112
Universidade Federal do Rio Grande do Norte Centro de Ciências da Saúde Departamento de Fisioterapia Programa de Pós-Graduação em Fisioterapia ANTONIO JOSÉ SARMENTO DA NÓBREGA NOVAS METODOLOGIAS DE AVALIAÇÃO E INTERVENÇÃO EM PACIENTES COM ESCLEROSE LATERAL AMIOTRÓFICA Orientadora: Dra. Vanessa Regiane Resqueti Fregonezi Coorientador: Dr. Guilherme Augusto de Freitas Fregonezi

Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

Embed Size (px)

Citation preview

Page 1: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

1

Universidade Federal do Rio Grande do Norte

Centro de Ciências da Saúde

Departamento de Fisioterapia

Programa de Pós-Graduação em Fisioterapia

ANTONIO JOSÉ SARMENTO DA NÓBREGA

NOVAS METODOLOGIAS DE AVALIAÇÃO E INTERVENÇÃO EM PACIENTES

COM ESCLEROSE LATERAL AMIOTRÓFICA

Orientadora: Dra. Vanessa Regiane Resqueti Fregonezi

Coorientador: Dr. Guilherme Augusto de Freitas Fregonezi

Page 2: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

2

Universidade Federal do Rio Grande do Norte

Centro de Ciências da Saúde

Departamento de Fisioterapia

Programa de Pós-Graduação em Fisioterapia

NOVAS METODOLOGIAS DE AVALIAÇÃO E INTERVENÇÃO EM PACIENTES

COM ESCLEROSE LATERAL AMIOTRÓFICA

Tese apresentada ao Programa de Pós-

Graduação em Fisioterapia da Universidade

Federal do Rio Grande do Norte, como requisito

para obtenção do título de Doutor em Fisioterapia.

Área de concentração: Avaliação e Intervenção

em Fisioterapia.

Área de pesquisa: Avaliação e intervenção nos

Sistemas Cardiovascular e Respiratório

Orientadora: Profᵃ. Dra. Vanessa Regiane

Resqueti Fregonezi

Natal, 2018

Page 3: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

3

Page 4: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

4

AGRADECIMENTOS

Bem, muitas pessoas pensam que sempre foi fácil ou sempre foi sorte, mas a batalha até

chegar aqui não foi nada assim. Dias cansativos e muitas noites sem dormir valeram a pena para

conseguir defender o Doutorado em 2 anos cravados. Aliás, um ano e meio destes 2 anos

pareceram até 4, durante o período de Doutorado sanduíche na Itália (valeu CAPES e CNPq!!!),

longe de todos que gosto e acompanharam minha jornada até aqui.

Gostaria de agradecer ao Superior que esteve presente durante esta caminhada longa e,

com certeza, todas as noites em minhas orações. Aos meus pais Maria do Socorro Sarmento da

Nóbrega e Francisco Gil Marques da Nóbrega que sempre me incentivaram e impulsionaram a ir

além e não me deixaram na mão em nenhum momento, apesar da grande saudade diária que me

circunda todo dia quando acordo ou vou dormir. Tenham certeza que levarei todos seus

ensinamentos comigo. A Ana Karoline, apesar da distância, também cheguei aqui por você, nega!

Aos meus avós paternos e maternos que levaram os filhos do sítio para a cidade para

tentar dar mais qualidade de vida. Cheguei aqui por causa de vocês também! A todos meus tios,

em especial aqueles que estão próximos e que sabem a quantidade de aperreio que as vezes

passo, mas sempre tem uma cervejinha no final de semana para esfriar a cabeça.

Dedico também a todos colegas e família do jiu-jitsu que me acolheram no período que

estava em Milão, em especial ao Alberto e ao Prof. Nicola, aos meus colegas de infância lá do

interior da Paraíba que me acolhem toda vez que vou ver meus pais e também a Maradona, Vitão,

Albano e Etinho que quase vivem lá em casa e acabo desabafando muitas vezes. “Tamo junto

bando de caba”!

Aos professores Vanessa e Guilherme que me deram a oportunidade desde o início do

mestrado e confiaram na minha pessoa para trabalhar com a coisa que mais gosto de fazer hoje

em dia: Ciência! No começo pareceu ser difícil, mas com o incentivo de vocês e um pouquinho de

curiosidade a mais eu cheguei aqui. E como sempre disse a vocês: “não parou por aqui”; “tem

muita coisa ainda para fazer”; “bora desengavetar tudo”!

A toda a turma do TBMLab em Milão, em especial o professor Andrea Aliverti. Sou seu fã

de carteirinha, caba! Foi com você que eu aprendi o que é realmente ser um professor. Obrigado

por todos seus ensinamentos, pela preocupação (pelas cervejas no logo após finalizar sua aula) e

pela sua grandíssima humildade! Valeu mesmo, cappellino!

A todo pessoal do Lab06 da UFRN. Ninguém faz pesquisa sozinho e sem a ajuda de vocês

também não chegaria aqui. Em especial, dedico esta Tese a Maria Lira. Companheira, colega de

trabalho e da vida. Muito obrigado pelos seus ensinamentos. Saiba que não chegaria aqui tão

calmo e confidente sem você ali sempre do meu lado para realçar aquela confiança esquecida lá

no fundo do peito!

A Dr. Mário Emílio por confiar em mim como o Fisioterapeuta responsável pelos seus

pacientes da neurologia. Por fim, dedico esta tese ao pessoal da equipe do Ambulatório

Multidisciplinar de Doença do Neurônio Motor do Hospital Universitário Onofre Lopes e

principalmente todos os pacientes que passaram o compõe e que passaram por mim durante os

períodos de Mestrado e Doutorado. Vocês sim, foram os principais “autores” desta Tese. Muito

obrigado de verdade!

Page 5: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

5

PREFÁCIO

A presente tese intitulada “Novas metodologias de avaliação e intervenção em

pacientes com Esclerose Lateral Amiotrófica”, foi elaborada de acordo com os preceitos do

Programa de Pós-Graduação em Fisioterapia da Universidade Federal do Rio Grande do

Norte, alinhadas às normas da Pró-Reitoria de Pós-Graduação desta Universidade, sob

orientação da professora Dra. Vanessa Regiane Resqueti.

Primeiramente é apresentada a introdução geral da tese onde são demonstrados o

referencial teórico sobre a Esclerose Lateral Amiotrófica, funcionalidade, alterações mecânicas

e suas complicações (com um maior foco na fraqueza muscular respiratória e pico de fluxo de

tosse), função pulmonar, assim como a avaliação respiratória destas alterações através de

equipamentos de elevada acurácia, como a pletismografia optoletrônica. Logo após, é

apresentado uma fundamentação geral sobre os resultados encontrados que são discutidos

nas sessões de artigos 1, 2 e 3. Nestes, todos os temas abordados na introdução são

descritos e demonstrados de forma mais detalhada.

O principal objetivo do artigo 1, intitulado Assessment of gas compression and lung

volume during air stacking maneuver, foi estimar a quantidade de compressão de gás que

ocorre durante a realização da manobra de air stacking em sujeitos saudáveis.

Adicionalmente, os volumes pulmonares absolutos foram estimados de forma não invasiva a

partir da aplicação do volume de compressão de gás na lei das transformações isotérmicas de

Boyle-Mariotte.

O segundo artigo, intitulado Thoracoabdominal asynchrony and paradoxical motion in

amyotrophic lateral sclerosis subjects, teve as alterações mecânicas da caixa torácica em

pacientes com Esclerose Lateral Amiotrófica e suas implicações para os volumes da parede

torácica, padrão respiratório e pico de fluxo de tosse como foco principal. Assim, a assincronia

toracoabdominal e a presença de movimento paradoxal entre os compartimentos da parede

torácica foram quantificados através da pletismografia optoeletrônica durante duas situações

(volume corrente e tosse) e comparados com sujeitos saudáveis pareados por idade de

gênero.

O último artigo, intitulado Multiparametric analysis of sniff nasal inspiratory pressure test

in middle stage amyotrophic lateral sclerosis, que compôs essa tese objetivou pela primeira

vez analisar de forma mais detalhada as taxas de relaxamento e propriedades de contração

dos músculos inspiratórios obtidos durante a análise da curva de pressão do teste de SNIP

(sniff nasal inspiratory pressure) a fim de buscar, de forma não invasiva, novos biomarcadores

para fraqueza e fadiga muscular em sujeitos com Esclerose Lateral Amiotrófica.

Após a apresentação dos três artigos científicos que compuseram a tese, estão

expostos os seguintes tópicos: Discussão geral, principais limitações, conclusões e

implicações clínicas deste trabalho. Logo após, um tópico contendo as produções científicas

realizadas no período do doutorado dos quais participo da autoria, também é apresentado.

Este tópico engloba também resumos apresentados em congressos com publicações em anais

de congresso. Por último, encontram-se as referências usadas para elaboração da tese.

Page 6: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

6

SUMÁRIO

PREFÁCIO ................................................................................................................................ 5

Lista de abreviações ................................................................................................................. 8

List of abbreviations .................................................................................................................. 9

Resumo ................................................................................................................................... 10

Abstract ................................................................................................................................... 12

1. Introdução geral .................................................................................................................. 14

1.1. Fraqueza muscular respiratória e alteração da mecânica da parede torácica ............ 14

1.2. Avaliação da força muscular respiratória ...................................................................... 16

1.3. Pletismografia Optoeletrônica ....................................................................................... 16

1.4. Fundamentação para os artigos ................................................................................... 17

2. Objetivos ............................................................................................................................. 21

3. Material e métodos ............................................................................................................. 22

3.1. Função pulmonar ........................................................................................................... 22

3.2. Força muscular respiratória ........................................................................................... 22

3.3. Pletismografia optoeletrônica ........................................................................................ 23

3.4. Pneumotacografia ......................................................................................................... 23

3.5. Air stacking .................................................................................................................... 24

4. Resultados .......................................................................................................................... 25 4.1. Artigo 1. Assessment of gas compression and lung volume during air

stacking maneuver .................................................................................................... 26

4.1.1 Abstract ..................................................................................................................... 27

4.1.2. Introduction .............................................................................................................. 28

4.1.3. Methods ................................................................................................................... 29

4.1.3.1. Measurements and apparatus .......................................................................... 29

4.1.3.2. Data analysis ..................................................................................................... 33

4.1.4. Statistical analysis .................................................................................................. 34

4.1.5. Results .................................................................................................................... 35

4.1.6. Discussion .............................................................................................................. 39

4.1.7. Conclusion .............................................................................................................. 41

4.1.8. References ............................................................................................................. 42 4.2. Artigo 2. Thoracoabdominal asynchrony and paradoxical motion in

amyotrophic lateral sclerosis subjects .................................................................. 45

4.2.1. Abstract ................................................................................................................... 46

4.2.2. Introduction ............................................................................................................. 47

4.2.3. Methods .................................................................................................................. 48

4.2.4. Statistical analysis .................................................................................................. 52

4.2.5. Results .................................................................................................................... 53

4.2.6. Discussion .............................................................................................................. 57

4.2.7. Conclusion .............................................................................................................. 60

4.2.8. References ............................................................................................................. 61

4.2.9. Appendix and supplementary material .................................................................. 67

4.3. Artigo 3. Multiparametric analysis of sniff nasal inspiratory pressure test in middle stage amyotrophic lateral sclerosis ........................................................... 74

4.3.1. Abstract ................................................................................................................... 75

4.3.2. Introduction ............................................................................................................. 76

4.3.3. Material and Methods ............................................................................................. 76

Page 7: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

7

4.3.4. Statistical analysis .................................................................................................. 79

4.3.5. Results .................................................................................................................... 79

4.3.6. Discussion .............................................................................................................. 86

4.3.7. Conclusion .............................................................................................................. 88

4.4.8. References ............................................................................................................. 89

4.3.9. Supplementary material ......................................................................................... 95

5. Discussão geral ................................................................................................................ 100

5.2. Principais limitações .................................................................................................... 103

5.3. Implicações clínicas, perspectivas futuras e conclusões ........................................... 103

Lista de publicações ............................................................................................................. 111

Page 8: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

8

Lista de abreviações

∆Pao – Variação de pressão das vias aéreas

∆Vao – Variação de volume pulmonar

∆VCW – Variação de volume da parede torácica

½RT – Metade da curva de relaxamento

AB – Abdomen

ALSFRS-R – Amyotrofic Lateral Sclerosis Functional Rating Scale-Revised

cmH2O – centímetro de água

CTa – Caixa torácica abdominal

CTp – Caixa torácica pulmonar

CVF – Capacidade vital forçada

ELA – Esclerose Lateral Amiotrófica

MEP – Pressão expiratória máxima

MIP – Pressão inspiratória máxima

MRPD – Taxa máxima de desenvolvimento de pressão

MRR – Taxa máxima de relaxamento

NMI – neurônio motor inferior

NMS – neurônio motor superior

PFT – Pico de fluxo de tosse

PI – porcentagem de tempo inspiratório

POE – Pletismografia optoeletrônica

ROC – Receiver Operating Characteristic

SNIP – Pressão inspiratória nasal ao fungar

Vcomp – Volume de compressão

τ – tau

Page 9: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

9

List of abbreviations

∆Pao – Pressure variation at the airways opening

∆Vao – Pulmonary volume change

∆VCW – Chest wall volume change

½RT – Half relaxation time

AB – Abdomen

ALSFRS-R – Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised

cmH2O – centimeter of water

RCa – Abdominal ribcage

RCp – Pulmonary ribcage

FVC – Forced vital capacity

ALS – Amyotrophic Lateral Sclerosis

MEP – Maximum expiratory pressure

MIP – Maximum inspiratory pressure

MRPD – Maximum rate of pressure development

MRR – Maximum relaxation rate

LMN – Lower motor neuron

UMN – Upper motor neuron

PCF – Peak cough flow

IP – Inspiratory paradox time

OEP – Optoelectronic plethysmography

ROC – Receiver Operating Characteristic

SNIP – Sniff nasal inspiratory pressure

Vcomp – Gas compression

τ – tau

Page 10: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

10

Resumo

Introdução: A avaliação e detecção precoce da fraqueza muscular respiratória resultante da

esclerose lateral amiotrófica (ELA) têm ganhado mais interesse no campo da pesquisa nas

últimas décadas. Com a progressão da doença, a diminuição da força muscular respiratória

leva à redução do volume pulmonar e consequente insuficiência ventilatória, fazendo essencial

o uso de técnicas de higiene brônquica e a detecção precoce de fraqueza muscular

respiratória a fim de monitorar a progressão da doença e antecipar a introdução de

intervenções.

