66
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA PRISCILA REGIS MATOS PEDREIRA INFLUÊNCIA DA INCORPORAÇÃO DE ÓXIDO DE BÁRIO E ZIRCÔNIA NAS PROPRIEDADES FÍSICO-QUÍMICAS DE INFILTRANTES EXPERIMENTAIS E COMERCIAL PIRACICABA 2019

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE … · 2019. 5. 3. · de Odontologia de Piracicaba da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • UNIVERSIDADE ESTADUAL DE CAMPINAS

    FACULDADE DE ODONTOLOGIA DE PIRACICABA

    PRISCILA REGIS MATOS PEDREIRA

    INFLUÊNCIA DA INCORPORAÇÃO DE ÓXIDO DE BÁRIO E ZIRCÔNIA NAS PROPRIEDADES FÍSICO-QUÍMICAS DE INFILTRANTES EXPERIMENTAIS E

    COMERCIAL

    PIRACICABA

    2019

  • PRISCILA REGIS MATOS PEDREIRA

    INFLUÊNCIA DA INCORPORAÇÃO DE ÓXIDO DE BÁRIO E ZIRCÔNIA NAS PROPRIEDADES FÍSICO-QUÍMICAS DE INFILTRANTES EXPERIMENTAIS E

    COMERCIAL

    Orientadora: Prof.ª Dr.ª Giselle Maria Marchi Baron

    PIRACICABA 2019

    Dissertação apresentada à Faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestra em Clínica Odontológica, na Área de concentração em Dentística.

    ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA PRISCILA REGIS

    MATOS PEDREIRA E ORIENTADA PELA

    PROFA. DRA. GISELLE MARIA MARCHI

    BARON.

  • - ORCID: 0000-0003-4398-9085

    - Currículo Lattes: http://lattes.cnpq.br/0451779234055222

  • DEDICATÓRIA

    A Deus, por dar-me força nesta conquista. E por todas as pessoas especiais que ele coloca a minha volta, sempre. Aos meus pais André e Mônica, que nunca mediram esforços para que eu alcançasse meus objetivos. Por sempre acreditar no meu potencial, me apoiando e incentivando para que eu pudesse vencer mais esta etapa. Vocês são os grandes responsáveis pela minha formação e crescimento pessoal, meus exemplos de vida, meu orgulho. Muito obrigada por tudo!

    A minha irmã Beatriz Regis, pela confiança transmitida, admiração, amizade e por compreender minha ausência nesses últimos dois anos. A toda minha família que sempre torceu, esteve ao meu lado e acreditou em mim, o meu muito obrigada! Em especial a minha avó, meus tios, padrinhos e primos! Ao meu namorado Hugo Copello por todo companheirismo, compreensão, tantas vindas para Piracicaba, por sempre me encorajar, me confortar e acreditar sempre em mim. Amo vocês demais!

  • AGRADECIMENTOS ESPECIAIS

    A minha orientadora, Profa. Dra. Giselle Maria Marchi Baron, por compreender minhas dificuldades e sempre me encorajar a crescer. Por todos os conselhos, por torcer sempre pela gente, por todo conhecimento passado, pela amizade e pela ótima orientação. Só tenho a agradecer por sempre estar disposta a me ajudar. Você é uma mãezona para todos nós! À Janaína, minha companheira de todas as horas, todos os finais de semana, madrugadas na FOP, academia, estudos, saídas, clínicas, artigos e principalmente por ser essa companheira maravilhosa! Sei que nossa amizade será para sempre! Obrigada por tudo, sem você não teria conseguido! Conte sempre comigo, o que tiver ao meu alcance tenha certeza que farei para te ajudar! À Mariana, que me acolheu primeiramente em sua casa e desde então sempre me aconselhou e se tornou essa amiga maravilhosa, que agradeço a Deus por ter colocado em meu caminho. Conte sempre comigo! Ao Matheus, que sempre esteve comigo me ajudando, me escutando, fazendo minha estatística, companhia de almoço de domingo, academia, de todas as horas. Você foi a certeza de que nunca estaria sozinha. Tenha certeza que você ganhou uma amiga para a vida inteira! Ao Marco, que do jeito dele sempre se fez presente e solicito a me ajudar! Sempre disponível para trocas de clínica, conversas e risadas diárias. Ao Rodrigo, que não mediu esforços para me ajudar sempre, seja na estatística, seja nas dúvidas tiradas, nos conselhos dados e todas as nossas saídas! Ao Josué, muito obrigada por ser esse amigo incentivador a sempre buscar mais e mais. Agradeço de coração por torcer sempre por mim e pelo meu sucesso.

    A minhas amigas da vida, Beatriz, Eduarda, Júlia, Larissa, Mariana, Vanessa e Vivian por entenderem a minha distância e sempre que precisei de vocês, vocês estavam ali a postos para me ajudar!

    As minhas amigas da Graduação, Ariana, Larissa, Letícia, Maria Clara, Mariana, Michele e Nazara por horas de conversas no grupo, mesmo estando todas longes quando nos encontramos é sempre uma festa, obrigada por todo apoio de sempre. As minhas amigas de Especialização, Brenna, Bruna, Giovanna, Mariana e Sofia por deixar o primeiro ano do mestrado mais leve e divertido.

  • AGRADECIMENTOS

    À Universidade Estadual de Campinas (UNICAMP), na pessoa do Magnífico Reitor, Prof. Dr. Marcelo Knobel. À direção da Faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas, na pessoa do Diretor Prof. Dr. Francisco Haiter Neto e do Diretor Associado Prof. Dr. Flávio Henrique Baggio Aguiar. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pela concessão do auxílio para a execução dessa pesquisa. À Profa. Dra. Karina Gonzales Silvério Ruiz, coordenadora dos cursos de Pós-Graduação e ao Prof. Dr. Valentin Aderino Ricardo Barão, coordenador do Programa de Pós-Graduação em Clínica Odontológica. Aos professores Profa. Dra. Carolina Steiner Oliveira Alarcon, Profa. Dra. Carolina Bosso André e Prof. Dr. Flávio Henrique Baggio Aguiar, pelas considerações e sugestões para o aprimoramento da minha dissertação na qualificação deste trabalho. Aos professores Profa. Dra. Vanessa Cavalli Gobbo e Profa. Dra. Juliana Filippe de Azevedo Bandeira, pelo aceite em participar como banca de defesa deste trabalho. Aos Professores da Área de Dentística, Profa. Dra. Giselle Maria Marchi, Profa. Dra. Débora Alves Nunes Leite Lima, Prof. Dr. Flávio H. Baggio Aguiar, Prof. Dr. Luís Alexandre M. S. Paullilo, Prof. Dr. Luís Roberto M. Martins, Profa. Dra. Vanessa Cavalli Gobbo e Prof. Dr. Marcelo Giannini, por todos ensinamentos compartilhados ao longo do mestrado. A todos os funcionários, em especial aos funcionários do centro de Microscopia e imagem: Adriano e Flávia, obrigada pela ajuda na execução das imagens. Ao Marcelo, do laboratório de Odontopediatria, por disponibilizar do seu tempo para me ajudar. A Janaína, Reis e Luís por estar sempre na clínica nos ajudando. A secretária do Departamento de Odontologia Restauradora, Andrea, por sempre estar com um sorriso no rosto nos alegrando todos os dias. Ao Prof. Dr. Roberto Ruggiero Braga, da Faculdade de Odontologia da Universidade de São Paulo, por gentilmente ter me recebido em seu laboratório para realização de um dos testes deste trabalho. A Caroline, pelos ensinamentos passados, pela disponibilidade e ajuda durante a execução do projeto de pesquisa. Ao Gabriel Abuna, que auxiliou na execução de um dos testes, muito obrigada. Aos meus colegas de orientação Caroline, Diogo, Janaína, Marco e Mariana, por todo companheirismo, aprendizado e momentos compartilhados durante esses anos.

  • Aos meus amigos do mestrado, pelo convívio intenso desses dois anos, pelas palavras carinhosas de incentivo e ajuda na correção deste trabalho. Aos meus amigos do doutorado, aprendi muito com cada um de vocês, muito obrigada por tudo! E a tantos outros amigos que fiz nessa faculdade que levarei para sempre comigo! Enfim, a todos que, de alguma forma, contribuíram para o meu êxito profissional.

    O presente trabalho foi realizado com apoio da Fundação de Amparo à Pesquisa do

    Estado de São Paulo (FAPESP), processo no 2017/14378-6

  • Resumo

    O objetivo deste estudo foi avaliar a influência da adição de diferentes

    concentrações de partículas de carga (óxido de bário 25/45% em peso ou de óxido de

    zircônia 25/45% em peso) em um infiltrante comercialmente disponível (Icon®, DMG,

    Alemanha) e de um infiltrante experimental nas propriedades de resistência coesiva

    (RC), grau de conversão (GC), sorção (So) e solubilidade (Sol), radiopacidade e

    profundidade de penetração. Para avaliar a RC (n=10) foi utilizado teste de

    microtração em máquina de ensaios universais. Para a avaliação do GC (n=5),

    mensurações antes e após fotoativação das amostras foram realizadas em

    espectrômetro infravermelho com transformador de Fourier (FTIR). Para os testes de

    So e Sol (n=10), após dissecação, as amostras polimerizadas foram pesadas,

    armazenadas em água destilada por 7 dias e pesadas novamente, após nova

    secagem, até obtenção da massa final. Para análise da radiopacidade (n=5) os corpos

    de prova foram fotoativados e armazenados em estufa e a análise da radiopacidade

    foi realizada utilizando o sistema de radiografia digital e foram comparadas pela escala

    de cinza e avaliadas pelo histograma no software Adobe Photoshop®. Para

    profundidade de penetração foram utilizados blocos de esmalte de molares humanos

    (n=50), submetidos à simulação de lesão inicial cariosa em solução desmineralizante

    (DES). Posteriormente, os blocos foram infiltrados pelos infiltrantes e submetidos à

    análise da profundidade de penetração (n=5) por meio da microscopia confocal de

    varredura a laser. As análises foram realizadas no programa R, com nível de

    significância de 5%, com exceção da análise de profundidade de penetração, que foi

    somente avaliada qualitativamente. Para RC, independentemente do infiltrante, os

    grupos com adição de 45% de zircônia tiveram valores maiores. Entre os grupos sem

    adição de partículas (controle), o infiltrante experimental apresentou maior GC que o

    Icon®. Já para os grupos com adição de bário e com adição de 25% de zircônia o

    Icon® apresentou maior GC. O infiltrante experimental apresentou menor So que o

    Icon®, independentemente da concentração das partículas. Radiopacidade maior que

    o esmalte foi observada somente nos grupos com Zircônia 45%. Todos os grupos

    obtiveram profundidade de penetração similares, porém os grupos contendo o

    infiltrante experimental parecem ter tido prolongamentos de tags mais longos.

