40
UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE ABERTA DO BRASIL CURSO DE LICENCIATURA PLENA EM MATEMATICA A DISTÂNCIA POLO: SANTANA ALUIZIO RIBEIRO DIAS CINTIA MAÉLE FERREIRA DE LIMA EDSON GOMES FREITAS UMA ABORDAGEM NOS LIVROS DIDÁTICOS SOBRE A FÓRMULA DE BHÁSKARA: MITO E REALIDADE SANTANA-AP 2015

UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

UNIVERSIDADE FEDERAL DO AMAPA – UNIFAP

UNIVERSIDADE ABERTA DO BRASIL

CURSO DE LICENCIATURA PLENA EM MATEMATICA A DISTÂNCIA

POLO: SANTANA

ALUIZIO RIBEIRO DIAS

CINTIA MAÉLE FERREIRA DE LIMA

EDSON GOMES FREITAS

UMA ABORDAGEM NOS LIVROS DIDÁTICOS SOBRE A FÓRMULA DE

BHÁSKARA: MITO E REALIDADE

SANTANA-AP

2015

Page 2: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

ALUIZIO RIBEIRO DIAS

CINTIA MAÉLE FERREIRA DE LIMA

EDSON GOMES FREITAS

UMA ABORDAGEM NOS LIVROS DIDÁTICOS SOBRE A FÓRMULA DE

BHÁSKARA: MITO E REALIDADE

Trabalho apresentado como requisito final de Conclusão do Curso de Licenciatura em Matemática a Distância da Universidade Federal do Amapá para obtenção do título de Licenciatura em Matemática.

Orientador: Profº Msc. Steve Araújo.

SANTANA-AP

2015

Page 3: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

FOLHA DE APROVAÇÃO

ALUIZIO RIBEIRO DIAS

CINTIA MAÉLE FERREIRA DE LIMA

EDSON GOMES FREITAS

UMA ABORDAGEM NOS LIVROS DIDÁTICOS SOBRE A FÓRMULA DE

BHÁSKARA: MITO E REALIDADE

Trabalho apresentado como requisito final de Conclusão do Curso de Licenciatura

em Matemática a Distância da Universidade Federal do Amapá para obtenção do

título de Licenciatura em Matemática.

COMISSÃO EXAMINADORA

______________________________________________

Profº. Msc. Steve Araújo (orientador)

_______________________________________________

Profª. Msc.Naralina Viana (convidada)

_______________________________________________

Profª. Drª. Simone Leal (convidada)

Nota: _____

Data: ___/___/___

SANTANA-AP

2015

Page 4: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

A paz de Deus, que excede todo o

entendimento, guardará os vossos

corações e os vossos pensamentos em

Cristo Jesus.

Filipenses (4:7, 2015)

Page 5: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

AGRADECIMENTOS

Agradeço primeiramente a Deus a quem nos momentos difíceis pedia forças

para continuar lutando para que pudesse concretizar minha graduação.

Aos meus pais, Maria Inivalda costa e Sebastiao Nery Dias que com seu amor

infinito e apoio incondicional é responsável por minha base pessoal e educacional.

A minha família, minha esposa Natalia Saraiva quem me abraçava com seu

amo para tudo nessa caminhada, aos meus filhos Aluízio Junior e Gabriele Natasha,

que no convívio tornaram suportáveis as horas mais difíceis e mais felizes os

momentos de vitória.

À Coordenadora Geral do Curso Licenciatura Plena em Matemática a

distância, em especial Professora. Drª. Simone Almeida Delphim Leal, estes

agradecimentos são extensivos aos Professores de turma, Assistentes,

Coordenadores de Salas Ambientes, Secretaria do curso, suportes tecnológicos e a

todas que colaboraram para que tudo transcorresse em uma perfeita harmonia de

ações, manifestando organização de uma equipe comprometida com a Educação de

Qualidade Social.

Aos professores do Curso e em especial Professor Msc. Steve Wanderson

Calheiros de Araújo, Orientador, pois juntos que gentilmente aceitaram participar

deste estudo e muito contribuíram para trilhamos uma etapa importante de nossas

vidas.

Agradeço a compreensão de todos os colegas, em especial: Aline Cristina,

Anderson Luís, Gleison Cruz, Marcio Martins, Edson Gomes, Celio Ricardo, Jose

Cleydson, Cintia Maéle e Graciano, que sempre me incentivaram e nunca mediram

esforços a qualquer solicitação, pelo coleguismo e companheirismo ao longo do

curso.

Em fim, agradeço a todos que de uma maneira saudável cooperaram para

que este trabalho se concretizasse.

Aluízio Ribeiro Dias

Page 6: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

Agradeço primeiramente a Deus, pelo dom da vida, sem ele nada disso seria

possível.

Aos meus pais, João Maria e Maria de Fática, pela educação, amor e apoio

que me deram durante toda a vida, mostrando que sempre poderei contar com eles.

Ao meu cunhado Ivanildo, pelo auxílio em momentos difíceis que tive de superar.

Agradeço a minha família, especialmente a minha esposa: Cíntia Maéle, por se fazer

presente em minha vida.

Aos professores Walter Cárdenas, Quele Daiane Ferreira Rodrigues, Simone

Almeida Delphim Leal, Arlindo Moreira, Claudia Barrozo Dias, Gabriel Lélis Cordeiro,

e ao meu orientador, Steve Wanderson Calheiros de Araújo, por todo o

conhecimento transmitido durante toda a graduação. E aos tutores Presenciais na

pessoa de Carlos Alberto Ferreira, que além de grandes professores se mostraram

verdadeiros amigos no caminho do ensino aprendizagem.

A UNIFAP, que me acolhendo desde o primeiro momento, a todos os

servidores o meu Obrigado.

A Turma, pelo companheirismo e por todo amor e carinho dedicados a mim

até aqui, estando sempre ao meu lado e lutando comigo até o fim da graduação,

obrigado por me mostrar que todo sonho é possível.

Edson Gomes Freitas

Page 7: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

A Deus por sua misericórdia que me alcançou e é por ele toda honra e vitórias

alcançadas.

Agradeço à minha família de um modo geral, pois é a parte mais linda da

minha vida e a base da minha história, em especial aos meus pais Francisco

Barbosa e Almira Guedes que me concedem todos os dias o prazer em desfrutar o

orgulho em ser sua filha, pela educação e amor verdadeiro; a meus irmãos

Francisco Junior, Gedalias, Abeni e Jordânia, pois além do laço feliz que nos une,

sei que estarão comigo nos dias felizes e difíceis. Aos meus professores

formadores.