Objetivos: 1) Estimar a quantidade de compressão de gás (Vcomp) durante a aplicação da

técnica de air stacking em sujeitos saudáveis e verificar se as medidas simultâneas de

variação de volume da caixa torácica (ΔVCW) e as variações de volume pulmonar (ΔVao),

combinado à variação de pressão das vias aéreas (ΔPao) durante a aplicação do air stacking,

são capazes de fornecer dados confiáveis acerca dos volumes pulmonares absolutos; 2)

Avaliar a assincronia toracoabdominal e a presença de movimento paradoxal em pacientes

com ELA e suas relações com o VCW, padrão respiratório e pico de fluxo de tosse; 3) Analisar

as taxas de relaxamento e as propriedades de contração dos músculos inspiratórios em

pacientes com ELA e comparar com saudáveis pareados. Além disso, os pacientes com ELA

foram divididos em três subgrupos a fim de determinar o melhor parâmetro relacionado a

fraqueza muscular inspiratória.

Materiais e Métodos: 1) Vinte sujeitos saudáveis foram estudados durante um protocolo que

incluiu manobras de capacidade vital lenta e aplicação da técnica de air stacking. Vcomp foi

calculado através da diferença entre a ΔVao (mensurado através do pneumotacógrafo) e ΔVCW

(através da pletismografia optoeletrônica) durante air stacking e a capacidade pulmonar total

foi estimada pela aplicação de Lei de Boyle-Mariote; 2) O ângulo de fase (θ) entre a caixa

torácica pulmonar (CTp), caixa torácica abdominal (CTa) e o abdome (AB), bem como a

porcentagem de tempo inspiratório (IP) em que a CTa e AB se movem em direções opostas,

foram quantificados em 12 pacientes com ELA durante respiração espontânea e tosse, usando

dados de 12 sujeitos saudáveis pareados como controle; 3) As taxas de relaxamento e as

propriedades de contração dos músculos inspiratórios foram extraídas a partir da curva de

pressão inspiratória nasal (SNIP), realizada de forma não invasiva em 39 pacientes com ELA e

comparada com 39 sujeitos saudáveis pareados.

Resultados: 1) Durante air stacking, 0,140±0,050 L de gás foi comprimido com uma

ΔPao média de 21,78±6,18 cmH2O. Não foram encontradas diferenças significativas entre a

capacidade pulmonar total estimada (−0,03±3,0% de diferença, p=0,6020), capacidade

residual funcional estimada (−2,0±12,4% de diferença, p=0,5172), capacidade inspiratória

mensurada (1,2±11,2% de diferença, p=0.7627) e valores preditos; 2) Durante a respiração

espontânea, um maior θ da CTa e AB (p<0,05), IPRCa (p=0,001) e IPAB (p=0,02) foram

encontrados nos pacientes com ELA assim como correlações entre o θ da CTp e AB com

capacidade vital forçada (r= –0.773, p<0.01) e capacidade vital (r= –0.663, p<0.05), e entre o θ

da CTa e CTp e o pico de fluxo de tosse (r= −0,601, p<0,05). Durante a tosse, correlações

Page 11: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

11

entre o θ do AB e CTp e pico de fluxo de tosse (r= −0,590, p<0,05), pico de fluxo expiratório (r=

−0,727, p<0,01) e VCW (r= −0,608, p<0,05); assim como entre o θ do CTa e AB e o pico de

fluxo de tosse (r= −0,590, p=0,01) e pico de fluxo expiratório (r= −0,713, p=0,01) foram

observados. Além disso, uma menor capacidade vital forçada (p<0.05) e maior velocidade de

encurtamento tos músculos inspiratórios (p<0.05) foram encontrados no pacientes com

movimento paradoxal da caixa torácica; 3) Quando comparado com sujeitos saudáveis,

pacientes com ELA exibiram uma menor (p<0,0001) taxa máxima de relaxamento (MRR) e

taxa máxima de desenvolvimento de pressão (MRPD), assim como um maior (p<0,0001)

tempo de contração, tau (τ) e metade da curva de relaxamento (½RT). Os resultados da curva

ROC mostraram que a ½RT (AUC 0,720, p=0,01), capacidade vital forçada (AUC 0,700,

p=0,03), τ (AUC 0,824, p<0,0001) e MRPD (AUC 0,721, p=0,01) foram os parâmetros mais

sensitivos em detectar uma queda de 3 pontos no subescore respiratório do questionário de

capacidade funcional da ELA. Adicionalmente, a MRPD (AUC 0,781, p<0,001), τ (AUC 0,794,

p=0,0001) e o pico de pressão gerado durante o teste de SNIP (AUC 0,769, p=0,002) foram os

parâmetros capazes de detectar uma queda de 30% da capacidade vital forçada nos pacientes

estudados.

Conclusões: Durante a aplicação da técnica de air stacking ocorre uma significante

compressão de gás e os volumes pulmonares absolutos podem ser estimados através das

mensurações simultâneas de ΔVCW, ΔVao e ΔPao. Além disso, a identificação da alteração de

parâmetros, como assincronia toracoabdominal e presença de movimento paradoxal entre os

compartimentos da parede torácica, τ, MRPD, e ½RT, representam um sinal precoce de

fraqueza muscular inspiratória em sujeitos com ELA.

Palavras-chave: Assincronia toracoabdominal, capacidade vital forçada, esclerose lateral

amiotrófica, músculos inspiratórios, volumes pulmonares absolutos.

Page 12: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

12

Abstract

Introduction: The assessment and early detection of respiratory muscle weakness resulting

from amyotrophic lateral sclerosis (ALS) have gained more interest in the field of research in

the recent decades. As the disease progresses, the decrease in respiratory muscle strength

leads to a reduction in lung volume and consequent ventilatory insufficiency, making essential

the use of bronchial hygiene techniques and the early detection of respiratory muscle

weakness in order to monitor the progression of the disease as well as to anticipate the

introduction of interventions.

Objectives: 1) To estimate the amount of gas compression (Vcomp) during the application of the

air stacking technique in healthy subjects and to verify if the simultaneous measurements of

chest wall volume changes (ΔVCW) and changes in lung volume (ΔVao), combined with pressure

variation at the airways opening (ΔPao) during air stacking are able to provide reliable data on

absolute lung volumes; 2) To assess thoracoabdominal asynchrony and the presence of

paradoxical movement in patients with ALS and its relations with VCW, respiratory pattern and

peak cough flow; 3) To analyze the relaxation rates and contraction properties of the inspiratory

muscles of patients with ALS and compare with healthy matched-paired subjects. In addition,

patients with ALS were divided into three subgroups in order to determine the best parameter

linked to inspiratory muscle weakness.

Materials and Methods: 1) Twenty healthy subjects were studied during a protocol that

included slow vital capacity maneuvers and application of the air stacking technique. Vcomp was

calculated by subtracting ΔVao (measured by pneumotachograph) and ΔVCW (measured by

optoelectronic plethysmography) during air stacking and total lung capacity was estimated by

applying Boyle-Mariote's law; 2) Phase angle (θ) between pulmonary ribcage (RCp), abdominal

ribcage (RCa) and abdomen (AB), as well as the percentage of inspiratory time (IP) in which

RCa and AB moved in opposite directions were quantified in 12 patients with ALS through

optoelectronic plethysmography during quiet spontaneous breathing and cough using control

data from 12 paired-matched healthy subjects to define the normal range of movement; 3) The

relaxation rates and contraction properties of the inspiratory muscles were extracted from the

sniff nasal inspiratory pressure (SNIP) curve, performed non-invasively in 39 patients with ALS

and compared with 39 matched-paired healthy subjects.

Results: 1) During air stacking, 0.140±0.050 L of gas was compressed with an average ΔPao of

21.78±6.18 cmH2O. No significant differences between the estimated total lung capacity

(−0.03±3.0% difference, p=0.6020), estimated functional residual capacity (−2.0±12.4%

difference, p=0.5172), measured inspiratory capacity (1.2±11.2% difference, p=0.7627) and

predicted values were found. 2) During quiet spontaneous breathing, a higher RCa and AB θ

(p<0.05), IPRCa (p=0.001) and IPAB (p=0.02) were found in patients with ALS as well as

correlations between RCp and AB θ with forced vital capacity (r = −0.773, p<0.01) and vital

capacity (r = −0.663, p<0.05), and between RCa and RCp θ and peak cough flow (r = −0.601,

p<0.05). During cough, correlations between AB and RCp θ and peak cough flow (r = −0.590,

p<0.05), peak expiratory flow (r = −0.727, p<0.01) and VCW (r = −0.608, p<0.05); as well as

Page 13: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

13

between RCa and AB θ and peak cough flow (r = −0.590, p=0.01) and peak expiratory flow (r =

−0.713, p=0.01) were observed. Moreover, a lower forced vital capacity (p<0.05) and a greater

shortening velocity of the inspiratory muscles (p<0.05) were observed in patients with

paradoxical movement of the rib cage; 3) When compared to healthy subjects, patients with

ALS had a significantly lower (p<0.0001) maximum relaxation rate (MRR) and maximum rate of

pressure development (MRPD), as well as a greater (p<0.0001) contraction time, tau (τ) and

half-relaxation time (½RT). The results of the ROC curves showed that ½RT (AUC 0.720,

p=0.01), forced vital capacity (AUC 0.700, p=0.03), τ (AUC 0.824, p<0.0001) and MRPD (AUC

0.721, p=0.01) were the most sensitive parameters in detecting a 3-point fall in the respiratory

subscale of the ALS functional capacity questionnaire. In addition, the MRPD (AUC 0.781,

p<0.001), τ (AUC 0.794, p=0.0001) and the peak pressure generated during the SNIP test

(AUC 0.769, p=0.002) were the parameters capable of detecting a 30% decrease in forced vital

capacity of the patients studied.

Conclusions: During AS, a significant gas compression occurs and absolute lung volumes can

be estimated by simultaneous measurements of ΔVCW, ΔVao and ΔPao. In addition, the

identification of altered parameters, such as thoracoabdominal asynchrony and the presence of

paradoxical movement between the chest wall compartments, τ, MRPD, and ½RT, represent

an early sign of inspiratory muscle weakness in subjects with ALS.

Keywords: Absolute lung volumes, amyotrophic lateral sclerosis, forced vital capacity,

inspiratory muscles, thoracoabdominal asynchrony

Page 14: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

14

1. Introdução geral

A esclerose lateral amiotrófica (ELA) é uma doença neurodegenerativa, que acomete

ambos os neurônios motor superior (NMS) e inferior (NMI),1 caracterizada por fraqueza

progressiva dos músculos esquelético, bulbar e respiratório.2 A grande maioria dos

mecanismos envolvidos na sua fisiopatologia ainda permanece desconhecida e sua

etiopatogenia não está bem esclarecida.3 No entanto, sabe-se que esta doença é mais comum

em sujeitos do gênero masculino4 e a taxa de sobrevivência mediana a partir dos primeiros

sintomas varia de 2 a 4 anos, sendo a insuficiência ventilatória a principal causa de

mortalidade.2 A apresentação clínica heterogênea e a variável velocidade de progressão da

doença tornam o diagnóstico desafiador. Devido à inexistência de um teste específico para a

ELA, seu diagnóstico (classificado como ‘possível’, ‘provável’ ou ‘definitivo’) depende

exclusivamente da identificação de sinais clínicos de acometimento dos NMS e NMI na mesma

região do corpo, suportado por exame eletrofisiológico ou neuropatológico, além de evidência

de progressão da doença em outras regiões.5,6

Os sintomas da ELA podem se manifestar de duas formas. A primeira, chamada de

espinhal, se caracteriza por fraqueza dos membros inferiores, superiores ou ambos com

posterior acometimento dos músculos bulbares. A segunda, chamada de bulbar, tem início dos

sintomas nos músculos bulbares e respiratórios.7 Esta última é conhecida por apresentar um

pior prognóstico do que a forma espinhal8 e está associada a uma rápida progressão da

doença9 com uma maior taxa de declínio da capacidade vital forçada (CVF) e força muscular

respiratória.10,11

Com a progressão da doença, a capacidade de realização das atividades de vida diária

também é reduzida e pode ser avaliada através da Amyotrophic Lateral Sclerosis Functional

Rating Scale12 (ALSFRS). Esta foi projetada como um escore funcional de 10 itens que

incluem domínios funcionais, bulbar e respiratório. Mais tarde, essa escala foi alargada para o

ALSFRS-revised13 (ALSFRS-R), na qual foram incluídos escores respiratórios extras para

melhor avaliação do domínio funcional respiratório. Na ausência de um biomarcador, a

quantificação da capacidade funcional através da ALSFRS-R tem se tornado uma medida de

progressão da doença14 e desfecho primário em ensaios clínicos com sujeitos com ELA,12,15

além de ser preditor de sobrevida nesta população16,17 e se correlacionar com medidas de

função pulmonar e força muscular respiratória.18,19

1.1. Fraqueza muscular respiratória e alteração da mecânica da parede torácica

O diafragma é o músculo inspiratório mais importante. A função inspiratória do

diafragma é realizada através de três mecanismos principais: (1) o diafragma atua como um

pistão que, ao descer, cria uma pressão intratorácica negativa, puxando o ar para dentro; (2) a

“área de aposição” do diafragma à parede interna da caixa torácica serve para puxar as

costelas inferiores para cima (e para fora, consequente ao efeito “alça de balde”), expandindo

assim a área da seção transversal do caixa torácica, um efeito inspiratório; e (3) a contração

diafragmática aumenta a pressão intra-abdominal, que também expande a caixa torácica

inferior, uma vez que a parte mais superior da cavidade abdominal realmente reside dentro da

Page 15: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

15

caixa torácica. A contração dos músculos abdominais (transverso, reto e músculos oblíquos

internos e externos) aumenta a pressão intra-abdominal, fazendo com que o fluxo de ar saia

do pulmão e a parede abdominal se mova para dentro. Quando os músculos intercostais

internos contraem, eles exercem um grande torque que abaixa as costelas e aumenta a

pressão pleural para conduzir o ar para fora do pulmão.20,21 Assim, uma atividade coordenada

de todos os músculos respiratórios é essencial para desenvolver as pressões necessárias para

direcionar o ar para dentro e para fora do pulmão, e mover a caixa torácica e o abdômen de

maneira coordenada e síncrona. É possível respirar com apenas um conjunto de músculos

respiratórios, mas efeitos indesejáveis, como o movimento paradoxal toracoabdominal

provavelmente ocorrerão22 nesta em sujeitos com ELA.

A assincronia toracoabdominal é principalmente o resultado de fraqueza

desproporcional de alguns músculos respiratórios ou descoordenação entre diferentes grupos

musculares23 e é definido como a diferença no tempo de expansão ou retração entre os

compartimentos da parede torácica24,25. Em pacientes com fraqueza principalmente

diafragmática, os músculos intercostais assumem o papel principal de diminuir a pressão

intratorácica e, nesse caso, o diafragma (juntamente com o conteúdo intra-abdominal) é

atraído passivamente para o tórax, levando ao movimento abdominal interno paradoxal. Em

ambos os casos de assincronia toracoabdominal, o volume corrente é necessariamente

diminuído porque o movimento inspiratório de um compartimento é oposto a uma ação

expiratória do outro compartimento24 e parte da contração de toda musculatura respiratória é

desperdiçada para distorcer a parede torácica ao invés de insuflar os pulmões21.

