15
LICENCIATURA EM CIÊNCIAS · USP/ UNIVESP 9.1 Introdução 13.2 Velocidade de reações 9.3 Teorias da colisão e do estado de transição 9.4 Fatores que alteram a velocidade da reação 9.4.1 Estado de agregação dos reagentes 9.4.2 Concentração dos reagentes 9.4.2.1 Lei de Guldberg Waage (Lei da ação das massas) 9.4.3 Pressão 9.4.4 Temperatura 9.4.5 Catalisadores Referências Guilherme A. Marson Érika Reyes CINÉTICA DAS REAÇÕES QUÍMICAS 9 Química

CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

Embed Size (px)

Citation preview

Page 1: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

Licenciatura em ciências · USP/ Univesp

9.1 Introdução13.2 Velocidade de reações 9.3 Teorias da colisão e do estado de transição9.4 Fatores que alteram a velocidade da reação

9.4.1 Estado de agregação dos reagentes9.4.2 Concentração dos reagentes

9.4.2.1 Lei de Guldberg Waage (Lei da ação das massas)9.4.3 Pressão9.4.4 Temperatura9.4.5 Catalisadores

Referências

Guilherme A. MarsonÉrika Reyes

CINÉTICA DAS REAÇÕES QUÍMICAS9 Qu

ímic

a

Page 2: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

131

Química

Licenciatura em Ciências · USP/Univesp · Módulo 2

9.1 IntroduçãoNas transformações da matéria podemos identificar dois fatores fundamentais: tempo e

energia. As variações de energia determinam se um processo ocorre ou não em dadas condições

de pressão e temperatura. O tempo determina com que velocidade o processo ocorre. No caso,

interessa-nos especificamente a variação da composição do sistema em função do tempo.

Como o tempo é um fator decisivo em todas as questões humanas, é fundamental entender

e controlar a velocidade com que as transformações químicas ocorrem. Este é o campo de

estudo da cinética química, que se dedica a descrever o comportamento da velocidade das

reações, explicá-lo por meio de modelos microscópicos e controlá-lo.

Algumas variáveis, como temperatura, pressão, concentração dos reagentes, superfície de contato

e presença de catalisadores ou inibidores, alteram a frequência das colisões entre os reagentes de uma

reação química, aumentando ou diminuindo a velocidade com que ela ocorre. Portanto, reações

diferentes, em condições diferentes, ocorrem em velocidades distintas. Um exemplo clássico são as

reações de combustão de combustíveis fósseis como o metano (CH4), cujas velocidades precisam

ser controladas para que possam ser aproveitadas sem explodir os motores a combustão. Por outro

lado, há processos lentos que queremos acelerar, como a degradação de gases poluentes liberados

do escape de veículos automotores. O catalisador no escapamento de um carro realiza seu trabalho

em alguns décimos de segundo.

Desse modo, a cinética química é o estudo da velocidade de uma reação química e dos seus

determinantes, o que, como veremos, nos permite estabelecer modelos sobre o caminho pelo

qual ocorrem as reações químicas, denominadas mecanismos de reação.

Os fatores energéticos que indicam a possibilidade de ocorrência de uma reação são estudados

na termodinâmica a partir de parâmetros como a energia de Gibbs, a entalpia e a entropia.

Na cinética, interessa-nos a velocidade. É a análise conjunta desses dois aspectos da reação que

nos permite explicar por que, num sistema reacional em que vários produtos são possíveis, apenas

um é formado ou são formados mais produtos, mas seguindo certas proporções.

Na Tabela 9.1, podemos observar que nem sempre as reações favoráveis termodinamica-

mente (ΔG0 negativo) são rápidas.

Page 3: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

132

9 Cinética das Reações Químicas

Licenciatura em Ciências · USP/Univesp · Módulo 2

Tabela 9.1: Valores de ΔG0 e indicação da velocidade para algumas reações químicas.

