, por isso ele deve ser construído, levando em consideração todos os esforços

envolvidos e os dados levantados.

Figura – guindaste

Fonte: https://docs.google.com/open?id=0B0bJi2VvtH7aUnlGWUpXTm5oRW8. Acesso em 14

abr. 2012.

Objetivo do desafio Entregar os relatórios parciais durante o semestre para acompanhamento

do professor. Construir um protótipo desse guindaste em escala como entrega final.

ETAPA 1 (tempo para realização: 03 horas) Aula-tema: a perspectiva de prevenção da falha.

Essa atividade é importante para poder assegurar que o projeto proposto funcionará como

pretendido de modo seguro e confiável. Para realizá-la, devem ser seguidos os passos

descritos.

PASSOS Passo 1 (Equipe) Definir quais serão os dados que a equipe irá utilizar para calcular

todo o projeto do guindaste. Somar os últimos algarismos dos RAs dos integrantes do grupo e

identificar os dados na tabela abaixo:

Final somatória valor carga

Final somatória valor carga 16000 lbf66500 lbf 23000 lbf73500 lbf 32500 lbf82750 lbf 44500

lbf98500 lbf

55200 lbf07200 lbf Quadro 1 – Dados de Carga

Somatória dos RA’s 1054023162 + 5006153740 + 1041967095 + 1072136849 + 1073131050 +

1073131007

Page 3: ATPS elementos de máquinas

= 23 usar final 3 carga = 2500 lbf = 119,7006424 KPa

Passo 2 (Equipe) Fazer uma pesquisa dos tópicos abaixo, de modo a entender quais as

possíveis falhas que podem ocorrer dentro de um projeto mecânico:

1- Deformação Elástica 3

Ocorre quando á deformação elástica (recuperável), devido à carregamentos ou temperatura, é

tanta que o funcionamento adequado do item não é mais possível. A deformação ocorre

quando é aplicada uma tensão ou variação térmica que altera a forma de um corpo. Na

deformação elástica, o corpo retorna ao seu estado original após cessar o efeito da tensão.

Isso acontece quando o corpo é submetido a uma força que não supere a sua tensão de

elasticidade (Lei de hooke).

2- Escoamento Ocorre quando a deformação plástica (não recuperável) de um componente

dúctil, devido á carregamentos ou movimento, se tornam elevada o suficiente para interferir no

desempenho. Limite de escoamento, também chamado de tensão de cedência ou tensão de

limite elástico, ou tensão de escoamento, é a tensão máxima que o material suporta ainda no

regime elástico de deformação, se houver algum acréscimo de tensão o material não segue

mais a lei de Hooke e começa a sofrer deformação plástica (deformação definitiva). Onde k é o

módulo de elasticidade ou Módulo de Young.

3- Indentação 4

Quando forças estáticas entre duas superfícies acabam por promover o escamento de uma

delas ou de ambas.

Page 4: ATPS elementos de máquinas

4- Fratura Frágil É chamada de falha catastrófica e ocorre quando a deformação elástica

(recuperável) de um componente que apresenta comportamento frágil é conduzindo ao

extremo, quebrando as ligações interatômicas e o componente se separa em duas ou mais

partes. Neste modo de fratura o material se deforma pouco antes de fraturar. O processo de

propagação de trinca pode ser muito veloz, gerando situações catastróficas e uma deformação

plástica muito pequena no material adjacente à fratura. A partir de certo ponto a trinca é dita

instável, visto que se propagará mesmo sem aumento da tensão aplicada no material. Uma

ruptura completamente frágil, por clivagem, apresenta facetas planas que refletem a luz.

5- Fadiga 5

Nome dado à fragmentação repentina de um componente. Normalmente ocorre através da

propagação de um trinca, resultante da aplicação de cargas ou deformações variáveis por um

período de tempo. Essa falha ocorre por meio da iniciação e propagação de uma trinca.