    Concluiu-se que a adição de 45% de partículas de Zircônia aumentou a RC e

    promoveu radiopacidade maior do que a do esmalte. Aumento do GC foi observado

  • no infiltrante experimental sem partículas quando comparado ao Icon®. Menor So foi

    encontrada para os grupos com infiltrante experimental. Todos os grupos tiveram Sol

    abaixo do recomendado.

    Palavras Chaves: Resinas Compostas, Bário, Zircônia, Radiografia.

  • Abstract

    The aim of this study was to evaluate the influence of the addition of different

    concentrations of particles (barium oxide 25/45% or zirconium oxide 25/45% by weight)

    in a commercially available infiltrant (Icon®, DMG, Germany) and experimental

    infiltrant on cohesive strength, degree of conversion, sorption and solubility,

    radiopacity and penetration depth. In order to evaluate the cohesive strength (n=10)

    microtensile was performed with an universal test machine. For the degree of

    conversion evaluation (n=5), measurements before and after photoactivation of the

    samples were performed in a Fourier transform infrared spectrometer (FTIR). For

    sorption and solubility tests (n=10), after dissecting, the polymerized samples were

    weighed, stored in distilled water for 7 days and weighed again, after re-drying, until

    the final mass was obtained. For radiopacity (n = 5) analysis, the specimens were

    photoactivated and stored in an oven and radiopacity analysis were performed using

    the digital radiography system. To evaluate and compare the level of radiopacity,

    samples were compared by the grayscale and evaluated by the histogram in

    AdobePhotoshop® software. For penetration depth, enamel blocks of human molars

    (n = 50) were used, which were submitted to simulation of initial carious lesion in

    demineralizing solution (DES). Subsequently, the blocks were infiltrated by the

    Infiltrants Icon® and experimental and submitted to depth penetration analysis (n = 5)

    by confocal laser scanning microscopy. Analyzes were performed in program R, with

    a significance level of 5%, except for penetration depth analyzes, which was only

    evaluated qualitatively. For cohesive strength, regardless of the infiltrating, the groups

    with 45% zirconia incorporation showed greater values. Among the groups without

    addition of particles (control), the experimental infiltrant presented higher degree of

    conversion than Icon®. For the groups with addition of barium and 25% of zirconia,

    Icon® presented higher degree of conversion. The experimental infiltrate presented

    lower sorption than Icon®, independently of the concentration of the particles. Greater

    radiopacity than enamel was observed only in the groups with 45% Zirconia. All groups

    obtained similar penetration depth, but the groups containing the experimental infiltrant

    appear to have had longer tag extensions. It was concluded that the addition of 45%

    of Zirconia particles increased cohesive strength and obtained radiopacity higher than

    that of enamel. An increase in degree of conversion was found in the experimental

  • infiltrant free of particles when compared to Icon®. Minor sorption was found for groups

    with experimental infiltrating. All groups had solubility below recommended.

    Key Words: Composite Resins, Barium, Zirconium, Radiography

  • Sumário

    1 INTRODUÇÃO 15

    2 REVISÃO DA LITERATURA 18

    3 PROPOSIÇÃO 27

    4 MATERIAL E MÉTODOS 28

    4.1 Delineamento experimental 28

    4.1.1 Unidades experimentais 28

    4.1.2 Fatores de estudo 28

    4.1.3 Variáveis de resposta 28

    4.2 Formulação dos infiltrantes 28

    4.3 Resistência coesiva 29

    4.4 Grau de conversão 30

    4.5 Sorção e solubilidade 31

    4.6 Radiopacidade 33

    4.7 Profundidade de penetração 35

    4.7.1 Preparo e seleção dos corpos de prova 35

    4.7.2 Simulação da lesão inicial de cárie em esmalte 36

    4.7.3 Avaliação da profundidade de penetração 36

    4.8 Análise Estatística 39

    5 RESULTADOS 40

    5.1 Resistência coesiva 40

    5.2 Grau de conversão 41

    5.3 Sorção e solubilidade 42

    5.3.1 Sorção 42

  • 5.3.2 Solubilidade 43

    5.4 Radiopacidade 44

    5.5 Profundidade de penetração 45

    6 DISCUSSÃO 51

    7 CONCLUSÃO 56

    REFERÊNCIAS 57

    ANEXOS 64

    ANEXO I - Imagens para conferência da desmineralização 64

    ANEXO II - Certificação do Comitê de Ética em Pesquisa 65

    ANEXO III - Relatório de originalidade 66

  • 15

    1 INTRODUÇÃO

    A redução da cárie dentária tem sido observada nos últimos anos,

    especialmente entre crianças e adolescentes (Teixeira et al., 2015). No entanto, a

    doença ainda é considerada um problema de saúde pública, já que a cárie é uma das

    doenças mais comuns que acometem a população (Teixeira et al., 2015, Paula et al.,

    2017). Nas últimas décadas, medidas preventivas foram implementadas, fato que

    resultou em declínio das lesões de cárie (Golz et al., 2016). Entretanto, manchas

    brancas ativas, primeira observação clínica da progressão da cárie, ainda são

    frequentes devido às altas concentrações de ácidos produzidos por bactérias

    presentes no biofilme associado à higienização deficiente (Askar et al., 2015). A lesão

    de mancha branca ativa (MBA) é definida como desmineralização da subsuperfície de

    esmalte, sem cavitação, com a possibilidade de ser remineralizada (Paula et al., 2017,

    Meyer-Lueckel et al., 2008).

    Os procedimentos minimamente invasivos são tratamentos de eleição para

    lesões cariosas incipientes com o intuito de evitar a remoção do tecido dental. São

    métodos não invasivos, a aplicação tópica de fluoretos e instrução de higiene oral ao

    paciente, utilizados na tentativa de promover a remineralização de lesões incipientes

    de cárie não cavitadas (Paula et al., 2017, Young et al., 2010, Ceci et al., 2017).

    Entretanto, são procedimentos que necessitam, obrigatoriamente, da colaboração do

    paciente para que haja sucesso no tratamento e, além disso, só a zona superficial da

    lesão é remineralizada (Mandava et al., 2017).

    Visto que a colaboração do paciente nem sempre ocorre, a técnica de

    infiltração de resina de baixa viscosidade, denominada infiltrante, tem sido utilizada

    com sucesso na Odontologia prevenindo a progressão da cárie dentária na fase inicial

    do desenvolvimento da lesão (Golz et al., 2016). O princípio da infiltração de resina é

    perfundir o esmalte poroso por ação capilar, interrompendo, assim, o processo de

    desmineralização e paralisando a lesão cariosa (Lasfargues et al., 2013). Icon® é um

    infiltrante de resina comercialmente disponível de baixa viscosidade constituído por

    uma matriz de resina à base de metacrilato, iniciadores e aditivos (Golz et al., 2016).

    É aplicado, principalmente, em manchas brancas iniciais nas superfícies lisas e

    proximais (Golz et al., 2016, Askar et al., 2015). A composição do infiltrante tem sido

    testada em alguns estudos, nos quais combinações de diferentes monômeros,

  • 16

    diluentes e solventes são avaliados a fim de melhorar a profundidade de penetração

    e propriedades mecânicas adequadas para um infiltrante, nas lesões cariosas

    proximais e em superfícies lisas (Araújo et al., 2013, Paris et al., 2007).

    Diante de estudos promissores sobre a eficácia do infiltrante Icon® e da

    importância de evitar desgaste dentário para tratar lesões de mancha branca,

    formulações de infiltrantes experimentais buscando aprimorar o único infiltrante

    comercial disponível no mercado têm sido testadas (Golz et al., 2016, Ekstrand et al.,

    2010, Paris et al., 2010). Uma dessas formulações foi estudada por Ganglianone

    (2017) à base de 25% BisEMA, 75% TEGDMA, 0,5% de Canforoquinona e 1% de Etil

    4-dimetilamino benzoato (EDAB) com resultados favoráveis em relação ao grau de

    conversão e sorção e solubilidade, que mais recentemente foram comprovados no

    estudo de Mathias et al. (2018).

    Porém, o infiltrante resinoso tem a desvantagem de ser um material

    radiolúcido e, segundo a Associação Americana de Odontologia (ADA) a

    radiopacidade é uma propriedade essencial para todos os materiais restauradores e

    um dos requisitos que um material dentário deve possuir. O material com

    radiopacidade adequada permite a detecção de cárie secundária, defeitos marginais,

    contornos de restaurações, falta de ponto de contato com dentes adjacentes e

    distingue a cárie do material restaurador e da estrutura circundante do dente (Yasa et

    al., 2015, Saridag et al., 2015, Ermis et al, 2014). Além disso, radiopacidade está

    relacionada não somente com a quantidade da carga presente no material, mas

    também do tipo dos aditivos radiopacos na carga inorgânica (Saridag et al., 2015).

    Como exemplo, de acordo com sua composição, a maioria das resinas restauradoras

    permite uma boa visualização no diagnóstico radiográfico (Saridag et al., 2015,

    Pekkan et al., 2016). Os elementos de radiopacificação das resinas apresentam-se

    com alto número atômico, como o óxido de bário, lantânio, estrôncio, zircônio, zinco,

    ítrio e itérbio que variam muito em suas concentrações (Pekkan et al., 2016). Os mais

    utilizados, de acordo com a literatura, são as partículas de óxido de bário e de zircônia,

    que conferem bons resultados na radiopacidade de compósitos (Ermis et al, 2014,

    Pekkan et al., 2016).

    Ambas partículas são constituídas de cristais incolores, insolúveis em água

    e disponíveis em forma de pó branco. Quanto menor o tamanho da partícula, menor

    a viscosidade e, consequentemente, maior a profundidade de penetração, segundo

    Lee et al., 2005. A partícula do óxido de bário tem o tamanho médio de 0,7um,

  • 17

    enquanto a partícula de óxido de zircônia tem o tamanho médio de

  • 18

    2 REVISÃO DA LITERATURA

    Apesar das medidas preventivas implementadas durante as últimas

    décadas como a fluoretação da água e dentifrícios com flúor, a cárie dental ainda é

    uma das doenças mais comuns que acomete a cavidade bucal (Paula et al., 2017,

    Golz et al., 2016, Arthur et al., 2018). A doença cárie é resultado de um processo

    dinâmico que ocorre devido ao acúmulo prolongado de biofilme na superfície afetada,

    comumente devido a ingestão de carboidratos fermentáveis (açúcar) e higiene bucal

    inadequada que cria um ambiente ácido, desequilibrando o ciclo de desmineralização

    e remineralização do esmalte (Paula et al., 2017, Ceci et al., 2017).

