Aula 6 - Teoria de cordas MIT

Embed Size (px)

Citation preview

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    1/9

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    2/9

    1

    8.821F2008Lecture06: SupersymmetricLagrangiansandBasic

    Checks

    of

    AdS/CFT

    Lecturer:

    McGreevy

    September24,2008

    Weareonourwaytotalkingaboutreallyawesomethingsaboutsupercoolstuff. Beforeweget

    there,though,weneedtodevelopsomeverypowerfultechnology.Tothatend,todaywewilltalkabout

    1. SUSYLagrangiansandawhirlwindtourofthebeautiesofsuperspace.

    2.moreonN = 4 SYM.

    3. BacktotheBigPicture:SomebasicchecksofAdS/CFT

    Lookingpastthislecture,wewillbetalkingaboutstringsfromgaugetheorynext.

    N = 4SYMandOtherSupersymmetricLagrangians

    RecallthatthefieldcontentofN = 4SYMisavectorA, gauginiI=1...4,andsixscalarsXi,all

    in theadjointofthe gauge group.The Lagrangian density (which iscompletelydetermined bytheamountof SUSY,upto two parameters, (gY M, )), is

    L

    = 2

    1

    tr F

    2

    + (DX

    i

    )

    2

    /+iDgY M

    6

    [Xi,Xj ]2 [X, ] + [X, ] ])i

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    3/9

    [Q,X] =

    {Q,} = F+ + [X, X]

    {Q, } = DX

    [Q,A] = (2)

    ANote: Thereareobviouslyindicesandgamma/sigmamatricessuppressedALLovertheplace(Lorentzvector,Lorentzspinorand SO(6) vector/spinor,supersymmetry).Ifyouwanttoputtheindicesin,eitherleavethatasafunexercise,orcheckoutWeinberg,volume3. Asanexample,F+ F.

    1.1

    A

    Superspace

    Detour

    TheN

    = 4 SYM Lagrangian isanexampleofa (highly)supersymmetric Lagrangian. So far, Ijust told youwhat it wasand that it was SUSY invariant (something youcouldsit down in theprivacyofyourofficeandcheck,ifyouwanted). Itdbenice,though,ifthereweresomesortofamachinethatonecouldcranktogeneratesupersymmetriclagrangians.Thatcrankablemachineissuperspace.

    To understand whysuperspace is useful, we should thinkaboutwhy fields are useful for representingtranslationallyinvariantLagrangiansinordinaryQFT.Onereasonisthattherepresentationsofthetranslationgrouponthefieldsareparticularlysimple

    (x) =eiPx

    (0) (3)

    Wed like to introduceasuperfield (thatcomeswith itsownsupercapitalization)(x, ),whichisnowafunctionofspacecoordinatesx andsuperspacecoordinates,thatwellrepresentstransla-tionalinvarianceANDsupersymmetry

    (x, ) =eiPx+iQ(0, 0) (4)

    where theQs aretheoperatorsthatgeneratesupersymmetrytransformations.

    Now, in QFT,onecanautomatically get translationally invariantactions

    S = ddx L(,) (5)

    aslongasxL= 0.Similarlythe (hereunproven)claim is that

    ddxd N s L((x, )) (6)

    2

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    4/9

    issupersymmetricaslongasL=0. Heres denotesthesmallest (real)dimensionofthespinorrepresentation ind dimensionsandN,is,asusualthenumberofsupersymmetries.ThenN s is

    justthenumberofrealsupercharges. ForexampleforN = 1,d = 4,N s =4,becauseeitheraWeylor Majoranaspinor (theminimum in four dimensions)has fourrealcomponents.