Normalmente os carregamentos e as deformações que causam esse tipo de falha são

tipicamente muito inferiores à aqueles da falha por carregamento estático. Fadiga mecânica é o

fenômeno de ruptura progressiva de materiais sujeitos a ciclos repetidos de tensão ou

deformação. O estudo do fenômeno é de importância para o projeto de máquinas e estruturas,

uma vez que a grande maioria das falhas em serviço são causadas pelo processo de fadiga,

cerca de 95%. A falha por fadiga ocorre devido a nucleação e propagação de defeitos em

materiais devido a ciclos alternados de tensão/deformação. Inicialmente as tensões cisalhantes

provocam um escoamento localizado gerando intrusões e extrusões na superfície; isto aumenta

a concentração de tensões dando origem a uma descontinuidade inicial. À medida que esta

descontinuidade vai ficando mais "aguda" a mesma pode começar a propagar gerando uma

"trinca de fadiga" cujo tamanho aumentará progressivamente até a fratura do componente.

Page 5: ATPS elementos de máquinas

6- Corrosão Deterioração não desejada do material por meios de processos químicos ou

eletroquímicos. Normalmente interage com outros modos, como desgaste ou fadiga. A

corrosão em metais é a destruição ou deterioração de um material por causa de reações

químicas e / ou eletroquímicas, levando os metais a retornarem ao seu estado natural,

abandonando seu atual.

7- Desgaste Mudanças cumulativas não desejadas na dimensão do item, causada pela gradual

remoção de partículas de suas superfícies móveis em contato, resultante de ação mecânica.

Desgaste é a perda progressiva de material devida ao movimento relativo entre a superfície e a

substância com a qual entra em contato. Está relacionado com interações entre as superfícies

e, mais especificamente, a remoção e a deformação do material sobre uma superfície como

resultado da ação mecânica da superfície oposta. A necessidade de movimento relativo entre

as duas superfícies de contato e mecânica inicial entre asperezas é uma importante distinção

entre desgaste mecânico em comparação com outros processos com resultados semelhantes.

8- Flambagem É a falha que ocorre quando uma combinação crítica de magnitude ou ponto de

aplicação da carga, juntamente com a geometria do componente, faz que com uma deflexão

seja criada, não mais possibilitando que o componente execute sua função.

A flambagem é considerada uma instabilidade elástica, assim, a peça pode perder sua

estabilidade sem que o material já tenha atingido a sua tensão de escoamento. Este colapso

ocorrerá sempre na direção do eixo de menor momento de inércia de sua seção transversal. A

Page 6: ATPS elementos de máquinas

tensão crítica para ocorrer a flambagem não depende da tensão de escoamento do material,

mas da seu módulo de Young.

Sites sugeridos para pesquisa • COSTAI, E. M. Falha ou Ruptura nos Metais. Disponível em:

<https://docs.google.com/open?id=0B0bJi2VvtH7acDk4bFpKOXdOd1k>. Acesso em: 14 abr.

2012. Bibliografia complementar • NIEMANN, Gustav. Elementos de máquinas. 1ª ed. São

Paulo: Blucher, 2009. Passo 3 (Equipe) – Verificar etapa 2 passo 3 Identificar no projeto do

guindaste quais serão os modos de falha predominantes. Através dos cálculos, identificar se é

previsto ocorrerem falhas no conjunto.

Passo 4 (Aluno) Entregar ao professor da disciplina, em uma data estipulada por ele, um

relatório chamado: Relatório 1 – Prevenção de falha, contendo a pesquisa da questão do

Passo 2 e os cálculos realizados no Passo 3, dessa Etapa.

ETAPA 2 (tempo para realização: 05 horas) Aula-tema: transmissão de potência através de

eixos, acoplamentos, chavetas e estrias.Essa atividade é importante para aprender a definir o

dimensional do eixo utilizado, qual seu material e qual o perfil utilizado. Para realizá-la, devem

ser seguidos os passos descritos.