    Em um estágio inicial, essas lesões são chamadas de lesões de mancha

    branca que são os primeiros sinais clínicos de cárie incipiente do esmalte. São

    caracterizadas pela perda de minerais localizada sob uma camada de superfície

    intacta, que torna o esmalte poroso com aparência esbranquiçada e podem ser

    interrompidas ou até mesmo remineralizadas (Ceci et al., 2017, Mandava et al., 2017).

    Porém, se o processo de desmineralização não for interrompido, a superfície intacta

    do esmalte eventualmente pode colapsar e formar a cavidade (Paula et al., 2017, Ceci

    et al., 2017, Mandava et al., 2017). Outros fatores comuns que também podem levar

    à formação de lesões de mancha branca é a hipofunção das glândulas salivares,

    fluorose e hipoplasias de desenvolvimento (Mandava et al., 2017, Aziznezhad et al.,

    2017).

    A odontologia minimamente invasiva é um conceito que envolve a

    preservação do tecido dental, preferencialmente impedindo a doença de ocorrer ou

    interceptando seu progresso com a menor perda de tecido possível (Inagaki et al.,

    2016, Sfalcin et al., 2017). O primeiro tratamento para a cárie inicial do esmalte é

    controlar o fator etiológico, os métodos propostos para tratar essas lesões nos

    estágios iniciais (sem cavitação) são instrução de higiene oral, aconselhamento

    dietético, remineralização com agentes tópicos contendo fluoretos e fosfatos de cálcio

    amorfo (CCP-ACP) e selantes de fóssulas e fissuras (Paula et al., 2017, Ceci et al.,

    2017, Mandava et al., 2017, Arthur et al., 2018, Aziznezhad et al., 2017). Contudo,

    esses tratamentos têm algumas limitações, como resultados não imediatos, múltiplas

    sessões de tratamento e acompanhamento, e por dependerem da cooperação do

    paciente e, por isso, muitas lesões tendem a progredir devido à falta de adesão ao

    tratamento (Mandava et al., 2017). Além disso, a remineralização ocorre apenas

  • 19

    superficialmente, enquanto o corpo da lesão permanece poroso, o que explica os

    resultados imprevisíveis e a persistência da descoloração esbranquiçada (Mandava

    et al., 2017).

    Uma vez cavitadas, há necessidade de técnicas invasivas, de intervenção

    mínima, que consiste na remoção de tecido dentinário afetado pela doença e

    preenchimento com o material restaurador de escolha. Além da inevitável perda

    parcial de tecidos dentais sadios durante a remoção do tecido cariado, as

    restaurações têm uma sobrevida limitada e o dente pode ser introduzido em um ciclo

    restaurador (Paris et al., 2012).

    Atualmente, a infiltração de lesões cariosas com material resinoso de baixa

    viscosidade está sendo utilizada para impedir a progressão da lesão de cárie inicial

    de maneira minimamente invasiva, ou seja, preservando a estrutura dentária sadia

    (Paris et al., 2012). O tratamento visa melhorar tanto a estética quanto a prevenção

    da progressão de cárie. Utiliza-se resinas de baixa viscosidade, hidrofílicas e

    fotopolimerizáveis que penetram e ocluem as microporosidades, inibindo assim as

    vias de difusão para ácidos e minerais dissolvidos dentro do corpo da lesão,

    prevenindo a progressão da cárie dentária em uma fase inicial do seu

    desenvolvimento. Em outras palavras, o princípio da infiltração de resina é perfundir o

    esmalte poroso com resina por ação capilar, interrompendo, assim, o processo de

    desmineralização e estabilizando a lesão cariosa (Paula et al., 2017, Askar et al.,

    2015, Ceci et al., 2017, Mandava et al., 2017, Aziznezhad et al., 2017, Skucha-Nowak

    et al., 2016, Anauate-Netto et al., 2017).

    Em contraste com os selantes de fóssulas e fissuras, que formam apenas

    uma barreira mecânica na superfície externa da lesão inicial para proteger do ataque

    ácido bacteriano, a infiltração de resina ocorre dentro do esmalte criando uma barreira

    interna. As bactérias que penetraram no esmalte desmineralizado ficam aprisionadas

    no infiltrante depois deste ter sido fotopolimerizado (Lasfargues et al., 2013).

    É particularmente indicado para lesões de cárie não cavitadas, em todas

    as faixas etárias, com extensão radiográfica máxima até o terço externo da dentina

    nas superfícies proximais, lisas e, mais recentemente, indicado também para a oclusal

    de dentes decíduos e permanentes (Lasfargues et al., 2013, Sfalcin et al., 2017, Paris

    et al., 2012). Comparado com técnicas de remineralização que podem exigir múltiplas

    sessões de tratamento e acompanhamento, a terapia pode ser realizada em uma

    única sessão, que é interessante para o paciente (Lasfargues et al., 2013).

  • 20

    Na década de 1970, foi mencionado pela primeira vez o conceito de

    infiltração da cárie com resinas. Tentativas mais recentes de infiltrar em lesões de

    esmalte com adesivos ou selantes não obtiveram bons resultados, a maioria dos

    estudos resultaram em infiltração superficial ou não homogênea, mesmo após o

    condicionamento da lesão com ácido clorídrico para remover a camada superficial

    pseudo-intacta (Paris et al., 2012). Porém, depois de algumas tentativas, as resinas

    de baixa viscosidade foram otimizadas, resultando em maior coeficiente de

    penetração para permitir uma infiltração mais rápida (Paris et al., 2012). Assim, em

    2009, a partir de estudos in vitro sobre a penetração de resina em cárie, foi

    desenvolvida na Alemanha, no Hospital Universitário Charité (Berlim), uma resina de

    baixa viscosidade que foi comercializada sob a marca de Icon® (DMG America

    Company, Englewood, NJ) (Ceci et al., 2017, Lasfargues et al., 2013, Aziznezhad.,

    2017).

    O Icon® é um infiltrante de resina disponível comercialmente de baixa

    viscosidade, consistindo de uma matriz de resina à base de metacrilato, iniciadores e

    aditivos (Golz et al., 2016, Ceci et al., 2017, Inagaki et al., 2016). Estudos recentes

    mostraram que o Icon® reduziu a rugosidade do esmalte desmineralizado e aumentou

    a microdureza (Golz et al., 2016, Mandava et al., 2017, Aziznezhad., 2017). Outras

    vantagens da técnica de infiltração de resina foram destacadas por vários autores;

    como a resistência mecânica contra a desmineralização do esmalte, obturação

    permanente de áreas superficiais porosas e profundamente desmineralizadas,

    preservação da estrutura dental saudável, interrupção do progresso da lesão pelo

    aumento da resistência à desmineralização, minimização do risco de desenvolvimento

    de cárie secundária por diminuir a adesão bacteriana e alta aceitação pelo paciente

    (Aziznezhad., 2017, Ceci et al., 2017, Mandava et al., 2017). Ainda, tem a finalidade

    de mascarar a mancha branca por ter um índice de refração próximo do esmalte sadio

    (Aziznezhad., 2017, Ceci et al., 2017, Mandava et al., 2017).

    Os resultados indicam que a inibição da progressão da cárie dentária é

    obtida pelos efeitos sequenciais do gel de ácido clorídrico a 15%, aplicados por três

    minutos para ter uma erosão mais eficaz da camada superficial e permitir a infiltração

    mais profunda da resina no corpo da lesão, seguido da aplicação do álcool/etanol para

    permitir a adequada infiltração da resina no corpo da lesão (Anauate-Netto et al., 2017,

    Lasfargues et al., 2013, Mandava et al., 2017, Paris et al., 2012). E, finalmente, aplica-

    se a resina de baixa viscosidade com alto coeficiente de penetração para ocluir os

  • 21

    poros da lesão. Ainda, há um outro passo recomendado pelo fabricante que é a

    reaplicação do infiltrante.

    A eficácia dos infiltrantes de resina em esmalte na diminuição da

    progressão da cárie tem sido amplamente demonstrada. A infiltração do infiltrante tem

    sido capaz de inibir a progressão da cárie em condições in vitro e in situ. Paris, et al

    (2007), demonstraram que o infiltrante apresentou capacidade superior de penetrar

    nas lesões naturais em comparação com adesivos comerciais in vitro, utilizando em

    todos os grupos condicionamento com ácido fosfórico a 37%. Já em outro estudo, em

    2014, avaliaram in vitro a penetração de um infiltrante, fazendo condicionamento

    prévio com 15% de ácido hidroclorídrico e um selante em lesões de cárie de fissura

    que foram condicionados com ácido fosfórico a 37%. Foi demonstrado que o

    convencional selamento da fissura resultou apenas em uma penetração superficial da

    resina, enquanto a técnica de infiltração resultou em uma penetração de resina

    consideravelmente mais profunda (Paris et al., 2014).

    Estes resultados foram confirmados também em ensaios clínicos. Ekstrand

    et al. (2010), associou o infiltrante com verniz fluoretado ou aplicou somente verniz

    fluoretado, e concluíram, considerando clinicamente e radiograficamente, que lesões

    proximais em primeiros molares decíduos tratados pela técnica de infiltração mais

    verniz fluoretado progrediu significativamente menos (23%) do que aquelas tratadas

    com verniz fluoretado apenas (61%) após 1 ano. Em outro estudo, Paris et al (2010),

    confirmaram a eficácia da infiltração de resina na redução da progressão da cárie em

    dentes permanentes. No grupo teste, 7% das lesões progrediram em comparação

    com 37% no grupo controle após 18 meses. Uma revisão sistemática de estudos in

    vivo revelou que a infiltração de resina parece ser um método não invasivo promissor

    adicional para deter a progressão de lesões de cárie proximal não cavitada. Ou seja,

    em combinação com medidas não operatórias possui melhores resultados quando

    comparadas com as medidas não-operatórias isoladamente (Doméjean et al., 2015).

    A composição monomérica dos infiltrantes tem sido estudada, a fim de

    melhorar as propriedades dos materiais para se obter um infiltrante ideal que

    apresente baixa viscosidade, baixo ângulo de contato, baixa tensão superficial,

    consistência rígida após polimerização, alto coeficiente de penetração, alta

    capacidade de molhamento e propriedades mecânicas que suportem abrasão dental

    e degradação oral (Araújo et al., 2013).