E em especial ao meu esposo Edson Gomes Freitas que me deu o maior

apoio, pegou minha mão e como quem luta sua própria batalha, lutou a minha

também, que esteve comigo sinalizando o melhor lugar onde eu poderia estar e

incentivando assiduamente, pelo seu amor, paciência e companheirismo.

Cíntia Maéle Ferreira de Lima

Page 8: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

RESUMO

O presente trabalho tem como objetivo central realizar uma abordagem a respeito da “Fórmula de Bháskara”, sendo assim, como enfoque central pretende-se discorrer acerca da contextualização do que se refere a história e evolução dessa fórmula, eminentemente presente no âmbito escolar. Como fonte de dados utilizou-se obras da literatura internacional e Nacional em Educação Matemática que versam a respeito da importância da equação quadrática na construção do conhecimento. Para o desenvolvimento do trabalho, considerou-se também como fonte de abordagem materiais referentes ao conteúdo disponibilizado nos livros adotados pelas Escolas públicas do Estado do Amapá. Realizou-se pesquisas nos livros didáticos sobre a mesma, no que diz respeito à verdadeira história de quem realmente foi o autor da criação, por isso, é preciso assegurar que os conceitos e procedimentos matemáticos estudados na escola estejam em sintonia com o conhecimento aceito como válido pela comunidade. Evidenciando na Literatura pesquisada, que existem diversas abordagens e autorias a respeito da origem e aplicabilidade da “fórmula de Bháskara”. Palavras-chave: Livros Didáticos. Abordagem. Fórmula de Bháskara.

Page 9: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

ABSTRACT This work is mainly aimed to make an approach about the "Formula of Bhaskara", therefore, a central focus aims to discuss about the context of the case history and evolution of this formula, eminently present in schools. As a data source we used works of international literature and National Education in Mathematics which deal about the importance of the quadratic equation in the construction of knowledge. For the development work, also considered themselves as a source material approach for the content provided in the books adopted by the State of Amapá Public Schools. He conducted research in textbooks about the same, with regard to the true story of who really was the author of creation, so it is necessary to ensure that the concepts and mathematical procedures studied in school are in line with the accepted wisdom as valid by the community. Showing in the research literature, there are different approaches and authorship regarding the origin and applicability of the "Formula of Bhaskara". Keywords: Textbook. Approach. Formula of Bhaskara.

Page 10: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

SUMÁRIO

INTRODUÇÃO........................................................................................................ 11

1 HISTÓRIA SOBRE A VIDA DE BHÁSKARA...................................................... 13

1.1 LIVROS PUBLICADOS..................................................................................... 14

1.2 MAS POR QUE LOGO PARA BHÁSKARA?.................................................... 17

1.3 MITO OU REALIDADE: BHÁSKARA FOI REALMENTE O AUTOR DA

FÓRMULA?.............................................................................................................

18

2 O ENUNCIADO DA FÓRMULA DE BHÁSKARA E ALGUMAS

DEMONSTRAÇÕES...............................................................................................

25

2.1 DEMONSTRAÇÃO DO ÁRABE AL-KHOWARIZMI..................................... 26

2.2 DEMONSTRADA PELO MÉTODO DE VIÈTE................................................. 27

2.3 DEMONSTRAÇÃO DO MÉTODO QUE BHÁSKARA UTILIZAVA NA SUA

ÉPOCA....................................................................................................................

28

3 ALGUMAS APLICAÇÕES DA FÓRMULA DENOMINADA DE BHÁSKARA.... 31

3.1 APLICAÇÕES NA CONSTRUÇÃO CIVIL......................................................... 32

3.2 APLICAÇÃO EM UM ENIGMA DA REAL......................................................... 33

3.3 APLICAÇÕES NA FÍSICA................................................................................. 35

CONSIDERAÇÕES FINAIS.................................................................................... 37

REFERÊNCIAS...................................................................................................... 38

Page 11: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

11

1 INTRODUÇÃO

A Fórmula de Bháskara é muito conhecida na matemática e quando se olha

pra seu nome as pessoas se perguntam “Será que foi realmente Bhaskara que criou

essa famosa fórmula”, pois muitos acreditam até hoje que sim, já que sempre nos foi

ensinado que a mesma foi descoberta por ele, tanto que leva o seu nome, mas

veremos que bem antes dele a fórmula já existia e que o mesmo apenas contribuiu

para a resolução das equações indeterminadas. Afirma Sad e Silva (2008, p.32),

que:

O posicionamento teórico e as expectativas deste estudo seguem as ideias as quais afirmam que é de grande abrangência e de crucial relevância a investigação (histórica e educacional) com o uso de estudo comparativo, sendo que esta constitui uma ótima estratégia para a pesquisa, pois ao utilizá-la o pesquisador poderá obter mais respostas do que a proposta inicial. Além disso, há a probabilidade de se surpreender com as conclusões ou com as novas relações de abordagens possíveis de realização. (SAD; SILVA, 2008, p.32),

No decorrer do trabalho vamos mostrar que apesar de atribuírem a Bhaskara

a autoria da fórmula, ele não foi o autor da mesma, pois há 400 anos antes dele ela

já havia sido descoberta pelos babilônicos e somente anos depois ele teve sua

contribuição nas equações indeterminadas, onde encontramos relatado em seu livro

Bijaganita sobre álgebra.

Na verdade foi apenas aqui no Brasil no ano de 1960 que passaram a

atribuir a ele a autoria da fórmula de resolução da equação do segundo grau, além

disso, não se encontra nem um registro na literatura internacional que foi ele o autor

da mesma. O presente trabalho de conclusão de curso encontra-se dividido em três

grandes capítulos.

No primeiro capítulo abordamos a história sobre a vida de Bháskara,

enfatizando as obras publicadas, o motivo do mérito da escolha dele para evidenciar

a fórmula matemática e a mitologia existente por trás da realidade do surgimento de

tal processo de resolução das equações quadráticas.

No segundo capítulo enunciaremos a fórmula de Bháskara e algumas

demonstrações, como método do Árabe Al Khowarizmi, que Bháskara utilizava em

sua época, método de Viète, com o intuito de mostrar a evolução que a mesma teve

Page 12: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

12

para chegar ao que hoje conhecemos como fórmula geral para a resolução das

equações do 2º grau.

E no último capitulo faremos algumas aplicações da fórmula, mostrando sua

aplicabilidade na construção civil, na física e na engenharia envolvendo problemas

do cotidiano.