PASSOS Passo 1 Definir, através do tipo de construção, qual será o material utilizado para a

construção do eixo de sustentação da “moitão” do guindaste. Sites sugeridos para pesquisa •

AÇOS VIC. Resumo dos principais aços para construção mecânica. 2012. Disponível em:

<https://docs.google.com/open?id=0B0bJi2VvtH7adVN0dE5TMEJTejg>. Acesso em: 14 abr.

2012. • ENGEMET. Aços ligados para eixos, hastes e parafusos especiais. 2012.Disponível

em: <https://docs.google.com/open? id=0B0bJi2VvtH7aUW9Va1dzUHZNUkU>. Acesso em: 14

abr. 2012. • AÇOTUBO. Características dos Aços. 2012.Disponível em:

<https://docs.google.com/open?id=0B0bJi2VvtH7aTVdrT3QybE01QTg>. Acesso em: 14 abr.

2012.

Passo 2 (Equipe) Identificar quais serão os modos prováveis de falha para o eixo árvore do

“moitão” e quais as prevenções a serem tomadas.

Page 7: ATPS elementos de máquinas

Figura 01: Conjunto MOITÃO 9

Conjunto 02 Conjunto 01

REAÇÃO NORMAL Forças atuantes nos conjuntos 1 e 2.

FORÇA CISALHANTE

FORÇA de TRAÇÃO

MODOS DE FALHAS PREDOMINANTES NO CONJUNTO MECÂNICO DA FIGURA 01 :

FRATURA FRÁGIL: É chamada de falha catastrófica e ocorre quando a deformação elástica

(recuperável) de um componente que apresenta comportamento frágil é conduzindo ao

extremo, quebrando as ligações Inter atômicas e o componente se separa em duas ou mais

partes. Poderá ocorrer se na escolha do material o projetista escolher um material pouco dúctil

e as tensões provenientes dos carregamentos no qual o Moitão estará submetido

ultrapassarem o limite de resistência do material de construção. Umas das formas de falha

mais indesejáveis em qualquer equipamento por ser catastrófica não dando sinais de que o

material esta fraturando. CORROSÃO: Deterioração não desejada do material por meios de

processos químicos ou eletroquímicos. O conjunto mecânico deverá receber tratamento e

proteção das superfícies visando evitar a corrosão excessiva geralmente acompanhada de

desgaste e ou fadiga podendo diminuir a vida útil do equipamento.

DESGASTE: Desgaste é a perda progressiva de material devida ao movimento relativo entre a

superfície e a substância com a qual entra em contato. Principalmente o Moitão deverá possuir

dureza superficial superior aos cabos de içamento afim dos mesmos não realizarem desgaste

mecânico na área de contato reduzindo a seção resistente do gancho diminuindo assim sua

capacidade nominal de carga.

Passo 3 (Equipe) – Etapa 1 que está relacionada ao passo 3 etapa 2. Identificar no projeto do

guindaste quais serão os modos de falha predominantes. Através dos cálculos, identificar se é

previsto ocorrerem falhas no conjunto. Passo 3 (Equipe) - Etapa 2 Calcular através dos dados

da etapa 1, o dimensional do eixo do “moitão”. Através desse cálculo é possível identificar o

perfil necessário para suportar a carga sugerida. Força de tração no Moitão = 119,7006424

Page 8: ATPS elementos de máquinas

KPa Majorando os esforços, força de tração no Moitão, por um coeficiente de segurança igual a

2.

Coeficientes de segurança são empregados para prevenir incertezas quanto a propriedades

dos materiais, esforços aplicados, variações, etc.

No caso de peças tracionadas, é usual o conceito da tensão admissível, que é dada por:

Figura 01 #A.1# para materiais dúcteis.

#A.2# para materiais frágeis.

Onde c é o coeficiente de segurança.

A escolha do coeficiente de segurança é uma tarefa de responsabilidade. Valores muito altos

significam, em geral, custos desnecessários e valores baixos podem provocar falhas de graves

conseqüências. A tabela abaixo dá alguns critérios genéricos para coeficientes de segurança.

