9
Artigo Original Estudo à microscopia eletrônica da estabilidade física de emulsões lipídicas utilizadas em misturas 3 em 1 Electronic microscope study of physical stability of lipid emulsions in 3x1 mixtures Estudio a la microscopia electrónica de la estabilidad física de emulsiones lipídicas en mezclas 3 en 1 Resumo O estudo consiste na determinação da estabilidade dos lipossomas das ELs utilizadas como fonte calórica em 28 composições de NPTs, denominadas misturas 3 em 1, por meio da avaliação à microscopia eletrônica de transmissão. Foi verificada a ocorrência ou não de ins- tabilidade como floculação/agregação ou coalescência/aglutinação das partículas e foram medidos os respectivos maiores diâmetros encontrados, sendo estudadas as ELs originais e as formulações mais comuns em nossa prática clínica, nos tempos 0, 24, 48, 72 horas. Foram avaliados e calculados alguns dos fatores predisponentes e de favorecimento de ins- tabilidade como: dosagem de pH, valores de CAN (número de agregação crítica) e avaliação farmacêutica dos insumos adicionados. Os resultados encontrados foram cinco formulações com ELs estáveis, 16 com floculação e sete com coalescência. Para as amostras com floculação, o fator de maior contribuição foi a diminuição do pH, interferindo nas forças eletrostáticas. Para a coalescência, a instabilidade ocorreu supostamente pela alteração do pH, pela adição de heparina e cátions divalentes em concentrações elevadas. Como conclu- são, os lipossomas não se alteram morfologicamente quando: a seqüência de manipulação das formulações encontra-se em condições controladas, são analisadas farmaceuticamente, apresentam os componentes em concentrações e ordem de adição adequada, e quando o tempo e a temperatura após preparação forem os recomendados. O uso clínico da mistura 3 em 1 deve ser limitado aos parâmetros sugeridos. Abstract The study consists of determination of liposome stability of ELs utilized with caloric font in 28 TPNs compositions, denominated 3 in 1 mixtures, through evaluation by transmission electronic microscopy. These were in occurrence or not with the stability of floculation/agre- gation or coalescence/agglutination particles and the larger diameter found was measured. We studied the original ELs and the most usual formulations in our clinical practice at these hours: 0, 24, 48, 72. Appraised and estimated some of the predisposed factors in favor of instability with pH, values of CAN (critical aggregation number) and the pharmaceutical valua- tion of added components. The results found were five formulations with ELs stability, 16 with flocculation and seven with coalescence. For the samples with flocculation, the largest con- tribution factor was the pH decrease, interfering in the electrostatic potential barrier against coalescence. For the coalescence, the instability occurred at supposed pH alteration and the addition of heparin and divalent cations in high concentrations. In conclusion, the liposomes were not altered morphologically when the mixing sequence of formulation was in controlled condition, when pharmaceutically analyzed, which adequate concentrations of the mixture components in order of addition, and the age and temperature of the mixture as well. The clinical use of 3 in 1 mixtures is within these limited guidelines. Resumen El estudio consiste en la determinación de la estabilidad de los liposomas de las ELs utilizadas como fuente calórica en 28 posiciones de NPTs, nombradas mezclas 3 en 1, a través de la evaluación a la microscopia electrónica de transmisión. Fueron verificadas la ocurrencia o no de inestabilidad como floculación, agregación o aglutinación de las partículas y medidos los respectivos mayores diámetros encontrados, siendo estudiadas las ELs originales y las formulaciones más comunes en nuestra práctica clínica, en los tiempos 0,24,48,72 hs. Fueron evaluados y calculados algunos de los factores de favorecimiento de inestabilidad como: pH, valores de CAN (número de agregación crítica) y evaluación farmacéutica de pres- Márcia de Souza Antunes 1 Estudo realizado no Laboratório de Patologia Inves- tigativa do Departamento de Patologia Clínica da Faculdade de Medicina da UFF 1 Mestre em Patologia Clínica pela Faculdade de Me- dicina da Universidade Federal Fluminense (UFF), especialista em Terapia Nutricional pela Sociedade Brasileira de Nutrição Parenteral Enteral (SBNPE), farmacêutica industrial pela Faculdade de Farmá- cia da UFF, membro do Centro de Terapia Nutricio- nal Enteral e Parenteral do Hospital Universitário Antônio Pedro (HUAP/UFF) Unitermos Lipídeos; nutrição parenteral; microscopia eletrônica Keywords Lipids; parenteral nutrition; microscopy, electron Unitérminos Lípidos; nutrición parenteral; microscopía electrónica Endereço para correspondência: Rua Miguel de Frias, 211/ 303 – Icaraí CEP 24230-001 – Niterói/RJ E-mail: [email protected] Submissão 5 de junho de 2006 Aceito para publicação 17 de janeiro de 2007 Rev Bras Nutr Clin 2007;22(1):45--53

Estudo à microscopia eletrônica da estabilidade física de ...nutricionalfarmacia.com.br/wp-content/uploads/2017/07/Estabilidade... · A técnica mais comumente usada nas manipulações

Embed Size (px)

Citation preview

Artigo Original

Estudo à microscopia eletrônica da estabilidade física de emulsões lipídicas utilizadas em misturas 3 em 1Electronic microscope study of physical stability of lipid emulsions in 3x1 mixtures

Estudio a la microscopia electrónica de la estabilidad física de emulsiones lipídicas en mezclas 3 en 1

ResumoO estudo consiste na determinação da estabilidade dos lipossomas das ELs utilizadas como

fonte calórica em 28 composições de NPTs, denominadas misturas 3 em 1, por meio da

avaliação à microscopia eletrônica de transmissão. Foi verificada a ocorrência ou não de ins-

tabilidade como floculação/agregação ou coalescência/aglutinação das partículas e foram

medidos os respectivos maiores diâmetros encontrados, sendo estudadas as ELs originais

e as formulações mais comuns em nossa prática clínica, nos tempos 0, 24, 48, 72 horas.