Page 13: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

13

1 HISTÓRIA SOBRE A VIDA DE BHÁSKARA

De acordo com relato histórico, Bháskara nasceu na cidade de Vijayapura, em

1114. Descendente de uma família de astrônomos, o matemático estudo astronomia

e astrologia, dando ênfase á matemática. “Em suas obras, descreveu Matemática

conhecida na Índia, acrescentando observações próprias. Naquela época, as obras

dos matemáticos gregos já eram conhecidas pelos hindus”. (Bongiovanni, Vissoto e

Laureano, 1995, p.65).

Entre os séculos 500 á 1150 d.C. Registros históricos mostraram que no

campo matemáticos a civilizações hindu teve grande desenvolvimento.

Diferentemente dos Gregos que visavam por clareza e lógica nas demonstrações de

suas equações matemáticas, os hindus possuíam uma forma empírica, expressa por

versos que não raramente eram imbuídos de uma linguagem mística e obscura,

sendo pouco utilizadas as demonstrações das equações, as quais quando

apresentadas, não dispunham de números imaginários, mas forma sincopada (por

meio de abreviações) (FRAGOSO, 1999, p.29-31).

Para Sardinha (et al, 2011), Fernandes (2005) e Rouse Ball (1960); Bháskara

nasceu em 1114 em Vijayapura, Índia, e morreu em 1185 em Ujjain, também na

Índia. Família tradicional de astrólogos indianos, ele seguiu a tradição profissional da

família, porém com uma orientação cientifica, dedicando-se mais a parte matemática

e astronômica. Então ele se preocupava mais com o calculo do dia e hora da

ocorrência de eclipses ou das posições e conjunções dos planetas, que dá

sustentação à Astrologia.

O mesmo foi reconhecido muito cedo e com isso conseguiu o posto de diretor

do Observatório de Ujjain, que, na época, era o maior centro de pesquisas

matemáticas e astrológicas da Índia, fama desenvolvida por excelentes matemáticos

como Varahamihira e Brahmagupta, que ali tinham trabalhado e construído uma

forte escola de astronomia matemática. Ele viveu a maior parte de sua vida na

região de Sahyadri1. Segundo (ANDRADE; FRAZÃO; AGUIAR, 2014).

Suas obras representaram a culminação de contribuições hindus anteriores.

Seis trabalhos seus são conhecidos Siddhantasiromani, Lilavati, Bijaganita,

Goladhyaya, Granaganita, no entanto o sétimo trabalho é Bijaganita é “[...] uma mera

Page 14: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

14

cópia do que já tinham escrito outros matemáticos”, corroborando assim, com outros

autores, como Guelli (1995, p.36). Filho de um astrólogo famoso chamado

Mahesvara, tornou-se conhecido pela complementação da obra do conterrâneo

Brahmagupta, que ali se dedicou no trabalho, arquitetando uma escola de

astronomia, onde se especializo em álgebra, embrenhando-se seus estudos.

(ANDRADE; FRAZÃO; AGUIAR, 2014).

Sad e Silva (2008), afirmam que os documentos históricos são resultados da

sociedade e não podem permanecer passivos (presos ao passado). Daí a

importância da análise coletiva, possibilitando o resgate para a divulgação científica

do conhecimento.

1.1 LIVROS PUBLICADOS

As obras escrita por Bhaskara são:

Siddhantasiromani (são representadas com conteúdo astronômicos dividido

em partes).

Goladhyaya: são atribuídas as (esfera celeste).

Granaganita: são atribuídas as (matemáticas dos Planetas).

Lilavati.

Bijaganita

A obra Siddhantasiromani foi escrito em 1150 e está dividido em duas

partes: Goladhyaya-Esfera Celeste e Granaganita-Matemática dos Planetas. Esses

dois livros tratam sobre trigonometria e matemática aplicada à astronomia. Nesta

obra encontram-se a soma e diferença de senos de dois ângulos.

Comentou em uma das suas obras, a astronomia composta de quatro

partes: a primeira, o Lilavati, versa sobre aritmética; a segunda Bijaganitas sobre

álgebra; Goladhyaya sobre a esfera (o globo celeste); e, Grahaganita versa sobre o

movimento planetário. Igualmente, Fernandes (2005) expõem que a obra mais

famosa de Bhaskara foi traduzida pelo inglês Henry Thomas Colebrooke, em torno

de 1817, mas aparentemente não houve comercialização massificada do livro.

Page 15: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

15

Figura 1: Manuscrito precioso da obra Lilavati.

Fonte: Livros raros e manuscritos da Universidade de Columbia – USA.

Conforme Fragoso (1999, p.30-32), Lilavati (significa formosa e bela, em

sânscrito, ou seja, “a linda menina dos olhos fascinantes”), é a sua obra mais

importante e leva o nome de sua filha. Ela foi composta em forma de poema com

278 versos e possui finalidade lúdica. Este livro ganhou grande popularidade na

Índia durante o tempo de Akbar (1556-1605). Foi sob a ordem deste imperador que

Abul Faizi, o poeta da corte, preparou a tradução integral, o Tarjamah-i-Lilavati em

1587 d.C. (BAG, 1980).

Conforme Fragoso (1999, p.30-32), a obra escrita em versos possui bases

poéticas e é intitulada com o nome de sua filha o que a envolveu em um véu de

lendas e estórias que intentam explicar os motivos que o levaram a escrever tal

homenagem. Uma das lendas mais conhecidas e difundidas foi a de que:

Lilavati ‘a linda menina dos olhos fascinantes’. Expõe à lenda que astrólogos predisseram data e hora propícias para o seu casamento. Como o tempo era marcado através do relógio d’água (dois recipientes com água disposta em níveis distintos, onde a água passa de um para o outro marcando assim o horário) naqueles dias, Lilavati, ansiosa, debruçou-se sobre um dos recipientes e, por obra do destino, uma das pérolas que adornava seus cabelos caiu interrompendo o fluxo d’água e, desse modo, sem a referida cronometragem, ela não se casou. Em sua tristeza, seu pai, Bháskara, resolveu imortalizá-la através do título de sua obra, pois criam que quando se atribuía o nome de uma pessoa em um livro, esta viveria para sempre. (FRAGOSO, 1999, ps.31-32).

Além disso, segundo Ricardo (2013), Bhaskaracharya, ao lançar o seu

horóscopo, isso era a apresentação do momento, mas propício para o casamento

seria uma hora específica em um determinado dia. Bhaskaracharya.

Page 16: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

16

Afirmam que no antigo Egito e Babilônia já eram empregado “relógio de

água”, baseado no escoamento de um filete de água, através de um pequeno orifício

no fundo de um recipiente, para outro recipiente contendo uma escala graduada.

Baseado nesse princípio Bhaskara, também empregou na época para justifica a

marcação do tempo.

