19
5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15 1 Modelagem de Sinapses Há dois tipos de sinapses, químicas e elétricas. Vamos começar considerando apenas a sinapse química, que é tida como a mais importante segundo a maioria dos neurocientistas. Uma sinapse química padrão conecta o axônio do neurônio que envia o estímulo, chamado de neurônio pré-sináptico, a um dendrito do neurônio que recebe o estímulo, chamado de neurônio pós-sináptico (veja a figura abaixo). Quando um potencial de ação chega ao terminal do axônio do neurônio pré-sináptico, uma série de eventos acontece: 1. Canais de cálcio na membrana do terminal pré-sináptico se abrem e íons de Ca 2+ entram na célula pré-sináptica. 2. Os íons de Ca 2+ provocam a fusão de vesículas que contêm neurotransmissores com a membrana pré-sináptica, liberando esses neurotransmissores na fenda sináptica. 3. Depois que as vesículas liberam seu conteúdo, elas retornam ao meio intracelular do neurônio pré-sináptico e são “recarregadas” com neurotransmissores para ser usadas novamente no futuro.

Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

Embed Size (px)

Citation preview

Page 1: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

1

Modelagem de Sinapses

Há dois tipos de sinapses, químicas e elétricas. Vamos começar considerando apenas a

sinapse química, que é tida como a mais importante segundo a maioria dos neurocientistas.

Uma sinapse química padrão conecta o axônio do neurônio que envia o estímulo, chamado

de neurônio pré-sináptico, a um dendrito do neurônio que recebe o estímulo, chamado de

neurônio pós-sináptico (veja a figura abaixo).

Quando um potencial de ação chega ao terminal do axônio do neurônio pré-sináptico, uma

série de eventos acontece:

1. Canais de cálcio na membrana do terminal pré-sináptico se abrem e íons de Ca2+

entram na célula pré-sináptica.

2. Os íons de Ca2+ provocam a fusão de vesículas que contêm neurotransmissores com

a membrana pré-sináptica, liberando esses neurotransmissores na fenda sináptica.

3. Depois que as vesículas liberam seu conteúdo, elas retornam ao meio intracelular do

neurônio pré-sináptico e são “recarregadas” com neurotransmissores para ser usadas

novamente no futuro.

Page 2: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

2

4. Os neurotransmissores liberados na região do meio extracelular entre os dois

terminais sinápticos – chamada de fenda sináptica – se difundem pela fenda

sináptica e se ligam temporariamente a receptores na membrana do dendrito do

neurônio pós-sináptico.

5. As ligações entre os neurotransmissores e os receptores provocam aberturas de

canais na membrana pós-sináptica por onde íons podem passar provocando

alterações no potencial de membrana do neurônio pós-sináptico.

6. A ligação dos neurotransmissores com os receptores de membrana é um processo

muito rápido (de menos de 1 ms) após o qual os neurotransmissores são liberados. A

liberação é feita por células gliais especializadas, denominadas “transportadoras”.

As transportadoras removem os neurotransmissores da membrana pós-sináptica e os

transportam ao neurônio pré-sináptico para que eles sejam re-armazenados nas suas

vesículas.

Há dois tipos básicos de receptores na membrana do neurônios pós-sináptico: receptores

ionotrópicos e receptores metabotrópicos.

Os receptores ionotrópicos são canais iônicos que se abrem quando se ligam a um

neurotransmissor e deixam passar íons para dentro ou para fora do neurônio pós-sináptico.

Os receptores metabotrópicos serão descritos mais adiante.

Page 3: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

3

Dependendo do tipo de neurotransmissor, quando ele se liga a um receptor ionotrópico

isso pode provocar uma pequena despolarização local na membrana (pela entrada de carga

positiva) ou uma pequena hiperpolarização local na membrana (pela entrada de carga

negativa).

Uma despolarização local na membrana é chamada de potencial pós-sináptico excitatório e

uma hiperpolarização local é chamada de potencial pós-sináptico inibitório. Eles

costumam ser indicados por suas siglas em inglês: EPSP (excitatory post-synaptic

potential) e IPSP (inhibitory post-synaptic potential).