Foram avaliados e calculados alguns dos fatores predisponentes e de favorecimento de ins-

tabilidade como: dosagem de pH, valores de CAN (número de agregação crítica) e avaliação

farmacêutica dos insumos adicionados. Os resultados encontrados foram cinco formulações

com ELs estáveis, 16 com floculação e sete com coalescência. Para as amostras com

floculação, o fator de maior contribuição foi a diminuição do pH, interferindo nas forças

eletrostáticas. Para a coalescência, a instabilidade ocorreu supostamente pela alteração do

pH, pela adição de heparina e cátions divalentes em concentrações elevadas. Como conclu-

são, os lipossomas não se alteram morfologicamente quando: a seqüência de manipulação

das formulações encontra-se em condições controladas, são analisadas farmaceuticamente,

apresentam os componentes em concentrações e ordem de adição adequada, e quando o

tempo e a temperatura após preparação forem os recomendados. O uso clínico da mistura

3 em 1 deve ser limitado aos parâmetros sugeridos.

AbstractThe study consists of determination of liposome stability of ELs utilized with caloric font in

28 TPNs compositions, denominated 3 in 1 mixtures, through evaluation by transmission

electronic microscopy. These were in occurrence or not with the stability of floculation/agre-

gation or coalescence/agglutination particles and the larger diameter found was measured.

We studied the original ELs and the most usual formulations in our clinical practice at these

hours: 0, 24, 48, 72. Appraised and estimated some of the predisposed factors in favor of

instability with pH, values of CAN (critical aggregation number) and the pharmaceutical valua-

tion of added components. The results found were five formulations with ELs stability, 16 with

flocculation and seven with coalescence. For the samples with flocculation, the largest con-

tribution factor was the pH decrease, interfering in the electrostatic potential barrier against

coalescence. For the coalescence, the instability occurred at supposed pH alteration and the

addition of heparin and divalent cations in high concentrations. In conclusion, the liposomes

were not altered morphologically when the mixing sequence of formulation was in controlled

condition, when pharmaceutically analyzed, which adequate concentrations of the mixture

components in order of addition, and the age and temperature of the mixture as well. The

clinical use of 3 in 1 mixtures is within these limited guidelines.

ResumenEl estudio consiste en la determinación de la estabilidad de los liposomas de las ELs utilizadas

como fuente calórica en 28 posiciones de NPTs, nombradas mezclas 3 en 1, a través de

la evaluación a la microscopia electrónica de transmisión. Fueron verificadas la ocurrencia o

no de inestabilidad como floculación, agregación o aglutinación de las partículas y medidos

los respectivos mayores diámetros encontrados, siendo estudiadas las ELs originales y las

formulaciones más comunes en nuestra práctica clínica, en los tiempos 0,24,48,72 hs.

Fueron evaluados y calculados algunos de los factores de favorecimiento de inestabilidad

como: pH, valores de CAN (número de agregación crítica) y evaluación farmacéutica de pres-

Márcia de Souza Antunes1

Estudo realizado no Laboratório de Patologia Inves-tigativa do Departamento de Patologia Clínica da Faculdade de Medicina da UFF

1 Mestre em Patologia Clínica pela Faculdade de Me-dicina da Universidade Federal Fluminense (UFF), especialista em Terapia Nutricional pela Sociedade Brasileira de Nutrição Parenteral Enteral (SBNPE), farmacêutica industrial pela Faculdade de Farmá-cia da UFF, membro do Centro de Terapia Nutricio-nal Enteral e Parenteral do Hospital Universitário Antônio Pedro (HUAP/UFF)

Unitermos

Lipídeos; nutrição parenteral;

microscopia eletrônica

Keywords

Lipids; parenteral nutrition;

microscopy, electron

Unitérminos

Lípidos; nutrición parenteral;

microscopía electrónica

Endereço para correspondência:

Rua Miguel de Frias, 211/ 303 – Icaraí

CEP 24230-001 – Niterói/RJ

E-mail: [email protected]

Submissão

5 de junho de 2006

Aceito para publicação

17 de janeiro de 2007

Rev Bras Nutr Clin 2007;22(1):45--53

Antunes MS

46

criciones. Los resultados encontrados fueron 5 formulaciones con ELs estables, 16 con floculación y 7 con coalescencia. Para las muestras

con floculación el factor de mayor contribución fue la disminución del pH, interfiriendo en las fuerzas electroestáticas. Para la coalescencia,

la inestabilidad ocurrió supuestamente por la alteración del pH, por la adición de heparina y cationes divalentes en concentraciones elevadas.

Como conclusión los liposomas no se alteran morfológicamente cuando: la secuencia de manipulación de las formulaciones se encuentra en

condiciones controladas, son analizadas farmacéuticamente, presentan los componentes en concentraciones y orden de adición adecuados y

cuando el tiempo y la temperatura después de la preparación sean los recomendados. El uso clínico de la mezcla 3 en 1 debe ser limitado a

los parámetros sugeridos.