Figura 2: Relógio de água

Fonte: Livro Didático, Física I, 2013.

Graças a essa história sobre a homenagem feita a filha, Bháskara ficou

amplamente conhecido, inclusive entre as pessoas de pouco conhecimento no

campo da Matemática diz Silveira (2001). Ainda segundo a autora, na obra Lilavati

Bháskara trata de aritmética, e é na obra intitulada Bijaganita definida como sendo:

[...] um livro sobre Álgebra [os indianos foram os pais da Álgebra e a chamavam de Outra (=Bija) Matemática (=Ganita), pois nasceu depois da matemática tradicional que se dedicava aos cálculos aritméticos e geométricos]. Bháskara gasta a maior parte desse livro mostrando como resolver equações. Embora não traga nenhuma novidade quanto à resolução nas equações determinadas, ele traz muitos novos e importantes resultados sobre as indeterminadas. Para os matemáticos, é exatamente nas suas descobertas em equações que reside sua importância histórica. (SILVEIRA, 2001).

O livro mais famoso de Bhaskara Akaria é o Lilavati, obra elementar

dedicada a problemas simples de aritmética, geometria plana (medidas e

trigonometria elementar) e combinatória. Sendo a mais conhecida o "Lilavati".

Bháskara escreveu também um livro chamado Bijaganita, que mostra como

resolver equações. Foi o primeiro livro a reconhecer que um número positivo pode

ter duas raízes, uma positiva e outra negativa. Escreveu várias obras assim como:

"Bijaganita" (Compêndio de Aritmética), "Goladhia" (Teoria da Esfera), “Siddhanta

Page 17: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

17

Siromani (Jóia de precisão), “Karanakutuhala” (Cálculo de Maravilhas da

Astronomia)”.

1.2 MAS POR QUE LOGO PARA BHÁSKARA?

Esse ilustre matemático resolveu vários problemas complicados, alguns dos

quais envolviam equações de 2º grau. No entanto, muito antes dele, a resolução da

equação já era conhecida.

Acerca da adequação denominação fórmula resolutiva das equações de 2º

grau, que aqui no Brasil tem por nome de fórmula de Bháskara, no dicionário

presente na obra, quem seria esse personagem. Encontramos o seguinte

esclarecimento:

Bháskara matemático indiano que viveu por volta do ano 1100. Fez várias descobertas, mas não é de sua autoria a fórmula que leva seu nome e resolver a equação de 2º grau. Na verdade, a resolução da equação já era conhecida antes (IMENES; LELLIS, 2002, p. 326)

Realmente, o texto apresenta os fatos históricos no qual os autores

demonstram a fórmula de Bháskara e apresentam argumentos sobre a mesma,

procuram contestar essa autoria. Na verdade, para esses autores, a fórmula parece

estar mais relacionada à Al-Khowarizmi do que a Bháskara:

Logo, embora não se deva negar a importância e a riqueza da obra de

Bháskara, não é correto atribuir a ele a conhecida fórmula de resolução da equação

do 2° grau, a autora nega os créditos à Bháskara com relação às contribuições para

as equações determinadas dizendo que o que ele traz na obra Bijaganita é “uma

mera cópia do que já tinham escrito outros matemáticos”, corroborando assim, com

outros autores, como Guelli (1995, p.36) apud Fragoso (1999, p.34) que diz que

mesmo com todo o seu talento, Bháskara não pode dar o passo fundamental no

desenvolvimento das equações do 2º grau.

Garbi (1997, p. 23) apud Fragoso (1999, p.34) esclarece ainda que “A

fórmula de Bháskara não foi descoberta por Bháskara. Conforme ele mesmo relatou

no século XII, a mencionada fórmula fora encontrada um século antes pelo

matemático hindu Shidhara e publicada em uma obra que não chegou até nós”.

Page 18: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

18

1.3 MITO OU REALIDADE: BHÁSKARA FOI REALMENTE O AUTOR DA

FÓRMULA?

O primeiro registro sobre equações de segundo grau que se tem notícia em

tábua de argila, cuja apresentação era oratória através de palavras, considerada

como uma “receita matemática” infalível para solucionar tal tipo de equação e que

fornecia somente uma raiz positiva, (as raízes negativas só entraram no contexto

matemático a partir do século XVIII).

Os historiadores encontraram indícios de que, na civilização da babilônia;

em 1700 a.C., já eram resolvidas algumas equações do 2º grau. Depois dessa

época remota, parece ter sido Al-Khowarizmi, no século XVI, quando o maior

especialista no assunto. (...) depois do século XVI, quando os matemáticos já

sabiam calcular com letras, somar monômios, polinômios e fatorar, eles obtiveram a

fórmula de Bháskara, seguindo as ideias de Al-Khowarizmi. (IMENES; LELLIS, 2002,

8ª série, p.124).

A história em diferentes pontos de vista de autores que põem em destaque os

matemáticos que se destacaram no âmbito da educação. O questionamento

levantado por Imenes e Lellis torna-se ainda mais interessante se consideramos que

diz respeito a uma designação que parece ser utilizada apenas por livros didáticos

brasileiros, apesar de não mencionarem tal fato. Trata-se, portanto, de um elemento

histórico associado à história da educação matemática brasileira.

A famosa fórmula para resolução das equações quadráticas não foi criada

por Bhaskara II, “Ele nem sabia o que era uma fórmula, pois a mesma só surgiu 400

anos depois da sua morte, consequentemente, não poderia ele ter descoberto

fórmula nenhuma”. Na época em que o matemático viveu, as equações eram

resolvidas através de Regras: [...] uma descrição por extenso dos procedimentos

para resolver um problema, por exemplo, as equações que na época de Bháskara,

tipicamente, tinham a forma de poesias que iam descrevendo as operações a

realizar para resolver o problema, porém ele ajudou a criar essa fórmula, com suas

descobertas e as de outros cientistas.

Segundo Vailati (2007, p. 5-6), diz que “[...] somente no Brasil em 1960, à

fórmula geral para a solução das equações do 2.º grau está ligada ao matemático

hindu Bháskara II”. Vailati concorda com Silveira (2001) que esse equívoco que liga

Page 19: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

19

Bháskara as equações quadráticas, ocorre apenas no Brasil. E a mesma foi batizada

de fórmula de Bhaskara, depois que foi criada os matemáticos quisera fazer uma

homenagem para Bhaskara e atribuíram a ele o nome dele a fórmula.

Historicamente existem registros de sua existência cerca de 400 anos antes,

em textos escritos pelos babilônios. Naquela época não existia a simbologia utilizada

hoje, ou seja, não havia a fórmula atual, mas sim uma espécie de "receita" de como

proceder para encontrar as raízes da equação quadrática.