Reação ΔG0, kJ/mol Velocidade

2HNO3(aq) + Ca(OH)2(s) → Ca(NO3)2(aq) + 2H2O(l) −128 Rápida

C(diamante) + O2(g) → CO2(g) −397 Lenta

C(diamante) + O2(g) → CO2(g) −394 Rápida

13.2 Velocidade de reações Em uma reação química, as concentrações dos reagentes diminuem ao longo do tempo

enquanto as concentrações dos produtos aumentam. Isso ocorre porque os reagentes são

consumidos e os produtos são formados (Figura 9.1). Dessa forma, pode-se definir a velo-

cidade de uma reação como sendo a alteração da concentração de um reagente ou de um

produto num dado intervalo de tempo, o que pode ser determinado pela mudança de cor ou

de outra propriedade (física ou química) dessas substâncias no decorrer da reação. Geralmente,

a velocidade de uma reação é expressa em unidades de mols por litro por unidade de tempo

e, se nós determinarmos a equação química correspondente, a sua velocidade pode ser calcu-

lada seguindo as mudanças na concentração de qualquer reagente ou produto.

Para obter a velocidade de uma reação, devemos deter-

minar a concentração de um reagente ou produto em vários

momentos da reação. A elaboração de métodos eficazes para

isso é um desafio permanente para os químicos que estudam

cinética química. O método usado em tal quantificação

depende de vários fatores, sendo o mais importante a rapidez

da reação.

Numa reação que leva horas, é viável retirar amostras e medir a concentração de reagentes.

Em reações que demoram picossegundos (1 picossegundo = 10-12 segundos) ou mesmo femtosse-

gundos (1 femtossegundo = 10-15 segundos), outros métodos precisam ser empregados - em geral,

explorando uma propriedade física dos reagentes ou produtos, que seja proporcional à concentração

e que possa ser medida quase instantaneamente. Esse é o caso dos métodos espectrofotométricos,

capazes de medir a absorção de luz de regentes e produtos de forma muito rápida.

Figura 9.1: Variação da concentração de reagen-tes e produtos, no decorrer de uma reação, ao longo de um intervalo de tempo.

Page 4: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

133

Química

Licenciatura em Ciências · USP/Univesp · Módulo 2

Assim, dada a equação genérica:

aA + bB cC + dD→

a velocidade da reação pode ser calculada em função do consumo de qualquer um dos reagentes

ou da formação de qualquer um dos produtos. Como a concentração dos reagentes diminui com

o passar da reação, a velocidade em função deles tem sinal negativo. Como os produtos têm sua

concentração aumentada com o passar da reação, a velocidade em função deles tem sinal positivo.

Vmconcentração

tempo=∆

Para a equação genérica descrita, temos que:

V

V

média de consumo de A

média de consumo de B

Atempo

B

=−

=−

∆∆∆

∆∆∆

tempoC

tempomédia de consumo de C

média de consumo d

V

V

=−

ee DD

tempo=

−∆∆

A velocidade de uma reação é mais comumente representada pela variação das concentrações

(em mol/L, entre colchetes) em função do tempo. Mas também podemos representar a velocidade

apenas pela variação da massa, quantidade em mols e volume gasoso com o tempo. Este, por sua

vez, pode ser representado por segundos, minutos, horas etc.

Portanto,

V mt

nt

Vt

Ctmédia ou ou ou =

∆∆

∆∆

∆∆

∆∆

onde: m = massa, n = número de mol, V = volume, C = concentração molar.

Page 5: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

134

9 Cinética das Reações Químicas

Licenciatura em Ciências · USP/Univesp · Módulo 2

9.3 Teorias da colisão e do estado de transiçãoAs moléculas estão sempre em movimento, gerando muitas colisões (choques). Pelo princípio

fundamental da teoria da colisão, para que uma reação química ocorra, as moléculas, átomos ou

íons devem, primeiramente, colidir uns com os outros.

Segundo essa teoria, a velocidade de uma reação é

proporcional ao número de colisões que acontecem,

a cada intervalo de tempo, entre as espécies reagentes.

Contudo, nem todas as colisões resultam em reação.