A fraqueza muscular respiratória também tem impactos diretos (diminuição da

capacidade de expansão da caixa torácica e recuo elástico) e indiretos (alterações na

complacência pulmonar e da caixa torácica) na função pulmonar de pacientes com doença

neuromuscular resultando em uma redução da capacidade pulmonar total, capacidade vital e

capacidade residual funcional26. A combinação de fraqueza muscular inspiratória, que impede

o paciente de respirar fundo, e a redução a complacência da parede torácica, que diminui a

excursão disponível na parede torácica, limita o volume operacional necessário para uma

tosse efetiva. Esse volume operacional é o volume inspirado no final da fase de tosse

inspiratória e é considerado o mais importante determinante do pico de fluxo da tosse, pois

afeta o comprimento do músculo expiratório e, portanto, sua eficiência de contração. Quando a

disfunção da glote está presente, pressões adequadas para desenvolver as forças

compressivas para a expectoração das secreções das vias aéreas não são alcançadas. A

eficácia da tosse é ainda mais diminuída. A fase expiratória da tosse, quando as secreções

precisam ser expelidas, é limitada por: 1) fraqueza dos músculos expiratórios; 2) uma parede

torácica endurecida que limita a expiração; 3) uma desvantagem mecânica dos músculos

expiratórios, por não estarem adequadamente esticados ao seu ponto ideal de contração pela

restrição ponto operacional; 4) recuo elástico passivo limitado dos pulmões durante a

expiração, devido à sua inflação limitada; e 5) diâmetro transversal diminuído das vias aéreas

que não estão totalmente dilatadas porque o pulmão não está totalmente insuflado

aumentando assim a resistência das vias aéreas durante a expiração27-29.

Page 16: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

16

1.2. Avaliação da força muscular respiratória

A grande maioria dos pacientes com ELA morre por insuficiência ventilatória. A

fraqueza muscular respiratória na ELA advém da perda da função muscular diafragmática30

com consequente diminuição da complacência da caixa torácica.31 A fraqueza muscular

intercostal interna e abdominal também está ligada a forças expulsivas que estão

enfraquecidas durante a tosse, deixando pacientes com ELA em maior risco de pneumonia.32

Os intercostais externos e outros músculos inspiratórios acessórios, como os

esternocleidomastoides e escalenos, auxiliam em situações de alta demanda ventilatória em

que as pressões necessárias para aumentar o volume pulmonar são aumentadas.33 Perto do

fim da doença, os pacientes com ELA apresentam declínios rápidos na CVF, ventilação

voluntária máxima e no volume residual.34,35 Como consequência, sintomas como dispneia

durante esforços mínimos, ortopneia e cefaléia se tornam recorrentes,10,36 além das infecções

do trato respiratório inferior com posterior diminuição do pico de fluxo de tosse (PFT) e da

complacência pulmonar.37,38

A força muscular inspiratória é o principal determinante de insuficiência ventilatória nos

pacientes com ELA11 e pode ser avaliada de forma não invasiva através da pressão

inspiratória máxima (MIP) e da pressão inspiratória nasal durante uma manobra de sniff

(SNIP). Essas duas formas de avaliação da força muscular respiratória são complementares e

devem ser realizadas em todos os pacientes com ELA na primeira visita ao hospital ou

ambulatório e a cada três meses depois.39 A MIP é mais sensível em detectar hipoventilação40

e a manobra de SNIP, que reflete com precisão a força diafragmática e força muscular

inspiratória global,41,42 é preditora de sobrevida em sujeitos com ELA.11 Pelo fato da MIP ser

difícil de ser executada por pacientes com paresia orofacial, a SNIP (que será abordada com

mais propriedade no artigo 5) é mais utilizada em pacientes com ELA por ser uma manobra

natural, simples, tolerável e de fácil execução.43 Além dessas, mensurações da CVF,

capacidade vital lenta e do pico de fluxo expiratório também são comumente utilizadas por

serem fatores preditivos de prognóstico nessa doença.10,44 Embora a CVF seja ainda o método

mais utilizado para a avaliação respiratória na ELA,7 o paciente deve expelir o ar de forma

rápida e forçada, o que pode causar fadiga, induzir broncoespasmo e resultar em uma

subestimação da real capacidade pulmonar.45

1.3. Pletismografia Optoeletrônica

A pletismografia optoeletrônica (POE) é um sistema não invasivo capaz de mensurar

precisamente a cinemática toracoabdominal e variações de volume da parede torácica e dos

compartimentos que atuam na ventilação (caixa torácica pulmonar [CTp], a caixa torácica

abdominal [CTa] e abdome [AB]).46,47 Esse sistema, diferentemente da pletismografia

respiratória por indutância, se baseia em um modelo de três compartimentos (Figura 1) a partir

do propósito de que: 1) CTp e CTa estão expostos a diferentes pressões durante a inspiração;

2) o diafragma atua diretamente na CTa; e 3) os músculos inspiratórios, com exceção ao

diafragma, atuam em grande parte na CTp e não na CTa.48 Com relação ao AB, a variação de

Page 17: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

17

volume é definida como o volume do abdome e é o resultado da ação conjunta do diafragma e

músculos expiratórios.49

Figura 1. Representação esquemática da pletismografia optoeletrônica.

Através da POE é possível avaliar as variações de volume ciclo a ciclo, em três graus

de liberdade e sem o uso de bocais, o que proporciona uma elevada precisão para avaliação e

monitoramento de padrões respiratórios em crianças, adultos e pacientes com doenças

respiratórias.50-52 Esse sistema também é utilizado para investigar a força muscular

respiratória, o efeito da aplicação de técnicas ou reabilitação, disfunção diafragmática e

PFT53,54 em pacientes neuromusculares, além de ter sido o método mais utilizado nos últimos

anos para avaliar a assincronia toracoabdominal entre compartimentos da parede torácica55

durante a respiração espontânea,56 tosse,55 ou exercício.57 A assincronia, assim como a

utilização da POE, será discutida com mais detalhe nos artigos 1 e 2.

1.4. Fundamentação para os artigos

A fraqueza muscular progressiva característica da ELA, principalmente a respiratória, é

responsável pelo acúmulo de secreções e consequente aumento do número de infecções

respiratórias. Em decorrência disso, há uma incapacidade de gerar PFT acima de 160 L/min

necessários para clearance pulmonar, levando a um aumento da morbidade respiratória e

mortalidade e, então, gerando altos custos para a saúde pública. Esse PFT é a avaliação mais

reprodutível da força da tosse e também dependente da geração de fluxo e velocidade nas

vias aéreas, recolhimento elástico do pulmão e forças da parede torácica27. Além disso, de

acordo com Smith et al.28, quanto maior os volumes operacionais maior o recuo elástico dos

pulmões e menor a resistência das vias aéreas. Assim, em doenças restritivas como a ELA,

altos PFTs podem ser gerados após um aumento no volume pulmonar de forma passiva como

através da técnica de air stacking.

Kang e Bach28 definiram a técnica de air stacking como um método de insuflação

pulmonar que requer o uso de um insuflador manual ou um ventilador de volume portátil a fim

Page 18: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

18

de fornecer volumes superiores à capacidade inspiratória. Portanto, após a conclusão de uma

respiração profunda e máxima e consequente fechamento da glote, os volumes de ar podem

ser empilhados até atingir a capacidade máxima de insuflação (Figura 2), definida como o

volume máximo de ar que pode ser mantido com a glote fechada após insuflações58. Desta

forma, pacientes com doenças pulmonares restritivas, como doenças neuromusculares, são os

que mais se beneficiam com a técnica de air stacking. Além disso, em sujeitos com ELA o

aumento do volume pulmonar está fortemente correlacionado com o aumento do pico de fluxo

da tosse59. Além disso, quanto maior a expansão pulmonar, melhor a otimização da pressão

de recuo do pulmão, a tosse e, conseqüentemente, a extração de secreção60.

Figura 2. Traçados experimentais obtidos em um indivíduo representativo durante a capacidade

inspiratória espontânea (IC) (1 e 2) e tosse espontânea a partir de CPT (esquerda) e durante a

aplicação da técnica de air stacking (AS) (3 e 4) e subsequentemente tosse a partir da IC + AS (4)

(direita). Retirado com permissão de Sarmento et al.61

.

Sabendo disso, dois estudos sobre os efeitos da técnica de air stacking no PFT de

sujeitos saudáveis61 e de pacientes com ELA53 utilizando a POE foram publicados durante o

período anterior a essa tese, nos dando embasamento para melhor compreensão e

necessidade de investigação dessas novas variáveis. Pelo fato da air stacking ser realizada

através da aplicação seriada de pressão positiva a fim de fornecer volumes de ar superiores à

Page 19: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

19

capacidade inspiratória,38 a quantidade de pressão aplicada pode induzir cerca de 1 a 2% de

compressão de gás.62 A POE, por si só, não é capaz de quantificar a compressão de gás.

Esta, assim como volumes pulmonares absolutos, pode ser mensurada a partir de métodos

que consomem tempo e requerem boas habilidades técnicas para produzir resultados

consistentes (por exemplo, diluição de hélio, lavagem de nitrogênio ou pletismografia de corpo

inteiro). O fato de não haverem relatos na literatura sobre 1) a quantidade de compressão de

gás durante a técnica de air stacking e 2) métodos simples para mensuração de volumes

pulmonares absolutos, nós hipotetizamos Artigo 1 que a mensuração simultânea da variação

de volume da parede torácica (utilizando a POE) e de volume pulmonar (através de um

pneumotacógrafo) seria capaz de mensurar a quantidade de compressão de gás durante a

técnica de air stacking em sujeitos saudáveis além de fornecer dados confiáveis sobre

volumes pulmonares absolutos.

Diferentemente da pletismografia respiratória por indutância,63 a POE é capaz de

avaliar com precisão a variação de volume da CTa. Em sujeitos com doença pulmonar

obstrutiva crônica, Aliverti et al. mostrou que o movimento paradoxal da CTa não é apenas

uma curiosidade clínica, mas pode também identificar importantes diferenças fisiológicas nos

volumes da parede torácica durante repouso e exercício.57 Além disso, sabe-se que o

movimento paradoxal dos compartimentos é resultado principalmente de fraquezas

desproporcionais de alguns músculos respiratórios ou ações descoordenadas entre diferentes

grupos musculares.23 Em pacientes com doença neuromuscular e em diferentes condições, a

assincronia entre os compartimentos da parede torácica já foi reportada,24,55,64 entretanto a

literatura é escassa com relação à assincronia e movimento paradoxal em sujeitos com ELA.

Essa questão é discutida no Artigo 2, no qual os resultados encontrados em pacientes com

ELA utilizando a POE foram comparados com sujeitos saudáveis pareados por idade e gênero,

objetivando obter sinais iniciais de fraqueza muscular respiratória durante a respiração

espontânea e tosse.

Outros sinais iniciais de fraqueza muscular respiratória foram tema do Artigo 3,

entretanto foram avaliados a partir de parâmetros extraídos da curva de SNIP (taxas de

relaxamento e propriedades contráteis dos músculos inspiratórios). A razão pela qual esses

parâmetros são avaliados a partir da SNIP baseia-se no pressuposto de que 1) a porção de

decaimento da curva, quando a expiração é totalmente passiva, corresponde à fase de

relaxamento da contração muscular inspiratória65 e 2) a perda de força muscular ou fadiga leva

a uma diminuição da velocidade de contração muscular, resultando em aumento do tempo de

contração e prolongamento do tempo de relaxamento como um mecanismo de adaptação.66,67

Desta forma, os resultados encontrados nos pacientes com ELA foram comparados com

saudáveis e entre os sujeitos que apresentaram ou não sintomas respiratórios a partir do

declínio no subescore respiratório da ALSFRS-R e CVF, a fim de determinar o melhor

parâmetro ligado à fraqueza muscular precoce do músculo respiratório nessa população.

Os artigos 2, 3 e 4 proporcionam o foco principal da tese, uma vez que têm o potencial

de gerar implicações clínicas referentes aos pacientes com ELA. O resumo e a discussão geral

Page 20: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

20

a respeito dos principais achados e implicações da tese são apresentados logo após a

apresentação dos artigos científicos.

Page 21: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

21

2. Objetivos

Artigo 1: Estimar a quantidade de compressão de gás durante a técnica de air stacking em

indivíduos saudáveis posicionados a 45° de inclinação do tronco e verificar se as medidas

simultâneas de alterações do volume da parede torácica, através da pletismografia

optoeletrônica, e alterações no volume pulmonar, através do pneumotacógrafo, combinado

com a variação de pressão na abertura das vias aéreas durante a execução da técnica é

capaz de fornecer dados confiáveis sobre volumes pulmonares absolutos;

Artigo 2: Avaliar a assincronia toracoabdominal e a presença de movimento paradoxal em

pacientes com ELA e suas relações com o volume corrente da parede torácica, padrão

respiratório e pico de fluxo da tosse.

Artigo 3: Mensurar de forma não invasiva as taxas de relaxamento e as propriedades

contráteis dos músculos inspiratórios em pacientes com ELA através do teste de SNIP (1) em

comparação com indivíduos saudáveis e (2) em relação aos sintomas respiratórios precoces, a

fim de determinar o melhor parâmetro ligado à respiração precoce fraqueza muscular.

Page 22: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

22

3. Material e métodos

A metodologia utilizada nas três produções desta tese foi especifica de acordo com o

objetivo de cada estudo e por esta razão tópicos como desenho dos estudos, caracterização

das amostras, aspectos éticos e análises dos dados e estatística serão apresentadas de forma

individualizada nos artigos 1, 2 e 3. Além disso, apesar de os principais materiais e

equipamentos utilizados serem apresentados nesta sessão, os mesmo também estão

descritos de forma detalhada em cada artigo.

3.1. Função pulmonar

Para análise do fluxo aéreo, volumes e capacidades pulmonares, foi realizada a

espirometria, utilizando um espirômetro KoKo DigiDoser (Longmont, USA). Antes de cada

avaliação, o equipamento foi calibrado de acordo com a temperatura local e a injeção de 3L de

volume de ar por meio de uma seringa (Vitalograph, Buckingham, Inglaterra).

Para o procedimento, cada sujeito realizou o teste na posição sentada em uma cadeira

confortável, com os pés devidamente apoiados no chão e usando um clipe nasal. Previamente

a realização do teste, eles foram instruídos detalhadamente de todos os procedimentos. Os

voluntários respiraram através de um bucal de papelão descartável, certificando-se que não

houveram vazamentos durante a respiração. A seguir, foi solicitado que eles realizassem uma

inspiração máxima (próximo à capacidade pulmonar total) seguida de uma expiração máxima

(próximo ao volume residual).