Afirma Vailati (2007, p.5-6) que “[...] a equação quadrática é resultante de

um processo longo de sistematização do conhecimento iniciado pelos babilônicos

(2000 a.C) e culminando na Renascença Europeia (Séc. XV e XVI)”. Logo, percebe-

se que mais de um matemático contribuiu para que sua dita fórmula resultasse na

fórmula que conhecemos hoje.

[...] fez grandes contribuições e essas estão expostas no Bijaganita. Pode-se dizer que essas contribuições, principalmente a invenção do método interativo do chakravala e sua modificação do clássico método kuttaka correspondem ao ápice da matemática indiana clássica, podendo-se acrescentar que é somente com Euler e Lagrange que voltaremos a encontrar desenvoltura técnica e fertilidade de ideias de porte compatíveis. (Silveira, 2001).

As contribuições de Bháskara para a matemática são notáveis como

demonstra a autora acima mencionada, contudo, por virtude de uma associação

pouco conveniente não se pode desmerecer seus méritos com relação as suas

contribuições a matemática.

Essa nomenclatura não é vista em outros países, mesmo porque a mesma

não foi descoberta por ele. Nesses textos o que se tinha era uma receita (escrita em

prosa, sem uso de símbolos) que ensina o procedimento para determinações das

raízes em exemplos concretos com coeficientes numéricos.

Babilônios, egípcios e gregos utilizavam técnicas capazes de resolver esse

tipo de equação anos antes de Cristo, e, por essa razão, não chegaram a

desenvolver um método genérico aplicável à resolução de qualquer tipo de equação

de 2º grau. Entretanto, se considerarmos que todos apresentaram métodos

diferenciados de completar quadrados e que a generalização do método

apresentado por Bháskara, cuja autoria é atribuída ao matemático hindu Shidhara,

iniciado pela multiplicação de todos os membros por 4a, leva à nossa atual fórmula

de resolução, podemos levantar essa hipótese. Um fato curioso que o próprio

Page 20: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

20

Bháskara reconhecia a autoria da fórmula. Para maiores de talhes veja o artigo

mencionado anteriormente, de Carvalho (et al, 2008):

Muitos foram os matemáticos que se destacaram na época, com base na abordagem realizada por nós, particularmente em grandes partes dos livros didáticos e da literatura pertinente, pudemos identificar até o momento alguns ilustres matemáticos mencionados por autores diversos e de época diversa, dentre os quais se destacam o hindu Shidhara, Bháskara, Al-Khowarizmi e François Viète.

Bagdá Século IX. O sábio muçulmano Al-Khowarizmi descobriu um brilhante

método para comprovar geometricamente as raízes das equações do 2º grau. O

árabe por volta do ano 825 escreveu um livro cujo título pode ser traduzido por “a

ciência das equações”. Ainda no século IX, ele apresentou e resolveu equações de

2º grau com uma incógnita usando áreas de quadrados e retângulos. Atualmente,

esse procedimento é conhecido como método de completar quadrados.

Figura 3: Rosto do matemático Al-Khowarizmi

Fonte: Livro Didático, Matemática Uma aventura do pensamento 1997.

Foi também um brilhante representante, que se baseando no trabalho dos

gregos, criou metodologias para a resolução de equações do 2º grau. As

representações geométricas utilizadas por Al-Khowarizmi são influenciadas por

Euclides.

Conforme o livro da história da matemática, de Carl Boyer, não se percebe

elementos da matemática grega clássica no processo de Al Khowarizmi utilizaram

para resolver uma equação do 2º grau. Já em outros trechos da obra de Al

Page 21: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

21

Khowarizmi há, Segundo Boyer, “a provável influência da matemática babilônica

antiga, da matemática indiana medieval e da matemática grega clássica”.

Figura 4: Processo geométrico de completação de quadrado.

Fonte: Construção dos Acadêmicos.

O método funciona da seguinte forma:

Primeiro, ele desenha um quadrado cuja área representa o termo . Termo

é interpretado como a área de um retângulo de lados e . Al-Khowarizmi dividiu

esses retângulo em quatro retângulos de área iguais. Em seguida, aplicou cada um

desses quatro retângulos sobre os lados do quadrado de área .

A área da figura formada é igual a .

Como , a área dessa figura é

Em seguida, completou o quadrado:

A área deste quadrado é igual a:

Portanto, o lado do quadrado é , e assim o famoso sábio mostrou que 1 é uma

raiz da equação:

Em Nova York – 1930, numa tabuleta desenterrada no vale da Mesopotâmia

e que data do período entre 1950 a.C e 1600 a.C. Foi confirmado o que muitos

matemático já desconfiavam: os Babilônios sabiam resolver equações do 2º grau

Page 22: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

22

através de um procedimento que tinha, com pequenas modificações, a fórmula que

usamos atualmente.

A resolução da equação , que, na nossa linguagem de hoje, é

uma equação do tipo , é encontrada através de uma descrição em

palavras, que segue fielmente a fórmula:

(os babilônios não conheciam raízes negativas).

Experimente resolver a equação (somente a raiz positiva) pela

receita dos babilônios.

Depois, substituir na fórmula quadrática atual,

Descobrirá que as duas fórmulas são exatamente iguais.

Foi o matemático francês François Viète (1540-1603), quem deu um

tratamento mais formal e algébrico (ganharam símbolos, as letras) para a fórmula

geral das equações do 2º grau. Viète é o responsável pela modernização da álgebra,

seus trabalhos foram desenvolvidos por outro francês, denominado René Descartes.

As equações quadráticas são usadas na resolução de problemas do dia a dia, como:

massa corpórea, otimização, cálculo de áreas em movimentos uniformemente

variados, entre outros.

Figura 5: Rosto do Matemático François Viète

Fonte: Gravura, séc. XIX. Escola Francesa. Coleção particular.

Page 23: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

23

Podemos observar que a expressão matemática utilizada atualmente para a

resolução de uma equação quadrática não deve ser atribuída somente a uma

pessoa, mas a vários pesquisadores que através de inúmeros trabalhos, a

desenvolveram.

Observe que o desenvolvimento da Matemática está ligado a uma sequência

de fatos que estão correlacionados entre si. Por mais que temos uma expressão

definitiva para a resolução de equações do 2º grau, seria contundente dizermos que

muitos ainda pesquisam e trabalham nessa expressão, no intuito de descobrirem

novas maneiras de descobrir suas raízes.