Para que ocorra uma colisão efetiva, as moléculas

reagentes devem ter uma orientação apropriada no

momento da colisão, de forma que haja o choque

direto entre os átomos que estarão ligados nas molé-

culas dos produtos (Figura 9.2).

A efetividade da colisão também é determinada

pela energia cinética que as espécies reagentes apre-

sentam no instante da colisão. Essa energia, denomi-

nada energia de ativação, deve ter um valor mínimo

para superar a estabilidade energética das ligações

covalentes que precisam ser rompidas. Quanto mais

baixa for a energia de ativação de uma reação, mais

elevada será a velocidade dessa reação.

Devemos acrescentar que, de acordo com a teoria do estado de transição, a energia de ativação

deve ser suficiente para que seja formado o estado de transição, definido como um estado de alta

energia em que algumas ligações estão sendo quebradas, enquanto outras estão sendo formadas.

Diferentemente de espécies intermediárias, produzidas nas reações que ocorrem em mais de

uma etapa, o estado de transição não constitui uma espécie que possa ser isolada em uma reação.

Em alguns livros de química, o estado de transição também é chamado de complexo ativado.

Figura 9.2: Orientação correta das moléculas reagentes durante a colisão.

Page 6: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

135

Química

Licenciatura em Ciências · USP/Univesp · Módulo 2

Na Figura 9.3, encontram-se ilustrados esses conceitos utilizando a seguinte reação genérica:

A B B A B B A B B Reagentes Estado de Transi+ − → ⋅⋅⋅ ⋅⋅ ⋅ → − +

çção Produtos

A B AB A B B2 2+ → → +-

a b

Figura 19.3: Diagrama da variação de energia no decorrer de uma reação. a) Reação que libera energia (exotérmica, ΔE < 0). b) Reação que absorve energia (endotérmica, ΔE > 0) / Fonte: modificado de Whitten, Davis e Peck, 1997.

Vimos anteriormente que a energia de ativação, Ea, é a energia que as moléculas dos rea-

gentes devem ter para que atinjam o estado de transição. Se as moléculas A e B2 possuem essa

energia durante a colisão, é formado o estado de transição AB2, do qual resultam as moléculas

dos produtos. Caso contrário, as moléculas reagentes colidem, mas não chegam a alcançar o

estado de transição, de modo que elas se afastam sem sofrer modificações em sua estrutura.

Se houver a formação do estado de transição, quando os átomos deixam esse estado e se arran-

jam como as moléculas do produto, ocorre liberação de energia até se atingir o nível fundamental

de energia do produto. Se a reação for exotérmica (Figura 9.3a), a quantidade de energia liberada

é maior do que a energia de ativação; mas é menor se a reação for endotérmica (Figura 9.3b).

9.4 Fatores que alteram a velocidade da reaçãoNão existe uma velocidade geral para todas as reações químicas; cada reação acontece em

sua velocidade específica, sendo algumas lentas e outras rápidas. A fermentação do sumo da uva

para formar o vinho é um processo lento que pode levar semanas ou meses. Já no caso de fogos

de artifício, a reação de combustão é rápida, ocorrendo em segundos.

Page 7: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

136

9 Cinética das Reações Químicas

Licenciatura em Ciências · USP/Univesp · Módulo 2

A velocidade das reações químicas depende de uma série de fatores. Entre eles, podemos

destacar o estado de agregação dos reagentes e a sua concentração, a pressão e a temperatura

do sistema reacional, além da presença de catalisadores. Conhecendo esses fatores, é possível

controlar a velocidade das reações de forma desejável.

9.4.1 Estado de agregação dos reagentes

Como regra geral, os gases reagem mais rapidamente do que os líquidos, e estes mais

rapidamente do que os sólidos. Nos gases, as moléculas dos reagentes se deslocam com muita

liberdade e rapidez, os choques entre elas são muito frequentes e, consequentemente, a reação é,

em geral, mais rápida. No estado líquido,

a energia cinética das moléculas é

intermediária em relação aos estados

gasoso e sólido e, portanto, a reação é

mais lenta. Quando um reagente está

no estado sólido, a reação ocorre apenas

na sua superfície; por isso, quanto maior

for o grau de subdivisão do reagente

sólido, maior será sua superfície e a

velocidade de reação.