  • 22

    Alguns requisitos importantes precisam ser atendidos para que uma resina

    a base de polímero seja usada como um infiltrante dentário, são eles: hidrofilicidade,

    polimerizável para o estado sólido, resistência a produtos químicos e fatores

    mecânicos dos desafios da cavidade oral, alta capacidade de penetração, aparência

    estética aceitável, não tóxico aos tecidos orais e bacteriostaticidade (inibição do

    crescimento bacteriano). Propriedades físicas e químicas de resinas infiltrantes, tais

    como hidrofilicidade, baixa viscosidade ou ângulo de contato, e alta tensão superficial

    permitem melhor penetração em esmalte (Skucha-Nowak et al., 2013).

    O Icon®, infiltrante comercial, é composto, basicamente, por TEGDMA, um

    monômero de baixo peso molecular. Materiais à base de TEGDMA mostram

    características apropriadas para um material infiltrante, incluindo baixa viscosidade e

    alto grau de conversão. No entanto, o grau de conversão pode estar relacionado à

    sorção e solubilidade de materiais à base de resina no ambiente oral (Sfalcin et al.,

    2017). O TEGDMA é um monômero extremamente fluido e sua estrutura de alta

    flexibilidade de cadeia resulta em resinas com alto grau de conversão; porém,

    apresentam alto grau de absorção de água e contração de polimerização, além de

    alto potencial de hidrólise, bem como baixas propriedades mecânicas (Mandava et al.,

    2017, Sfalcin et al., 2017). Assim, a adição de BisEMA ou BisGMA, que são

    considerados monômeros mais hidrofóbicos com menor viscosidade que o TEGDMA,

    poderia ser interessante para melhorar as propriedades mecânicas e a durabilidade a

    longo prazo dos infiltrantes de resina no ambiente oral. Porém, esse monômero reduz

    significativamente o grau de conversão. Isso pode ser explicado devido ao seu alto

    peso molecular (540 g / mol), menor cadeia de flexibilidade do que o TEGDMA e,

    consequentemente, menor grau de conversão. É importante afirmar, ainda, que o

    BisEMA aumenta as características hidrofóbicas do infiltrante, o que poderia ser

    relevante, pois um material mais hidrofóbico tende a mostrar redução da degradação

    no meio bucal (Araújo et al., 2013, Sfalcin et al., 2017). A adição do BisEMA na

    substituição do BisGMA, é devido à ausência dos grupos hidroxila, que confere menor

    viscosidade e susceptibilidade à sorção de água, características importantes que o

    tornam um componente promissor diante dos requisitos dos infiltrantes (Inagaki et al.,

    2016, Sfalcin et al., 2017).

    Muitos estudos têm utilizado a formulação do infiltrante experimental à base

    de 25% BisEMA, 75% TEGDMA, 0,5% de Canforoquinona (CQ) e 1% de Etil 4-

    dimetilamino benzoato (EDAB) como infiltrante experimental e bons resultados foram

  • 23

    obtidos (Araújo et al., 2013, Mathias et al., 2018, Inagaki et al., 2016, Sfalcin et al.,

    2017). No estudo de Inagaki et al (2016), essa formulação obteve menores valores de

    sorção e solubilidade, maior valor de módulo de elasticidade e resistência à flexão

    quando comparados às formulações de TEGDMA puro, TEGDMA +UDMA e adição

    de clorexidina. Outro estudo realizado por Araújo et al (2013), utilizando essa mesma

    formulação, obteve valores de profundidade de penetração maiores que formulações

    com adição de solventes como o HEMA e o etanol. Solventes, como o etanol, são

    adicionados na tentativa de diminuir a tensão superficial, viscosidade e aumentar o

    coeficiente de penetração, porém eles podem prejudicar as propriedades mecânicas

    favorecendo o aumento da contração e tensão de polimerização, além de reduzir o

    tempo útil do material. Monômeros com alto peso molecular têm sido associados com

    menor potencial de degradação no ambiente bucal, apesar de aumentarem a

    viscosidade do material e reduzirem a capacidade de penetração do infiltrante no

    corpo da lesão. (Mandava et al., 2017, Inagaki et al., 2016).

    Os materiais experimentais com características de infiltrantes, assim como

    outras resinas restauradoras, podem ser expostos a um ambiente úmido sofrendo

    alterações. Por isso, propriedades de sorção e solubilidade são importantes para

    avaliar a degradação hidrolítica de materiais resinosos (Inagaki et al., 2016).

    Uma das desvantagens do Icon® é ser um material radiolúcido, que pode

    ser uma preocupação para alguns dentistas, visto que a suposta eficácia do

    tratamento não pode ser avaliada, uma vez que que a progressão da lesão pode não

    ser monitorada em visitas subsequentes (Lasfargues et al., 2013). Além disso, a

    radiopacidade dos materiais dentários é importante para distingui-los das estruturas

    dentárias, assim como permite ao clínico detectar cáries secundárias, defeitos, sub ou

    sobrecontorno de restaurações, pontos de contato ao dente adjacente e falhas

    (Saridag et al., 2015, Pekkan et al., 2016, Hosney et al., 2017). É também uma valiosa

    ferramenta para avaliar a absorção de materiais nas estruturas (Pekkan et al., 2016,

    Collares et al, 2010). Por outro lado, a radiopacidade excessiva pode reduzir a

    capacidade de diagnosticar cáries recorrentes e outros defeitos (Saridag et al., 2015,

    Pekkan et al., 2016).

    A radiopacidade dos materiais dentários é geralmente determinada

    comparando com os valores de radiopacidade do esmalte, dentina e alumínio.

    Estudos concluíram que, para um ótimo contraste, um material restaurador com uma

    radiopacidade ligeiramente superior ou igual à de esmalte é ideal para a detecção de

  • 24

    cáries secundárias em radiografias (Saridag et al., 2015). Já outros autores afirmaram

    que a radiopacidade de qualquer material dentário deve ser igual ou superior à

    radiopacidade da dentina (Saridag et al., 2015). Porém, de acordo com a Organização

    Internacional de Padronização (ISO 4049/2009), a radiopacidade desses materiais

    deve ser igual ou maior que a mesma espessura de alumínio (Saridag et al., 2015,

    Hosney et al., 2017). A radiopacidade de um material dentário é expressa como um

    valor de densidade óptica da equivalente espessura de alumínio (Al), em milímetros,

    usando uma curva de calibração de referência sob condições radiográficas

    controladas (Saridag et al., 2015, Pekkan et al., 2016, Hosney et al., 2017, Dukic et

    al., 2017).

    Para conferir radiopacidade ao infiltrante é necessária a adição de

    elementos químicos com alto número atômico. Em materiais à base de resina, os

    elementos radiopacificantes mais utilizados incluem o bário 56, zinco 30, zircônio 40,

    estrôncio 38, ítrio 39, itérbio 70 e lantânio 57, que variam muito em concentração em

    resinas compostas com diferentes composições (Yasa et al., 2015, Collares et al.,

    2010, Dukic et al., 2017).

    O nível de radiopacidade dos compósitos é afetado por vários fatores, mas

    o tipo de partículas de carga (nomeadamente, partículas de vidro e cerâmicas

    contendo metais pesados) parece ser o mais importante. Além disso, o tamanho, a

    densidade e a quantidade da partícula de carga na matriz de resina também podem

    influenciar a radiopacidade (Saridag et al., 2015, Pekkan et al., 2016, Dukic et al.,

    2017). A incorporação excessiva de partículas de carga radiopacas na matriz da

    resina resulta na diminuição da translucidez de compósitos, mas ao mesmo tempo

    podem melhorar as propriedades mecânicas desses materiais. As partículas

    radiopacas têm outros efeitos negativos, tais como o aumento da expansão térmica e

    a hidrólise de agentes de união do silano (Saridag et al., 2015, Pekkan et al., 2016).

    Existem dois métodos principais para medir a radiopacidade de materiais

    odontológicos: os métodos convencionais (usando densitometria de transmissão) e a

    análise digital da imagem (radiografia digital). O método digital pode ser dividido em

    duas categorias: método direto ou indireto. Com o método digital direto, o valor da

    densidade óptica é obtido diretamente usando a análise da imagem digital. Já com o

    método digital indireto, os filmes radiográficos convencionais são escaneados e as

    imagens digitais são obtidas. Usando um programa de software, a radiopacidade de

    um material pode ser medida em uma escala de 0 a 255mmAl. Em estudos de

  • 25

    radiopacidade, o método digital sendo direto ou indireto pode ser preferido devido à

    utilização de baixa dose de irradiação, uma vez que os receptores de imagem são

    mais sensíveis do que os convencionais, possui imagem instantânea, não há

    necessidade de usar produtos químicos de processamento, evita erros no

    processamos de filmes e não requer a necessidade de um densitômetro óptico. No

    entanto, o método convencional é geralmente vantajoso na medição da radiopacidade

    de materiais dentários altamente radiopacos (Pekkan et al., 2016, Hosney et al., 2017,

    Cutajar et al., 2011).

    O bário (Ba) é um metal alcalino-terroso presente de forma onipresente em

    concentrações baixas a moderadas no ambiente natural. Utilizado em ambiente

    industrial (por exemplo, indústria de petróleo, siderurgia, produção de semi

    condutores) e uso medicinal (por exemplo, agente para tirar radiografias) (Kravchenko

    et al., 2014). A partícula do óxido de bário tem o tamanho médio de 0,7μm. Quanto

    menor o tamanho da partícula, menor a viscosidade da resina e, consequentemente,

    maior a profundidade de penetração, segundo Lee et al (2006).

    O óxido de zircônio foi inicialmente introduzido como um biomaterial para

    uso no quadril ou outros implantes articulares em cirurgia ortopédica devido à sua alta

    resistência mecânica, alta densidade, excelente resistência à corrosão e boa

    biocompatibilidade. O óxido de zircônio foi selecionado como material radiopacificador

    devido ao seu alto número atômico e também por ele ser utilizado como

    radiopacificador nos cimentos de ionômero de vidro. O Zircônio puro em estudos

    mostrou radiopacidade no valor de 10,8 mm Al após 28 dias (Ermis et al., 2014,

    Cutajar et al., 2011, Silva et al., 2014, Bortoluzzi et al., 2009). Em um estudo de

    Guerreiro Tanomaru e colaboradores (Guerreiro Tanomaru et al., 2014) avaliaram a

    adição da mesma porcentagem (30%) de óxido de zircônia nanoparticulado e

    microparticulado e ambos apresentaram valores acima de 2mm que é o recomendado

    pela ISO, que foi comprovado também no estudo de Silva et al (2014).

    No estudo de Collares et al (2010) foi avaliada a radiopacidade de cimentos

    endodônticos com adição de Bário, Zircônia e outros elementos nas proporções de 5,

    10, 20, 30 e 40% peso porcento, sendo que a concentração de 40% mostrou

    radiopacidade maior, quando comparada aos 2mm da escala de alumínio, que é o

    indicado. Em outro estudo de Húngaro Duarte e colaboradores (2009) foi analisada a

    radiopacidade do cimento Portland com adições de 20% peso porcento de alguns

    radiopacificadores, incluindo Bário e a Zircônia e todos tiveram a radiopacidade maior

  • 26

    que 2mm da escala de alumínio. No estudo de Cutajar et al (2011) o óxido de zircônio

    adicionado ao cimento Portland na concentração de 30%, resultou em radiopacidade

    adequada também.