Introdução

A técnica mais comumente usada nas manipulações de soluções nutritivas administradas por via venosa no início dos anos 70 era a adição de hidrato de carbono (HC), sais minerais normais, vitaminas e oligoelementos nos frascos de vidro ou bolsas plásticas de cloreto de polivinila (PVC) e, em separado, a administração de emulsões lipídicas (ELs) endo-venosas, que são preparações farmacêuticas, constituídas por duas fases, sendo uma delas uma substância gordurosa.

No ano de 1972 foi descrito, por Solassol e Joyeux pela primeira vez a técnica de manipulação e o uso clínico de so-luções contendo todos os nutrientes necessários como: ami-noácidos, glicose, lipídeos, sais minerais, vitaminas e oligoe-lementos, adequados para administração por via endovenosa em um único envase. Essa mistura foi denominada mistura 3 em 1. Somente em 1982, nos EUA, o Food and Drug Admi-nistration (FDA), órgão regulamentador de medicamentos e alimentos, aprovou o uso clínico da mistura 3 em 1.

O uso da mistura 3 em 1 apresenta algumas desvanta-gens, entre elas a sua instabilidade e o tempo exíguo de esto-cagem, que não deve ser superior a 30 horas, de acordo com sua composição1.

Dentre as muitas causas de instabilidade nas prepara-ções das misturas 3 em 1, podemos citar a sua composição eletrolítica, interferindo na atuação do agente emulsivo uti-lizado industrialmente na fabricação das ELs que, nesse caso, é a lecitina obtida dos fosfolipídios da gema de ovo ou de semente de soja, ésteres glicefosfóricos da colina e de ácidos graxos diversos. São agentes emulsivos do tipo O/A e, como tal, produzem barreira mecânica e eletrostática contra a coa-lescência dos lipossomas2.

O agente emulsivo atua por meio da formação de uma película ao redor de cada partícula oleosa, de modo que a fra-ção lipofílica fica orientada para a fase oleosa e a fração hi-drofílica orientada para a fase aquosa, constituindo-se uma barreia mecânica e pela ionização do grupo fosfato na fase aquosa fornecendo uma barreira eletrostática (potencial zeta) na superfície de cada lipossoma, pois a carga negativa apre-sentada por este grupamento estabelece uma repulsão mútua entre eles3.

As ELs endovenosas normalmente possuem pH entre 5,5-8, faixa essa em que o agente emulsivo atua muito bem. Com di-minuições do pH, o potencial eletrostático é reduzido, as forças de repulsão decrescem e o sistema pode tornar-se instável. Com

o pH na faixa de aproximadamente 2,5, pode ocorrer a perda total das forças de repulsão, quando os lipossomas passam a co-lidir livremente. A solução de glicose e os eletrólitos adicionados em concentrações ou condições inadequadas alteram o mecanis-mo de equilíbrio entre as forças eletrostáticas, deflagrando-se o mecanismo de instabilidade. A glicose exerce efeito prejudicial quando reduz excessivamente o pH da solução4.

Os sais de cálcio, magnésio e fósforo são componentes da nutrição parenteral (NPT) que, pela suas cargas divalentes, possibilitam a formação de precipitados, que são potencial-mente causadores de interferência nas forças eletrostáticas, neutralizando as cargas negativas dos lipossomas5.

Pela fórmula de Schultz-Hardy, que calcula o valor do número de agregação crítico de cátions (CAN, de “critical agregation number”), podemos prever a quantidade de mu-dança catiônica possível de causar interferência na estabilida-de das ELs utilizadas nas formulações de NPTs3.

Quando acontece a floculação/agregação dos liposso-mas, seja por qual for a interferência, ocorre aumento nos tamanhos dos mesmos e, conseqüentemente, há a possibili-dade de ocorrer a coalescência. Esse efeito é atenuado quando a glicose e os eletrólitos estão diluídos no volume total da so-lução em água para injeção e com a solução de aminoácidos, que exerce efeito “tampão” devido ao pH que possuem. As soluções de aminoácidos aumentam a barreira mecânica em torno dos lipossomas, diminuindo sua agregação.

Os lipossomas tem em média 0,6µ de diâmetro nas ELs originais, possuindo centros homogêneos. Um lipossoma com diâmetro acima de 5µ entrando na corrente circulatória pode causar embolia gordurosa6.

Material e métodos

Na avaliação das amostras estudadas, os seguintes parâmetros da ultraestrutura dos lipossomas foram obser-vados ao microscópio eletrônico: suas camadas superficiais externas, o diâmetro e a presença ou não de corpúsculo com núcleo luminoso, alterações de floculação/agregação e coa-lescência/aglutinação.

A floculação consiste na reunião dos lipossomas da fase dispersa em agregados ou flóculos, sendo que esta alteração não representa modificação irremediável, é possível recom-por-se o sistema disperso inicial por simples agitação.

A coalescência é uma alteração que se dá de maneira muito mais profunda, irreversível, e, quando ocorre, não

Estudo à microscopia eletrônica da estabilidade física de emulsões lipídicas utilizadas em misturas 3 em 1

47

permite a recomposição. O ritmo de coalescência depende de diversos fatores como o tempo e temperatura de estocagem, as interações entre os cátions adicionados entre outros, mas, principalmente, das características físicas da película forma-da pelo agente emulsivo ao redor dos glóbulos dispersos.