Dessa forma, podemos notar que a velocidade de uma reação pode ser influenciada pelo estado

de agregação das substâncias reagentes. Isso é ilustrado nos seguintes exemplos: uma barra de ferro,

em contato com o oxigênio e a umidade do ar, enferruja-se mais lentamente do que uma palha de

aço; vapores de gasolina queimam de forma explosiva, diferentemente de uma amostra líquida do

combustível; o leite em pó demora mais para se deteriorar do que o produto líquido; entre outros.

9.4.2 Concentração dos reagentes

Quanto maior a concentração dos reagentes ou da pressão, no caso dos gases, maior será

o número de choques entre as partículas reagentes; portanto, maior será a velocidade da reação.

Por exemplo, uma folha de papel alumínio oxida-se mais rapidamente quando em contato com

ácido clorídrico concentrado do que com ácido clorídrico diluído.

Figura 9.4: Estados físicos e a variação de velocidade.

Page 8: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

137

Química

Licenciatura em Ciências · USP/Univesp · Módulo 2

9.4.2.1 Lei de Guldberg Waage (Lei da ação das massas)

A Lei da Velocidade ou Lei de Guldberg-Waage foi proposta, em 1867, pelos cientistas

noruegueses Cato Maximilian Guldberg e Peter Waage. Essa lei relaciona a velocidade de uma

reação química com as concentrações em quantidade de matéria (mol/L) dos reagentes.

Em uma reação elementar, ou seja, que ocorre em apenas uma etapa, a velo-cidade de uma reação é diretamente proporcional ao produto das concentrações molares dos reagentes, quando estes estão elevados a expoentes, que são os seus respectivos coeficientes estequiométricos.”

Considerando a equação genérica:

aA + bB cC + dD→

a equação da velocidade é dada por:

V k = .[A] .[B]a b ,

onde [A] = concentração de A em mol/L

[A] =

[B] = concentraçã

AnV

oo de B em mol/L

[B] = BnV

A constante k é chamada de constante de velocidade específica ou, apenas, a constante de

velocidade, para uma reação a uma determinada temperatura. Os valores dos expoentes, a e b, e

da constante de velocidade, k, não têm qualquer relação com os coeficientes da equação química

balanceada e são determinados experimentalmente, exceto no caso de reações elementares, nas

quais os expoentes são os seus respectivos coeficientes estequiométricos. Cada reação tem sua lei de

velocidade e constante de velocidade k característica. A constante de velocidade k é independente

da concentração dos reagentes, mas depende da temperatura e da presença ou não de catalisador.

Page 9: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

138

9 Cinética das Reações Químicas

Licenciatura em Ciências · USP/Univesp · Módulo 2

Os coeficientes a e b das concentrações são, geralmente, números inteiros ou iguais a zero, mas,

ocasionalmente, são fracionários ou até mesmo negativos. Eles nos dão uma ideia do quanto a

concentração de um determinado reagente influencia a velocidade (taxa) da reação. Dessa forma,

a potência zero significa que a taxa não depende da concentração do reagente correspondente; já

a potência de dois significa que a taxa é diretamente proporcional ao quadrado da concentração,

isto é, a velocidade da reação quadruplica quando a concentração é dobrada. O valor de a é

considerado como a ordem da reação em relação a A, e b é a ordem da reação com respeito a B.

A ordem global da reação é a + b.

Exemplo

Seja a reação:

2 H + 2 NO N + 2 H O2 2 2→

lei experimental da velocidade é:

V k = .[H ] .[NO]21 2 .

Portanto, esta reação é de 3ª ordem.

9.4.3 Pressão

O efeito da pressão na velocidade das reações é um caso particular do efeito da concentração

dos reagentes nas velocidades das reações. Não havendo reagente gasoso, a variação da pressão

praticamente não altera a frequência de colisões entre as partículas reagentes e, por isso, não

modifica a velocidade da reação.