Um neurônio pré-sináptico sempre libera o mesmo tipo de neurotransmissor: quando ele

provoca uma despolarização local, o neurônio pré-sináptico é chamado de excitatório e a

sinapse é dita excitatória; quando ele provoca uma hiperpolarização local, o neurônio pré-

sináptico é chamado de inibitório e a sinapse é dita inibitória.

A Figura abaixo ilustra um potencial pós-sináptico excitatório e um potencial pós-

sináptico inibitório.

Page 4: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

4

No caso dos receptores metabotrópicos, sua ligação com neurotransmissores não provoca a

abertura de canais iônicos de forma direta, mas de forma indireta porque os receptores

metabotrópicos não formam canais iônicos. Quando um neurotransmissor se liga a um receptor metabotrópico, este libera proteínas

chamadas de “proteínas G” no meio intracelular. As proteínas G se ligam a moléculas

sinalizadoras – chamadas de segundos mensageiros – que desencadeiam uma sequência de

eventos bioquímicos no interior do neurônio pós-sináptico.

Essa sequência pode causar diversos fenômenos, como a abertura de canais iônicos, a

alteração conformacional (sem a abertura de canais) de proteínas de membrana e de

moléculas transportadoras e até alterações na expressão gênica.

As modificações causadas pela ligação de um neurotransmissor com um receptor

metabotrópico ocorrem mais lentamente e são mais duradouras do que as modificações

causadas pela ligação de um neurotransmissor com um receptor ionotrópico. Além disso,

elas podem ocorrer em locais mais distantes da região da sinapse.

A figura abaixo ilustra esquematicamente o funcionamento dos receptores ionotrópicos e

metabotrópicos.

Page 5: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

5

Combinações de potenciais pós-sinápticos excitatórios e inibitórios no tempo e no espaço

em um mesmo neurônio podem produzir fenômenos de somação temporal e espacial. A

figura abaixo ilustra isso.

Os potenciais pós-sinápticos (excitatórios ou inibitórios) têm durações muito maiores que

a de um potencial de ação. Um potencial pós-sináptico típico tem uma fase de subida que

leva de 1 a 2 ms e um tempo de decaimento mais lento, que leva de 3 a 5 ms. A figura a

seguir ilustra um potencial pós-sináptico típico.

O principal neurotransmissor excitatório do cérebro é o glutamato e o principal

neurotransmissor inibitório é o GABA (ácido γ-aminobutírico). Os dois podem atuar tanto

sobre receptores ionotrópicos como metabotrópicos.

Page 6: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

6

Os principais receptores ionotrópicos para o glutamato são os chamados receptores AMPA

e NMDA. Eles recebem estes nomes por causa das drogas agonistas que os ativam (ácido

α-amino-3-hidroxi-metil-4-isoxazolepropriônico, ou AMPA; e N-metil-D-aspartato, ou

NMDA). Tanto os receptores AMPA como NMDA, quando ligados ao glutamato, atuam

como canais iônicos para cátions em geral (Na+, Ca2+, etc), embora o receptor NMDA seja

mais permeável ao Ca2+ do que o receptor AMPA. As correntes resultantes (para dentro da

célula) têm potenciais de reversão em torno de 0 mV.

A corrente iônica associada ao receptor AMPA é ativada e inativada muito rapidamente. Já

a corrente associada ao receptor NMDA é ativada mais lentamente e a sua inativação é

muito mais lenta. Além disso, a condutância dos receptores NMDA tem uma dependência

com a voltagem mais complicada e o seu comportamento não pode ser reproduzido pelo

modelo padrão de Hodgkin-Huxley. Para modelá-la, é necessário modificar um pouco o

modelo de Hodgkin-Huxley.

O neurotransmissor inibitório GABA ativa dois tipos de receptores, chamados de GABAA

e GABAB. O receptor GABAA é ionotrópico e constitui um canal iônico para o Cl− cuja

condutância se ativa e inativa de maneira relativamente rápida. Já o receptor GABAB é

metabotrópico e produz um aumento mais lento e duradouro da condutância ao K+. As

correntes resultantes (para dentro ou para fora da célula) têm potenciais de reversão em

torno de −75 mV.

Estudos experimentais com o uso da técnica de patch-clamp (ver aula 10), que permite o

registro da atividade de um único canal, mostram que os potenciais pós-sinápticos são

eventos macroscópicos resultantes do comportamento de uma população de canais iônicos

que transitam rapidamente entre os seus estados condutor e o não condutor.