  • 27

    3 PROPOSIÇÃO

    Esse estudo in vitro teve como objetivo incorporar partículas de carga de

    óxido de bário ou de óxido de zircônia em um infiltrante comercial e um experimental

    e avaliar a influência da adição dessas partículas na radiopacidade, nas propriedade

    físico-químicas dos materiais testados, e capacidade de penetração em esmalte

    desmineralizado.

  • 28

    4 MATERIAL E MÉTODOS

    4.1 Delineamento experimental

    4.1.1 Unidades experimentais

    - Amostras de Infiltrantes

    - Blocos de esmalte infiltrados

    4.1.2 Fatores de estudo

    - Infiltrantes em 2 níveis (Comercial e Experimentais)

    - Partículas radiopacas em 2 níveis (Óxido de Bário ou Óxido de Zircônia) com três

    concentrações em peso porcento para cada partícula (0, 25 e 45%)

    4.1.3 Variáveis de resposta

    - Grau de conversão (%, n=5), Sorção e Solubilidade (µg/mm3,n=10), Resistência

    coesiva (Mpa, n=10), Radiopacidade (mmAl, n=5) e profundidade de penetração

    (n=5).

    4.2 Formulação dos infiltrantes

    O infiltrante experimental foi manipulado em laboratório com iluminação

    amarela, com umidade e temperatura controladas. A base monomérica utilizada foi:

    Bis-EMA e TEGDMA, foram adicionados também um sistema fotoiniciador a

    canforoquinona (CQ) e a amina terciária dimetilamietil benzoato (EDAB). Aoinfiltrante

    experimental e ao Icon foram incorporadas partículas de óxido de bário e de zircônia.

    A incorporação foi feita utilizando o agitador magnético por 24 horas e cuba

    ultrassônica por 30 minutos, nas concentrações expressas na tabela 1, todos em

    porcentagem por peso. Os infiltrantes experimentais foram armazenados

    individualmente e mantidos sob refrigeração a 4ºC.

  • 29

    Tabela 1. Descrição da composição dos grupos experimentais.

    GRUPO DE

    INFILTRANTE

    COMPOSIÇÃO

    IC (controle comercial) Icon®

    I25B Icon®, 25% de Óxido de Bário

    I45B Icon®, 45% de Óxido de Bário

    I25Z Icon®, 25% de Óxido de Zircônia

    I45Z Icon®, 45% de Óxido de Zircônia

    EC (controle experimental) 25% de bisEMA, 75% de TEGDMA, 0,5% de CQ, 1% de

    EDAB

    E25B 25% de bisEMA, 75% de TEGDMA, 0,5% de CQ, 1% de

    EDAB, 25% de Óxido de Bário

    E45B 25% de bisEMA, 75% de TEGDMA, 0,5% de CQ, 1% de

    EDAB, 45% de Óxido de Bário

    E25Z 25% de bisEMA, 75% de TEGDMA, 0,5% de CQ, 1% de

    EDAB, 25% de Óxido de Zircônia

    E45Z 25% de bisEMA, 75% de TEGDMA, 0,5% de CQ, 1% de

    EDAB, 45% de Óxido de Zircônia

    Descrição das siglas usadas na tabela: Bisfenol A polietileno glicol dimetacrilato (BisEMA) ESSTECH,Trietileno glicol dimetacrilato (TEGDMA) – ALDRICH, Canforoquinona (CQ) - ALDRICH, Etil 4-dimetilamino benzoato (EDAB) - ALDRICH.

    4.3 Resistência coesiva

    Para avaliar a resistência coesiva (RC) foi utilizado o teste de microtração.

    Utilizando uma matriz de teflon em formato de palito (8mmx1mmx1mm) (Figura 1a),

    moldes de silicone (Scan Putty, Yller) foram confeccionados (Figura 1b) para obtenção

    de 10 corpos de prova para cada grupo testado. Os corpos de prova foram

    fotoativados com fonte de luz LED (Valo, Ultradent, densidade de potência de

    1000mW/cm2, 395-480nm) (Figura 1c), durante 40 segundos, e armazenados em

  • 30

    estufa a 37º C, por 24 horas. Cada corpo de prova foi fixado com auxílio da cola de

    cianoacrilato (Superbonder®, Locitec, São Paulo, SP, Brasil) a um dispositivo metálico

    para microtração (Figura 2a), acoplado à máquina de ensaios universais (Instron

    4411, Norwood, Massachusetts, EUA) (Figura 2b). A máquina operou com velocidade

    de 1mm/min até a ruptura do palito (Figura 2c). A área da fratura foi mensurada

    individualmente utilizando paquímetro digital, para calcular a tensão e a ruptura de

    cada corpo de prova em MPa.

    Figura 1: a – Matriz de teflon em formato de palito; b – Infiltrante aplicado no molde de silicone e fita de Poliéster por cima para evitar bolhas; c – Fotopolimerização do corpo de prova.

    Figura 2: a – Colagem do palito no aparato metálico; b – Aparato sendo acoplado na máquina Universal; c – Fratura do palito na máquina Universal.

    4.4 Grau de conversão

    As análises de grau de conversão (GC, em %; n=5) foram realizadas em

    espectroscopia de infravermelho com transformador de Fourier (Vertex 70

    Espectrômetro, Bruker, Billerica, MA, EUA) em modo de transmissão (Figura 3). Foi

    utilizado um molde de silicone (Scan Putty, Yller, Pelotas, Brasil) feito a partir de 4

    lâminas de vidro (Figura 4a). Após molde pronto foi confeccionado um orifício cilíndrico

    (5mmx1mm) no meio da matriz para depositar, aproximadamente, 0,5ml do infiltrante

    (Figura 4b), depois foi acoplado no aparato metálico para posicionamento no cristal

  • 31

    do aparelho. Assim, foram realizadas duas leituras: uma do material não-polimerizado

    e outra imediatamente após a fotoativação com fonte de luz LED (Valo) durante 40

    segundos. A conversão foi obtida por meio do registro do pico de absorção do

    metacrilato (6165 cm-1), antes e após a polimerização. Para o cálculo do grau de

    conversão foi utilizada a técnica de baseline (Rueggeberg et al, 1990), traçado pelo

    próprio programa.

    Figura 3: Espectrofotômetro de infravermelho por transformador de Fourier.

    Figura 4: a – Molde de silicone feito a partir de 4 lâminas de vidro; b – Molde pronto com orifício circular feito no centro.

    4.5 Sorção e solubilidade

    Os testes de sorção (So) e solubilidade (Sol) foram realizados de acordo

    com a especificação ISO 4049/2009, exceto para dimensão dos corpos de prova. Uma

    matriz de teflon com formato cilíndrico (Figura 5a) foi utilizada para confeccionar uma

    matriz de silicone (Scan Putty, Yller) (Figura 5b). Nessa matriz foi depositado o

    𝐆𝐂 = 𝟏𝟎𝟎 𝒙 ( 𝟏 – 𝑷𝒐𝒍𝒊𝒎𝒆𝒓𝒊𝒛𝒂𝒅𝒐

    𝑵ã𝒐 𝒑𝒐𝒍𝒊𝒎𝒆𝒓𝒊𝒛𝒂𝒅𝒐 )

  • 32

    infiltrante para obtenção de corpos de prova em forma de disco (5mm x 1mm, n=10)

    que, posteriormente, foram polimerizados com fonte de luz LED (Valo), durante 40

    segundos e, em seguida, colocados em dessecador e armazenados em estufa a 37º

    C.

    Os corpos de prova (Figura 5c) foram pesados, diariamente, em balança

    analítica (Shimadzu – AUW220D, Tokyo, Japan) (Figura 6), em intervalos de 24 horas,

    até obter massa constante (m1), com variação inferior a 0,002 mg. Para o cálculo do

    volume (mm³) cada corpo de prova teve sua espessura e diâmetro medidos com

    auxílio de paquímetro digital (Mitutoyo, Japão). Posteriormente, os corpos de prova

    foram armazenados a 37º C em eppendorfs fechados contendo 1,5 mL de água

    destilada (Figura 7a). Após sete dias de armazenamento, os eppendorfs foram

    retirados da estufa e deixados a temperatura ambiente durante 30 minutos. Os corpos

    de prova foram lavados em água corrente, secos suavemente com papel absorvente

    e novamente pesados na balança analítica para obter m2. Após esse período, as

    amostras foram secas em dessecador contendo sílica gel (Figura 7b) e novamente

    pesadas, diariamente, até obtenção de uma nova massa constante (m3). Os valores

    de So e Sol forma calculados através de duas fórmulas específicas (So= m2-m3/V e

    SL= m1-m3/V).

    Figura 5: a – Matriz de teflon com formato cilíndrico; b – Molde de silicone com formato cilíndrico; c – Corpos de prova finalizados após polimerização.

  • 33

    Figura 6: Balança Analítica de Alta Precisão.

    Figura 7: a - Corpos de prova armazenados em eppendorfs fechados com 1,5 ml de água destilada; b – Corpos de prova em eppendorfs abertos, dispostos em recipiente com sílica.

    4.6 Radiopacidade

    Para análise da radiopacidade foram confeccionadas, com auxílio de uma

    matriz de silicone, corpos de prova em forma de disco (5mm x 1mm, n=5). Os corpos

    de prova foram fotoativados com fonte de luz LED (Valo), durante 40 segundos, e

    armazenados em estufa a 37º C, por 24 horas.

    Para a realização da análise da radiopacidade foi utilizado o sistema de

    radiografia digital Kodak Dental Systems (RVG 5000, Eastman Kodak Company,

    Rochester, NY, USA), o qual possui um sensor com sistema elétrico e óptico de três

    lâminas justapostas: cristal cintilador, fibra óptica e CCD (charge coupled device),

    produzindo um sinal elétrico que gera uma imagem com resolução real de 14pl/mm e

    resolução real do receptor de imagens de 27,03pl/mm. Os corpos de prova foram

    posicionados juntamente com o filme na região central do sensor e a escala de

  • 34

    densidade de alumínio (Figura 8b) e o dente ao lado para comparar a densidade

    (Figura 8a). O cilindro do aparelho radiográfico (Timex 70 E, Gnatus, Osasco, SP,

    Brasil), 70 kVp e 7mA, foi posicionado perpendicularmente a uma distância de 5cm,

    com tempo de exposição de 0,05 segundos (Figura 9).