Nesse estudo, foram avaliadas amostras triplicatas de 28 formulações de NPTs, mais comumente usadas na prática clínica, nos tempos de 0, 24, 48 e 72 horas após sua mani-pulação, dosados os valores respectivos de pH, calculados os valores de CAN nas soluções básicas para adultos, pediatria e neonatos, abaixo descritas:

• Emulsão lipídica pura com triglicérides de cadeia longa (TCL);

• Emulsão lipídica pura com mistura de 50% de triglicérides de cadeia longa e 50% de cadeia curta (MCT/LCT);

• Nutrição parenteral básica para pacientes adultos, varian-do a glicose hipertônica nas concentrações de 10, 20 e 25%, sais normais, vitaminas, oligoelementos e 15% de EL;

• Nutrição parenteral básica para pacientes adultos, adi-tivada de L-alanil L-glutamina, glicose hipertônica nas concentrações de 10, 20, 25%, sais normais, vitaminas, oligoelementos e 15% de EL;

• Nutrição parenteral básica para pacientes adultos, variando a glicose hipertônica nas concentrações de 10, 20 e 25%, sais normais, vitaminas, aditivadas com composição de oligoele-mentos contendo zinco, cobre, manganês, cromo, selênio, ferro, iodo, fluor e L-alanil L- glutamina e 15% de EL;

• Nutrição parenteral para pacientes adultos, fixando em 15% de proteína, glicose hipertônica, sais normais, vitaminas, oligoelementos em concentrações fixas e elevadas de EL para administração em veias periféri-cas, aditivada de heparina e L-alanil L-glutamina;

• Nutrição parenteral básica para pacientes adultos, variando a glicose hipertônica nas concentrações de 10, 20 e 25%, sais normais, vitaminas, aditivadas de L-alanil L-glutamina, in-sulina nas concentrações de 1/5,1/10, 1/15 e 15% de EL;

• Nutrição parenteral básica para neonatos, glicose hipertô-nica nas concentrações comuns usadas, vitaminas, oligoe-lementos, sais normais, gluconato de cálcio acima do limite normal de reposição (600mg/kg/dia) e EL;

• Nutrição parenteral básica para neonatos, glicose hiper-tônica, vitaminas, oligoelementos, concentração de ele-trólitos normais (cálcio e fósforo), aditivada de 0,1 UI de heparina por mL e EL;

• Nutrição parenteral básica para neonatos, glicose hiper-tônica, vitaminas, oligoelementos, concentração de ele-trólitos normais (cálcio e fósforo), aditivada de 0,2 UI de heparina por mL de solução e EL;

• Nutrição parenteral básica para pediatria, glicose hiper-tônica, sais normais, vitaminas, oligoelementos, aditiva-das de L-alanil L-glutamina.

No procedimento experimental, as NPTs foram prepa-radas conforme as recomendações das Boas Práticas de Prepa-ração de Nutrição Parenteral, do Regulamento Técnico para Terapia de Nutrição Parenteral, Portaria nº. 272, de 15 de abril de 1999, do Ministério da Saúde (MS), que preconizam a pre-paração asséptica em área classificada (área com ar ambiente controlado e filtrado) e sob capela de fluxo unidirecional clas-se 100, e que contribuíram para manutenção da esterilidade dos insumos utilizados.

A cada 0,1 mL de amostras em triplicatas das NPTs pre-paradas, foram adicionados 0,2 mL de tetróxido de ósmio à temperatura de 8ºC e centrifugadas a 10.000 rpm, durante uma hora. As amostras foram banhadas em óxido de propi-leno puro e incluídas em resina pura, mantida em repouso durante uma hora na estufa a 37ºC7,8.

Todas as amostras estudadas das NPTs tiveram uma amostra enviada ao Laboratório de Controle de Qualidade em Alimentos e Produtos, onde não se evidenciou crescimen-to microbiano após cinco dias de sua preparação.

Para o estudo, foram preparadas composições básicas de NPTs para pacientes adultos, neonatos e pediátricos e acresci-das variações a partir dessas (Tabelas 1, 2, 3 e 4):

As composições das ELs originais e das misturas 3 em 1 de nutrição parenteral que formaram as amostras desse estudo estão descritas abaixo:

• Amostra 1 – Emulsão com TCL pura a 20%;• Amostra 2 – Emulsão com TCM/TCL pura a 20%;• Amostra 3 – Nutrição parenteral básica para adultos,

10% HC e 15% EL;• Amostra 4 – Nutrição parenteral básica para adultos,

20% HC e 15% EL;• Amostra 5 – Nutrição parenteral básica para adultos,

25% HC e 15% EL;• Amostra 6 – Nutrição parenteral básica para adultos,

aditivada de L-alanil L-glutamina (6,0 mL), 10% HC e 15% EL;

• Amostra 7 – Nutrição parenteral básica para adultos, aditi-vada de L-alanil L-glutamina (6,0 mL), 20% HC e 15% EL;

Insumo Quantidade (mL)

Solução de aminoácido a 10% 50Fosfato de potássio 2 mEq/mL 1Cloreto de sódio 20% 1Acetato de potássio 2 mEq/mL 1Sulfato de magnésio 10% 1Polivitamínico 0,2Oligoelementos 1Gluconato de cálcio 10% 1Água para injeção qsp 100

Tabela 1 - Composição de nutrição parenteral básica para pacientes adultos.

Antunes MS

48

Insumo Quantidade (mL)Solução de aminoácido a 10% 20Fosfato de potássio 2 mEq/mL 1Solução de glicose a 50% 40Cloreto de sódio 20% 1Acetato de Potássio 2 mEq/mL 1,3Polivitamínico 2,5Oligoelementos 1Água para injeção qsp 100

Tabela 4 - Composição de nutrição parenteral básica para pacientes pediátricos.

Peso para cálculo: 26 kg; idade: oito anos; VT = 80 ml/kg/dia; 80 kcal/kg/dia; Aa: 1,5 g/kg; HC: 20%; Lip: 30%; relação 1/250.