Foram realizados no máximo oito testes em cada voluntário e considerados os três

melhores sendo que a variabilidade entre eles deveriam ser inferior a 5% ou 200 mL. Foram

considerados a CVF, o volume expiratório forçado do 1º segundo (VEF1) e a razão VEF1/CVF

nos seus valores absolutos e relativos. Todos os procedimentos técnicos, os critérios de

aceitabilidade, reprodutibilidade, bem como a padronização do equipamento seguiram as

recomendações da ATS/ERS68. Os valores obtidos foram comparados com valores absolutos

e relativos para a população Brasileira69.

3.2. Força muscular respiratória

Para avaliação da força muscular respiratória, foi realizada a manovacuometria através

do manovacuomêtro digital (NEPEB-LabCare/UFMG, Belo Horizonte-MG, Brasil) com o

indivíduo na posição sentada, com os pés devidamente apoiados no chão e em repouso. O

manovacuômetro foi conectado por meio de uma traqueia ao bucal que possuía um orifício de

fuga de 2mm de diâmetro para que os valores das pressões máximas não sofressem a

influência das pressões geradas pelos músculos da boca e da orofaringe, além de um clipe

nasal para evitar vazamento de ar pelas narinas.

A MIP foi obtida a partir do volume residual e a MEP a partir da capacidade pulmonar

total. Durante a realização das mensurações, foram oferecidos estímulos verbais para

incentivar a obtenção do maior valor. As manobras, tanto de MIP quanto de MEP, foram

repetidas no mínimo duas vezes para aprendizado e, em seguida, três medidas tecnicamente

satisfatórias (com variação menor que 10% entre os dois valores máximos) e repouso de 60s

Page 23: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

23

entre elas foram realizadas. Foi considerada como tecnicamente satisfatória a medida que não

apresentou vazamento e que foi sustentada por pelo menos um segundo. O valor registrado foi

o mais alto, desde que esse não fosse o obtido na última manobra.

Para interpretação dos resultados obtidos, foram calculados valores previstos pelas

equações de regressão para o cálculo das pressões máximas em função da idade, de acordo

com o sexo para a população Brasileira70.

A pressão inspiratória nasal (SNIP teste) foi obtida solicitando ao sujeito, ao final de

uma expiração tranquila (capacidade residual funcional), a realização de uma inspiração

máxima com uma das narinas ocluída por um plug acoplado a um cateter conectado ao

manovacuômetro e a com a narina contralateral livre. O SNIP teste foi realizado através de dez

medidas separadas por um período de repouso de 30 segundos. Foram utilizadas as

equações previamente descritas para obtenção dos valores de referência71.

3.3. Pletismografia optoeletrônica

Para o artigo 1 e 2, a avaliação dos volumes pulmonares e do PFT foi realizada através

do estudo da cinemática do complexo toracoabdominal de forma não-invasiva através da POE

(BTS-Bioengineering, Itália).

A POE utiliza um sistema de seis câmeras fotossensíveis que captaram marcadores

retrorreflexivos colocados na região anterior da parede torácica do sujeito, seguindo linhas

horizontais e verticais pré-definidas. O equipamento avalia o volume da parede torácica e dos

três compartimentos que a compõem: CTp, CTa e o AB através da formação de um modelo

experimental, de acordo com o Teorema de Gauss47. Para as coletas com esse equipamento,

o aparelho foi calibrado de forma estática e dinâmica pelos eixos X, Y e Z (por um período de

10 e 120 segundos, respectivamente) para reconhecimento dos marcadores, sendo utilizada a

frequência de 60Hz para calibração do equipamento e coleta dos dados. Em seguida, foram

posicionados 52 marcadores retrorreflexivos sobre a região anterior do tórax do voluntário,

seguindo estruturas anatômicas pré-estabelecidas50 que seguiam desde o nível da clavícula

até a crista ilíaca anteriossuperior.

3.4. Pneumotacografia

Para o artigo 1, fluxo e pressão das vias aéreas foram mensurados através de um

pneumotacógrafo aquecido (Series 0-800 LPM, Hans Rudolph® INC, Kansas - EUA)

posicionado entre a máscara e o insuflador manual. A calibração de fluxo e pressão foi

realizada antes da aquisição de dados de cada sujeito. O fluxo do pneumotacógrafo foi

calibrado através da geração de diferentes fluxos inspiratórios e expiratórios, por meio de uma

seringa de 3 L calibrada, em intervalos de 3 segundos entre eles. O transdutor de pressão foi

calibrado conectando um manômetro digital, com variações em cmH2O, e aplicando variações

de pressão positivas a cada 20cmH2O até que fosse atingido 100cmH2O e posteriorment

negativas até que fosse atingido 0 cmH2O. A cada 20cmH2O um intervalos de 5 segundos era

realizado até a próxima aplicação de pressão. A mensuração de fluxo e pressão durante a

coleta de dados foi realizada de forma sincrônica junto ao sistema da POE. As variações de

Page 24: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

24

pressão mensuradas na boca foram consideradas como variação de pressão alveolar. A

integração do sinal de fluxo proveu as variações de volume pulmonar.

3.5. Air stacking

Para o artigo 1, a técnica de air stacking foi realizada utilizando um insuflador manual

(RWR-Brasil®) acoplado a uma máscara de silicone, que envolveu o nariz e boca o sujeito. Ao

ser posicionado, em posição supina a 45º e com os membros superiores repousados lado do

corpo, foi solicitado ao sujeito que realizasse uma inspiração profunda, atingindo sua

capacidade inspiratória máxima, e segurasse mantendo a glote fechada. Imediatamente foi

acoplada a máscara do insuflador manual ao rosto do paciente e pressionada para evitar o

vazamento de ar. Logo após, por meio do insuflador manual, foram proporcionados volumes

de ar de forma rápida e consecutiva, através de repetidas insuflações (Figura 2). Cada

insuflação foi realizada concomitantemente com uma inspiração profunda do sujeito, até que

nenhum ar possa mais pudesse ser acrescentado aos pulmões, atingindo a capacidade de

insuflação máxima. Entre cada insuflação o sujeito foi orientado a não exalar o ar, mantendo-o

nos pulmões.

A máscara foi posicionada e retirada pelo avaliador, assim como as instruções dadas

antes e durante a realização da técnica. Esta foi interrompida caso ocorresse algum

desconforto pelo paciente, má adaptação, alteração de sinais vitais ou queda da saturação.

Page 25: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

25

4. Resultados

Os resultados e a discussão desta tese estão descritos na forma de três artigos

científicos. O primeiro artigo intitulado “Assessment of gas compression and lung volume

during air stacking maneuver” está publicado no periódico “European Journal of Applied

Physiology”, Qualis A1, na área 21 da CAPES. O segundo artigo intitulado “Thoracoabdominal

asynchrony and paradoxical motion in amyotrophic lateral sclerosis” será submetido ao

periódico “Respiratory Physiology & Neurobiology”, Qualis B1, na área 21 da CAPES. O

terceiro artigo intitulado “Multiparametric analysis of sniff nasal inspiratory pressure test in

middle stage amyotrophic lateral sclerosis” está publicado no periódico “Frontiers in

Neurology”, Qualis A1, na área 21 da CAPES.

Os artigos estão apresentados conforme as normas e diretrizes de submissão de cada

periódico.

Page 26: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

26

4.1. Artigo 1

Assessment of gas compression and lung volume during air stacking

maneuver

___________________________________________

A. Sarmento, V. R. Resqueti, G. A. F. Fregonezi, A. Aliverti

Artigo publicado no Periódico European Journal of Applied Physiology (2017) 117:189–199

Page 27: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

27

4.1.1. Abstract

Purpose: We reasoned that the application of positive pressure through air stacking (AS)

technique could cause gas compression and the absolute lung volumes could be estimated.

The aim of this study was to estimate the amount of gas compression (ΔVcomp) during AS in

healthy subjects positioned at 45° trunk inclination and verify if the simultaneous measurements

of chest wall volume changes (ΔVCW), by optoelectronic plethysmography, and changes in lung

volume (ΔVao), by pneumotachograph, combined with pressure variation at the airways opening

(ΔPao) during AS are able to provide reliable data on absolute lung volumes.

Methods: Twenty healthy subjects (mean age 23.5 ± 3.8 years) were studied during a protocol

that included slow vital capacity and AS maneuvers. Vcomp was calculated by subtracting ΔVao

and ΔVCW occurring during AS and total lung capacity (TLC) was estimated by applying Boyle–

Mariote’s law using Vcomp and ΔPao.

Results: During AS, 0.140 ± 0.050 L of gas was compressed with an average ΔPao of 21.78 ±

6.18 cmH2O. No significant differences between the estimated TLC (−0.03 ± 3.0% difference,

p=0.6020), estimated FRC (−2.0 ± 12.4% difference, p=0.5172), measured IC (1.2 ± 11.2%

difference, p=0.7627) and predicted values were found.

Conclusion: During AS, a significant gas compression occurs and absolute lung volumes can

be estimated by simultaneous measurements of ΔVCW, ΔVao and ΔPao.

Page 28: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

28

4.1.2. Introduction

The assessment of lung volumes is important for the diagnosis and follow-up of

pulmonary diseases (Zysman-Colman and Lands 2016). Absolute lung volumes can be

measured by a variety of methods (Kendrick 1996; Schlesinger et al. 1995; Wanger et al.

2005). These include the methods based on a static mass balance, such as helium dilution and

nitrogen washout (Meneely and Kaltreider 1949; Newth et al. 1997), and those based on

dynamic mass balance and compression gas phenomena, such as whole-body

plethysmography (WBP) (Coates et al. 1997; Cobeel 1969; Newth et al. 1997). The

apparatuses used to obtain measurements based on these methods can be difficult, time

consuming and require good technical skills to produce consistent results (Cliff et al. 1999;

Eber et al. 1994; O’Donnell et al. 2010).

According to the Boyle–Mariote’s law, the pressure of an ideal gas at constant

temperature varies inversely with the volume. Hence, an unknown volume of a closed

compartment can be determined if absolute changes in volume can be induced and the

corresponding relative pressures in change can be measured. Thus, the determination of

thoracic gas volume is possible if the lung is treated as a closed compartment and if the

changes in alveolar pressure in parallel to the changes in volume can be measured (Smith et

al. 2012).

Hedenstierna et al. (1985) described that, for positive pressure ventilation, blood shift to

the periphery may lead to greater gas lung volume changes than chest wall volume changes,

and vice versa during negative pressure ventilation. In addition to this, a positive pressure

applied can induce about 1–2% of gas compression, depending on the pressure used (Aliverti

et al. 2000).

The air stacking (AS) technique, a lung insufflations method mostly used in patients with

restrictive lung diseases, such as neuromuscular disorders, is characterized by the application

of a positive pressure to provide air volumes higher than the inspiratory capacity (IC) to

increase peak cough flow (Bach et al. 2007; Kang and Bach 2000a, b). We reasoned that in

healthy subjects, the application of AS could cause gas compression. Thus, measurements of

gas compression (ΔVcomp) combined with pressure changes at the airways opening (ΔPao),

recorded at atmospheric pressure and controlled temperature, allow the estimation of total lung

capacity (TLC) by applying Boyle–Mariote’s law.

The aims of the present study therefore were (a) to estimate the amount of ΔVcomp

during AS in healthy subjects positioned at 45° trunk inclination and (b) to verify if the

simultaneous measurements of total change in chest wall volumes (ΔVCW), by optoelectronic

plethysmography, and changes in lung volume (ΔVao), by pneumotachograph, combined with

ΔPao during AS are able to provide reliable data of absolute lung volumes. In addition to these,

we also tried to provide data that can improve the knowledge of the physiologic effects of the

air stacking maneuver.

Page 29: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

29

4.1.3. Methods

Subjects

Twenty healthy subjects (10 males and 10 females; age 23.5 ± 3.8 years, weight 68.2 ±

9.2 kg and height 1.70 ± 0.08 m, with body mass index of 23.5 ± 2.5 kg/m2, forced vital

capacity of 4.51 ± 0.75 L and forced expiratory volume in the first second of 3.80 ± 0.62 L) were

included in the study. Absolute and percentage predicted spirometric as well as anthropometric

data of each subject are shown in Table 1.

All individuals involved in the study were laboratory personnel trained in respiratory

maneuvers, self-reported as healthy with no history of smoking, heart or lung disease and

signed an informed consent form. The study was conducted within the confines of the World

Medical Association Declaration of Helsinki for medical research using human participants and

approved by the Research Ethics Committee under number 1.344.512/2015.

4.1.3.1 Measurements and apparatus

Spirometry

For spirometric measurements, a KoKo DigiDoser Spirometer® (nSpire Health, Inc.

Longmont, USA) was used and the technical procedures, acceptance and reproducibility

criteria, reference and interpretative values for forced vital capacity and forced expiratory

volume in the first second, as well as the standardization of the equipment followed the

recommendations of the ATS/ERS (2002). Assessment was considered complete when three

acceptable curves were produced, of which the best two were reproducible (with variation equal

to or lower than 5% to 200 mL).

Optoelectronic plethysmography

The optoelectronic plethysmography (OEP System®; BTS, Milan, Italy) was used to

assess ΔVCW as the sum of the variations of volume in the upper and lower rib cage and

abdomen (Aliverti and Pedotti 2003; Cala et al. 1996). This method has been used to assess

ΔVCW in healthy and in an extensive variety of diseases. In brief, optoelectronic

plethysmography measured the volumes displaced by the compartments of the chest wall by

52 retro-reflective markers placed on the trunk of the subject according to precise anatomical

reference points (Aliverti et al. 2001; Romei et al. 2010). Calibration of optoelectronic

plethysmography TV cameras was performed before data acquisition in each subject. Marker

positions and motion were captured by six TV cameras (three on the left and three on the right

side of the subject) operating at 60 frames/s and synchronized with co-axial infrared flashing

LEDs. The three-dimensional coordinates of the markers were calculated with

stereophotogrammetry and linked forming a mesh of triangles to define the surface the trunk.

The volume enclosed by the surface was obtained through a computing algorithm based on the

Gauss’ theorem (Cala et al. 1996).