    1.1.1

    BPS

    or

    Chiral

    Multiplets

    In lecture 5wemade a big dealabout specialrepresentationsofsupersymmetrywhichare killed bysomeofthesupercharges. Suchmultipletshavecorrespondinglyspecialpropertiesinsuperspace.Considerafieldwhichsatisfies

    [Q,] = 0

    [Q,] 0= (7)

    These multiplets,whichare BPS (halfofthe supersymmetries annihilate them)are generallycalledchiralmultiplets.Sometimes theyareactuallychiral (in thesenseofthe Lorentz group), butoftentimestheyarenot. Thisfollowsa longtraditioninphysicsofcallingthingsotherthingswhichtheyarenot.

    Thesemultipletsarefunctionsofonlyhalfofsuperspaceas

    (x,, ) =ei(Q+Q)(x, 0, 0)= (x,, 0) (8)

    Ok,wellthisequationisnotexactlycorrect(asSenthilpointedout;reallytheRHSshouldbe(y

    x +i correct: thesarefunctionsofhalfofsuperspace. Because,)),butitismorallyofthis,itispossibletoaddtermstotheLagrangiandensitythatareintegratedoveronlyhalfofsuperspaceandmaintainsupersymmetry:

    d2 W (L= d2 W() + ) (9)

    Here,weareexplicitlyworkingind = 4,N =1superspace. Thesetermsaresupersymmetric,aslongasW isaholomorphicfunctionof,W = 0.Withthisconstraint,W isafunctionwearefreetochoose,andisknownasthesuperpotential.

    Twoexamplesofasuperpotentialare

    The second line ofequation (1). Here,werefer to the fact that this linecan be written ind = 4,N = 1superspace (wherewe pickouta particularN =1subgroupfromtheN=4).Inacertainsense,oneofthesandF canbethoughtofascomprisingoneN =1chiralmultiplet,whiletheremainingthreesandsixscanbethoughtofasanotherthreechiralmultiplets.The second line of equation (1) is a superpotential for these three chiralmultiplets.Onpset2youwillhaveachancetothinkaboutthismoreprecisely.

    3

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    5/9

    The gauge kinetic termsandthird lineofequation (1)can be thoughtofascomingfrom theN = 1superpotential

    d2 tr() (10)

    where the appearingisthesuperpartnerofF ( isaspinorindex),and isacomplexifiedcouplingconstant

    g42

    i +2. Here shouldbethoughtofasasuperfieldwhoselowest

    Y M

    component is the gaugino.The superfieldexpansioncontainsa =. . .F term.Multiplyingtwotogether,onegets

    1F2 d2 2F2 d2 tr(

    ) (11)2gY M

    Therestofthegaugekinetictermsandthetaangletermcanbeunderstoodsimilarly.

    1.2

    Holomorphy

    and

    Non-Renormalization

    (aka

    Seibergology)

    Whatsthebigdealwiththisnewfangledsuperpotential?

    Well,aswesaidbefore,thesuperpotentialhastobeholomorphicinorderforsupersymmetrytobepreserved. Wecantakethislineofreasoningonestepfurtherwecanthinkofpromotingthecouplings to dynamicalsuperfields (whose lowestcomponentvevsare just theconstantcouplings).Then,thesuperpotentialmustbeholomorphic,also,inthecouplings.

    Thisstatement isuncomfortably powerful.Forexample, it implies that if SUSY isnot broken, theformofradiativelygeneratedcorrectionstothesuperpotentialareseverelyconstrainedtheymust

    be holmorphic in thefieldsandthecouplings.Forexample,onecouldnever generatea term in thesuperpotentialthatwasafunctionofboth and,W =W().

    Thisleadstomanynonrenormalizationtheoremsinsupersymmetricfieldtheories,oneexampleofwhich is for the functionofsupersymmetric gauge theories.Thissays that

    Y M = 1 loop + nonperturbative (12)

    Thismakessensebecauseweknowthethetaanglecannotappearinthebetafunctionperturba-tively. However,sincetheeffectivegaugecouplingfunctionmustbeholomorphicin,theonly

    perturbativecontributiontothebetafunctioncanbeO(0),i.e.,theoneloop contribution.

