34
INF-103: Avaliação de Desempenho INF-103: Avaliação de Desempenho Carlos Alberto Kamienski ([email protected]) UFABC Teoria das Filas Teoria das Filas

INF-103: Avaliação de Desempenho Carlos Alberto Kamienski ( [email protected] ) UFABC Teoria das Filas

Embed Size (px)

Citation preview

  • Slide 1
  • INF-103: Avaliao de Desempenho Carlos Alberto Kamienski ( [email protected] ) UFABC Teoria das Filas
  • Slide 2
  • 2 Modelagem analtica Possibilita explorar um modelo sobre o qual se tem controle Modelos matemticos simplificados geram resultados rapidamente Tcnica barata: lpis, papel e crebro Muitos pressupostos e abstraes so feitas Pode-se perder o comportamento original Exemplo: sistemas de filas
  • Slide 3
  • 3 Teoria das Filas Prov modelos para prever o comportamento de sistemas que oferecem servio para demandas com taxas de chegadas aleatrias Utilizada para modelar sistemas onde: Clientes chegam para ser atendidos Esperam sua vez de ser atendidos So atendidos e vo embora Sistema telefnico: A. K. Erlang - 1909
  • Slide 4
  • 4 Resultados Possveis Tempo de espera de um cliente Quanto tempo um cliente espera no banco Quanto tempo um pacote passa em um roteador Acmulo de clientes na fila Qual o tamanho mdio da fila do banco Como a fila do roteador se comporta Tempo ocioso/ocupado dos servidores Quanto tempo o caixa fica livre Qual a utilizao do roteador Taxa de sada (vazo) Quantos clientes so atendidos por hora Quantos pacotes so encaminhados por segundo
  • Slide 5
  • 5 Sistemas de Filas
  • Slide 6
  • 6 Modelo de Filas Bsico Modela qualquer servio com: Um ou mais servidores Uma rea de espera (buffer) Clientes chegam para receber um servio Um cliente que no encontra um servidor livre espera na fila (buffer) Chegadas Sadas BufferServidor(es) Na filaEm Servio
  • Slide 7
  • 7 Caractersticas de um Modelo de Filas Processo de chegada Distribuio do tempo de servio Nmero de servidores Capacidade do sistema Tamanho da populao Disciplina de servio
  • Slide 8
  • 8 Processo de Chegada Normalmente um processo estocstico Necessrio saber a distribuio de probabilidade do tempo entre chegadas Normalmente Exponencial Processo Estacionrio no varia A distribuio de probabilidade que descreve a chegada no varia com o tempo ( independente do tempo) Processo No Estacionrio varia A distribuio varia com o tempo (depende do tempo)
  • Slide 9
  • 9 Processo de Chegada tempo decorrido entre as chegadas dos clientes n e n+1 um processo estocstico Tempos entre chegadas so identicamente distribudos e tm a mesma mdia Taxa de chegada =
  • Slide 10
  • 10 Tempo de Servio Tempo que cada cliente leva para ser atendido Ex: tempo que o cliente do banco passa no caixa Ex: tempo para o roteador encaminhar um pacote Semelhante ao processo de chegada Distribuio de probabilidade para o tamanho das filas depende de: o processo de chegada o tempo de servio
  • Slide 11
  • 11 Tempo de Servio tempo que o cliente n passa no servidor um processo estocstico Tempos de servio so identicamente distribudos com uma mdia comum Taxa de servio:
  • Slide 12
  • 12 Nmero de Servidores Representa situaes com filas nicas para mltiplos servidores Exemplos: supermercados, bancos, etc. Computadores multiprocessados so exemplos de mltiplos servidores Em redes, freqentemente h somente 1 servidor (um roteador, hub, switch, etc.) Infinitos servidores tambm so possveis Ex: sistema onde o cliente tem atendimento imediato Ex: um self service
  • Slide 13
  • 13 Capacidade do Sistema Em alguns sistemas de filas, existe limitao fsica da quantidade de espao de buffer Ex: memria de um roteador Ex: lista de espera de companhias areas Ex: nmero de cadeiras na sala de espera Se um cliente chega e no h espao no buffer, ele tem que desistir do servio Ex: o pacote descartado! (Drop Tail) Freqentemente usa-se capacidade infinita A anlise mais fcil quando a fila grande
  • Slide 14
  • 14 Tamanho da Populao Nmero total de clientes que podem entrar no sistema Ex: pacotes que podem chegar no roteador Quando o nmero grande (ou desconhecido) mais fcil considerar tamanho infinito
  • Slide 15
  • 15 Disciplina de Servio Modo como os clientes so selecionados para receber o servio quando h uma fila Ou seja, em redes, maneira como os pacotes so retirados da fila para serem transmitidos Disciplinas comuns: FCFS: First Come, First Served (FIFO) LCFS: Last Come, First Served (LIFO) Prioridade: Clientes com mais prioridade primeiro Circular: Um pouquinho de cada tipo (Round Robin)
  • Slide 16
  • 16 Notao de Kendall A/S/NS/B/K/SD A,S = Tempo entre chegadas, tempo de servio M = Exponencial (Markov, Memoryless) Ek = Erlang Hk = Hyperexponential D = Determinstico G = Geral (para todas as distribuies) NS = Nmero de servidores B = Nmero de buffers (lugares na fila) K = Tamanho da populao SD = Disciplina de Servio FCFS,FCLS Defaults B=, K=, SD=FCFS M/M/1 = M/M/1/ / /FCFS