Etapa I

Insumo Quantidade (mL)Solução de Aa para neonatos 10Solução de glicose a 50% 10Água para injeção 15Cloreto de sódio 20% 0,44Cloreto de potássio 10% 1,12Sulfato de magnésio 1 mEq/mL 0,5Oligoelementos 0,3Acetato de zinco (rediluído) 0,4Polivitamínico 1EL 5VT 50

Etapa IISolução de Aa para neonatos 10Solução de glicose a 50% 10Água para injeção 23Cloreto de sódio 20% 0,44Fosfato de potássio 2 mEq/mL 0,73Polivitamínico B 0,5EL 5

Tabela 2 - Composição de nutrição parenteral básica para neonatos.

Peso para cálculo: 1,0 kg; aminoácido: 2 g/kg; hidrato carbono: 7 mg/kg/min; lipídeo: 2 g/kg; 3 mEq/kg de NaCl; 1,5 mEq/kg de KCL; 0,5 mEq/kg de sulfato de magnésio; 0,8 mMol/kg de fosfato de potássio; cota básica de vitaminas e oligoelementos; volume: 100 mL/kg em duas etapas, separando a administração de cálcio e fósforo

Insumo Quantidade (mL)Solução de aminoácido a 10% 20Solução de glicose a 50% 40Cloreto de sódio 20% 1Acetato de potássio 2 mEq/mL 1,3Sulfato de magnésio 1 mEq/mL 0,5Polivitamínico 2,5Oligoelementos 1Gluconato de cálcio 10% 2Água para injeção qsp 100

Tabela 3 - Composição de nutrição parenteral básica para pacientes pediátricos.

Peso para cálculo: 26 kg; idade: oito anos; VT = 80 mL/kg/dia; 80 kcal/kg/dia; Aa: 1,5g/kg; HC: 20%; Lip: 30%; relação 1/250.

• Amostra 8 – Nutrição parenteral básica para adultos, aditi-vada de L-alanil L-glutamina (6,0 mL), 25% HC e 15% EL;

• Amostra 9 – Nutrição parenteral básica para adultos, aditivada de oligoelementos com selênio e ferro, 25% HC e 15% EL;

• Amostra 10 – Nutrição parenteral básica para adultos, aditivada de oligoelementos com selênio e ferro, L-alanil L-glutamina (6,0 mL), 10% HC e 15% EL;

• Amostra 11 – Nutrição parenteral básica para adultos, aditivada de oligoelementos com selênio e ferro, L-alanil L-glutamina (6,0 mL), 25% HC e 15% EL;

• Amostra 12 – Nutrição parenteral periférica para adul-tos, 15% de Aa, 30% HC, 55% EL, aditivada de L-alanil L-glutamina (6,0 mL) e heparina (100 UI);

• Amostra 13 – Nutrição parenteral básica para adultos, 10% HC, L-alanil L-glutamina (6,0 mL), insulina na rela-ção 1/5 e 15% EL;

• Amostra 14 – Nutrição parenteral básica para adultos, 20% HC , L-alanil L-glutamina (6,0 mL), insulina na re-lação 1/5 e 15% EL;

• Amostra 15 – Nutrição parenteral básica para adultos, 25% HC, L-alanil L-glutamina (6,0 mL), insulina relação 1/5 e 15%;

• Amostra 16 – Nutrição parenteral básica para adultos, 10% HC, L-alanil L-glutamina (6,0 mL), insulina na rela-ção 1/10 e 15% EL;

• Amostra 17 – Nutrição parenteral básica para adultos, 20% HC, L-alanil L-glutamina (6,0 mL), insulina na rela-ção 1/10 e 15% EL;

• Amostra 18 – Nutrição parenteral básica para adultos, 25% HC, L-alanil L-glutamina (6,0 mL), insulina na rela-ção 1/10 e 15% EL;

• Amostra 19 – Nutrição parenteral básica para adultos, 10% HC, L-alanil L-glutamina (6,0 mL), insulina na rela-ção 1/15 e 15% EL;

• Amostra 20 – Nutrição parenteral básica para adultos, 20% HC, L-alanil L-glutamina (6,0 mL), insulina na rela-ção 1/15 e 15% EL;

• Amostra 21 – Nutrição parenteral básica para adultos, 25% HC, L-alanil L-glutamina (6,0 mL), insulina na rela-ção 1/15 e 15% EL;

• Amostra 22 – Nutrição parenteral básica para neonatos, adição de cálcio (600 mg/kg/dia) e EL;

• Amostra 23 – Nutrição parenteral básica para neonatos, concentração normal de cálcio (300 mg/kg/dia) aditiva-da de heparina 0,1 UI/mL;

• Amostra 24 – Nutrição parenteral básica para neonatos, concentração normal de fósforo (0,8 mMol/kg/dia) adi-tivada de heparina 0,1 UI/mL;

• Amostra 25 – Nutrição parenteral básica para neonatos, concentração normal de cálcio (300 mg/kg/dia) aditiva-da de heparina 0,2 UI/mL;

Estudo à microscopia eletrônica da estabilidade física de emulsões lipídicas utilizadas em misturas 3 em 1

49

• Amostra 26 – Nutrição parenteral básica para neonatos, concentração normal de fósforo (0,8 mMol/kg/dia) adi-tivada de heparina 0,2 UI/mL;

• Amostra 27 – Nutrição parenteral básica para pediatria, concentração normal de cálcio (200 mEq/mL), aditiva-das de L-alanil L-glutamina (0,2 g/kg);

• Amostra 28 – Nutrição parenteral básica para pediatria, concentração normal de fósforo (45 mEq/mL), aditiva-das de L-alanil L-glutamina (0,2 g/kg).