Page 30: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

30

Pneumotachography

Flow and pressure at the airway opening were measured in all subjects by a heated

pneumotachograph (Series 0–800 LPM, Hans Rudolph® Inc, Kansas, EUA) that was placed

between a face mask and the manual insufflator (Fig. 1). Calibration of flow and pressure was

performed before data acquisition in each subject. The flowmeter was calibrated by measuring

different levels of inspiratory and expiratory airflow, by generating different strokes with a

calibrated 3 L syringe, with intervals of about 3 s in between. The pressure transducer was

calibrated by connecting it to a water manometer and measuring positive and negative

pressure variations from 0 to 100 cmH2O, with intervals of about 5 s in between. Optoelectronic

plethysmography data acquisition system allowed to acquire pressure and flow analog signals

of the pneumotachograph synchronously with optoelectronic plethysmography data. ΔPao were

considered as changes of alveolar pressure (ΔPalv). Time integration of the flow signal provided

ΔVao.

Air stacking apparatus

The AS maneuvers were performed using a two-way manual insufflator (RWR®, São

Paulo, Brazil) coupled to a silicone oro-nasal mask (7450 SeriesV2™, Hans Rudolph® Inc,

Kansas-EUA) and connected in series with the pneumotachograph. The subject was asked to

take a deep breath starting from functional residual capacity (FRC) up to TLC and to hold the

breath. At this moment, two consecutive air stacking maneuvers were applied until the

maximum volume that could be held with a closed glottis. Maximum insufflation capacity (MIC)

was defined as the sum of IC (volume variation from FRC to TLC) plus the volume variation

due to the application of AS (Dohna-Schwake et al. 2006; Kang and Bach 2000a) (Fig. 2). After

the second AS, the subject was asked to exhale down to residual volume.

Vital signs

Heart rate and peripheral oxygen saturation were measured continuously and non-

invasively during all the study protocol through a portable pulse oximeter PalmSat ® 2500

(Nonin Medical, Minnesota, USA).

Page 31: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

31

Fig. 1 Photograph of the experimental setup used to measure the gas compression. The subject is positioned at 45°

trunk inclination with the reflective markers of the optoelectronic plethysmography placed on the trunk surface. The

mask, positioned on the face of the subject, is connected to the pneumotachograph and manual insufflator.

Study protocol

All the data measurements were performed in a laboratory with the temperature

controlled between 26 and 28 °C. The subjects were evaluated in a single day in which

anthropometric (weight, height and body mass index) and spirometric data were collected. All

the subjects were positioned at 45° trunk inclination on a standard bed in which the AS

maneuvers were performed (Fig. 1).

Data were recorded with each subject performing the following consecutive set of

maneuvers: (1) 60s of quiet spontaneous breathing; (2) a vital capacity (VC) maneuver; (3) 40s

of quiet spontaneous breathing; (4) three sets of AS maneuvers, each composed of two air

stackings (see below), and immediately followed by an expiration starting from the maximum

volume reached after the second stacking and finishing at residual volume (with an interval of

20s in between); (5) 40s of quiet spontaneous breathing; (6) a VC maneuver; (7) 60s of quiet

spontaneous breathing (Fig. 3).

Page 32: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

32

Fig. 2 Experimental tracings obtained on a representative subject during a period of quiet breathing, followed by a

vital capacity (expiratory), a second period of quiet breathing, a set of two AS maneuvers and a third period of quiet

breathing. On the right, inspiratory capacity (IC), vital capacity (VC) and maximum insufflation capacity (MIC) are

indicated. Top panel chest wall volume variations measured by optoelectronic plethysmography (black line) and lung

volume variations, obtained as integration of flow measured at the mouth by pneumotachograph (grey line). Bottom

panel pressure simultaneously measured at the airways opening. Vertical lines indicate AS maneuvers. TLC total

lung capacity, FRC functional residual capacity, RV residual volume.

Fig. 3 Experimental tracing of total chest wall volume variation during a test on a single representative subject. The

study protocol included a period of quiet spontaneous breathing, two vital capacity (VC) maneuvers and three sets of

air stacking (AS) maneuvers interleaved with periods of quiet breathing.

Page 33: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

33

Previous observations obtained before the application of the protocol allowed to

establish that two consecutive AS maneuvers would be sufficient to reach MIC in healthy

subjects. Between each air stack, the subject was instructed to not exhale (keeping the air into

the lungs with the closed glottis) and to not move the trunk, so the optoelectronic

plethysmography could measure the ΔVCW accurately. During the whole study protocol, the

examiner maintained the mask involving the mouth and nose of the subject to avoid air

leakage. The procedure was discontinued if discomfort, alteration of vital signs or poor

adaptation occurred.

4.1.3.2. Data analysis

Gas compression

The ΔVCW measured with optoelectronic plethysmography during the AS maneuver

represents not only the volume of air inspired by the subject (ΔVao), but also ΔVcomp and blood

shift (VBS) from the trunk to the extremities:

∆VCW = ∆Vao + ∆Vcomp + ∆VBS. (1)

where ΔVao was calculated by the integration of flow measured

at the mouth by the pneumotachograph, from the beginning to the end of each AS maneuver,

and ΔVcomp was estimated from the Boyle–Mariote’s law for isothermal transformations (Iandelli

et al. 2002; Smith et al. 2012) (see below).

From Eq. (1), the difference between ΔVao and ΔVCW equals to ΔVcomp plus ΔVBS:

∆Vao − ∆VCW = ∆Vcomp + ∆VBS. (2)

Assuming that during the AS maneuver ΔVBS = 0, ΔVcomp can be obtained from Eq. (2)

as follows (Fig. 4):

∆Vcomp = ∆Vao − ∆VCW. (3)

Absolute lung volumes

Total lung capacity could be estimated (TLCest), from Boyle–Mariote’s law as follows

Δ

Δ

. (4)

where ΔPalv was estimated from measurements of ΔPao during the AS maneuver;

atmospheric pressure (Patm) was known; ΔVcomp was obtained from ΔVao and ΔVCW

measurements and Eq. (3).

Page 34: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

34

Fig. 4 Zoomed view of the representative tracings shown in Fig. 2 during two AS maneuvers. Top panels chest wall

(black line) and lung (grey line) volume variations. Bottom panel pressure variations. During AS maneuver #1, the

application of about 22 cmH2O of positive pressure by the manual insufflations determines a change in lung volume

(ΔVao = 0.510 L) larger than the change in chest wall volume (ΔVCW = 0.370 L). In this example, the amount of gas

compression is thus estimated to be 140 mL.

Functional residual capacity was estimated (FRCest) subtracting IC, obtained by

integrating the flow measured by the pneumotachograph (ICmeas), from TLCest.

Values of ICmeas, TLCest and FRCest were compared to predicted values for both genders

(Roca et al. 1998).

For each subject, among the three sets of maneuvers, the AS showing the maximum

ΔVcomp was selected and considered for data analysis. In each set of AS maneuvers, only the

first one was considered because it was performed starting from TLC.

4.1.4. Statistical analysis

For descriptive analysis, mean and standard deviations (± SD) were used. Normality

and data distribution were verified using the Shapiro–Wilk test. Parametric paired Student’s t

test was used to evaluate the differences between predicted values and estimated and

measured volumes.

The inferential data analysis was performed using the GraphPad Prism software version

6.01 for Windows. For all statistical analysis, a significance level of 5% (p < 0.05) was adopted.

Page 35: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

35

4.1.5. Results

Vital signs and adaptation

No discomfort or poor adaptation during the AS maneuvers was reported by the

subjects. Heart rate and peripheral oxygen saturation did not vary during the application of the

study protocol (Table 1).

Pressure and volume variations during AS maneuvers

Absolute values of ΔPalv, ΔVao, ΔVCW and ΔVcomp of each subject are reported in Table 2.

Under the assumption that no blood shift occurs during the application of AS, with an average

pressure variation of 21.78 ± 6.18 cmH2O, the gas compression estimated from the air stacking

maneuver of all subjects was 0.140 ± 0.050 L, representing 2.1% of lung volume at TLC.

Lung volumes

Table 3 shows the estimated and predicted values of TLC and FRC as well as the

measured and predicted values of IC. In Table 4, the absolute and percentage differences

between estimated (or measured) and predicted volumes are shown for each subject. No

statistically significant differences between the TLCest (p = 0.6020), FRCest (p = 0.5172) and

ICmeas (p = 0.7627) and predicted values were found. FRCest had mean values below and ICmeas

had mean values above the predicted seated values (−2.0 ± 12.4 and 1.2 ± 11.2% difference,

respectively).

Due to the lack of reliable VC maneuvers, particularly in the expiratory limb, the residual

volume and expiratory reserve volume could have not been estimated.

Page 36: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

36

Table 1. Anthropometric and spirometric data and average values of heart rate and oxygen saturation measured during the study

protocol of each subject.

Subject Gender Age Height (m) Weight (kg) BMI (kg/m2) FVC (L) FVC%pred FEV1(L) FEV1%pred HR(bpm) %SpO2

#1 #2 #3 #4 #5 #6 #7 #8 #9

#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Mean ± SD

F F F F F F F F F M M M F M M M M M M M

23 20 21 28 22 22 21 22 26 34 23 23 28 26 19 20 29 22 21 20

23.5 ± 3.8

1.52 1.60 1.63 1.65 1.66 1.67 1.68 1.68 1.70 1.70 1.71 1.75 1.77 1.82 1.63 1.72 1.81 1.85 1.70 1.78

1.70 ± 0.08

48 63 64 72 73 58 60 54 70 78 70 68 68 82 65 63 74 78 85 72

68.2 ± 9.2

20.78 24.61 24.09 26.65 26.49 20.80 21.26 19.13 24.22 26.99 23.94 22.20 21.71 24.76 24.46 21.30 22.59 22.79 29.41 22.72

23.5 ± 2.5

3.20 3.59 3.76 3.80 3.98 3.97 4.00 4.06 4.12 4.83 5.12 5.42 4.80 5.90 4.43 4.72 5.23 5.77 4.57 5.02

4.51 ± 0.75

97.3 98.1 98.9 97.4

100.8 99.2 98.8

100.2 99.3 98.4 99.2

100.6 106.4 101.4 106.1 105.0 96.2

105.1 91.3 98.4

99.9 ± 3.7

2.75 3.20 3.21 3.12 3.18 3.40 3.48 3.33 3.40 4.01 4.28 4.18 3.57 4.75 3.86 4.21 4.59 4.85 4.10 4.62

3.80 ± 0.62

94.8 99.1 96.4 97.2 92.7 97.9 98.9 95.1 96.3

100.5 99.8 93.3 94.4 99.6 100

102.2 100 99.0 91.3 96.8

97.1 ± 2.9

62 97 78 72 75 82 65 78 68 73 80 78 83 79 82 76 88 67 73 81

76.4 ± 8.6

98 98 99 98 98 97 98 99 99 99 99 99 99 98 99 98 98 97 98 98

98 ± 1

In the left column are the subject’s numbers. FVC: Forced vital capacity; FEV1: Forced expiratory volume in the first second; HR: Heart rate; %SpO2: Oxygen

saturation; m: Meters; kg: Kilograms; L: Liters; %pred: Percentage of predict; bpm: Beats per minute; F: Female; M: Male

Page 37: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

37

Table 2. Gas compression and pressure in a single air

stacking maneuver.

Subject ΔPalv (cmH2O) ΔVao (L) ΔVCW (L) Vcomp (L)

#1 #2 #3 #4 #5 #6 #7 #8 #9

#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Mean ± SD

21.98 28.00 29.00 20.86 18.71 19.50 18.26 12.94 13.67 22.00 13.70 23.89 14.76 18.47 23.00 38.00 25.90 28.50 20.40 24.00

21.78 ± 6.18

0.33 0.40 0.27 0.54 0.45 0.48 0.52 0.46 0.23 0.33 0.41 0.40 0.47 0.43 0.49 0.52 0.34 0.50 0.52 0.62

0.44 ± 0.10

0.23 0.26 0.11 0.42 0.35 0.37 0.42 0.39 0.15 0.19 0.32 0.23 0.38 0.29 0.35 0.25 0.15 0.27 0.39 0.45

0.30 ± 0.10

0.10 0.14 0.16 0.12 0.10 0.11 0.10 0.08 0.08 0.15 0.09 0.17 0.09 0.14 0.14 0.26 0.19 0.23 0.13 0.17

0.14 ± 0.05

In the left column are the subject’s numbers. ΔPalv: Alveolar pressure

changes in cmH2O measured at the mouth; ΔVao: Integrated volume

change measured at the mouth; ΔVCW: Chest wall volume change in ml

measured by optoelectronic plethysmography; ΔVcomp: Compressed

volume in ml (ΔVcomp = ΔVao – ΔVCW); L: Liters

Page 38: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

38

Table 3. Absolute values of the estimated (est), predicted (pred) and measured (meas) values of each subject.

In the left column are the subject’s numbers. TLC: Total lung capacity; FRC: Functional residual capacity; IC: Inspiratory

capacity; CI: Confidence interval; L: Liters.

Table 4. Absolute and percentage (%) difference values between estimated and predicted (est-pred)

and measured and predicted (meas-pred) values.

Subject TLCest-pred (L) TLCest-pred (%) FRC est-pred (L) FRCest-pred (%) ICmeas-pred (L) ICmeas-pred (%)

#1 #2 #3 #4 #5 #6 #7 #8 #9

#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Mean ± SD

-0.202 0.399 0.097 0.213 -0.272 -0.029 -0.263 0.067 -0.002 -0.055 -0.125 0.069 -0.194 -0.168 0.150 0.088 -0.271 0.207 -0.017 -0.132

-0.022 ± 0.184

-4.1 7.4 1.7 3.7 -4.7 -0.5 -5.4 1.1

-0.04 -0.8 -1.8 0.9 -3.0 -2.1 2.4 1.3 -3.4 2.5 -0.2 -1.8

-0.3 ± 3.0

-0.113 -0.182 -0.091 -0.127 -0.513 0.550 -0.651 -0.683 0.098 -0.307 -0.632 0.775 -0.046 0.166 0.493 0.273 -0.370 0.154 0.213 -0.182

-0.059 ± 0.404

-4.3 -6.2 -3.0 -4.3

-17.4 17.4 -20.3 -21.3 3.0

-18.8 -18.8 20.9 -1.3 4.1

17.2 8.0 -9.2 3.7 6.5 -4.9

-2.0 ± 12.4

-0.178 -0.065 0.469 0.514 0.424 -0.580 0.342 0.344 -0.101 0.277 0.245 -0.663 -0.149 -0.325 0.002 -0.153 0.154 0.066 -0.197 0.075

0.022 ± 0.329

-7.8 -2.6 18.2 19.5 15.9 -21.6 12.6 12.7 -3.6 7.9 6.9

-18.1 -5.0 -8.3 0.1 -4.3 2.7 1.6 -5.7 2.0

1.2 ± 11.2

In the left column are the subject’s numbers. TLC: Total lung capacity; FRC: Functional residual capacity; IC:

Inspiratory capacity; L: Liters.