A pressão só influirá de maneira significativa na velocidade das reações quando pelo menos

um dos reagentes estiver no estado gasoso. No caso de os reagentes serem gasosos, a lei da

velocidade de reação pode ser expressa em termos das pressões parciais dos reagentes. Dessa

forma, para um determinado reagente gasoso A, temos:

A = =[A](g) AA

A⇒ →P nVRT P RT

Considerando a temperatura constante, temos que o produto de RT também será constante;

logo, a pressão de um gás é diretamente proporcional à sua concentração em mol/L.

Page 10: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

139

Química

Licenciatura em Ciências · USP/Univesp · Módulo 2

Verifica-se experimentalmente que, no caso de

reações com pelo menos um reagente gasoso, como

os gases são facilmente compressíveis, um aumento

na pressão provoca uma redução do volume do gás e,

consequentemente, um aumento da sua concentração.

Isso faz aumentar a velocidade da reação, conforme

ilustrado na Figura 9.5.

pV nRt V npRT n

V = [gás]→ ↓ =

↑→ ↑ =

9.4.4 Temperatura

A temperatura está ligada à agitação (energia cinética) das moléculas. Quanto mais energia

há em um dado sistema, maior é o grau de agitação de suas moléculas. Se estas se movimentam

mais, elas se chocam com maior frequência e energia; logo, a fração de moléculas com energia

cinética maior ou igual à energia de ativação aumenta, de modo que a velocidade da reação

aumenta também. Por esse motivo, por exemplo, utilizamos panela de pressão para cozinhar

alguns alimentos com maior rapidez; por outro lado, armazenamos a comida na geladeira para

retardar a sua deterioração.

A dependência da temperatura por parte das velocidades das reações nos dá uma informação

valiosa sobre a origem das constantes de velocidade. Embora a velocidade de uma reação química

aumente com a elevação da temperatura, a extensão desse aumento varia muito de reação para

reação. Em termos da lei de velocidade, a causa dessa dependência está no fato de que a constante

de velocidade k varia quando se altera a temperatura. A relação quantitativa entre ambas foi

descoberta por Svante Arrhenius, em 1889.

Arrhenius realizou um estudo do efeito quantitativo da temperatura na velocidade de reação

e descobriu uma equação que relacionava a constante de velocidade à temperatura da reação.

Tal relação ficou conhecida como Equação de Arrhenius:

k e E RTa = A /-

Figura 9.5: Efeito da pressão na velocidade da reação. Um aumento na pressão de P1 para P2 reduziu o volume de V1 pela metade, acelerando a reação devido à aproximação das moléculas e ao aumento das colisões entre elas.

Page 11: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

140

9 Cinética das Reações Químicas

Licenciatura em Ciências · USP/Univesp · Módulo 2

Isso foi descoberto pela construção de um gráfico do logaritmo natural da constante de

velocidade versus o inverso da temperatura absoluta, que resultava em uma reta descrita na

seguinte equação:

lnk T= + × −intersecção inclinação 1

em que a intersecção (coeficiente linear) é denominada ln A e a inclinação (coeficiente angular)

é - Ea/R.

De outra forma, temos:

ln ln ak A ERT

= −

onde:

k = constante de velocidade.

A = fator pré-exponencial. É uma medida da frequência com que as moléculas colidem.

R = constante universal dos gases: 8,3145 J.K-1.mol-1

T = temperatura absoluta ou termodinâmica em kelvin (K)

Ea = energia de ativação ( J/mol).

Um gráfico de Arrhenius de ln k versus 1/T é usado para determinar os parâmetros de

Arrhenius de uma reação (A e Ea); uma energia de ativação grande significa uma grande sensi-

bilidade da constante de velocidade a mudanças de temperatura.

Figura 9.6: Gráfico de Arrhenius e a determinação da Energia de Ativação. A energia de ativação, Ea, é determinada experimentalmente a partir da relação de Arrhenius num gráfico de ln k versus 1/T. A figura mostra valores de k obtidos a diferentes temperaturas para decomposição de NO2 em NO e O2, um importante processo na atmosfera. Os pontos são os resultados experimentais e a linha verde, uma regressão linear para estes pontos. Ea pode ser calculado a partir da inclinação da reta (coef. angular) / Fonte: wikipedia.