Por causa disso, a geração dos potenciais pós-sinápticos pode ser bem modelada pelo

formalismo de Hodgkin e Huxley, que descreve o comportamento temporal de voltagens e

correntes em termos de alterações em condutâncias (a única exceção é condutância dos

receptores NMDA). Como se trata de sinapses, essas condutâncias são chamadas de

condutâncias sinápticas.

Page 7: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

7

Segundo o formalismo de Hodgkin-Huxley, a corrente sináptica pela membrana do

neurônio pós-sináptico produzida após a chegada de um potencial de ação ao terminal do

neurônio pré-sináptico é dada por

(1)

onde gsin(t) é a condutância sináptica (que descreve a variação na condutância dos canais

sinápticos na membrana do neurônio pós-sináptico), Vpós(t) é a voltagem de membrana do

neurônio pós-sináptico e Esin é o potencial de reversão (equilíbrio) da sinapse.

Existem várias maneiras de modelar a condutância sináptica gsin(t). Uma maneira muito

popular em modelos de redes de neurônios é assumir que gsin(t) é uma função pré-

determinada de t que vale 0 para t < t0, onde t0 é o instante da chegada do potencial de ação

ao terminal pré-sináptico, e é positiva para t > t0:

(2)

onde 𝑔sin é uma constante cujo valor é o da condutância sináptica máxima para o tipo de

sinapse modelada e a função z(t) é escolhida de forma a reproduzir a variação temporal da

condutância: subida em direção ao valor de pico igual a 1 (para que gsin(tpico) = 𝑔sin)

seguida por decaimento em direção a 0.

As formas funcionais pré-determinadas mais usadas para a função z(t) são:

a) Decaimento exponencial simples:

(3)

que corresponde a um crescimento instantâneo da condutância sináptica de 0 para

𝑔sin em t0 seguido por um decaimento exponencial com constante de tempo τ.

ó

Page 8: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

8

b) Função alfa (assim chamada porque Rall lhe deu este nome em 1967):

(4)

onde k é uma constante de normalização escolhida para que o valor máximo de z(t)

seja 1. O instante em que z(t) dada por (4) atinge o pico é tpico = t0 + τ, de maneira

que o fator k deve ser e (mostre como exercício). Logo, a função alfa pode ser

reescrita como:

(5)

c) Diferença de duas exponenciais:

(6)

onde τs e τd são constantes de tempo que controlam a subida e a descida da

condutância, respectivamente, e k é um fator de normalização para que o valor

máximo de z(t) seja 1. O instante em que z(t) dada por (6) atinge o pico é,

(7)

de maneira que o fator de normalização é (mostre como exercício):

(8)

A figura abaixo mostra comportamento típicos dessas três formas funcionais para z(t). No

caso do decaimento exponencial simples, τ = 3 ms; no caso da função alfa, τ = 1 ms; e no

caso da diferença de duas exponenciais, τd = 3 ms e τs = 1 ms.

Page 9: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

9

No caso em que o neurônio pré-sináptico emite um trem de disparos de potenciais de ação,

produzindo uma sequência correspondente de potenciais pós-sinápticos no neurônio pós-

sináptico, neste esquema em que gsin(t) é uma função pré-determinada de t a condutância

sináptica do neurônio pós-sináptico é dada pela soma das funções individuais gsin(t)

resultantes de cada disparo pré-sináptico:

(9)

onde ti são os instantes de chegada dos disparos do neurônio pré-sináptico no terminal pré-

sináptico. Um exemplo de resposta a um trem de disparos pré-sinápticos é dado na figura

abaixo. No exemplo da figura, as condutâncias sinápticas individuais são descritas por

funções alfa (equação 5) com τ = 10 ms e os instantes de chegada dos disparos pré-

sinápticos ao terminal pré-sináptico são 20, 40, 60 e 80 ms.

Page 10: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

10

Os instantes de tempo em que as funções fixas gsin(t) começam a crescer são os instantes

de chegada dos potenciais de ação ao terminal pré-sináptico e não os instantes de emissão

dos potenciais de ação pelo neurônio pré-sináptico. A função disso é modelar o tempo de

propagação do potencial de ação pelo axônio do neurônio e outros processos que possam

ocorrer no terminal sináptico retardando o início do efeito do disparo pré-sináptico sobre o

neurônio pós-sináptico.