Subjects TLCest (L) TLCpred (L) FRCest (L) FRCpred (L) ICmeas (L) ICpred (L)

#1 #2 #3 #4 #5 #6 #7 #8 #9

#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Mean ± SD

4.699 5.810 5.699 5.942 5.521 5.827 5.657 5.987 6.045 6.855 6.786 7.351 6.299 7.788 6.287 7.067 7.617 8.408 6.785 7.403

6.491 ± 0.919

4.901 5.411 5.602 5.729 5.793 5.856 5.920 5.920 6.047 6.910 6.911 7.282 6.493 7.956 6.137 6.979 7.888 8.201 6.802 7.535

6.513 ± 0.927

2.516 2.735 2.934 2.794 2.436 3.719 2.554 2.522 3.375 2.814 2.733 4.351 3.483 4.198 3.354 3.665 3.634 4.319 3.499 3.557

3.260 ± 0.635

2.629 2.917 3.025 2.921 2.949 3.169 3.205 3.205 3.277 3.121 3.365 3.596 3.529 4.032 2.861 3.392 4.004 4.165 3.286 3.739

3.209 ± 0.347

2.096 2.430 3.047 3.147 3.085 2.108 3.058 3.060 2.670 3.760 3.764 3.000 2.816 3.590 3.233 3.402 3.983 4.089 3.286 3.846

3.174 ± 0.570

2.274 2.495 2.578 2.633 2.661 2.688 2.716 2.716 2.771 3.483 3.519 3.663 2.965 3.915 3.231 3.555 3.879 4.023 3.483 3.771

3.151 ± 0.555

p value (95% CI) 0.6020 (-0.064 to 0.108) 0.5172 (-0.129 to 0.249) 0.7627 (-0.176 to 0.131)

Page 39: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

39

4.1.6. Discussion

The main findings of the present study are that in healthy subjects, during the

application of the AS technique (a) ΔVao exceeds ΔVCW and a detectable amount of gas

compression occurs and (b) simultaneous measurements of ΔPao and ΔVcomp (obtained by

subtracting ΔVao and ΔVCW) are able to provide an accurate estimate of absolute lung volumes,

at least those predicted from the reference equations.

The role of gas compression has already been reported in the literature, but mostly

during forced expiratory maneuvers (Iandelli et al. 2002; Ingram and Schilder 1966; Jaeger and

Otis 1964; Sharafkhaneh et al. 2004; Smith et al. 2012). However, Hedenstierna et al. (1981),

through a technique based on body plethysmography and insufflations of a heated and

humidified gas, observed that the chest wall expanded less than would be expected after

application of positive pressure and a known insufflated volume, indicating the presence of

alveolar gas compression during maximal mechanical inflation of the lungs of anesthetized

patients. To our knowledge, this is the first report about ΔVcomp at high lung volumes during AS

maneuvers.

Air stacking, obtained by either a positive pressure mechanical ventilator or by a manual

insufflator (Toussaint et al. 2016), is currently being considered, particularly in patients with

restrictive disorders, to increase maximal lung volume and consequently peak cough flow

(Jeong and Yoo 2015; Marques et al. 2014; Torres-Castro et al. 2014). Studies conducted in

neuromuscular patients (Brito et al. 2009; Kang and Bach 2000a, b; Kang et al. 2005) have

shown that a significant increase in VC and decrease in atelectasis (Lechtzin et al. 2006)

occurs after the application of AS. These patients are characterized by lung restriction and low

lung volumes. It is reasonable to hypothesize that the positive pressure applied through AS is

able not only to expand the lungs beyond TLC, but presumably also to recruit new alveolar

units, with a low amount of gas compression. As gas compression depends on lung volume

(Ingram and Schilder 1966), in the opposite case of patients with high lung volumes, such as

hyperinflated COPD subjects (Jaeger and Otis 1964; O’Donnell and Laveneziana 2006;

Sharafkhaneh et al. 2004), ΔVcomp via AS would be presumably higher. In COPD patients,

therefore, although the application of AS does not have any rationale as a treatment, it could be

considered as a tool for lung volume estimation.

In the present study, we have shown that the application of AS in healthy subjects

determines both an expansion of the respiratory system (i.e., chest wall) above TLC levels and

an amount of alveolar gas compression of about 2.1% of lung volume at TLC. It is reasonable

to assume that the application of the positive pressure above the upper inflection point of the

pressure volume curve by AS thus determines alveolar overdistension (Benito and Lemaire

1990; Harris 2005; Hickling 1998) rather than alveolar recruitment.

To our knowledge, this is the first study involving the simultaneous recordings of

optoelectronic plethysmography and pneumotachograph to estimate absolute lung volumes.

Absolute lung volume estimation is performed through techniques based on either static mass

balance, such as nitrogen washout or helium dilution, or dynamic mass balance and

compression gas phenomena in the lung, such as WBP. It is known that the former approach

can underestimate lung volume in the presence of poorly ventilated or unventilated spaces,

Page 40: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

40

causing a significant error (Wanger et al. 2005). This is not the case of WBP, which is

considered as the gold standard for its accuracy. However, the technique is very often difficult

to be applied in patients.

The ΔVcomp of all subjects was calculated by subtracting ΔVao and ΔVCW (Iandelli et al.

2002; Smith et al. 2012) and was estimated without taking into account possible blood shifts

(ΔVBS) from the trunk to the extremities. The choice of neglecting ΔVBS was based on the fact

that our measurements were taken with the lung submitted to positive pressure followed by a

spontaneous inspiration up to total lung capacity. Under these conditions, we can hypothesize

that two phenomena, with opposite effects on intrathoracic blood volume, and therefore

mutually eliciting, occur at the same time. The first is the increase in intrathoracic pressure, due

to the application of the air stacking maneuver, which determines a blood shift from the thorax

to the rest of the body. The second is the decrease in intrathoracic pressure, due to the full

inspiration, which determines a blood shift into the thorax. Hedenstierna et al. (1985) showed

that in anesthetized patients, the positive pressure provided by mechanical ventilation shifts

approximately 300 mL of blood from the rib cage to the abdomen and only 100 mL from the

extremities to the abdomen. The former quantity, thus, remains within the trunk and does not

produce any total chest wall volume variation, with ΔVCW being calculated as the sum of rib

cage and abdominal volumes variations. This blood shift from the rib cage to the abdomen can

be explained reasonably by the increase in intrathoracic pressure, which reduces transmural

vascular pressure, not only in the lung but also in the heart and the systemic veins in the thorax

(Hedenstierna et al. 1985). On the contrary, the latter quantity was very probably caused by the

induction of general anesthesia per se and suggestive of an overall displacement of blood from

the extremities to the trunk.

As preliminary experiments showed that several subjects reported difficulties in

maintaining the mouthpiece in place during the application of the positive pressure, we decided

to use an oral facial mask. A possible limitation, therefore, could be the presence of air

leakages between the mask and the face of the subject under analysis, leading to poor

accuracy of the measurements. This possible source of error was eliminated, however, by

excluding few cases in which a rapid decrease in the ΔPalv occurred together with a large

increase in ΔVao and no change in ΔVCW. Another possible source of error due to the mask

could be the gas compression occurring within the mask itself. The volume of the mask used,

however, was only 99 mL and therefore negligible compared to lung volume.

In the present study, the subdivisions of lung volumes estimated during AS were

compared to those predicted by equations based on WBP measurements. The determination of

lung volumes by WBP is usually by a panting maneuver performed at FRC. Starting from the

estimated FRC, residual volume and TLC values are then obtained by subtracting expiratory

reserve volume and adding IC, respectively (Criee et al. 2011). In our study, differently, lung

volume was estimated at TLC, with FRC and residual volume values obtained by subtracting

measured values of IC and VC, respectively. Because of the lack of reliable VC maneuvers

performed by the subjects, however, only the values of TLC (estimated by AS), IC (measured

by pneumotachograph) and FRC (obtained by subtracting TLCest and ICmeas) have been

shown here. Moreover, it is known that in supine position, FRC decreases and TLC remains

Page 41: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

41

approximately constant, with a consequent increase of IC, compared to seated or erect

positions (Baydur et al. 1996; Burki 1977; Laval et al. 1971; Parot et al. 1970). In the present

study, measurements were taken with the subject adopting a 45º trunk inclination. This posture

was chosen for two reasons, namely (a) to ensure that the maneuver was applied in the same

position adopted for most hospital bedridden patients; and (b) to not allow any air leakage

between the mask and the face of the subject while the examiner applied a sufficient pressure

to couple the mask. There are no available data on prediction equations for absolute lung

volumes for the subject’s posture adopted in the present and only scanty and old data derived

from nitrogen washout or helium dilution for supine position (Hurtado et al. 1934; Ibanez and

Raurich 1982; Kaltreider 1938; Whitfield et al. 1950). Therefore, the comparisons were

performed using prediction equations derived from WBP measurements obtained in seated

position with panting performed at FRC (Roca et al. 1998). Nevertheless, our results showed a

good agreement without significant differences between estimated and predicted lung volumes,

with a tendency of FRCest to be lower, although without statistical significance.

4.1.7. Conclusion

The present study provides original data useful to better understand AS maneuver at

high lung volumes. In addition, a novel method for assessing absolute lung volumes is

proposed as an alternative to the use of WBP or gas dilution techniques. The estimation of

absolute lung volumes by simultaneous measurement by optoelectronic plethysmography and

pneumotachograph during AS represents a simple, easy and non-invasive method that can be

done in different positions with the need of only a minor level of collaboration from the subject,

who has just to perform a full inspiration. Future studies are needed to know if the method is

applicable and accurate in other positions and in restrictive and obstructive pulmonary

diseases.

Page 42: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

42

4.1.8. References

Aliverti A, Pedotti A (2003) Opto-electronic plethysmography. Monaldi Arch Chest Dis 59(1):12–

16.

Aliverti A, Dellaca R, Pelosi P, Chiumello D, Pedotti A, Gattinoni L (2000) Optoelectronic

plethysmography in intensive care patients. Am J Respir Crit Care Med 161:1546–1552.

Aliverti A, Dellaca R, Pelosi P, Chiumello D, Gatihnoni L, Pedoti A (2001) Compartmental

analysis of breathing in the supine and prone positions by optoelectronic

plethysmography. Ann Biomed Eng 29:60–70.

ATS/ERS (2002) Statement on respiratory muscle testing. Am J Respir Crit Care Med

166(1):518–624.

Bach JR, Bianchi C, Vidigal-Lopes M, Turi S, Felisari G (2007) Lung inflation by

glossopharyngeal breathing and “air stacking” in Duchenne muscular dystrophy. Am J

Phys Med Rehabil 86:295–300.

Baydur A, Sassoon CS, Carlson M (1996) Measurement of lung mechanics at different lung

volumes and esophageal levels in normal subjects: effect of posture change. Lung

174:139–151.

Benito S, Lemaire F (1990) Pulmonary pressure-volume relationship in acute respiratory

distress syndrome in adults: role of positive end expiratory pressure. J Crit Care 5:27–

34.

Brito MF, Moreira GA, Pradella-Hallinan M, Tufik S (2009) Air stacking and chest compression

increase peak cough flow in patients with Duchenne muscular dystrophy. J Bras

Pneumol 35(10):973–979.

Burki NK (1977) The effects of changes in functional residual capacity with posture on mouth

occlusion pressure and ventilatory pattern. Am Rev Respir Dis 116:895–900.

Cala SJ et al (1996) Chest wall and lung volume estimation by optical reflectance motion

analysis. J Appl Physiol 81:2680–2689 .

Cliff IJ, Evans AH, Pantin CF, Baldwin DR (1999) Comparison of two new methods for the

measurement of lung volumes with two standard methods. Thorax 54:329–333.

Coates AL, Peslin R, Rodenstein D, Stocks J (1997) Measurement of lung volumes by

plethysmography. Eur Respir J 10:1415–1427.

Cobeel L (1969) Comparison between measurements of functional residual capacity and

thoracic gas volume in chronic obstructive pulmonary disease. Prog Respir Resp 4:194–

204.

Criee CP et al (2011) Body plethysmography—its principles and clinical use. Respir Med

105:959–971.

Dohna-Schwake C, Ragette R, Teschler H, Voit T, Mellies U (2006) IPPB-assisted coughing in

neuromuscular disorders. Pediatr Pulmonol 41:551–557.

Eber E, Steinbrugger B, Modl M, Weinhandl E, Zach MS (1994) Lung volume measurements in

wheezy infants: comparison of plethysmography and gas dilution. Eur Respir J 7:1988–

1994.

Kaltreider NL, Fray WW, Hyde HV (1938) The effect of age on the total pulmonary capacity and

its subdivisions. Am Rev Tuberc 37:662.

Harris RS (2005) Pressure–volume curves of the respiratory system. Respir care 50:78–98

(discussion 98–79).

Page 43: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

43

Hedenstierna G, Jarnberg PO, Gottlieb I (1981) Thoracic gas volume measured by body

plethysmography during anesthesia and muscle paralysis: description and validation of

a method. Anesthesiology 55:439–443.

Hedenstierna G, Strandberg A, Brismar B, Lundquist H, Svensson L, Tokics L (1985)

Functional residual capacity, thoracoabdominal dimensions, and central blood volume

during general anesthesia with muscle paralysis and mechanical ventilation.

Anesthesiology 62:247–254.

Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A

mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202.

Hurtado A, Fray WW, Kaltreider NL, Brooks WD (1934) Studies of total pulmonary capacity and

its subdivisions. V. Normal values in female subjects. J Clin Invest 13:169–191.

Iandelli I et al (2002) Determinants of exercise performance in normal men with externally

imposed expiratory flow limitation. J Appl Physiol 92:1943–1952.

Ibanez J, Raurich JM (1982) Normal values of functional residual capacity in the sitting and

supine positions. Intensive Care Med 8:173–177.

Ingram RH Jr, Schilder DP (1966) Effect of gas compression on pulmonary pressure, flow, and

volume relationship. J Appl Physiol 21:1821–1826.

Jaeger MJ, Otis AB (1964) Effects of compressibility of alveolar gas on dynamics and work of

breathing. J Appl Physiol 19:83–91.

Jeong JH, Yoo WG (2015) Effects of air stacking on pulmonary function and peak cough flow in

patients with cervical spinal cord injury. J Phys Ther Sci 27:1951–1952.

Kang SW, Bach JR (2000a) Maximum insufflation capacity. Chest 118:61–65.

Kang SW, Bach JR (2000b) Maximum insufflation capacity: vital capacity and cough flows in

neuromuscular disease. Am J Phys Med Rehabil 79:222–227.

Kang SW, Kang YS, Moon JH, Yoo TW (2005) Assisted cough and pulmonary compliance in

patients with Duchenne muscular dystrophy.

Yonsei Med J 46:233–238 Kendrick AH (1996) Comparison of methods of measuring static

lung volumes. Monaldi Arch Chest Dis 51(5):431–439.