As análises dos lipossomas basearam-se nos seguin-tes aspectos ultraestruturais à microscopia eletrônica: suas camadas de superfície, podendo apresentar-se com aspecto liso, irregular ou rugoso; fina, moderadamente espessada ou espessada; e quanto a corpúsculos no nú-cleo dos lipossomas, sendo ausentes ou presentes, e nor-mal ou pigmentado.

Foram analisado o estado de integridade física da EL, podendo apresentar o primeiro estágio do processo de al-teração, a floculação, ou o último estágio de alteração, antes da separação de fases, a coalescência/aglutinação, utilizando como referência o diâmetro dos lipossomas nas ELs a 20% antes de misturadas, que apresentaram-se em média com tamanho de 0,6µ.

Resultados

As amostras estudadas foram comparadas com as amostras controle com lipossomas na EL original de pa-drão normal (Figura 1) e com lipossomas em coalescência (Figura 2).

Os achados referentes à presença ou não de instabilida-de, como floculação/agregação e ou coalescência/aglutinação, avaliados ultraestruturalmente, encontram-se resumidos na Tabela 5.

Discussão

Das 28 amostras representativas de NPTs, cinco apre-sentaram ELs estáveis, 16 ELs com lipossomas em fase de floculação/agregação e sete ELs com lipossomas em fase de coalescência/aglutinação.

Dentre as amostras que apresentaram floculação/agrega-ção podemos discutir os seguintes aspectos observados:

• Para as amostras 4 e 5: a presença de 20 e 25% de glico-se nas soluções é responsável pelo declínio do pH final, com valores encontrados 5,7 e 5,5 respectivamente, que propiciam modificações relativas nas forças eletrostáticas, facilitando a aproximação dos lipossomas, mas sem que ocorra sua aglutinação. Os diâmetros desses apresenta-ram-se referencialmente maiores que das ELs originais. Os valores de CAN estavam dentro da faixa de segurança.

• Para as amostras 7 a 11, 13 a 20 e 28 (Figuras 3 e 4): a floculação ocorreu supostamente devido a adição de gli-cose, mesmo em diferentes concentrações apresentadas nas diversas formulações estudadas que, como já descrito anteriormente, levam ao declínio do pH, modificando re-lativamente as forças eletrostáticas e aproximando os li-possomas, sem que sofram agregação. Os valores de CAN encontrados estavam dentro da faixa de segurança.

Dentre as amostras que apresentaram coalescência/agluti-nação podemos discutir os seguintes aspectos observados:

• Para a amostra 12 (Figura 5): a coalescência ocorreu suposta-mente devido a três situações: alta concentração de glicose (30%), responsável pelo declínio no valor do pH da solução final, pela elevada concentração de EL (55%) na formula-ção e pela adição de heparina diretamente à mistura 3 em 1, aumentando o tempo de contato da heparina com os in-

Figura 1 - Lipossomas de padrão normal EL 20% original, 0,6µ (30.000 X).

Figura 2 - Lipossomas em coalescência após contato glicose 50%, 2,76µ (30.000 X).

Antunes MS

50

sumos componentes. A heparina é estável em NPTs, como misturas 3 em 1 em concentrações de até 25.000 UI/L por pelo menos 30 horas5. O fenômeno de incompatibilidade entre a heparina e a EL em mistura 3 em 1 está condicionado à presença de cálcio, à concentração deste na formulação, à adição na manipulação, à sua estocagem após preparação

Am pH Diâm (µ) CAN HC EL Ins Glu Hep Estab Hora1 6,5 0,33 0 0 20% 0 0 0 Est 0h2 6,5 0,54 0 0 20% 0 0 0 Est 0h3 5,6 0,5 346 10% 15% 0 0 0 Est 0h4 5,7 0,53 346 20% 15% 0 0 0 Floc 24h5 5,5 0,68 346 25% 15% 0 0 0 Floc 24h6 6,0 0,43 346 10% 15% 0 0 0 Est 0h7 6,0 0,56 346 20% 15% 0 0 0 Floc 0h8 5,9 0,5 346 25% 15% 0 0 0 Floc 0h9 5,7 0,53 346 10% 15% 0 0 0 Floc 0h10 6,0 0,45 346 20% 15% 0 0 0 Floc 0h11 6,0 0,46 346 25% 15% 0 0 0 Floc 24h12 4,0 2,13 346 30% 55% 0 0 100 Coal 48h13 6,0 0,44 346 10% 15% 1/5 0 0 Floc 0h14 6,0 0,47 346 20% 15% 1/5 6 mL 0 Floc 0h15 6,0 0,47 346 25% 15% 1/5 6 mL 0 Floc 0h16 5,7 0,57 346 10% 15% 1/10 6 mL 0 Floc 0h17 5,7 0,47 346 20% 15% 1/10 6 mL 0 Floc 0h18 5,7 0,44 346 25% 15% 1/10 6 mL 0 Floc 0h19 6,0 0,44 346 10% 15% 1/15 6 mL 0 Floc 0h20 5,7 0,44 346 20% 15% 1/15 0 0 Floc 0h21 4,5 2,14 346 25% 15% 1/15 0 0 Coal 48h22 5,7 2,1 980,36 TIG NOR 0 0 0 Coal 24h23 6,0 2,05 500,36 TIG NOR 0 0 0,1 Coal 72h24 5,7 0,52 48,22 TIG NOR 0 0 0,1 Est 0h25 5,9 2,08 500,36 TIG NOR 0 0 0,2 Coal 24h26 5,9 2,07 48,22 TIG NOR 0 0 0,2 Coal 48h27 7,0 2,04 411,80 20% 30% 0 0,2 mL 0 Coal 24h28 7,0 0,61 91,80 20% 30% 0 0,2 mL 0 Floc 0h

Tabela 5 - Floculação/ agregação e/ ou coalescência/ aglutinação.