A combinação dos atrasos de condução e sináptico pode ser de vários milissegundos e,

portanto, comparável à duração de um potencial pós-sináptico. Por causa disso, muitos

modelos de redes de neurônios, principalmente para regiões extensas do cérebro, incluem

atrasos na resposta de neurônios pós-sinápticos a disparos dos neurônios pré-sinápticos a

eles.

Foi mencionado acima que a condutância dos canais formados pelos receptores NMDA

(canais NMDA) tem um comportamento diferente das condutâncias dos canais formados

pelos receptores AMPA e GABA. Ela depende da voltagem do neurônio pós-sináptico, o

que faz com que a equação (1), em que gsin só depende de t, não seja apropriada para

modelá-la.

A dependência da condutância dos canais NMDA com a voltagem Vpós do neurônio pós-

sináptico é devida ao fato de que quando Vpós está próxima do seu valor de repouso os

receptores NMDA são bloqueados por íons de magnésio (Mg2+). Quando o neurônio pós-

sináptico é despolarizado, esses íons de magnésio são removidos dos receptores e

permitem a passagem de carga elétrica.

Jahr e Stevens (1990) propuseram, a partir de um ajuste de curvas experimentais, uma

expressão para descrever a fração u(Vpós) de canais NMDA que não estão bloqueados por

íons de magnésio em função de Vpós que tornou-se amplamente utilizada em modelos

computacionais. A expressão deles é:

Page 11: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

11

(10)

onde a = 0,062 mV-1, b = 3,57 mM e [Mg2+] é a concentração extracelular de magnésio.

Em geral, usa-se um valor pré-definido para [Mg2+], por exemplo 1 mM.

A corrente sináptica pelos canais NMDA pode, portanto, ser modelada pela expressão,

(11)

com gNMDA(t) dada por (2). Os canais NMDA conduzem íons de cálcio (Ca2+) e cátions

monovalentes (principalmente Na+).

Note que a abertura dos canais NMDA depende tanto da despolarização do neurônio pré-

sináptico (o que faz com que ele emita um potencial de ação) como da despolarização do

neurônio pós-sináptico (para que haja a retirada dos íons de magnésio). Portanto, os

receptores NMDA atuam como detectores de coincidência de atividade nos neurônios pré-

e pós-sináptico. Isso faz com que os receptores NMDA tenham importante papel em

mecanismos de modificação temporal da eficácia sináptica, ou plasticidade sináptica,

como será visto em aulas futuras.

Uma maneira alternativa de modelar sinapses que não assume funções pré-fixadas consiste

em usar algum esquema cinético. Um exemplo simples será dado aqui.

Como feito anteriormente, vamos supor que a condutância de uma sinapse é representada

pela condutância máxima da sinapse (quando todos os canais sinápticos estão abertos) 𝑔sin

multiplicada pela fração de canais sinápticos abertos, s(t), onde s é uma variável com valor

entre 0 e 1.

óó

ó ó

Page 12: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

12

A dependência temporal de s é governada pela dinâmica de liberação de

neurotransmissores pelo neurônio pré-sináptico após a chegada de um potencial de ação ao

seu terminal e pela dinâmica de ligação desses neurotransmissores com os receptores

localizados no neurônio pós-sináptico.

Essa dinâmica pode ser modelada por um modelo cinético de dois estados (ver, por

exemplo, Destexhe et al., 1998)

,TRTR

β

α

→+ (12)

onde R representa a quantidade de receptores não-ligados, T representa a quantidade de

transmissores liberada, TR representa a quantidade de receptores ligados a transmissores e

α e β representam as taxas de transição entre os dois estados do sistema.

Este modelo implica que a concentração de receptores ligados a transmissores obedece à

seguinte equação diferencial (considerando que existe um grande número de canais

iônicos e desprezando flutuações estatísticas):

(13)

As concentrações de R e de TR devem obedecer à seguinte equação de conservação:

onde [Rtot] é a concentração total de receptores. Dividindo a equação acima por [Rtot],

(14)

onde r é a fração de receptores não ligados e s é a fração de receptores ligados, que é igual

à fração de canais sinápticos abertos definida acima. Dividindo (13) por [Rtot] e usando a

equação (14), chega-se à seguinte equação diferencial para s(t):

Page 13: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

13

(15)

Esta equação pode ser resolvida exatamente a partir da hipótese de que a liberação de

neurotransmissores ocorre em pulsos quadrados e idênticos disparados sempre que o

potencial no terminal pré-sináptico ultrapassa um dado limiar (por exemplo, 0 mV).