  • Slide 17
  • 17 Descrio das filas: Exemplos M/M/1: chegadas Poisson, tempo de servio exponencial, 1 servidor, buffer infinito, FCFS M/M/m: Igual ao anterior, com m servidores M/G/1: chegadas Poisson, tempo de servio geral, 1 servidor, buffer infinito
  • Slide 18
  • 18 Variveis Gerais = (Lambda) Taxa mdia de chegada = (Tau) Tempo entre chegadas s = Tempo mdio de servio = (Mi) Taxa de servio (vazo ou taxa de sada) = 1/s n = Nmero mdio de clientes no sistema n q = Nmero mdio de clientes na fila n s = Nmero de clientes recebendo servio W = Tempo mdio de resposta (fila + servio) W q = Tempo mdio de espera na fila = (R) Carga (ou fator de utilizao) = s
  • Slide 19
  • 19 A Chegada e o Comportamento da Fila n=(rea abaixo da curva)/T t=Tempo n=usurios no sistema 1 2 3 0 t1t1 1 t2t2 2 t4t4 3 t3t3 1 t5t5 4 t6t6 2 t7t7 3 T 4
  • Slide 20
  • 20 Lei de Little o nmero mdio de elementos no sistema igual taxa de chegada vezes o tempo de permanncia no sistema n = W Lei de Little funciona para sistemas no estado estvel n Tempo Total (fila+servio)= W
  • Slide 21
  • 21 Lei de Little Exemplo 1 Sistema de Telefonia Taxa de chegada = 100 chamadas por minuto Durao das chamadas (permanncia): s = 1/ = 2 minutos Nmero mdio de chamadas simultneas n = s = 100 x 2 = 200 chamadas
  • Slide 22
  • 22 Lei de Little - Exemplo
  • Slide 23
  • 23 Lei de Little Exemplo 2 Uma Loja no Shopping Taxa de chegada = 10 usurios por hora Tempo que passa dentro da loja (permanncia): s = 1/ = 30 minutos = hora Nmero mdio clientes dentro da loja n = s = 10 x = 5 clientes
  • Slide 24
  • 24 Lei de Little Exemplo 3 Um roteador Taxa de chegada = 3000 pacotes por segundo Tempo que demora para ser encaminhado (servio): s = 1/ = 2ms = 0.002 segundo Nmero mdio de pacotes dentro do roteador n = s = 3000 x 0.002 = 6 pacotes
  • Slide 25
  • 25 Resultados Gerais para Filas M/M/1 M/M/1 um tipo de fila muito usada na prtica Probabilidade de haver exatamente n clientes no sistema: p n = (1 ) n carga do sistema = Probabilidade de haver n ou mais clientes no sistema: p n = n Nmero mdio de clientes no sistema: E[n] = (1 ) Tempo mdio de resposta (permanncia no sistema) W = (1/ / (1 )
  • Slide 26
  • 26 Filas M/M/1 - Exemplo Dados de um Roteador: Taxa de chegadas = 400 pacotes por segundo Roteador leva 2 ms para encaminhar pacotes Calcular usando uma fila M/M/1: Nmero mdio de pacotes na fila Probabilidade de descarte no caso de haver espao para 10 pacotes Qual a probabilidade de um pacote encontrar a fila vazia? Quanto espao na fila seria necessrio para que a taxa de perda fosse inferior a 0,1%?
  • Slide 27
  • 27 Filas M/M/1 Exemplo 1/2 = 400 pps s = 0.002 s = 1/s = 1/0.002 = 500 pps = / = 0,8 fila Nmero mdio de pacotes na fila: E[n] = (1 ) = pacotes no sistema (roteador) Assumindo que tem um pacote sendo servido, temos n q =E[n] -1 = (1 ) 1 = 3 Probabilidade de descarte (buffer para 10 pacotes): P(mais que 11 pacotes no roteador) p n = n p 12 = 12 = 12 = 0,0687
  • Slide 28
  • 28 Filas M/M/1 Exemplo 2/2 Probabilidade de uma fila vazia P[fila vazia] = P[um ou zero pacote em atendimento] = p n = (1 ) n P[fila vazia] = (1 - 0.8) 0 + (1 - 0.8) 1 = 0.2 + 0.2*0.8 = 0.36 Buffers para uma perda mxima de 0,01% (0,0001) n < 10 -4 n > log 10 -4 n > log(10 -4 )/log(0,8) n > 30.95 Resposta: n>31 buffer para 30 pacotes
  • Slide 29
  • 29 E se a chegada no for Poisson? Com chegadas Poisson, a agregao de vrias fontes de trfego suavizada, de acordo com o Teorema Central do Limite (TCL) Quando os tempos em chegadas seguem uma distribuio de cauda pesada (ex: Pareto), a convergncia para o TCL muito mais lenta!
  • Slide 30
  • 30 Auto-Similaridade Fenmeno de preservar as principais caractersticas de alguma entidade quando observada em escalas distintas (de tempo) fractalauto-similar Se a realizao de um processo estocstico (srie temporal) agregada em escalas de tempo distintas e mantm suas propriedades estatsticas mais importantes (ex: momentos de primeira ou segunda ordem), ela considerada um processo fractal ou auto-similar
  • Slide 31
  • 31 Auto-Similaridade Existem evidncias de comportamento auto-similar no trfego de redes de computadores Conseqncia: filas dos roteadores trabalham com altos nveis de ocupao Pela presena de trfego em rajadas em vrias escalas de tempo Causando alta taxa de perda de pacotes e atraso fim a fim Gerando baixo ndice de utilizao dos enlaces de comunicao Conhecer a fundo esse fenmeno vital para o gerenciamento de redes e planejamento de capacidade
  • Slide 32
  • 32 Ocupao das filas
  • Slide 33
  • 33 Trfego Auto-Similar
  • Slide 34
  • 34 Trfego Auto-Similar
  • Slide 35
  • INF-103: Avaliao de Desempenho Carlos Alberto Kamienski ( [email protected] ) UFABC Teoria das Filas