Quase mil anos depois da criação do método árabe o matemático francês

François Viète foi fundamental para criação do sistema moderno de notação

matemática, que abriu as portas para novos métodos e para releitura dos métodos

antigos. O mesmo tinha a preocupação de padronizar a escrita algébrica em que a

mesma permitiria identificar as variáveis, os números e as operações de maneira

simples e prática. Com isso, muito do que era escrito verbalmente ganhou a forma

algébrica a qual se usa atualmente é o caso da famosa fórmula para extração das

raízes de uma equação quadrática, fórmula que curiosamente é atribuída a

Bhaskara.

O interessante é que Bhaskara não descobriu ou desenvolveu esta fórmula.

Na verdade, as fórmulas surgiram na Matemática a aproximadamente de 400 anos

depois da sua morte, portanto, a fórmula não é dele! "[…] Na sua época, e

possivelmente resolver as equações e também muito antes, os indianos usavam

regras descrição por extenso dos procedimentos para resolver um problema", Silva

(2008, p. 28), em forma de receitas, que iam descrevendo as operações a realizar.

Quem "descobriu" (coloco entre aspas, pois, como disseram, as notações

surgiram 400 anos após a morte de Bhaskara) a fórmula foi Sridhara, 100 anos

antes de Bhaskara. Portanto, já era do seu conhecimento.

O fundamento usado para obter esta fórmula foi buscar uma forma de

reduzir as equações quadráticas a uma do primeiro grau, através da extração de

raízes quadradas de ambos os membros da mesma. Isso ajuda o indivíduo entender

a equação. Quem decorou a fórmula, sabe que é igual a menos mais ou menos

raiz quadrada de ao quadrado menos quatro vezes vezes c e tudo dividido por

Page 24: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

24

dois . Bom, para entender melhor, vamos passo a passo da fórmula nas

demonstrações no próximo capitulo.

A resolução de equação quadráticas foi abordada, no decorrer da história,

por diversos povos, como os árabes, hindus e babilônios. Cerca de 2000 a.C. já

resolviam equações quadráticas, em alguns casos com o auxílio de figuras e outros

objetos. No século XV, na obra Summa, o carmelitano Italiano Luca Pacioli (1445-

1509) apresentou diversos problemas envolvendo a equação quadrática.

Page 25: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

25

2 O ENUNCIADO DA FÓRMULA DE BHÁSKARA E ALGUMAS

DEMONSTRAÇÕES

As equações do 2º grau são resolvidas através de uma expressão matemática

atribuída ao matemático indiano Bháskara. Mas analisando a linha cronológica dos

fatos, identificamos diversos homens ligados ao desenvolvimento da Matemática,

contribuindo na elaboração de uma forma prática para o desenvolvimento de tais

equações:

A utilização das equações quadráticas se dá da seguinte forma: “Na engenharia é usada para estudar lançamentos, trajetória de parábolas e materiais; em física nos movimentos uniformemente variados, lançamentos, queda livre, entre outros; em administração ou economia, pode ser usada para descobrir o lucro máximo de uma empresa” (CARVALHO, 2008).

Pois bem, analisando seu resultado no gráfico (as equações e funções são

estudados pelos gráficos, e vice-versa), pode ser aplicado em vários fatos. O

lançamento de um projétil (bala de canhão) descreve o trajeto de uma equação do

segundo grau. Assim, dependendo do ângulo que fizer, pode-se saber aonde a bala

vai cair. Neste caso, da onde a bala sai é um dos resultados da equação, e aonde

ela cai, é o outro resultado de x. E ainda, como a equação descreve uma parábola,

pode-se determinar a altura máxima que pode alcançar.

Outro exemplo é se, em uma empresa, os lucros seguirem o padrão de uma

equação quadrática. Assim, pode-se saber quando os lucros vão atingir lucro

máximo (se os lucros estiveram aumentando), e o que fazer para não decair.

As equações quadráticas incompletas podem ser resolvidas facilmente,

apenas utilizando raiz quadrada. Já no caso das equações completas, é necessário

utilizar uma fórmula matemática: a fórmula denominada de Bhaskara (lê-se

Báscara). Uma equação de 2o grau pode ser reduzida a três termos principais. O

termo que possui a variável ao quadrado, a variável e o termo sem ela.

Eis a seguinte fórmula geral:

Page 26: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

26

2.1 DEMONSTRAÇÃO DO ÁRABE AL-KHOWARIZMI (MÉTODO DE COMPLETAR

QUADRADO)

Seja a equação: 0 .

Primeiramente, vamos dividir todos os coeficientes da equação por temos:

Passando o termo

para o segundo membro, teremos:

Prosseguindo, faremos com que o lado esquerdo da equação seja um

quadrado perfeito e para isto somaremos o quadrado de

a ambos os membros

da equação para completando o trinômio quadrado perfeito temos:

Fatorar o primeiro membro e retirando m.m.c. do segundo. Temos:

Extraindo a raiz quadrada (supondo

Isolando o , temos:

Valores de é:

Ou

Onde (às vezes usamos a letra maiúscula "delta" do alfabeto grego) é o

discriminante da equação do segundo grau, definido por:

Page 27: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

27

2.2 DEMONSTRADA PELO MÉTODO DE VIÈTE.

Generalizando o conceito de completar quadrado, podemos chegamos a uma

formula para resolver equação dos 2º grau.

Consideramos a equação geral do 2º grau de coeficiente com

Seja a seguinte equação:

Sejam as raízes dessa equação.

Substituindo na equação, temos:

Vamos resolver a equação em.

Vamos eliminar o coeficiente de fazendo:

Substituindo na equação:

Simplificando e tirando o mínimo de toda a equação:

Como afirmamos que:

Page 28: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

28

Então:

2.3 DEMONSTRAÇÃO DO MÉTODO QUE BHASKARA UTILIZAVA NA SUA

ÉPOCA

Consideramos a equação do 2º grau de coeficiente com

Primeiramente, vamos dividir todos os coeficientes da equação por temos:

Bhaskara dava uma arrumada assim nos termos:

Em seguida desenha um quadrado representado na figura 8. É divide-se

novamente um quadrado onde seus lados são representados por Como mostra

abaixo a figura 6.

Figura 6: Planificação da demonstração de Bháskara

Fonte: Construção dos Acadêmicos

E os dois retângulos são representados seus lados

e outro quadrado

maior com lados representado por

como mostra figura 7.

Figura 7: Planificação da demonstração de Bhaskara

Fonte: Construção dos Acadêmicos

Page 29: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

29

Calculando área dos quadrados e do retângulo temos como ilustra figura 8 .

Figura 8: Planificação da demonstração de Bhaskara

Fonte: Construção dos Acadêmicos

Seguindo, ele retirava as linhas do quadrado menor ficando assim a

expressão de acordo com figura 9.