TIG = 7 mg/kg/dia; Ins = UI/gHC; Glu= g/kg; Hep = UI/mL

e à temperatura. Na amostra referida, mesmo com o valor de CAN na faixa de segurança, supomos que o cálcio foi complexado por polissacarídeos. O complexo cálcio/hepa-rina neutralizou as forças eletrostáticas, nas quais o cálcio funcionou com uma ponte catiônica entre os grupos aniô-nicos da heparina e dos lipídeos9,10.

Figura 3 - Eletromicrografia de transmissão da NPT básica adulto 20% HC; T = 72h (50.000 X).

Figura 4 - Eletromicrografia de transmissão da NPT pediátrica, fósforo normal, glutamina; T = 72h (18.000 X).

Estudo à microscopia eletrônica da estabilidade física de emulsões lipídicas utilizadas em misturas 3 em 1

51

reu rompimento do filme interfacial e da barreira mecâ-nica ao redor dos lipossomas, e esses passaram a colidir sucessivamente, favorecendo a coalescência. Ocorrendo perda das camadas de superfície dos lipossomas, forma-ram-se partículas de diâmetros maiores, podendo variar de 2µ a 15µOs lipossomas com esse diâmetro, mesmo estando ainda em dispersão, escapam da faixa de acuida-de visual na inspeção e apresentam um grande potencial de risco clínico. Ao analisarmos o valor do CAN calcula-do com os cátions da formulação da amostra em questão podemos confirmar que o resultado encontra-se acima da faixa de segurança. O valor de pH encontrado, que não sofreu alteração, pareceu não interferir favorecendo mais efetivamente na instabilidade da solução3.

• Para a amostra 23 (Figura 8): a coalescência ocorreu supos-tamente pela perda da barreira eletrostática e conseqüen-

• Para a amostra 21 (Figura 6): o processo de coalescência foi supostamente desencadeado pela concentração da glicose a 25% (que já é o limite máximo de concentração estável) após 48 horas da manipulação e também responsável pelo declínio no pH da solução final, que diminuiu a barreira eletrostática entre os lipossomas. Acreditamos que a insulina na presen-te concentração 1/15 (1 UI para cada 15 gramas de glicose), assim como nas demais concentrações, conforme descrição na Tabela 5, que são inclusive concentrações maiores (1/5 e 1/10), não contribuiu para a alteração da formulação.

• Para a amostra 22 (Figura 7): a coalescência ocorreu su-postamente pela perda da barreira eletrostática e, con-seqüentemente, da barreira mecânica, dependentes do estresse físico-químico causado pela concentração de cátion divalente (Cálcio) elevado. Com a neutralização das forças eletrostáticas pelos cátions divalentes, ocor-

Figura 5 - Eletromicrografia de transmissão da NPT periférica, adulto, glutamina, heparina; T = 48h, 2,13µ ( 30.000 X).

Figura 6 - Eletromicrografia de transmissão da NPT básica, adulto, 25% HC, glutamina, 1/15; T = 48h, 2,14µ (50.000 X).

Figura 7 - Eletromicrografia de transmissão da NPT básica, neonatos, Ca elevado; T = 24h, 2,10µ (50.000 X).

Figura 8 - Eletromicrografia de transmissão da NPT básica neonatos, Ca normal, heparina 0,1 UI/mL; T = 72h, 2,05µ (30.000 X).

Antunes MS

52

temente da barreira mecânica, dependentes também de estresse físico-químico causado pelo complexo cálcio/hepa-rina, mesmo em baixas concentrações de ambos, após 72 horas. Podemos avaliar que o pH não sofreu grande declínio e não foi um fator de interferência na instabilidade, assim como o valor obtido no cálculo do CAN para os cátions, cujo resultado encontra-se dentro da faixa de segurança9,10.

• Para a amostra 25 (Figura 9): a coalescência ocorreu supos-tamente pela complexação de cálcio/heparina na amostra, mesmo estando o cálcio em valor normal de concentração e o CAN na faixa de segurança. A observação sugere que com essa concentração de heparina, (0,2UI/mL) após um tempo de contato, que, no caso, foi de 24 horas, houve desencadea-mento da instabilidade da EL. O valor de pH encontrado não sugere uma interferência no processo de coalescência9,10.

• Para a amostra 26 (Figura 10): a coalescência ocorreu após 48 horas do preparo da solução, supostamente pela

presença de cátion divalente como o fosfato e a hepari-na, em neutralização ao potencial zeta dos lipossomas. O pH mantendo-se em 5,9 (valor dosado), não favore-ceu a coalescência, mas a presença de heparina em uma concentração de 0,2 UI/mL, pode efetivamente ser um promotor da instabilidade9,10.

• Para a amostra 27 (Figura 11): a coalescência ocorreu após 24 horas da preparação supostamente pela concentração de 20% da glicose em relação a concentração de EL da fórmula, alterando o potencial zeta ao redor dos lipossomas. Mesmo com uma concentração de aminoácidos como a L-alanil L-glutamina adicionados, que elevam o pH e atuam com um efeito “tampão”, não ocorreu o aumento do mesmo. O declínio do pH justifica-se, pois a concentração do amino-ácido glutamina foi computada na concentração final de aminoácidos proposta pela prescrição e não excedendo a relação entre os componentes da formulação3.