Considerando que um pulso se inicia em t0 e vai até t1 (duração igual a t1 − t0) e que a sua

amplitude é constante e igual a Tmax, podemos dividir o pulso em duas fases distintas: (a)

durante um pulso; e (b) após um pulso. A equação (15) pode ser resolvida analiticamente

para cada uma dessas duas fases. Seja:

a) Durante um pulso (t0 < t < t1): [T] = Tmax;

b) Após um pulso (t > t1): [T] = 0.

Durante o pulso – caso (a) –, a equação (15) fica,

Dividindo-se ambos os lados por (αTmax+β),

Definindo,

(16)

e

( )βατ

+≡

max

1T , (17)

pode-se reescrever a equação (15) como,

Page 14: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

14

(18)

Esta equação tem como solução (lembre-se que ela é válida para t0 < t < t1):

(19)

Após o pulso – caso (b) –, a equação (15) torna-se,

(20)

cuja solução (lembre-se que ela é válida para t > t1) é:

(21)

Segundo este esquema, a condutância sináptica é modelada pela equação,

(22)

e para cada fase de um pulso (durante ou depois dele) s(t) obedece, ou à equação (19), ou à

equação (21).

Da mesma forma, a corrente sináptica associada à condutância acima é dada por:

(23)

onde Vpós é o potencial de membrana do neurônio pós-sináptico, Esin é o potencial de

reversão da corrente sináptica e gsin(t) é a condutância da sinapse dada por (22). Para cada

fase de um pulso, ela é modelada pelas equações (19) ou (21).

ó

Page 15: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

15

A aproximação de tratar as quantidades de neurotransmissores liberadas como pulsos

quadrados idênticos simplifica bastante a resolução numérica de um sistema de neurônios

acoplados sinapticamente. Ao invés de ter que resolver uma equação diferencial como a

(15) para cada sinapse, basta calcular numericamente a equação (19) ou a (21),

dependendo da fase do pulso em que se esteja, e isto envolve basicamente o cálculo de

exponenciais (que podem ser pré-calculadas e tabeladas para facilitar a eficiência

computacional). É por isso que o uso de funções fixas para modelar as condutâncias

sinápticas é popular entre modeladores de redes de neurônios.

Para maiores detalhes sobre como implementar numericamente o modelo descrito pelas

equações (19) e (21), sugere-se o artigo de Destexhe et al. (1998).

Uma simulação de uma sinapse excitatória entre dois neurônios modelada pelas equações

(19) e (21) foi feita por Giugliano e Arsiero (2006). Uma figura desse artigo é reproduzida

abaixo, mostrando que o modelo captura as propriedades de saturação e somação temporal

quando ocorrem múltiplos eventos pré-sinápticos.

Os modelos de sinapses mostrados acima não incluem efeitos do passado das atividades

dos neurônios pré- e pos-sináptico sobre a eficácia sináptica. Em outras palavras, a

amplitude do potencial pós-sináptico é independente de terem havido ou não no passado

recente outros potenciais sinápticos gerados na mesma sinapse.

Resultados experimentais mostram que muitas sinapses possuem o que se chama de

plasticidade sináptica de curta duração (para diferenciar de plasticidade sináptica de

longa duração, que tem a ver com aprendizado e memória e que será discutida mais

tarde).

Page 16: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

16

A plasticidade sináptica de curta duração refere-se ao aumento, chamado de facilitação,

ou à diminuição, chamada de depressão, da amplitude do potencial pós-sináptico durante

uma ativação sináptica repetitiva. Ele é chamada de curta duração porque ocorre em

escalas de tempo de milissegundos a minutos, enquanto que a escala de tempo da

plasticidade sináptica de longa duração é bem maior, podendo durar a vida inteira.