    ForN = 4 SYM,onecan go homeandcalculate (for pset 2)that theone loopcontribution to thebetafunctionisidenticallyzero. Inthistheory,thenonperturbativetermscanbeunderstoodascomingfrominstantons. However,asitturnsout,theydonotcorrectthebetafunction,butdoaddhigherderivativetermselsewhereintheaction1. Hence,inthistheorythebetafunctioniszero,evennonperturbatively,andthetheoryreallyisscaleinvariant.

    1Thiscorrectsawrongstatementfrom lecture4.

    4

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    6/9

    2

    FormoreonSeibergology,seetheexcellentnotesofArgyres:http://www.physics.uc.edu/argyres/661/index.html

    SomeMoreCommentsonN = 4SYM

    1. IthasaCoulombBranchofVacua:

    ThescalarpotentialintheN = 4action (1)is:

    V tr[Xi, Xj ]2 (13)i,j

    Ingeneral,supersymmetryisunbrokeniffV = 0,andsothereisamodulispaceofsupersymmetricvacua,labeledbyvevsofX whichsatisfy

    M

    ={X|[Xi,Xj] = 0, i, j}/{gaugesymmetry}

    (14)

    Wedivideoutbythegaugesymmetry,sincevacuarelatedbygaugerotationarephysicallyequivalent.We canfix this gauge symmetryandsatisfythe modulispace condition by pickingabasissuchthat

    Xi=1,...,6= diag(xi1, . . . xi ) (15)N

    whereN is thenumberofcolors.Hence, themodulispace is justan 6N dimensionalspacegiven bythesexs.

    Atagenericpointinthismodulispacexim =xin,andsothegaugebosonsthatcommute

    witheachXi

    areall just proportionalto theXisthemselves,andso,atagenericpoint,the gauge group is broken fromU(N) totheU(1)N subgroupgeneratedbythese. Sincewehave broken toawhole bunchofcopiesofelectromagnetism (withsomechargedscalarsandspinors),thismodulispaceisknownasaCoulombbranch.

    Sincethevevsofthe Xsgiveamassscale,notonlydoesagenericpoint inthismodulispacebreakthegaugesymmetry,butitalsospontaneouslybreaksthedilation,andhence,thesuperconformalsymmetry. ThehiggsingfromU(N)toU(1)N givesWbosonswithamassderivedfromthismassscale

    ab ZabmW =|xa xb|= (16)

    TheW bosonsareBPSobjectswithrespecttothestillunbrokenN

    =4supersymmetry.Thismustbetruesincewesaidinlecture5thattheN = 4 BPSmassivemultiplet (whatwehavecreatedbyhiggsing)hasthesamenumberofdegreesoffreedomastheN = 4masslessmultiplet (whatwe had before higgsing).The masslessN = 4 gaugemultiplet carries its foodaroundwithit.TheZ aboveare just thecentralchargesofthese BPSobjects.

    Recallalso that this story has a Dbrane interpretation:N = 4 SYMwith gauge groupU(N)istheworldvolumetheoryof N (coincident)D3branes. Wecan thinkaboutseparatingthese parallelN D3branes. Sincetheyareparallel,andsitinatendimensionalspacetime,

    5

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    7/9

    therearesixcoordinateswhichlabeltheirpositions:xia wherei runsoverthesixtransversedimensionsanda runsoverN,thenumberofDbranes. Actually,tomakesurethemassdimensionsofxa

    i ,matchwiththoseabove,wewritetheseparationbetweenbranea andb as

    i i iyab =|xa xb| (17)

    Recall, however, thatwhen theDbraneswerecoincident, we could interpret the lowest(massless) string stateswhich startedononeDbraneandendedonanotherasmasslessgauge bosons for theU(N) gaugetheory.Asweseparatethebranes,itisnolongerthecasethatstringsstretchedbetweenbranesaremassless:theyarestretched.Therefore,thegaugebosonsareacquiringamass!In thiscontext,the Higgsmechanism is just pullingastackofcoincidentbranesapartwhichiskindofsuperawesome.OnecancalculatethemassoftheseWbosons,andnotsurprisinglytheymatchwiththepictureabove