Figura 9: Planificação da demonstração de Bhaskara

Fonte: Construção dos Acadêmicos

Substituía a expressão

no lugar de

·

Figura 10: Planificação da demonstração de Bhaskara

Fonte: Construção dos Acadêmicos

Próximo passo do método é somar

Page 30: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

30

Agora vamos para equação final, como é um quadrado dizemos a área é

·, portanto temos:

Fatorar o primeiro membro e retirando m.m.c. do segundo. Temos:

Retirando a raiz quadrada (supondo .

Isolando o , temos.

Valores de é:

Ou

Page 31: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

31

3 ALGUMAS APLICAÇÕES DA FÓRMULA DENOMINADA DE BHASKARA

A utilização da equação do segundo grau se dá da seguinte forma:

Na engenharia é usada para estudar lançamentos, trajetória de parábolas e materiais; em física nos movimentos uniformemente variados, lançamentos, queda livre, entre outros; em administração ou economia, pode ser usada para descobrir o lucro máximo de uma empresa (CARVALHO, 2008).

Pois bem, analisando seu resultado no gráfico (as equações e funções são

estudados pelos gráficos, e vice-versa), pode ser aplicado em vários fatos. O

lançamento de um projétil (bala de canhão) descreve o trajeto de uma equação do

segundo grau. Assim, dependendo do ângulo que fizer, pode-se saber aonde a bala

vai cair. Neste caso, da onde a bala sai é um dos resultados da equação, e aonde

ela cai, é o outro resultado de x. E ainda, como a equação descreve uma parábola,

pode-se determinar a altura máxima que pode alcançar.

Outro exemplo é se, em uma empresa, os lucros seguirem o padrão de uma

equação quadrática. Assim, pode-se saber quando os lucros vão atingir/atingiram

lucro máximo (se os lucros estiveram aumentando), e o que fazer para não decair.

As equações de 2º grau incompletas podem ser resolvidas facilmente, apenas

utilizando raiz quadrada. Já no caso das equações completas, é necessário utilizar

uma fórmula matemática: a fórmula de Bhaskara (lê-se Báscara). Uma equação de

2o grau pode ser reduzida a três termos principais. O termo que possui a variável ao

quadrado, a variável e o termo sem ela.

Eis a seguinte fórmula geral:

Page 32: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

32

3.1 APLICAÇÕES NA CONSTRUÇÃO CIVIL

Figura 11: Ilustração de um Deposita

Fonte: Construção dos Acadêmicos 2015.

Vamos supor que um construtor precise construir uma calçada na frente e no

lado esquerdo de um depósito. O depósito tem 18 m de frente, e 30 m de lado. E o

construtor tem de piso disponível para a construção dessa calçada. Surge a

pergunta: Qual deve ser a largura da calçada para que não sobre e nem falte piso?

Olha o tanto que a fórmula de Bhaskara será importante para esse tipo de

cálculo:

Agora é só aplicar a fórmula denominada de Bhaskara, e encontraremos a

largura certa para a calçada.

Page 33: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

33

3.2 APLICAÇÃO EM UM ENIGMA DA VIDA REAL

Figura 12: Frota de Kombi

Fonte: Prefeitura Municipal de Itararé

Tenho uma frota de Kombi, e alugo cada Kombi para 12 passageiro mais. Se

o número for exatamente 12, cada um pagará R$10,00. Haverá um abatimento de

R$ 5,00 para cada passageiro que exceder os 10. Como a capacidade de cada

avião é de 16 passageiros, qual deverá ser o número de passageiros em cada avião,

a fim de que eu obtenha a maior receita possível, ou seja, a receita máxima?

Qual o valor da máxima rentabilidade?

Resolução:

Seja R= Rentabilidade. Logo, R= Número de passageiras vezes pagamento

por passageiro. Se o número de passageiros passarem de 10 para 11, então:

Valor da passagem =10–5(11–10) =10–50(1).

Se o número de passageiros passarem de 10 para 12, então: valor da passagem

=10–5(12–10)=10–5(2). E assim por diante.

Se o número de passageiros for x, então:

Valor da passagem =10–5(x–10) =10–5x+50= 60-5x.

Como x corresponde ao número de passageiros, e a receita é igual ao número de

passageiras vezes pagamento por passageiro, logo:

R=x(60–5x) ou R(x) =–

Vamos achar o valor de x que dá o máximo à – de duas maneiras:

a) Por meio da fórmula de Bhaskara.

Page 34: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

34

a) Vamos tirar de – , os dados necessários para usar na fórmula de

Bháskara:

Dados: –

Substituindo os dados na fórmula de Bháskara, obtém-se:

Como o valor máximo (VM) de R(x) é dado pela média entre as duas raízes, logo:

Portanto,

Gráfico do Valor Máximo Arrendado

Fonte: Construção dos Acadêmicos 2015.

Page 35: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

35

3.3 APLICAÇÕES NA FÍSICA

As equações do 2º grau estão presentes em inúmeras situações cotidianas,

a exemplos das seguintes:

Movimento de um projétil - Você já deve ter estado na beira de um rio ou de

um lago e atirado uma pedra para o centro da água ou então jogada um objeto ou

dado uma bicuda para o alto em uma bola. Note que como será a trajetória desse

movimento? Uma parábola, a função do 2° grau que descreve este movimento.

A trajetória de um projétil perceba o movimento descrito, uma parábola. A

equação do segundo grau é forte presença ai. Por exemplo, para calcular a altura

máxima atingida você precisa calcular o delta, para descobrir o ponto de partida e

chegada é necessário resolver a equação e achar os valores de x.

Exemplo 1: Um skatista Desliza em MUV obedecendo à função

, sendo medido em metros e em segundos. Em que instante o skatista

muda de sentido?

Solução: A equação do movimento é 2º grau, então ela apresenta uma

parábola crescente , a transformação de sentido do skatista dará no

momento em que ele atingir o ponto mínimo da parábola. Observe a figura 14 do

movimento do skatista :

Figura 14: Do Movimento do Skatista.

Fonte: Construção dos Acadêmicos 2015.

Page 36: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

36

Devemos calcular o ponto mínimo da parábola, assim:

Exemplo 2: Um garoto com estilingue atira uma pedra como mostra figura 15,

descrevendo a função , sendo em metros e em segundos.

Calcule o ponto máximo de altura atingida pelo projétil.

Figura 15: Um projétil

Fonte: Construção dos Acadêmicos 2015.

Solução: A função do movimento da pedra descreve uma parábola

decrescente (a < 0), o ponto máximo da parábola será a altura máxima atingida pela

pedra.