Laval PFJ, Fondarai I, Kleisbauer JP, Poirier R (1971) Variations de la capacite respiratoire

fonctionnelle et des resistances des voies aeriennes chez des sujets normaux en

position assise puis couché. Bull Physiopathol Respir 7:743–764.

Lechtzin N, Shade D, Clawson L, Wiener CM (2006) Supramaximal inflation improves lung

compliance in subjects with amyotrophic lateral sclerosis. Chest 129:1322–1329.

Marques TB, Neves Jde C, Portes LA, Salge JM, Zanoteli E, Reed UC (2014) Air stacking:

effects on pulmonary function in patients with spinal muscular atrophy and in patients

with congenital muscular dystrophy. J Bras Pneumol 40(5):528–534.

Meneely GR, Kaltreider NL (1949) The volume of the lung determined by helium dilution.

Description of the method and comparison with other procedures. J Clin Invest 28:129–

139.

Newth CJ, Enright P, Johnson RL (1997) Multiple-breath nitrogen washout techniques:

including measurements with patients on ventilators. Eur Respir J 10:2174–2185.

O’Donnell DE, Laveneziana P (2006) Physiology and consequences of lung hyperinflation in

COPD. Eur Respir Rev 15:61–67 O’Donnell CR, Bankier AA, Stiebellehner L, Reilly JJ,

Brown.

R, Loring SH (2010) Comparison of plethysmographic and helium dilution lung volumes: which

is best for COPD? Chest 137:1108–1115.

Page 44: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

44

Parot S, Chaudun E, Jacquemin E (1970) The origin of postural variations of human lung

volumes as explained by the effects of age. Respiration 27:254–260.

Roca J et al (1998) Prediction equations for plethysmographic lung volumes. Respir Med

92:454–460.

Romei M, Mauro AL, D’Angelo MG, Turconi AC, Bresolin N, Pedotti A, Aliverti A (2010) Effects

of gender and posture on thoraco-abdominal kinematics during quiet breathing in

healthy adults. Respir Physiol Neurobiol 172:184–191

Schlesinger AE, White DK, Mallory GB, Hildeboldt CF, Huddleston CB (1995) Estimation of

total lung capacity from chest radiography and chest CT in children: comparison with

body plethysmography. AJR Am J Roentgenol 165:151–154

Sharafkhaneh A, Officer TM, Goodnight-White S, Rodarte JR, Boriek AM (2004) Novel method

for measuring effects of gas compression on expiratory flow. Am J Physiol Regul Integr

Comp Physiol 287:R479–R484.

Smith JA, Aliverti A, Quaranta M, McGuinness K, Kelsall A, Earis J, Calverley PM (2012) Chest

wall dynamics during voluntary and induced cough in healthy volunteers. J Physiol

590:563–574.

Torres-Castro R, Vilaro J, Vera-Uribe R, Monge G, Aviles P, Suranyi C (2014) Use of air

stacking and abdominal compression for cough assistance in people with complete

tetraplegia. Spinal Cord 52:354–357.

Toussaint M, Pernet K, Steens M, Haan J, Sheers N (2016) Cough augmentation in subjects

with Duchenne muscular dystrophy: comparison of air stacking via a resuscitator bag

versus mechanical ventilation. Respir Care 61:61–67.

Wanger J et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J

26(3):511–522.

Whitfield AG, Waterhouse JA, Arnott WM (1950) The total lung volume and its subdivisions. A

study in physiological norms. III. Correlation with other anthropometric data. Br J Soc

Med 4(3):113–136.

Zysman-Colman Z, Lands LC (2016) Whole body plethysmography: practical considerations.

Paediatr Respir Rev 19:39–41.

Page 45: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

45

4.2. Artigo 2

Thoracoabdominal asynchrony and paradoxical motion in

amyotrophic lateral sclerosis subjects

___________________________________________

Antonio Sarmento, Guilherme Fregonezi, Mario Emílio Teixeira Dourado-Junior, Andrea

Aliverti, Armele Dornelas de Andrade, Verônica Franco Parreira, Vanessa Resqueti

Submetido no Periódico Respiratory Physiology & Neurobiology

Page 46: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

46

4.2.1. Abstract

Aim: To assess thoracoabdominal asynchrony (TAA) and the presence of paradoxical motion

in middle stage amyotrophic lateral sclerosis (ALS) and its relationships with chest wall tidal

volume (VT,CW), breathing pattern and cough peak flow (CPF).

Methods: Phase angle (θ) between upper (RCp) and lower ribcage (RCa) and abdomen (AB),

as well as percentage of inspiratory time the lower ribcage (IPRCa) and abdomen (IPAB) moved

in opposite directions, were quantified using optoelectronic plethysmography in two situations:

quiet breathing and cough. Normal range of movement was defined using control data.

Results: During quiet breathing, significantly higher RCa and AB θ (p<.05), IPRCa (p=0.001)

and IPAB (p<0.05) were observed. Correlations between RCa and AB θ with forced vital

capacity (FVC) (r=–0.773, p<0.01), vital capacity (r=–0.663, p<0.05) and inspiratory capacity

(IC) (r=–0.754, p<0.01) as well as between RCp and RCa θ with FVC (r=–0.608, p<0.05) and

CPF (r=–0.601, p<0.05) were found. During cough, correlations between RCp and AB θ with

CPF (r=–0.590, p<0.05), IC (r=–0.748, p<0.01) and VT,CW (r=–0.608, p<0.05) as well as

between RCa and AB θ with CPF (r=–0.670, p<0.05), IC (r=–0.713, p<0.05) and PEF (r=–

0.727, p<0.05) were observed. ALS subjects with paradoxical motion presented lower vital

capacity and FVC%pred (p<0.05).

Conclusions: In this population, abnormalities in breathing are dependent on lung restriction

and diaphragmatic impairment may occur prior to the upper ribcage inspiratory muscles being

early observed in the lower ribcage compartment rather than the abdomen.

Keywords: Chest wall volumes, cough, diaphragm impairment, inspiratory paradox time, phase

angle, quiet breathing.

Page 47: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

47

4.2.2. Introduction

In healthy humans, the expansion and contraction of the ribcage and abdomen (AB)

during spontaneous breathing occur synchronously with small distortions (Allen, et al. 1990;

Ward, et al. 1992). During inspiration, the diaphragm contraction expands the abdominal

ribcage (RCa) pushing the abdominal contents downward and the abdominal wall outward at

the same time in which the intercostal and accessory muscles act to elevate and expand the

pulmonary ribcage (RCp) (Zoumot, et al. 2015). When uncoordinated motion between chest

wall compartments occurs, the thoracoabdominal asynchrony (TAA) is observed (Hammer &

Newth 2009).

TAA is primarily the result of disproportionate weakness of some respiratory muscles or

discoordination between different muscle groups (Chihara, et al. 1996) and is defined as the

difference in time of expansion or retraction between chest wall compartments (Allen, et al.

1990). It is influenced by a variety of breathing patterns (Chihara, et al. 1996; Crawford, et al.

1983; Gilmartin & Gibson 1984) and has been already identified in chronic obstructive

pulmonary disease patients (Aliverti, et al. 2009; Priori, et al. 2013), asthma (Hillman, et al.

1986; Ringel, et al. 1983), preterm infants (Warren, et al. 1997), tetraplegic (Mortola &

Sant'Ambrogio 1978) and stroke subjects (Lima, et al. 2014). Subjects with neuromuscular

disorders can also display TAA (Allen 2010; Crescimanno, et al. 2012; Diaz, et al. 1993;

Gibson, et al. 1977) mainly due to the reduced chest wall compliance (Diaz, et al. 1993) and

inspiratory muscle weakness (Hardart, et al. 2002; Testa, et al. 2005) resulting in a decreased

contribution of chest wall compartments to tidal volume (Perez, et al. 1996) and increased work

of breathing (Testa, et al. 2005).

With the progression of the disease, amyotrophic lateral sclerosis (ALS) subjects display

respiratory muscle weakness (Gregory 2007; Lyall, et al. 2001; Park, et al. 2010), decreased

tidal volume (Baydur 1991; Vitacca, et al. 1997) and cough peak flow (CPF) (Bach, et al. 2008;

Cleary, et al. 2013; Senent, et al. 2011), so it is possible that they also exhibit TAA and

paradoxical motion. Thus, using optoelectronic plethysmography, an optical reflectance motion

analysis system, we aimed to assess the within-breath TAA between the three different chest

wall compartments as well as the presence of paradoxical motion at rest during quiet breathing

(QB) in middle stage ALS compared to age-matched healthy positioned at 45° trunk inclination.

Secondly, as diaphragm contribution during QB and inspiration preceding cough are

determinants of cough efficiency in neuromuscular disease subjects (Lo Mauro, et al. 2010;

LoMauro, et al. 2014), we also assessed TAA and paradoxical motion during cough as well as

its relationships with chest wall volumes, breathing pattern and CPF.

Page 48: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

48

4.2.3. Methods

Subjects

This is a cross-sectional study with a matched-pair design. Twelve ALS subjects,

diagnosed according to the El Escorial World Federation of Neurology (Brooks, et al. 2000) and

classified as middle stage according to disease progression (Balendra, et al. 2015; Roche, et

al. 2012; Simon, et al. 2014) (see appendix tables A1 and A2), with forced vital capacity (FVC)

<80% of predict, without bulbar dysfunction or tracheostomy, cardiovascular or pulmonary

diseases were recruited for the study. Those in use of positive pressure devices or could not

adopt the posture at 45° trunk inclination, were excluded. Control group consisted of twelve

self-reported healthy matched by gender and age without any cardiovascular or pulmonary

diseases. Those with spirometric values <80% of predicted were excluded.

The study was conducted within the confines of the World Medical Association

Declaration of Helsinki for medical research using human participants and approved by the

Research Ethics Committee under number 1.344.512/2015. All individuals signed an Informed

Consent Form.

Lung function and respiratory muscle strength

Lung function was assessed through a KoKo Digidoser® spirometer (nSpire Health,

Longmont-EUA) with the subject seated in a standard chair. Assessments were carried out

following the acceptability and reproducibility criteria(American Thoracic Society/European

Respiratory 2002) and values obtained were compared to absolute and percentage of predict

spirometric values for the Brazilian population (Pereira, et al. 2007).

A digital manometer (NEPEB-LabCare, Belo Horizonte-Brazil) was used to assess

respiratory muscle strength by measuring maximal inspiratory (MIP) and expiratory pressures

(MEP) starting from residual volume and total lung capacity, respectively. To assess the pattern

of respiratory muscle strength loss in this population, absolute and percentage of predicted

MEP/MIP ratio was calculated (Fregonezi, et al. 2015). Sniff nasal inspiratory pressure (SNIP)

was also used to assess inspiratory muscle strength (Heritier, et al. 1994). For each of the

above tests, the higher value obtained was compared to previous absolute and percentage

values for the Brazilian population (Araujo, et al. 2012; Neder, et al. 1999) and considered for

statistical analysis.

Functionality and clinical stage of the disease

The functionality of the ALS subjects was assessed by a physician through the

Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (Gordon, et al. 2004), validated

for the Brazilian population (Guedes, et al. 2010). The scale included items related to

respiratory (maximum of 12 points) and bulbar function with a total score of 48 points (See

appendix table A3).

Study design

For each subject, all measurements were performed in one single day. After collection

of lung function and respiratory muscle strength data, the subjects were positioned in a

Page 49: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

49

standard bed at 45° trunk inclination in which the retro-reflective markers were placed and

chest wall kinematics were recorded by the TV cameras (see below) during 1) sixty seconds of

quiet spontaneous breathing at rest, 2) a VC maneuver and 3) a strong cough maneuver

(performed starting from total lung capacity).

Optoelectronic plethysmography

Optoelectronic plethysmography (BTS Bioengineering, Italy), a system described

previously (Aliverti & Pedotti 2003; Cala, et al. 1996), allowed the assessment of chest wall

kinematics. In brief, six TV cameras (three on the left and three on the right side of the subject),

previously calibrated using a frequency of 60 frames.sec-1, recorded the movement change of

52 retro-reflexive markers placed in specific anatomic points of the trunk surface of the subjects

in order to model the chest wall and its compartments – RCp, RCa and AB (Aliverti & Pedotti

2003). All markers were simultaneously visible to at least two TV cameras so that their three-

dimensional positions and displacements could be reconstructed using stereo-photogrammetric

methods by a motion analyzer (Ferrigno, et al. 1994). A closed surface of the total subject’s

trunk was reconstructed by connecting the coordinates of the markers and the breath-by-breath

volume enclosed by this surface was computed by means of an algorithm based on the Gauss’

theorem (Cala, et al. 1996).

The following parameters were obtained: Chest wall tidal volume (VT,CW) and its

compartments, CPF, vital capacity (VC), inspiratory capacity (IC), respiratory rate, minute

ventilation, inspiratory time, expiratory time, total time of the respiratory cycle, mean inspiratory

flow, mean expiratory flow and duty cycle. Rapid shallow breathing was obtained according to

Yang and Tobin (Yang & Tobin 1991) and ΔVT,AB/Ti, ΔVT,RCp/Ti and ΔVT,AB/Te were calculated

as shortening velocity index of the diaphragm, inspiratory ribcage and expiratory muscles

(Aliverti, et al. 2002), respectively.

Chest wall asynchrony and inspiratory paradoxical movement

Firstly, the degree of asynchrony between chest wall compartments was obtained after

the construction of Lissajous figures (Aliverti, et al. 2009; Allen, et al. 1990) during QB and

cough. Phase angle (θ) between two volumetric signals was calculated and a graph was

created when plotting two volumetric signals against each other. θ = sin-1 (m/s) was used to

define θ, where m was the ratio of the distance delimited by the intercepts of the dynamic loop

on a line parallel to X-axis at 50% of the volume of the signal on the Y-axis, and s the volume of

the signal on the X-axis (Fig. 1). RCp (y-axis) versus RCa (x-axis), RCa (y-axis) versus AB (x-

axis) and RCp (y-axis) versus AB (x-axis) loops during QB and cough (Fig. 2) were calculated

and a positive phase angle means that the expansion of the y-axis leads the x-axis (loop with

clockwise direction); while a negative phase angle describes the reverse situation. A θ of zero

represents a completely synchronous movement of the compartments, while 180° represents

total asynchrony (Agostoni & Mognoni 1966; Allen, et al. 1990; Priori, et al. 2013).

Secondly, inspiratory paradox time of RCa (IPRCa) and AB (IPAB), defined as the fraction

of the inspiratory time in which the RCa and AB volumes decrease during inspiration (Aliverti, et

al. 2009), respectively, were also assessed.