Page 12: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

141

Química

Licenciatura em Ciências · USP/Univesp · Módulo 2

De acordo com a equação de Arrhenius, o valor da constante de velocidade k aumenta com

a temperatura. Isso significa que, geralmente, um aumento na temperatura produz um aumento

na velocidade da reação, pois, em temperaturas baixas, poucas moléculas têm energia suficiente

para reagir; já, em temperaturas mais altas, uma fração maior delas pode reagir.

9.4.5 Catalisadores

Catalisadores são substâncias que podem ser adicionadas aos sistemas reacionais para propiciar

caminhos alternativos às reações. Esses caminhos requerem uma energia de ativação mais baixa,

aumentando, portanto, a velocidade das reações. Um catalisador, logo, não diminui a energia

de ativação de uma reação. O catalisador acelera a reação por fazê-la ocorrer via um complexo

ativado de menor energia.

Os catalisadores possuem algumas propriedades importantes, sendo elas:

1. Um catalisador não afeta a entalpia nem a constante de equilíbrio da reação.

2. Um catalisador acelera a reação, mas não aumenta seu rendimento, isto é, ele produz a

mesma quantidade de produto, mas num período de tempo menor.

3. Um catalisador acelera tanto a reação direta quanto a reversa, pois diminui a energia de

ativação de ambas.

4. Um catalisador participa da reação, e pode ou não ser consumido durante o processo.

Figura 9.7: Efeito do uso dos catalisadores na velocidade das reações químicas. / Fonte: modificado de Whitten; Davis; Peck, 1997.

Eat: Energia de ativação

Ecat: Energia do catalisador

Ep: energia dos produtos

Er: Energia dos reagentes

Hr: entalpia dos reagentes

Hp: entalpia dos produtos

∆H: diferença de entalpia

Page 13: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

142

9 Cinética das Reações Químicas

Licenciatura em Ciências · USP/Univesp · Módulo 2

As reações que ocorrem na presença de catalisadores são denominadas catálises, e podem ser de

dois tipos: homogênea e heterogênea. Na catálise homogênea, os reagentes e o catalisador formam

um sistema monofásico, enquanto, na catálise heterogênea, os reagentes e o catalisador formam um

sistema com duas ou mais fases, ou seja, catalisador e reagentes constituem um sistema polifásico.

A destruição da camada de ozônio é um exemplo de catálise homogênea. O gás ozônio (O3)

é um poderoso agente oxidante que, em concentrações significativas, destrói muitos materiais,

podendo ser danoso e tóxico ao ser humano na baixa atmosfera. Na atmosfera superior, porém,

esse gás desempenha um papel muito importante na absorção da radiação nociva do sol.

O ozônio é destruído por fréons, geralmente o CF2Cl

2. A grandes altitudes, onde existe a

maior concentração de ozônio, o fréon origina átomos livres de cloro (sob a ação do ultravioleta):

CF Cl CF Cl ClLuz22 2 → ⋅+ ⋅

O átomo de cloro livre não é estável (possui sete elétrons na última camada, quando o ideal

seria possuir oito), e seu elétron livre pode ser usado para fazer uma ligação, proporcionando,

dessa forma, a transformação do ozônio em oxigênio:

O Cl O ClOClO O 2O Cl 2O 3O

3

3

+ ⋅ → + ⋅⋅+ → + ⋅

2

2

2 2 Reação Global

Pela repetição dessas duas etapas, um Cl⋅ consegue destruir várias moléculas de O3.

Um catalisador heterogêneo, ou catalisador de contato, encontra-se em uma fase diferente

da fase dos reagentes. Tais catalisadores são geralmente sólidos que proporcionam superfícies

nas quais as moléculas de reagentes podem ser adsorvidas, reduzindo a energia de ativação da

reação. Em uma etapa final há dessorção, as moléculas formadas do produto deixam a superfície

do catalisador, liberando espaços que podem ser reutilizados.