A figura abaixo, adaptada de Markran et al. (1998), mostra exemplos de depressão e

facilitação sináptica em neurônios corticais. Disparos repetidos do neurônio pré-sináptico

podem levar à diminuição da amplitude dos potenciais pré-sinápticos (figura da esquerda)

ou ao aumento dessa amplitude (figura da direita). A figura da direita também mostra

porque esse tipo de plasticidade é de curta duração: um disparo pré-sináptico ocorrido um

curto tempo após a sequência inicial provoca um potencial pós-sináptico de amplitude

reduzida em relação ao potencial aumentado do fim da sequência inicial.

Um modelo simples para depressão sináptica é o proposto por Abbott et al. (1997).

Segundo esse modelo, a condutância de uma sinapse é modelada por

(24)

onde z(t) é uma variável que controla a eficácia sináptica. O valor de repouso dessa

variável é tomado como 1, mas sempre que ocorrer uma transmissão sináptica esse valor é

reduzido por um fator constante f (f < 1),

.fzz→

Após a redução, z(t) retorna exponencialmente ao seu valor de repouso com uma constante

de tempo τrec,

Page 17: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

17

).(1)(rec tz

dttdz

−=τ (25)

Caso o intervalo entre dois disparos seja grande o suficiente, a variável de controle da

eficácia sináptica voltará ao seu valor de repouso. Com a diminuição do intervalo entre

disparos, isto é, com o aumento da frequência dos potenciais de ação pré-sinápticos, a

variável de controle sofre forte redução. Isto implica em potenciais pós-sinápticos menores

e na consequente depressão pós-ativação.

Este mesmo modelo também pode ser usado para modelar a facilitação sináptica, basta

fazer f > 1. Normalmente, usam-se constantes de tempo τrec diferentes para depressão e

facilitação.

Resultados de simulações da mesma sinapse entre dois neurônios do exemplo anterior

(Giugliano e Arsiero, 2006) sem plasticidade sináptica de curta duração (esquerda), com

depressão sináptica (meio) e com facilitação sináptica (direita) estão mostrados na figura

abaixo.

Com relação às sinapses elétricas, pode-se modelá-las como resistências elétricas

conectando os citoplasmas de dois neurônios. A figura abaixo ilustra o circuito equivalente

correspondente a esse modelo. A sinapse elétrica é modelada como uma junção

comunicante (gap junction) conectando dois compartimentos modelados segundo o

esquema de Hodgkin-Huxley.

Page 18: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

18

A conexão entre os citoplasmas das duas células é feita por uma resistência ôhmica RGJ.

As resistências variáveis modelando os canais ativos das duas células não estão mostradas

para não sobrecarregar a figura. A figura também ilustra o processo de estimulação de uma

célula por injeção de corrente externa, Iinj, mostrando que parte dela pode escapar pela

junção comunicante e ir para a outra célula.

A corrente passando pela junção comunicante é dada por

(26)

e o potencial de membrana do neurônio 2 pode ser relacionado ao potencial de membrana

do neurônio 1 por um coeficiente de acoplamento k:

V2 = kV1. (27)

Referências

1. Abbott, L. F., Varela, J. A., Sen, K. and Nelson, S. B., Synaptic depression and cortical

gain control. Science, 275:220-224, 1997.

2. Destexhe, A., Mainen, Z. F. and Sejnowski, T. J., Kinetic Models of Synaptic

Transmission. In: Koch, C. and Segev, I. (eds.), Methods in Neural Modeling: From

Ions to Networks, 2nd. Edition. Cambridge, MA: MIT Press, 1998, pp. 1-25.

Page 19: Modelagem de Sinapses - sisne.org | Laboratório de ...sisne.org/Disciplinas/PosGrad/IntrodNeuroComput/aula15.pdf · 5915756 – Introdução à Neurociência Computacional – Antonio

5915756 – Introdução à Neurociência Computacional – Antonio Roque – Aula 15

19

3. Giugliano, M. and Arsiero, M., Modeling of biological neuronal networks. In: Akay,

M. (ed.), Wiley Encyclopedia of Biomedical Engineering, New York, Wiley, 2006.

4. Jahr, C. E. and Stevens, C. F., A quantitative description of NMDA receptor channel

kinetic behavior. Journal of Neuroscience, 10:1830-1837, 1990.

5. Markran, H., Wang, Y. and Tsodyks, M., Differential signaling via the same axon of

neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the

USA, 95:5323-5328, 1998.