Vamos calcular o ponto máximo da parábola assim:

Page 37: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

37

CONSIDERAÇÕES FINAIS

Apesar de não haver nenhum registro na literatura internacional que foi

Bháskara quem descobriu a fórmula para resolução das equações do segundo grau,

não podemos negar sua grande contribuição para a resolução de cálculos das raízes

das equações indeterminadas.

Também vale ressaltar que mesmo não sendo ele o autor, a fórmula que foi

bastante aperfeiçoada por diversos matemáticos chegou até nós nos ajudando a

compreender as diversas formas de demonstrá-la e como aplicá-la no nosso

cotidiano.

Portanto, destacou-se à verdadeira história de quem realmente foi o autor da

fórmula, pois é preciso assegurar que os conceitos históricos e procedimentos

matemáticos estudados estejam em sintonia com o conhecimento aceito como

válido, assim a perspicácia e o conhecimento sobre várias vertente de nosso tema.

E desejamos que, em futuros trabalhos, possamos ampliar esse saber matemático

para que nós mesmos e outros pesquisadores também possam se beneficiar desse

conhecimento.

Page 38: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

38

REFERÊNCIAS ANDRADE, M. R. Bháskara: biografia de Bháscara. In: E-Biografias, [S. l.], 2014. Disponível em:<http://www.e-biografias.net/baskhara/> Acesso em: 15 agosto 2015. ANDRADE, M. R.; FRAZÃO, G. F.; AGUIAR, L. Albert Einstein: biografia de Albert Einstein. In: E-Biografias, [S. l.], 2014. Disponível em: <http://www.ebiografias. ANTONIO, N. Y.; ELIZABETH S.; VICENTE P. F. Matemática. Ensino Médio. Volume Único. 1ª ed. São Paulo: Scipione, 2008. BAG, A. K. Indian Literature on Mathematics during 1400-1800 A.D. Indian Journal of History of Science, 15 (1), p. 79-93, May 1980. Disponível em: <http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20005af2_79.pdf > Acesso em: 15 Junho. 2015. BHASKARACARYA. Lilavat. Bháskara: biografia de Bháskara. In: E-Biografias, 2015. Disponível em: <http://www.e-biografias.net/baskhara/> Acesso em: 18 Julho 2015. __________ A Treatise of Mathematics of Vedic Tradition. Tradução de Krishnaji Shankara Patwardhan, Somashekhara Amrita Naimpally e Shyam Lal Singh. Dethi: Motilal Bernardidass Publishers. 2008. BOYER, C. D. História da Matemática. Trad. Elza F. Gomide. São Paulo, Edgar Blücher/EDUSP, 1974. CAMPAGNER, C. A. Fórmula de Bháskara: resolva equações do 2º grau. São Paulo: UOL Educação, 2007. Disponível em: <http://educacao.uol.com.br/disciplinas/matematica/formulade-bhaskara-resolva-equacoes-de-2-grau.htm> Acesso em: 8 Agosto 2015. CARL. B. Boyer História da Matemática, Editora Edigard Blücher LTDA, 1974. CARVALHO, L. T.; REIS, L. F. Aplicando a Matemática, 9º ano. Tatuí, SP: Casa DANTE, Luiz Roberto. Tudo é Matemática. 2ª ed. São Paulo: Ática, 2010.

Page 39: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

39

DESCARTES, René. biografia de René Descartes. In: E-Biografias, [S. l.], 2014. Disponível em: <http://www.e-biografias.net/rene_descartes/> Acesso em: 15 Julho 2015. EVES, Horward. Introdução à História da Matemática. Trad. Hygino h. Domingues. Campinas: Editora da Unicamp, 2004. FERNANDES, Jussara Pereira. O Lilavati de Bhaskaracarya e o Sistema Métrico Moderno: qual o denominador comum para o ensino de Ciências e Matemática? [S.l.: s.n.], 2013. 7 p. FERNANDES, Xavier. Lilavati in the history of mathematics.EXAMENSARBETEN I MATEMATIK: Matematiska Institutionen, Stockholms Universitet. 2005. FRAGOSO, François Viète – Wikipédia, a enciclopédia livre François Viète (ou Vieta), seigneur de la Bigotière (Fontenay-le-Comte, 1540 — Paris, 13 de dezembro de 1603) também conhecido como Franciscus Vieta.<https://pt.wikipedia.org/wiki/François_Viète. FRAGOSO, Wagner da Cunha. Uma abordagem histórica da equação do 2º grau. In:REVISTA DO PROFESSOR DE MATEMÁTICA. [s.l..]: [s.d.], n. 43, 01 dez. 1999. FRAGOSO,W. DA C. Equação do 2º grau: uma abordagem histórica. 2. ed. Ijuí: UNIJUÍ,1999. GUELLI, Oscar. Contando a história da matemática: história da equação do 2º grau. 2.ed. São Paulo: Ática, 1993. __________ Matemática Uma aventura do pensamento. São Paulo: Ática, 1997. MACHIAVELO, Antônio. A equação que nunca foi de Pell. Visitado em 9 de julho de 2015. Publicadora Brasileira, 2008. Unid. 4. (Inter@tiva) Disponível em: <http://www.educacaoadventista.org.br/fundamental-2/pesquisa-escolar/979/para-que-serve-aequacao-do-2-grau.html> Acesso em: 8 Agosto de 2014. SAD, L. A.; SILVA, C. M. S. da. Reflexões Teórico-metodológicas para Investigação em História da Matemática. Bolema, Rio Claro (SP), Ano 21, n° 30, 2008, p. 27-46. Disponível em: < http://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1788>, Acesso em: 07 Agosto 2015.

Page 40: UNIVERSIDADE FEDERAL DO AMAPA UNIFAP UNIVERSIDADE …

40

SILVEIRA, J. F. P. DA. História da Matemática: Bháskara descobriu a fórmula de Bháskara? In. Matemática Elementar. UFRGS, 2001. Disponível em: <http://www.mat.ufrgs.br/~portosil/bhaka.html> Acesso em: 8 Julho 2015. VAILATI, J. S. Equações Algébricas: intrigas e desafios intelectuais. Laranjeiras do Sul, 2007. Trabalho apresentado ao Programa de Desenvolvimento Educacional –PDE. Disponível em:<http://www.diaadiaeducacao.pr.gov.br/ portals/pde /arquivos/702-2.pdf> Acesso em: 12 Junho 2015. VINCENZO, B.; OLÍMPIO, R. V. L.; JOSÉ, L. T. L. Matemática e Vida. 7ª ed. São Paulo: Ática, 1995. net/albert_einstein/> Acesso em: 13 Junho 2015.