CoeficienteCarregamentoTensão no materialPropriedades do material Ambiente

1,2 - 1,5Exatamente conhecido

Exatamente conhecida

Exatamente conhecidas

Totalmente sob controle

1,5 - 2,0Bem conhecidoBem conhecidaExatamente conhecidas Estável

2,0 - 2,5Bem conhecidoBem conhecidaRazoavelmente conhecidas Normal

2,5 - 3,0Razoavelmente conhecido

Page 9: ATPS elementos de máquinas

Razoavelmente conhecida

Ensaiadas aleatoriamente Normal

3,0 - 4,0Razoavelmente conhecido

Razoavelmente conhecida Não ensaiadas Normal

4,0 - 5,0Pouco conhecidoPouco conhecidaNão ensaiadasVariável

Força de tração no Moitão = 119,7006424 KPa X Coeficiente de segurança 2 Força de tração

majorada no Moitão = 239,4012848 KPa

Para ilustrar uma situação de projeto será calculado o diâmetro pino de sustentação do

“moitão”, necessário para resistir as tensões de cisalhamento provocadas pela ligação de corte

duplo no conjunto 02 da figura 01, considerando diferentes materiais onde as tensões

resistente de cisalhamento mudam; e o material escolhido será aquele que resistir as tensões

com a menor relação peso por metro x custo por metro. O valor da tensão de cisalhamento

varia da superfície para o interior da peça, onde pode atingir valores bem superiores ao da

tensão média.

Aço SAE 4340 τmédia V = 637,43225 MPa Para isso nós utilizaremos da fórmula de cálculo da

tensão média de cisalhamento para duplo

corte, ou seja, τmédia V = conforme nos mostra a figura 01.

τmédia V = F/2.A

637,43.106 = 239,40.10 3 637,43.106 = 239,40.10 3 . 4

2. (π . d2/4) 2 π . d2

637,43.106 = 478,8.10 3 π . d2 = 478,8.10 3

π . d2 637,43.106

π . d2 = 7,51.10-4 d = √7,51.10 -4

d = 0.01546m . 1000 d = 15,46 m

π O primeiro diâmetro do pino encontrado utilizando o aço Aço SAE 4340 é de 15,46mm.

Aço inoxidável AISI 301 τmédia V = 568,7857 MPa

corte, ou seja, τmédia V = conforme nos mostra a figura 01.

Page 10: ATPS elementos de máquinas

Para isso nós utilizaremos da fórmula de cálculo da tensão média de cisalhamento para duplo

τmédia V = F/2.A

568,78.106 = 239,40.10 3 568,78.106 = 239,40.10 3 . 4

2. (π . d2/4) 2 π . d2

568,78.106 = 478,8.10 3 π . d2 = 478,8.10 3

π . d2 568,78.106

π . d2 = 8,41.10-4 d = √8,41.10 -4

d = 0.01636m . 1000 d = 16,36 m

π O diâmetro do pino encontrado utilizando o aço Aço inoxidável AISI 301 é de 16,36mm.

ALUMINIO τmédia V = 132,389775 MPa Para isso nós utilizaremos da fórmula de cálculo da

tensão média de cisalhamento para duplo

corte, ou seja, τmédia V = conforme nos mostra a figura 01.

τmédia V = F/2.A

132,39.106 = 239,40.10 3 132,39.106 = 239,40.10 3 . 4

2. (π . d2/4) 2 π . d2

π . d2 132,39.106

π . d2 = 3,62.10-3 d = √3,62.10 -3

d = 0.0392m . 1000 d = 3,92mm

O diâmetro do pino encontrado utilizando o ALUMINIO é de aproximadamente 34mm. Ou seja,

mais que o dobro que o pino de aço, além do que o alumínio possui dureza muito baixa em

relação ao aço e aos cabos de içamento onde sofrerá desgaste diminuindo rapidamente sua

seção resistente.