    Figura 8: a) Película radiográfica com os corpos de prova, escala de alumínio e fragmento de um dente. b) Escala de alumínio.

    Figura 9: Cilindro do aparelho radiográfico posicionado perpendicularmente a uma distância de 5cm do filme, corpos de prova, escala e dente.

    A imagem digital forneceu valores da densidade óptica em pixels, da

    região central de cada corpo de prova e de cada degrau da escala e pontos

    equidistantes à direita e à esquerda, a partir dos quais foi obtida uma média

    considerada do valor de densidade radiográfica. Para avaliação e comparação do

    nível de radiopacidade foram realizadas comparações pela escala de cinza e

    avaliadas pelo histograma no software Adobe Photoshop®. Para a transformação dos

    dados para mm al foi utilizado a seguinte equação (Vivan et al., 2009):

  • 35

    𝐴 × 0,5

    𝐵+ 𝑚𝑚 𝑎𝑙 𝑖𝑚𝑒𝑑𝑖𝑎𝑡𝑎𝑚𝑒𝑛𝑡𝑒 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝐷𝑅𝑀

    A = densidade radiográfica do material (DRM) – densidade radiográfica do

    incremento de alumínio imediatamente anterior a DRM;

    B = densidade radiográfica do incremento de alumínio imediatamente posterior a

    DRM - densidade radiográfica do incremento de alumínio imediatamente anterior a DRM;

    0,5 = 0,5 mm de incremento da escala de alumínio.

    A densidade de cada corpo de prova foi comparada com a densidade da

    dentina (1,23mmAl) e do esmalte (2,24 mmAl), representada pela espessura de escala

    de densidade de alumínio de 1mm e 2mm, respectivamente, tendo que ser

    equivalente ou maior, para verificar qual a concentração mais adequada para se

    distinguir o material.

    4.7 Profundidade de penetração

    4.7.1 Preparo e seleção dos corpos de prova:

    Nesta etapa foram utilizados 60 molares humanos mediante a aprovação

    do Comitê de Ética em Pesquisa da Faculdade de Odontologia de Piracicaba –

    UNICAMP (protocolo 2.772.954). Os dentes foram limpos com escova de Robson

    (Microdont, São Paulo, Brasil) e pedra pomes (AAF do Brasil, Londrina, Brasil), a fim

    de remover resíduos e, em seguida, foram armazenados em solução de timol à 0,1%.

    As raízes dos molares foram seccionadas em cortadeira metalográfica (Buehler LTD.,

    Lake Bluff, IL, EUA) e dispensadas. Em seguida, fragmentos (n=50) foram obtidos da

    porção de esmalte das faces livres, vestibulares e linguais/palatinas de 60 dentes.

    Para padronizar as superfícies, os fragmentos foram levemente planificados em

    politriz (Arotec S/A Indústria e Comércio, Cotia - SP) com lixas d’água de granulação

    600, 1200 e 2000 (Folhas de lixa, Norton, Guarulhos, Brasil) sob refrigeração; em

    seguida, foram polidos com discos de feltro e solução diamantada (1 µm; Buehler). Os

    fragmentos foram cobertos por duas camadas de esmalte ácido resistente

    (Colorama®, São Paulo, Brazil), exceto na área polida de esmalte (4 x 4 mm) (Figura

    10) e, então, foram armazenados individualmente com água destilada e levados à

    estufa a 37ºC. Após obtenção dos corpos de prova, médias de microdureza superficial

    inicial foram obtidas por meio de microdurômetro (HMV-2000; Shimadzu Corporation,

  • 36

    Tóquio, Japão) em três medidas, distantes 100 µm entre si, a partir do centro da

    superfície para a seleção das amostras. Foram selecionados corpos de prova com

    médias entre 360 ± 28.

    Figura 10: Fragmento dental após cobertura de duas camadas de esmalte ácido resistente para delimitação da área de esmalte de 4x4mm.

    4.7.2 Simulação da lesão inicial de cárie em esmalte:

    Os corpos de prova selecionados foram submetidos à simulação de lesão

    de cárie em esmalte. Com intuito de simular a atividade de cárie na cavidade oral,

    solução desmineralizadora (2,2 mmol CaCl2, 2,2 mmol NaH2PO4, e 50 mmol de ácido

    acético, ajustada no pH 4,5 com NaOH) (ten Cate et al., 1982) foi utilizada. Para

    simular o ciclo de desmineralização, os corpos de prova foram imersos,

    individualmente, em 50 ml de solução, por 16 h, em estufa a 37ºC, em seguida lavados

    com água destilada e mantidos em solução tampão de Tris (HCl 0,1 M, pH 7,0) a 37ºC

    em estufa. Para avaliar a correta desmineralização dos corpos de prova foram feitos

    mais dois grupos, um controle positivo e um controle negativo, as imagens obtidas

    estão expressas no anexo I.

    4.7.3 Avaliação da Profundidade de penetração:

    Concluída a simulação da lesão de cárie, os corpos de prova foram

    submetidos à aplicação de diferentes infiltrantes, comercial e experimentais. Dessa

    forma, os 10 grupos de estudo (n=5) dos infiltrantes foram utilizados para a avaliação

    da profundidade de penetração. Para isto, o esmalte foi condicionado com ácido

    hidroclorídrico a 15% por 120 segundos (Figura 11a) de acordo com protocolo

    recomendado pelo fabricante (Icon® Etch, DMG, Hamburgo, Alemanha), lavado com

    jato de água pelo mesmo tempo (Figura 11b) e secado com jatos de ar por 15

    segundos. Os dentes foram lavados por 30 segundos e imersos em solução etanólica

  • 37

    de rodamina B 0,1% (SigmaAldrich, Steinheim, Germany) (Figura 13a) por 12 horas

    para preencher todos os poros acessíveis com fluoróforo vermelho como protocolo

    somente para visualização em microscopia confocal (Figura11c).

    Após remoção da solução pigmentadora com jato de água os espécimes

    foram secos com ar comprimido, por 30 segundos, imediatamente antes da infiltração

    resinosa. O Icon® Dry (99% etanol) foi aplicado por 30 segundos (Figura 11d) e os

    infiltrantes foram aplicados por 180 segundos (Figura 11e) de acordo com o fabricante.

    Após, foi realizada a fotoativação por 40 segundos (Figura 11f) utilizando-se aparelho

    fotoativador de LED (Valo). Conforme recomendação do fabricante, a reaplicação do

    infiltrante por 60 segundos e fotoativação por 40 segundos foi realizada.

    Figura 11: a – Aplicação de ácido hidroclorídrico à 15% por 120 segundos sobre o esmalte; b – Lavagem por 20 segundos; c – Imersão dos fragmentos em Rodamina B, por 12 horas; d – Aplicação do primer por 30 segundas; e – Aplicação do infiltrante por 3 minutos; f – Fotoativação por 40 segundos.

    Os blocos infiltrados por resina foram cortados em fatias

    perpendicularmente à superfície da lesão de esmalte com disco diamantado (Figura

  • 38

    12) e polidos na politriz (Arotec S/A Indústria e Comércio) com lixas d’água de

    granulação 600, 1200 e 2000 (Folhas de lixa, Norton) sob refrigeração, de forma a se

    obter fragmentos com aproximadamente 1,0 mm de espessura. Para remover o

    fluoróforo vermelho não unido, as fatias foram mantidas por 12 h em peróxido de

    hidrogênio a 30% somente para o protocolo da microscopia de confocal (Figura 13b).

    Para avaliar regiões da lesão nas quais não houve infiltração, os corpos de prova

    foram imersos em solução etanólica de fluoresceína de sódio a 100 μM (NaFl; Sigma

    Aldrich, St. Louis, EUA) (Figura 13c), durante 180 s e, posteriormente, lavados com

    água deionizada por 10 s. Finalizada a preparação dos espécimes, estes foram

    avaliados por meio da Microscopia Confocal de varredura a Laser (Leica, TCS NT;

    Leica, Heidelberg, Alemanha) com objetiva de 63x 1.4NA, imersão em óleo no modo

    dual de fluorescência, no qual as fluorescências puderam ser detectadas

    simultaneamente (Rodamina B: Ex 568 nm, Em 590 nm filtro lon pass; Fluoresceína

    de sódio: Ex 488 nm, 520/50 nm filtro bond pass). A profundidade de penetração foi

    avaliada nas imagens obtidas, de forma qualitativa para conferir se houve penetração.

    Figura 12: Fragmento fixado em placa de acrílico e posicionado para a secção em fatias em cortadeira metalográfica de precisão.

  • 39

    Figura 13: a – Solução etanólica de isotiocianato de tetrametilrodamina 0,1%; b – Peróxido de hidrogênio a 30%; c – solução etanólica de fluoresceína de sódio a 100 μM.

    4.8 Análise Estatística

    Inicialmente, foram realizadas análises descritivas e exploratórias indicando

    que os dados não atendem às pressuposições de uma análise paramétrica. Foram,

    então, aplicados modelos lineares generalizados considerando no modelo os fatores

    infiltrante, partículas e a interação entre eles. Todas as análises foram realizadas no

    programa R*, considerando o nível de significância de 5%.

    *R Core Team (2018). R: A language and environment for statistical computing.

    R Foundation for Statistical Computing, Vienna, Austria.

  • 40

    5 RESULTADOS

    5.1 Resistência coesiva (RC)

    Para RC a interação entre os fatores infiltrante e partículas não foi significativa

    (p>0,05). Também não houve diferença significativa entre os infiltrantes Icon® e

    experimental (p>0,05), de acordo com a tabela 3 e a figura 14. Independentemente do

    infiltrante, a resistência no grupo com adição de 45% de zircônia foi significativamente

    maior que no grupo com 25% de zircônia, 25% de bário e grupo controle (p

  • 41

    5.2 Grau de conversão (GC)

    De acordo com a tabela 4 e a figura 15, entre os grupos sem adição de

    partículas (IC e EC), o EC apresentou maior GC que o IC (p

  • 42

    5.3 Sorção e solubilidade (So e Sol)

    5.3.1 Sorção

    Na tabela 5 e figura 16 nota-se que o infiltrante experimental apresentou

    menor So que o Icon®, independentemente da concentração das partículas (p

  • 43

    5.3.2 Solubilidade

    Para os grupos controle e com adição de 25% de bário foi observada maior

    Sol no grupo experimental (p

  • 44

    5.4 Radiopacidade

    Observa-se, na tabela 7 e figura 18 que não houve interação significativa

    entre os fatores infiltrante e concentração de adição de partículas, para radiopacidade

    (p>0,05). Não houve diferença significativa entre os infiltrantes Icon® e experimental

    quanto a radiopacidade, independentemente das concentrações de partículas de

    óxido de bário ou de zircônia (p>0,05). Maior radiopacidade foi observada quando foi

    adicionado zircônia (p

  • 45

    Figura 18. Gráfico de box plot da radiopacidade em função do infiltrante e da concentração das partículas de bário e zircônia.