Conclusões

Nas condições do presente estudo, obtivemos as seguin-tes conclusões:

• A dosagem do pH deve ser sempre realizada, por ser um dos fatores predisponentes mais importantes de instabili-dade. Para pH em declínio, na faixa de 4,0 a 5,0, as forças eletrostáticas são facilmente neutralizadas ao redor dos lipossomas facilitando sua instabilidade;

• Os cálculos dos valores de CAN, que considera a interferên-cia dos cátions na estabilidade, devem ser realizados em to-das as formulações, excetuando as previamente estudadas e padronizadas, pois definem as possibilidades de interfe-rência após a adição das ELs na estabilidade nas soluções;

• Dentre os insumos utilizados mais freqüentemente nas NPTs, a glicose representa o de maior risco, como obser-

Figura 9 - Eletromicrografia de transmissão da NPT neonatos Ca nor-mal, heparina 0,2 UI/mL; T = 24h, 2,08 µ (50.000 X).

Figura 10 - Eletromicrografia de transmissão da NPT neonatos fósforo normal, heparina 0,2UI/mL; T = 72h, 2,07µ (50.000 X).

Figura 11 - Eletromicrografia de transmissão da NPT pediátrica, Ca nor-mal, glutamina; T = 24h, 2,06µ (30.000 X).

Estudo à microscopia eletrônica da estabilidade física de emulsões lipídicas utilizadas em misturas 3 em 1

53

1. Antunes M; Guedes J. Controle de qualidade de misturas de ácidos aminados, hidrato de carbono e emulsão de lipídeos para uso parenteral (3 em 1). Arq Bras Méd 1994;68(5):303-5.

2. Prista LN, Alves AC, Morgado RR. Técnica Farmacêutica e Farmácia Galénica – II volume – 3ª ed. – Lisboa. Fundação Calouste Gulbenkian . 1990. p. 518.

_______ , ______ III volume – 3ª ed. – Lisboa – Fundação Calouste Gulbenkian. 1990. p. 602.

_______ , ______ I volume 4 ª ed. Lisboa – Fundação Calouste Gulbenkian. 1992. p. 1134.

3. Driscoll DF, Bhargava HN, Li L, Zaim RH, Babayan VK, Bistrian BR. Physicochemical stability of total nutrient admixtures. Am J Health Syst Pharm. 1995;52(6):625-34.

4. Li J, Caldwell KD. Strutural studies of comercial fat emulsions used in parenteral nutrition. J Pharm Sci 1994;83(11):1586-92.

5. Trissel LA, Gilbert DL, Martinez JF, Baker MB, Walter WV, Mirtallo JM. Compatibility of Medications with 3-in-1 parenteral nutrition admixtures. JPEN 1999;23(2):67-74.

Referências bibliográficas

6. Hill SE, Heldman LS, Goo ED, Whippo PE, Perkinson JC. Fatal microvascular pulmonary emboli from precipitation of total nutrient admixture solution.JPEN 1996;20:81-87.

7. Universidade Federal Fluminense – Serviço de Microscopia Eletrônica. Técnicas básicas para Microscopia Eletrônica – Rio de Janeiro, 1992.

8. Hamilton VL, Du Plessis J, Van Wyk CJ. A new scanning electron microscope (SEM) method for the determination of particle size in parenteral fat emulsions. J Micros 1987;145 (Pt 3):347-9.

9. Hayat MA. Principles and Techniques of Electron Microscopy – Biological Applications – Third Edition. Crc Press. Inc. Raton, Flórida – 1993. p. 113.

10. Silvers KM, Winterbourn CC. The destabilization of total parenteral nutrition by heparin How real is the problem? N Z Med J 1997 Oct 10;110(1053):386.

Silvers KM, Darlow BA, Winterbourn CC. Pharmacoligic levels of heparim do not destabilize neonatal parenteral nitrition. J.PEN 1998;22:311-4.

11. Waitzberg DL. Nutrição oral, enteral e parenteral na prática clínica. Volumes 1 e 2, 3ª ed. São Paulo – Editora Atheneu , 2000.

vamos nos resultados obtidos nas análises em triplicatas das amostras 4, 5, 7, 8, 10 e 11, nas quais esse componen-te supostamente influenciou na floculação, causando co-alescência somada a adição de heparina em concentrações como de 30% na amostra 12;

• A estabilidade cálcio/fósforo é maior com concentrações maiores de soluções de aminoácidos, pela formação comple-xa solúvel com ambos, diminuindo a quantidade desses íons livres, que interferiram em menor escala nas formulações, e conseqüentemente na solução final após a adição da EL;

• A adição de heparina em misturas 3 em 1 na concentração de 1 UI/mL contendo cálcio para manutenção/reposi-

ção e não em concentrações mais elevadas é estável até 24/30 horas;

• A adição de heparina na concentração de 0,2 mL/mL em misturas 3 em 1 com CANs elevados é proibitiva de preparação;

• A adição de eletrólitos deve ser sempre que possível a de manutenção e não de reposição;

• A adição de L-alanil L-glutamina em concentrações reco-mendadas11 na literatura são “protetoras“ dos lipossomas das ELs, estudadas em igual observação para as misturas 3 em 1 contendo TCM/TCL ou TCL puro, contribuindo para sua estabilidade.