COMPARAÇÃO PESO POR METRO X CUSTO POR METRO DOS TRÊS MATERIAIS

CÁLCULADOS: NOTA: Considerar os pinos com 300mm de comprimento e os respectivos

diâmetros calculados. Aço SAE 4340: Ø15,46 m Peso linear Kg/m = 1,55Kg x 0,3 = 0,465Kg

(peso aproximado do pino) Custo de matéria prima = R$ 3,40/Kg x 0,465Kg = R$1,58 (preço

aproximado do pino) Aço inoxidável AISI 301: Ø13,36mm Peso linear Kg/m = 1,14Kg x 0,3 =

0,342Kg (peso aproximado do pino) Custo de matéria prima = R$ 10,0/Kg x 0,342Kg = R$3,42

(preço aproximado do pino)

ALUMINIO: Ø33,92mm Peso linear Kg/m = 2,43Kg x 0,3 = 0,729Kg (peso aproximado do pino)

Custo de matéria prima = R$ 8,40/Kg x 0,729Kg = R$ 6,12 (preço aproximado do pino)

Page 11: ATPS elementos de máquinas

matéria prima mas principalmente a resistência ao desgaste, corrosão, fadiga, ductilidade etc

Conclusão: Em um projeto como este não se pode levar em consideração somente o custo da

conforme mencionado no passo 2 (Modos de falhas predominantes).

Porém considerando a situação proposta de determinar a seção resistente através da tensão

de cisalhamento dos diferentes materiais; o material que apresentou melhor aplicabilidade foi o

Aço SAE 4340. Nota: Tabelas de peso x metro e preço por Kg retiradas de sites de revendas

de materiais.

Passo 4 (Aluno) Entregar ao professor da disciplina, em uma data estipulada por ele, um

relatório chamado: RELATÓRIO 1 – Prevenção de Falha, contendo a pesquisa da questão do

Passo 2 e os cálculos realizados no Passo 3, dessa Etapa. Conclusão Uma máquina é

composta por uma série de componentes mais simples que a constituem. Podem ser definidas

como elementos de máquinas todas aquelas peças ou componentes mais singelos que

montados corretamente constituem uma máquina completa e em funcionamento. Concluí-se

que estudar elementos de máquinas é essencial para nós futuros engenheiros mecânicos,

devemos avaliar cada peça, cada tipo de material e suas características e também analisar o

valor agregado. Devido todas essas necessidades conhecemos máquinas no nosso dia-a-dia

que é fundamental neste século com a tecnologia avançada, e todas essas maravilhas de

máquinas são compostas por elementos simples, porém muito importante. Um projeto de

máquina surge sempre para satisfazer uma necessidade, seja ela industrial, comercial, para

lazer, etc. Nasce da habilidade de alguém ou de um grupo de pessoas “transformar” uma ideia

em um projeto de um mecanismo que destina-se a executar uma tarefa qualquer. A partir dai

segue-se o estudo detalhado de suas partes, a forma como serão montadas, tamanho e

localização das partes componentes tais como engrenagens, parafusos, molas, cames, etc.

Bibliografia

• COSTAI, E. M. Falha ou Ruptura nos Metais. Disponível em: <https://docs.google.com/open?

id=0B0bJi2VvtH7acDk4bFpKOXdOd1k>. Acesso em: 14 abr. 2012. Bibliografia complementar •

NIEMANN, Gustav. Elementos de máquinas. 1ª ed. São Paulo: Blucher, 2009.

• AÇOS VIC. Resumo dos principais aços para construção mecânica. 2012. Disponível em:

<https://docs.google.com/open?id=0B0bJi2VvtH7adVN0dE5TMEJTejg>. Acesso em: 14 abr.

2012. • ENGEMET. Aços ligados para eixos, hastes e parafusos especiais. 2012.Disponível

em: <https://docs.google.com/open? id=0B0bJi2VvtH7aUW9Va1dzUHZNUkU>. Acesso em: 14

abr. 2012.

• AÇOTUBO. Características dos Aços. 2012.Disponível em: <https://docs.google.com/open?

id=0B0bJi2VvtH7aTVdrT3QybE01QTg>. Acesso em: 14 abr. 2012.