Como exemplo deste tipo de catálise temos a decomposição da solução de peróxido de

hidrogênio (água oxigenada), que é acelerada pela presença de uma porção de batata na solução.

A decomposição da água oxigenada em água e oxigênio, quando catalisada, ocorre de forma

muito mais rápida, a ponto de ser possível observar as bolhas da liberação de oxigênio em

grandes quantidades.

Metais de transição, como Pt, Pd e Ni, e seus compostos são catalisadores heterogêneos

muito eficazes, sendo utilizados como sólidos finamente divididos (maior área de contato) para

oferecer superfícies sobre as quais as reações heterogêneas podem ocorrer.

Page 14: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

143

Química

Licenciatura em Ciências · USP/Univesp · Módulo 2

As enzimas são bons exemplos deste tipo de substâncias em sistemas biológicos. Acredita-se

que as moléculas de enzima apresentem sítios ativos em suas superfícies. O sítio ativo é frequen-

temente uma depressão na superfície da molécula

de enzima, à qual a molécula de substrato, ou

parte dela, se ajusta (Figura 9.8). Esses catalisa-

dores biológicos aceleram reações, que seriam

extremamente lentas na sua ausência, viabilizan-

do processos vitais do nosso corpo.

A enzima anidrase carbônica, por exemplo,

facilita a combinação de CO2 e água (substratos),

permitindo o transporte do gás carbônico pelo

sangue. Cada enzima é extremamente específica,

catalisando somente algumas reações intimamen-

te relacionadas ou, em muitos casos, apenas uma

reação particular por certos substratos.

ReferênciasAtkins, P. W.; Jones, L. Princípios de química: questionando a vida moderna e o meio

ambiente. 3. ed. Porto Alegre: Bookman, 2006.

BrAdy, J. e.; russeL, J. W.; HoLum, J. r. Química: a matéria e suas transformações. 3. ed. Rio

de Janeiro: Livros Técnicos e Científicos, 2002.

BroWn, t. L.; LemAy, H. e.; Bursten, B. e.; Burdge, J. r. Química: a ciência central. 9. ed. São

Paulo: Pearson Prentice Hall, 2005.

kotz, J. C.; treiCHeL, P. m.; WeAver, g. C. Química geral e reações químicas. 6. ed.

São Paulo: Cengage Learning, 2010.

mAHAn, B. m.; myers, J. r. Química: um curso universitário. São Paulo: Edgard Blücher, 1995.

Figura 9.8: Representação esquemática da catálise enzimática. O substrato se liga reversivelmente à enzima em região da molécula de enzima denominada sítio ativo (1), e gerando um complexo enzima substrato (2). Neste processo, ocorre alter-ação estrutural do sítio ativo e no substrato. A reação procede e forma-se um complexo ativado no sítio ativo da enzima (3). O complexo ativado origina os produtos que se desligam da enzima (4). / Fonte: modificado de Wikipedia.

Após ler este texto e assistir a videoaula, responda ao questionário para verificar seu aprendizado.Bom trabalho!

Page 15: CINÉTICA DAS Química REAÇÕES QUÍMICAS · reações, explicá-lo por meio de modelos microscópicos e controlá-lo. Algumas variáveis, como temperatura, ... sendo algumas lentas

144

9 Cinética das Reações Químicas

Licenciatura em Ciências · USP/Univesp · Módulo 2

WHitten, k.W.; dAvis, r. e.; PeCk, m. L. General Chemistry. 5. ed. New York: Heartcourt

College Pub., 1997.

sHriver, d.F. & Atkins, P.W. Química inorgânica, 4. ed. Porto Alegre: Bookman, 2008.

WikiPediA. Arrhenius plot. Disponível em: <http://en.wikipedia.org/wiki/Arrhenius_plot>.

Acesso em: 03 set. 2013.

WikiPediA. Enzyme. Disponível em: <http://en.wikipedia.org/wiki/Enzyme>. Acesso em:

03 set. 2013.