    Figura 19: a – Radiopacidade dos grupos IC, I25B, I45B, I25Z, I45Z. b – Radiopacidade dos grupos EC, E25B, E45B, E25Z, E45Z.

    5.5 Profundidade de penetração

    As imagens em microscopia confocal do grau de homogeneidade da

    penetração dos materiais infiltrantes no corpo da lesão foi qualitativamente avaliada e

    apresentadas nas figuras 20-24. Todos os grupos obtiveram penetração de

    profundidade similares, porém a imagem representativa da profundidade de

  • 46

    penetração dos infiltrantes experimentais sugere que esses possuem prolongamentos

    de tags mais longos e de forma mais homogênea, resultando em possível melhor

    profundidade de penetração.

    Figura 20: Profundidade de penetração dos grupos IC e EC em modo de fluorescência dual. Figura a – material resinoso corado infiltrado em vermelho. Figura b – Interação entre o material resinoso corado (vermelho) e estruturas porosas desmineralizadas em verde. IC mostrou penetração superficial quando comparado ao EC. EC mostrou tags mais longos e com camada em vermelho mais espessa, material resinoso pode ter ficado retido nessa região da superfície da lesão.

  • 47

    Figura 21: Profundidade de penetração dos grupos I25B e E25B em modo de fluorescência dual. Figura a – material resinoso corado infiltrado em vermelho. Figura b – Interação entre o material resinoso corado (vermelho) e estruturas porosas desmineralizadas em verde. I25B mostrou penetração com poucos tags prolongados. E25B mostrou tags mais homogêneos, porém menos profundos.

  • 48

    Figura 22: Profundidade de penetração dos grupos I45B e E45B em modo de fluorescência dual. Figura a – material resinoso corado infiltrado em vermelho. Figura b – Interação entre o material resinoso corado (vermelho) e estruturas porosas desmineralizadas em verde. I45B mostrou penetração superficial com poucos prolongamentos. E45B mostrou tags mais longos e com camada em vermelho mais espessa, material resinoso pode ter ficado retido na região da superfície da lesão.

  • 49

    Figura 23: Profundidade de penetração dos grupos I25Z e E25Z em modo de fluorescência dual. Figura a – material resinoso corado infiltrado em vermelho. Figura b – Interação entre o material resinoso corado (vermelho) e estruturas porosas desmineralizadas em verde. I25Z mostrou camada externa mais espessa em vermelho mais intenso na superfície que pode ser pela presença de partículas de zircônia e resina que podem ter ficado retidos nessa região. E25Z mostrou tags mais longos e homogêneos, com a camada mais espessa semelhante ao do I25Z.

  • 50

    Figura 24: Profundidade de penetração dos grupos I45Z e E45Z em modo de fluorescência dual. Figura a – material resinoso corado infiltrado em vermelho. Figura b – Interação entre o material resinoso corado (vermelho) e estruturas porosas desmineralizadas em verde. I45Z mostrou penetração superficial com camada em vermelho mais espessa, material resinoso pode ter ficado retido nessa região da superfície da lesão. E45Z mostrou tags mais longos e com camada em vermelho mais espessa também semelhante ao I45Z.

  • 51

    6 DISCUSSÃO

    O objetivo desse estudo foi avaliar a influência da adição de partículas de

    óxido de bário e zircônia em infiltrantes experimentais e comercial nas propriedades

    físicas, com o propósito de conferir radiopacidade aos mesmos. As diferentes

    concentrações de porcentagem por peso de 25% e 45% de óxido de bário foram

    adicionados aos infiltrantes, semelhantes às avaliadas no estudo de Askar et al,

    (2015). As mesmas concentrações também foram utilizadas para as partículas do

    óxido de zircônia (Guerreiro et al., 2014).

    O motivo de se ter usado tamanho de partículas de carga pequenas (0,7

    μm e

  • 52

    materiais durante as funções intra-orais (Sfalcin et al., 2016). O menor GC encontrado

    foi do Icon® (tabela 4) e esse resultado pode ser atribuído pela quantidade excessiva

    de TEGDMA em sua composição (˃ 90% em peso). Esse achado condiz com estudos

    anteriores os quais mostraram que conforme a concentração de TEGDMA aumenta

    (˃ 70% em peso), o GC diminui (Dickens et al., 2003, Gajewski et al., 2012, Lovell et

    al., 1999). O TEGDMA tem alto grau de conversão; no entanto, a formação da cadeia

    polimérica nem sempre ocorre. Além disso, a ausência de fortes ligações secundárias

    intermoleculares, bem como anéis aromáticos, resulta em propriedades inferiores às

    de outros monômeros (Neres et al., 2017). O grupo EC apresentou maior valor de GC

    quando comparado ao IC (tabela 4), isso pode ter sido devido a presença do BisEMA.

    A estrutura molecular do BisEMA é similar a do BisGMA, exceto pela ausência de

    grupos hidroxila que induz a não formação de ligações de hidrogênio, reduzindo assim

    sua viscosidade quando comparada ao BisGMA. Dessa forma, foi demonstrado na

    literatura que maior GC pode ser alcançado ao usar concentrações específicas de

    monômeros com menor viscosidade, como o BisEMA (Sfalcin et al., 2016).

    Houve redução do GC com a adição de 45% de Zircônia no grupo

    experimental e no grupo Icon® (tabela 4). Isso corrobora com os achados de

    Halvorson et al. (2003), que concluiu que o GC diminuiu quando houve aumento da

    quantidade de partículas de carga, explicado pela mobilidade dos monômeros de

    resina que pode ser restrito na superfície do compósito, levando a diminuição da

    mobilidade molecular e de radical, resultando em menor GC. Mas parece que a

    influência da partícula de carga no GC está mais relacionada ao tamanho da área de

    superfície da partícula do que da quantidade de partículas de carga (Attai e Watts,

    2006, Halvorson et al., 2003). Como o bário tem uma partícula de tamanho maior que

    o da zircônia, foi observado aumento do GCnos grupos I25B e I45B. Já nos grupos

    experimentais não houve diferença pela adição do bário (tabela 4).

    As propriedades mecânicas dos materiais resinosos podem ser alteradas

    devido a degradação pela água, e a qualidade da polimerização pode estar

    relacionada às características químicas dos monômeros (Inagaki et al., 2015).

    Materiais dentários à base de resina podem absorver água e outros fluidos do

    ambiente oral, como por exemplo, a So, mas também podem liberar componentes no

    ambiente oral, como por exemplo, a Sol (Sfalcin et al., 2016). De acordo com a norma

    ISO 4049/2009, para que os compósitos sejam indicados como materiais

    restauradores, estes devem apresentar So de água menor/ou igual a 40µg/mm3 e

  • 53

    solubilidade menor/ou igual a 7,5µg/mm3 em um período de 7 dias de

    armazenamento. Uma alta So de água pode provocar produtos químicos e processos

    físicos que podem resultar em efeitos nocivos na estrutura e função dos polímeros

    odontológicos (Sfalcin et al., 2016).

    Todos os grupos contendo Icon® apresentaram So maior que o

    recomendado, já os grupos contendo o infiltrante experimental apresentaram valores

    menores que 40µg/mm3 (tabela 5). Assim, supomos que o menor GC atingido com

    Icon® pode ter impactado os valores de RC e So negativamente. Já os menores

    valores de So obtidos pelos infiltrantes experimentais, quando comparado com o do

    Icon®, pode ser devido ao BisEMA dentro de sua composição. Esta hipótese está de

    acordo com um estudo anterior que mostrou baixa So de água para o BisEMA, que

    tem um valor relativamente mais alto de GC e um maior caráter hidrofóbico em relação

    ao BisGMA (Sfalcin et al., 2016). Quando um polímero é colocado em água, ligações

    de hidrogênio são formadas entre a água e grupos polares poliméricos, como hidroxila

    e carbonila. Esta condição pode atrapalhar a interação intercelular do polímero

    (Inagaki et al., 2016). Visto que o BisEMA não possui grupos de hidroxila e sim grupos

    de éter, esse efeito pode não acontecer, resultando em menor So de água (Inagaki et

    al., 2016). Além disso, o TEGDMA, que provavelmente é o maior componente do

    Icon®, pode ser liberador de homopolímeros ou copolímeros, formando uma cadeia

    polimérica propensa à degradação química, especialmente em ambientes ácidos

    (Neres et al., 2017).

    Todos os grupos obtiveram valores menores de Sol que o recomendado

    pela ISO (tabela 6). O achado desse estudo contraria o achado do estudo de Sfalcin

    et al (2016), que encontraram valor de Sol do Icon® de 49µg/mm3. Porém, está de

    acordo com o estudo de Inakagi et al (2015) que encontraram menor valor de Sol

    (5,76µg/mm3) que o recomendado pela ISO. Porém, em ambos os estudos a

    fotopolimerização foi feita por 60 segundos, diferindo do presente estudo que utilizou

    40 segundos.

    Os grupos que obtiveram valores maiores de radiopacidade que o do

    esmalte (2,24 mmAl) foram os grupos I45Z e E45Z; enquanto os grupos I25Z e E25Z

    obtiveram valores de radiopacidade maior que o da dentina (1,23mmAl) (tabela 8). A

    maior radiopacidade foi encontrada nos Grupos I45Z e E45Z, onde havia maior

    quantidade de partícula de carga, uma vez que a radiopacidade de um material

    aumenta com o aumento da concentraçãode partículas de carga com altos números

  • 54

    atômicos, conforme foi demonstrado em outros estudos (Ermis et al., 2014, Saridag et

    al., 2015, Yasa et al., 2015,). Neste estudo, a zircônia mostrou maior radiopacidade

    quando comparada ao bário nas mesmas proporções (tabela 8), que corrobora os

    achados encontrados em estudos prévios (Bortoluzzi et al., 2009, Verma et al., 2018,

    Yasa et al., 2015). As quantidades de 25% e 45% de Bário não foram suficientes para

    obter valores de radiopacidade acima do recomendado pela Organização

    Internacional de Padronização (ISO 4049/2009). Estudos de Watts (1987) e Van

    Dijken et al. (1989) mostraram que para se obter valores de radiopacidade maiores

    que o do esmalte é necessária quantidade de 70% de partículas de carga em volume

    por peso, enquanto a porcentagem de partículas de alto número atômico

    (radiopacificante) pode ser maior que 20%. Geralmente, as partículas de alto número

    atômico não estão sozinhas em resinas compostas, assim, o bário pode não ter

    atingindo a radiopacidade necessária devido a esse fato. Porém, como esse foi o

    primeiro estudo testando radiopacidade em infiltrantes, torna-se necessário que

    estudos futuros analisem e comprovem estes importantes achados.