    1abmW = (string tension)x (length)= yab =|xa xb| (18)

    The BPS propertymeans that this relation must be true for anyvalue ofthe stringcoupling.2. Sduality (a.k.a.MontonenOlive)

    Sdualitysaysthefollowingabsurdthing

    1[N = 4withgaugegroupG, coupling] = [N = 4withgaugegroupLG, coupling ]

    (19)

    whereLG is thedualgauge group, more on that in a second.As withmanysuch dualities,itsaysthatthesetwotheoriesarecompletelyequal,thoughitmightbehardtofigureouthowtomaptheobservablesofoneontoobservablesoftheother. ThedualgroupisdefinedsuchthattheweightlatticeofLG isequaltothedualoftheweightlatticeofG

    w(LG) = ( w(G))

    (20)

    Forexample,

    LSU(N) = SU(N)/ZNLSO(2N) = Sp(N)

    LU(N) = U(N) (21)

    TheLisforLanglands.

    Really,Sdualityisasubsetofalargerdualitythatthetheoryenjoys: itisinvariantundershiftsofthethetaangle, + 2.ThesetwotransformationsareusuallycalledS andT:

    1622S ( = 0):gY M 2 (22)gY M

    T : + 2 (23)

    whichtogether generate the groupSL(2,Z):

    6

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    8/9

  • 8/10/2019 Aula 6 - Teoria de cordas MIT

    9/9

    2.Perturbations

    ThefirstclaimeachlinearizedsupergravityperturbationcorrespondstosomeN = 4 gaugeinvariantoperator. Fornowwefocusonlocaloperators,combinationsoffieldstakenatthesamespacetime point.Since theoperatorsare gauge invariant, theyinvolvea trace,or prod-

    uctoftracesoverSU(N) indices.Well focus onsingle traceoperators (thereasons for whichwillbeclearinafuturelecture).

    Wecanorganizeoperator representationsof thesuperconformalalgebrabystartingwithoperatorsthataresocalledsuperconformalprimaries.Theseoperators OareannihilatedbybothK andS

    [K, O] = [S, O] = 0 (26)

    Wecan then getotheroperators in therepresentation byactingwiththeoperatorsQ andP.Since, forasuperconformal primary [S, O] = 0, it cannot be written as [Q, anotheroperator].Glancingat (2),thissuggeststhatallsuperconformal primariesare builtoutof theXs. Infact,since commutators appear on the RHSof (2)onlysymmetric combinations of theXswillbesuperconformalprimaries.Thuswearelookingatoperatorsoftheform

    Oi1...il Tr(X{i1 . . . X il}) (27)

    On the supergravityside,fields (perturbations)onAdS5 S5 canbeexpandedinspherical

    harmonicsontheS5. Forexample,usingx ascoordinatesonAdS5 andy ontheS5 (with

    y2 = 1),anyfield(x, y) canbeexpandedas

    (x, y) = l(x)Yl(y) (28)

    l

    andthesphericalharmonicscanbewrittenas

    Yl(y) =Ti1...ilyi1

    . . . y il|Py2=1 (29)

    The correspondence says thatwe should identifythe spherical harmonics withsuperconformalprimariesas

    Ti1...ilyi1

    . . . y il Ti1...ilTr(X{i1

    . . . X il}) (30)

    inawaythatwillbemadepreciseinnottoofuturelectures. Thisisenoughtoorganizethewholespectrumofsupergravityperturbations. Sinceweknowwhichsupergravityfields

    correspondtosuperconformalprimaries,wecan getdescendantoperatorsbyactingwithQ andP. Similarly,wecanget the supergravityperturbationsthatcorrespondtotheseoperatorsbyactingwiththecorrespondingsymmetriesinAdS5 S5.

    8