    A capacidade de penetração no corpo da lesão cariosa foi qualitativamente

    avaliada por meio das imagens de microscopia confocal. Apesar da adição de

    partículas de carga nos infiltrantes, os materiais experimentais e comercial mostraram

    semelhança em relação à profundidade de penetração, com prolongamentos de tags

    resinosos mais longos para os grupos com infiltrantes experimentais. Ou seja, a

    adição das partículas pode não ter influenciado na penetração dos infiltrantes. A

    grande capacidade de penetração de infiltrante de resina pode ser devida à baixa

    viscosidade apresentada pelo TEGDMA, como também seu baixo peso molecular,

    permitindo maior penetração de infiltrante em comparação com outros materiais, como

    selantes e adesivos (Neres et al., 2017).

    A proposta do infiltrante em penetrar nas lesões cariosas em esmalte é

    promissora, e a confirmação do sucesso clínico radiograficamente é de extrema

    importância. Este estudo foi pioneiro em avaliar a adição de partículas com o objetivo

    de promover esta radiopacidade ao material infiltrante, sem que fossem alteradas de

    forma desvantajosaas propriedades físicas. A partir desses achados podemos seguir

    adiante com mais estudos testando outras porcentagens, outros tipos de elementos

    de alto número atômico e ainda misturar duas partículas radiopacificantes, como em

    alguns estudos se tem proposto. Além disso, investigações futuras precisam ser feitas

  • 55

    para confirmar a penetração das partículas, como espectroscopia de dispersão em

    energia, dentre outras análises.

  • 56

    7 CONCLUSÃO

    De acordo com os resultados obtidos nesse estudo foi possível concluir

    que:

    A resistência coesiva do material foi maior quando adicionado partículas de

    zircônia a 45%.

    Aumento do grau de conversão foi encontrado na adição de partículas de

    bário para o Icon® e no experimental e com adição de bário ou 25% de

    zircônia, quando comparado ao Icon®.

    Os infiltrantes experimentais obtiveram menores valores de sorção de água

    quando comparados ao Icon® e, quando adicionado 45% de bário ao

    infiltrante experimental, a sorção reduziu comparado ao controle

    experimental.

    Maior solubilidade foi obtida quando adicionado óxido de zircônia ao Icon®

    e o infiltrante experimental obteve maior solubilidade comparado ao Icon®

    sem adição ou com adição de 25% de óxido de bário. Porém, todos foram

    abaixo do recomendado.

    Os grupos que obtiveram radiopacidade acima do recomendado foram os

    grupos com adição de 45% de Zircônia.

  • 57

    *De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em

    REFERÊNCIAS *

    Anauate-Netto C, Borelli L Neto, Amore R, DI Hipólito V, D'Alpino PHP. Caries

    progression in non-cavitated fissures after infiltrant application: a 3-year follow-up of a

    randomized controlled clinical trial. J Appl Oral Sci. 2017 Jul-Aug;25(4):442-454.

    Araújo GS, Sfalcin RA, Araújo TG, Alonso RC, Puppin-Rontani RM. Evaluation of

    polymerization characteristics and penetration into enamel caries lesions of

    experimental infiltrants. J Dent. 2013 Nov;41(11):1014-9.

    Arthur RA, Zenkner JE, d'Ornellas Pereira Júnior JC, Correia RT, Alves LS,Maltz M.

    Proximal carious lesions infiltration-a 3-year follow-up study of a randomized controlled

    clinical trial. Clin Oral Investig. 2018 Jan;22(1):469-474.

    Askar H, Lausch J, Dörfer CE, Meyer-Lueckel H, Paris S. Penetration of micro-filled

    infiltrant resins into artificial caries lesions. J Dent. 2015 Jul;43(7):832-8.

    Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of

    dental composites and resin-monomers. Dent Mater. 2006 Aug;22(8):785-91.

    Aziznezhad M, Alaghemand H, Shahande Z, Pasdar N, Bijani A, Eslami A, Dastan Z.

    Comparison of the effect of resin infiltrant, fluoride varnish, and nano-hydroxy apatite

    paste on surface hardness and streptococcus mutans adhesion to artificial enamel

    lesions. Electron Physician. 2017 Mar 25;9(3):3934-3942.

    Bortoluzzi EA, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Duarte MA. Radiographic

    effect of different radiopacifiers on a potential retrograde filling material. Oral Surg Oral

    Med Oral Pathol Oral Radiol Endod. 2009 Oct;108(4):628-32

    Braem M, Finger W, Van Doren VE, Lambrechts P, Vanherle G. Mechanical properties

    and filler fraction of dental composites. Dent Mater. 1989 Sep;5(5):346-8

  • 58

    Ceci M, Rattalino D, Viola M, Beltrami R, Chiesa M, Colombo M, Poggio C. Resin

    infiltrant for non-cavitated caries lesions: evaluation of color stability. J Clin Exp Dent.

    2017 Feb 1;9(2):e231-e237.

    Cochrane NJ, Anderson P, Davis GR, Adams GG, Stacey MA, Reynolds EC. An X-ray

    microtomographic study of natural white-spot enamel lesions. J Dent Res. 2012; 91:185–191.

    Collares FM, Ogliari FA, Lima GS, Fontanella VR, Piva E, Samuel SM. Ytterbium

    trifluoride as a radiopaque agent for dental cements. Int Endod J. 2010 Sep;43(9):792-

    Cutajar A, Mallia B, Abela S, Camilleri J. Replacement of radiopacifier in mineral

    trioxide aggregate; characterization and determination of physical properties. Dent

    Mater. 2011 Sep;27(9):879-91.

    Dickens SH, Stansbury JW, Choi KM, Floyd CJE. Photopolymerization Kinetics of

    Methacrylate Dental Resins. Macromolecules 2003 36(16), 6043-6053.

    Doméjean S, Ducamp R, Léger S, Holmgren C. Resin infiltration of non-cavitated

    caries lesions: a systematic review. Med Princ Pract. 2015;24(3):216-21.

    Dukic W. Radiopacity of Composite Luting Cements Using a Digital Technique. J

    Prosthodont. 2017 Jan 10.

    Ekstrand KR, Bakhshandeh A, Martignon S. Treatment of proximal superficial caries

    lesions on primary molar teeth with resin infiltration and fluoride varnish versus fluoride

    varnish only: efficacy after 1 year. Caries Res. 2010;44(1):41-6.

    Ermis RB, Yildirim D, Yildiz G, Gormez O.

    Radiopacity evaluation of contemporary resin composites by digitization of images.Eur

    J Dent. 2014 Jul;8(3):342-7. doi: 10.4103/1305-7456.137644.

    https://www.ncbi.nlm.nih.gov/pubmed/25202214

  • 59

    Ganglianone LA. Efeito da composição e aquecimento prévio de infiltrantes sobre

    propriedades físicas e penetração em lesões iniciais de cárie em esmalte. Piracicaba.

    Tese [Doutorado em clínica odontológica] – Faculdade de Odontologia de Piracicaba;

    2017.

    Gajewski VE, Pfeifer CS, Fróes-Salgado NR, Boaro LC, Braga RR. Monomers used in

    resin composites: degree of conversion, mechanical properties and water

    sorption/solubility. Braz Dent J. 2012;23(5):508-14.

    Golz L, Simonis RA, Reichelt J, Stark H, Frentzen M, Allam JP, et al. In vitro

    biocompatibility of ICON and TEGDMA on human dental pulp stem cells. Dental

    Materials. 2016;32:1052–64.

    Gonçalves F, Kawano Y, Pfeifer C, Stansbury JW, Braga RR. Influence of BisGMA,

    TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of

    experimental resins and composites. Eur J Oral Sci. 2009; 117(4): 442-6.

    Guerreiro Tanomaru JM, Storto I, Da Silva GF, Bosso R, Costa BC, Bernardi MI,

    Tanomaru-Filho M. Radiopacity, pH and antimicrobial activity of Portland cement

    associated with micro- and nanoparticles of zirconium oxide and niobium oxide. Dent

    Mater J. 2014;33(4):466-70.

    Groeneveld A, Arends J. Influence of pH and demineralization time on mineral content,

    thickness of surface layer and depth of artificial caries lesions. Caries Res. 1975; 9:36–

    44

    Halvorson RH, Erickson RL, Davidson CL. The effect of filler and silane content on

    conversion of resin-based composite. Dent Mater. 2003 Jun;19(4):327-33.

    Hosney S, Abouelseoud HK, El-Mowafy O. Radiopacity of Resin Cements Using

    Digital Radiography. J Esthet Restor Dent. 2017 May 6;29(3):215-221.

  • 60

    Húngaro Duarte MA, de Oliveira El Kadre GD, Vivan RR, Guerreiro Tanomaru JM,

    Tanomaru Filho M, de Moraes IG. Radiopacity of portland cement associated with

    different radiopacifying agents. J Endod. 2009 May;35(5):737-40.

    Inagaki LT, Dainezi VB, Alonso RC, Paula AB, Garcia-Godoy F, Puppin-Rontani RM,

    Pascon FM. Evaluation of sorption/solubility, softening, flexural strength and elastic

    modulus of experimental resin blends with chlorhexidine. J Dent. 2016 Jun; 49:40-5

    Kravchenko J, Darrah TH, Miller RK, Lyerly HK, Vengosh A. A review of the health

    impacts of barium from natural and anthropogenic exposure. Environ Geochem Health.

    2014 Aug;36(4):797-814

    Lasfargues JJ, Bonte E, Guerrieri A, Fezzani L. Minimal intervention dentistry: part 6.

    Caries inhibition by resin infiltration. Br Dent J. 2013 Jan;214(2):53-9. doi:

    10.1038/sj.bdj.2013.54.

    Lee JH, Um CM, Lee IB. Rheological properties of resin composites according to

    variations in monomer and filler composition. Dent Mater. 2006 Jun;22(6):515-26.

    Li Y, Swartz ML, Phillips RW, Moore BK, Roberts TA. Effect of filler content and size

    on properties of composites. J Dent Res. 1985 Dec;64(12):1396-401.

    Lovell LG, Stansbury JW, Syrpes DC, Bowman CN.Effects of Composition and

    Reactivity on the Reaction Kinetics of Dimethacrylate/Dimethacrylate

    Copolymerizations. Macromolecules 1999 32 (12), 3913-3921.

    Mandava J, Reddy YS, Kantheti S, Chalasani U, Ravi RC, Bo