Page 50: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

50

For data analysis, patients were subdivided into those presenting paradoxical

movement of the RCa (PRCa+) and AB (PABM+) compartments and those who not (PRCa- and

PABM-, respectively). Grouping was based on upper and lower threshold values (defined as 75

and 25th interquartile range, respectively) of θ and IP obtained at rest (mean of 15 breaths) and

during a strong cough maneuver of all matched-paired healthy of this study. Thus, ALS

subjects were classified as presenting paradoxical movement if both θ and IP values exceeded

the above-mentioned threshold points (i.e. RCp and AB θ and IPAB for paradoxical ribcage

motion as well as RCp and Rca θ and IPRCa for paradoxical ribcage motion).

Page 51: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

51

Fig 1. Representative time-courses of the pulmonary rib cage (RCp) (y-axis), abdominal rib cage (RCa) (y-axis),

abdomen (AB) (x-axis) and chest wall volumes of one healthy control subject (left), one middle stage amyotrophic

lateral sclerosis subject with no paradoxical rib cage (PRCa-) and abdominal (PAB-) motion (middle), and one middle

stage amyotrophic lateral sclerosis subject with paradoxical rib cage (PRCa+) and abdominal (PAB+) motion (right)

during quiet breathing. L: Liters; Δ: Change; Arrows: Direction of the compartmental expansion; Black dot: Beginning

of inspiration. m: line parallel to signal of the X-axis at 50% of the volume of the signal on the Y-axis; s: volume of the

signal on the X-axis; θ: Phase shift.

Page 52: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

52

Fig 2. Representative time-courses of the pulmonary rib cage (RCp), abdominal rib cage (RCa), abdomen (AB) and

chest wall volumes of one healthy control subject (left), one middle stage amyotrophic lateral sclerosis subject with no

paradoxical rib cage (PRCa-) and abdominal (PAB-) motion (middle), and one middle stage amyotrophic lateral

sclerosis subject with paradoxical rib cage (PRCa+) and abdominal (PAB+) motion (right) (according to the

classification used in the study) during a cough maneuver. Note in supplementary table S3, patient number #3, that

the subject with PRCa- and PAB- has no paradoxical abdominal motion according to the classification used in the

study. L: Liters; Δ: Change; Small arrows: Start of cough; Big arrows: Direction of the compartmental expansion;

Black dots: Start of inspiration; Grey dots; Start of cough; θ: Phase angle.

4.2.4. Statistical analysis

Data are expressed as mean ± SD unless otherwise stated. Normality of data was

assessed using Shapiro-Wilk test. Differences between ALS and healthy subjects regarding

anthropometric, spirometric and respiratory muscle strength data as well as data obtained from

optoelectronic plethysmography and asynchrony were tested using Paired t-test and Wilcoxon

Page 53: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

53

test for parametric and non-parametric data, respectively. Differences between subgroups were

studied using Mann-Whitney test. Relationships between the degree of asynchrony and both

lung function and breathing pattern were studied using Pearson’s r and Spearman’s rho

correlation coefficient.

No previous data were available to guide a sample size for this study. Thus, to avoid

type II error, the power of the study as well as effect-sizes [Coefficients of determination (r2)

and Cohen's f2 for parametric relationship analysis and Cohen’s d for intergroup and subgroup

non-parametric inferential analysis] (Cohen 1988; Faul, et al. 2009; Fritz, et al. 2012) were

calculated using G*Power software, version 3.1.9.2 (Kiel, Germany) (See appendix).

Inferential data analysis was performed using GraphPad Prism® software version 6.01

for Windows. A p value of <0.05 (2-sided) was considered as statistically significant for all

statistical analysis.

4.2.5. Results

Data related to diagnosis criteria, region of onset, clinical phenotype as well as the

presence of familial ALS and cognitive impairment of all ALS included in the study are shown in

appendix table A4. Anthropometric characteristics, spirometric, respiratory muscle strength and

functionality data are shown in Table 1.

A post hoc analysis considering the calculated effect size for IPRCa during cough

(Cohen’s d=0.96) showed a statistical power (1-ß)=0.99 for this study.

Cough peak flow, chest wall volumes, breathing pattern and velocity index of respiratory

muscles

A significant lower CPF (p<0.001, Cohen’s d=1.26), VC (p<0.001, Cohen’s d=1.92), IC

(p<0.001, Cohen’s d=1.89) and VT,CW (p<0.005, Cohen’s d=1.29) were observed in ALS when

compared to controls. Regarding compartmental analysis, significant lower volumes in RCp

(p<0.05, Cohen’s d=0.77) and AB (p<0.05, Cohen’s d=1.15) compartments were observed in

ALS subjects. Significant lower inspiratory time (p=0.001, Cohen’s d=1.53), expiratory time

(p<0.05, Cohen’s d=1.26) and total time of respiratory cycle (p<0.005, Cohen’s d=1.43) as well

as significant higher respiratory rate (p<0.005, Cohen’s d=1.50) and rapid shallow breathing

(p=0.001, Cohen’s d=1.77) were found in ALS subjects when compared to controls (Table 2).

Thoracoabdominal asynchrony during cough and quiet breathing

During cough, no differences were found in θ between groups, however significant

differences in IPRCa (p<0.005, Cohen’s d=0.96) were observed (Table 3). In addition, significant

correlations between RCp and AB θ with CPF (r= –0.590, p<0.05, r2= 0.35, Cohen’s f2=0.53),

PEF (r= –0.727, p<0.01), IC (r= –0.748, p<0.01) and VT,CW (r= –0.608, p<0.05, r2= 0.37,

Cohen’s f2=0.58); RCa and AB θ with CPF (r= –0.670, p<0.05, r2= 0.45, Cohen’s f2=0.81), IC

(r= –0.713, p<0.05) and PEF (r= –0.727, p<0.05); and RCp and RCa θ with respiratory rate (r=

0.638, p<0.05) were observed.

During QB, significant differences in RCp and AB θ (p<0.05, Cohen’s d=0.54) and RCa

and AB θ (p<0.05, Cohen’s d=0.62) were found in ALS when compared to controls (Table 3). In

Page 54: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

54

addition, a significant higher IPRCa (p=0.001, Cohen’s d=2.03) and IPAB (p<0.05, Cohen’s d=.53)

were found in ALS subjects (Fig 3) as well as significant correlation between RCp and AB θ

and FVC (r= –0.773, p<0.01), VC (r= –0.663, p<0.05) and IC (r= –0.754, p<0.01); RCp and

RCa θ and FVC (r= –0.608, p<0.05) and CPF (r= –0.601, p<0.05) and RCa and AB θ with rapid

shallow breathing (r= 0.645, p<0.05).

Table 1. Anthropometric, absolute and predicted values of

lung function, respiratory muscle strength and

functionality data of the subjects.

Data presented as mean and standard deviation. FVC: Forced Vital

Capacity; FEV1: Forced expiratory volume in the 1st second; FEV1/FVC:

Ratio of forced expiratory volume in the first second to forced vital capacity;

FEF25-75%: Forced expiratory flow at 25-75%; PEF: Peak expiratory flow;

MIP: Maximum inspiratory pressure; MEP: Maximum expiratory pressure;

MEP/MIP: Ratio between maximum inspiratory and expiratory pressures;

SNIP: Sniff nasal inspiratory pressure; ALSFRS-R: Amyotrophic Lateral

Sclerosis Functional Rating Scale-revised; n: number of subjects; m:

meters; kg: kilograms; L: Liters; %pred: Percentage of predicted; L/s:

Liters per second; cmH2O: centimeters of water.

Controls ALS p value

Subjects (n) 12 12 -

Age (years) 46.4±12.2 46.4±12.2 0.999

Height (m) 1.69±0.1 1.66±0.1 0.405

Weight (kg) 73.1±13.1 64.8±17.2 0.200

BMI (Kg/m2

) 25.4±3.7 23.3±5.2 0.253

FVC (L) 4.21±0.73 2.17±0.85 <0.001

FVC (%pred) 99.93±8.2 53.3±18.6 <0.001

FEV1 (L) 3.42±0.55 1.63±0.59 <0.001

FEV1 (%pred) 100.2±8.8 49.2±13.4 <0.001

FEV1 /FVC (L) 0.81±0.01 0.81±0.02 0.567

FEV1 /FVC (%pred) 81±1.8 81.4±2.9 0.678

FEF25-75% 3.44±0.97 1.48±0.70 <0.001

PEF (L/s) 7.39±1.75 3.02±1.54 <0.001

MIP (cmH2O) 119.8±26.04 33.25±10.86 <0.001

MIP (%pred) 113.5±15.7 33.6±10.1 <0.001

MEP (cmH2O) 138.8±29.22 46.17±22.09 <0.001

MEP (%pred) 125.4±24.1 44.3±18.4 <0.001

MEP/MIP (cmH2O) 1.04±0.10 1.01±0.06 0.476

MEP/MIP (%pred) 1.11±0.20 1.38±0.60 0.141

SNIP (cmH2O) 130.9±26.96 33.75±9.5 <0.001

SNIP (%pred) 123.8±18 39.1±8.4 <0.001

ALSFRS-R - 26.67±8.31 -

Respir. subscore - 10.08±1.56 -

Page 55: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

55

Table 2. Cough peak flow, vital capacity, chest wall

compartmental volumes, breathing pattern and

shortening velocity index of respiratory muscles.

Data presented as mean and standard deviation. CPF: Cough

peak flow; VC: Vital capacity; IC: Inspiratory capacity; VCW:

Chest wall volume; VRCp: Pulmonary ribcage volume; VRCa:

Abdominal ribcage volume; VAB: Abdominal volume; Ti:

Inspiratory time; Te: Expiratory time; Ttot: Total time of the

respiratory cycle; RR: respiratory rate; VE: Minute volume; RSB:

Rapid shallow breathing: ΔVTCW/Ti: Maximum inspiratory flow;

ΔVTCW/Te: Maximum expiratory flow; ΔVrcp/Ti: Shortening

velocity index of inspiratory ribcage muscles; ΔVab/Ti: Shortening

velocity index of diaphragm; ΔVab/Te: Shortening velocity index

of expiratory muscles; ‡ non-parametric data distribution; L:

Liters; min: minutes; s: seconds; L/s: Liter per second; Bpm:

Breaths per minute

Controls ALS p value

CPF (L/s) 8.452 ± 3.35 4.618 ± 2.50 <0.001

VC (L) 4.278 ± 1.39 1.958 ± 0.70 <0.001

IC (L) 3.491 ± 1.03 1.795 ± 0.54 <0.001

∆VCW (L) 0.619 ± 0.24 0.342 ± 0.07 <0.005

∆VRCp (L) 0.182 ± 0.13 0.089 ± 0.03 <0.05

∆VRCa (L) ‡ 0.105 ± 0.05 0.065 ± 0.02 0.059

∆VAB (L) 0.334 ± 0.14 0.186 ± 0.08 <0.05

Ti (s) 1.68 ± 0.45 1.08 ± 0.28 0.001

Te (s) 2.43 ± 0.69 1.66 ± 0.43 <0.05

Ttot (s) 4.12 ± 1.10 2.74 ± 0.70 <0.005

RR (bpm-1

) 15.73 ± 4.30 23.62 ± 5.84 <0.005

VE (L/min-1

) 9.17 ± 2.71 7.99 ± 2.76 0.261

Duty cycle 41.18 ± 3.83 39.63 ± 3.02 0.329

RSB 30.50 ± 16.99 73.08 ± 27.52 0.001

ΔVTCW/Ti (L/s-1

) 0.375 ± 0.11 0.343 ± 0.13 0.481

ΔVTCW/Te (L/s-1

) 0.263 ± 0.08 0.222 ± 0.07 0.177

ΔVT,rcp/Ti (L/s) 0.107 ± 0.05 0.088 ± 0.04 0.374

ΔVT,ab/Te (L/s) 0.140 ± 0.05 0.118 ± 0.05 0.403

ΔVT,ab/Ti (L/s) 0.162 ± 0.08 0.186 ± 0.10 0.408

Page 56: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

56

Table 3. Thoracoabdominal asynchrony during quiet breathing and cough.

Data presented as median and interquartile range between 25-75%. RCp: Pulmonary ribcage; RCa: Abdominal ribcage; AB: Abdominal;

θ: Phase shift; PhRIB: Phase relation during inspiration; PhREB: Phase relation during expiration; PHTB: Phase relation during total

breath; °: Degrees; %: Percentage. ‡ parametric data distribution; * <.05 versus controls; # <.01 versus controls;

† <.005 versus controls.

Fig 3. Box plots showing the inspiratory paradox time of abdominal rib cage (IPRCa) and abdomen (IPAB) during quiet

breathing and cough. Center lines indicate the median and plus signs show mean values. The upper and lower limits

of each box represent the 75th and 25th percentiles, respectively. Whiskers denote minimum and maximum values.

Black dots represent each patient individually. %: Percentage; ALS: Amyotrophic Lateral Sclerosis..

During quiet breathing During cough

Controls ALS Controls ALS

Subjects (n) 12 12 12 12

θ RCpxAB ° -6.622 [-8.67 – -3.03] -0.702 [-7.78 – 5.11]* 7.370 [-7.52 – 11.08]‡ 10.250 [-17.02 – 35.22]

θ RCaxAB ° -2.556 [-6.42 – -0.29] 2.135 [-2.88 – 9.04]* 3.045 [-6.62 – 8.72]‡ 10.290 [-16.24 – 28.50]

θ RCpxRCa ° -4.034 [-10.48 – -1.47]‡ -3.765 [-13.89 – -1.88] 1.455 [-5.20 – 8.39]

‡ 1.715 [-4.29 – 11.81]

Page 57: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

57

Paradoxical abdominal motion during cough and quiet breathing

The upper and lower limits for RCp and AB θ were defined as 7.52° and -11.08°,

respectively; and the upper limit for IPAB was defined to be 12.09%. PABM+ was observed in 5

subjects with ALS. Of the 7 remaining (PABM-), only two showed no evidence of paradoxical

motion by either criterion, while 4 showed abnormal θ and 1 abnormal IPAB. No statistically

significant differences between subgroup analyses were found.

The upper and lower limits for RCp and AB θ during QB were -1.87° and -10.48°,

respectively; while the upper limit for IPAB was 8.59%. PABM+ was observed in 6 subjects. Of the

6 remaining, 2 subjects showed IPAB values above the threshold, 3 showed abnormal θ and 1

showed no evidence of paradoxical motion by either criterion (See appendix tabel A5). During

QB a significant higher MEP/MIP%pred ratio (p<0.01, Cohen’s d=2.51) was found in PABM+ when

compared to PABM- [median of 1.72 (1.46-2.38) and 0.91 (0.79-1.07), respectively].

Paradoxical ribcage motion during cough and quiet breathing

During cough, the upper and lower limits for RCp and Rca θ were defined as 5.20° and -

8.39°, respectively; and the upper limit for IPRCa was defined to be 3.30%. PRCa+ was observed

in 6 subjects. Of the 6 remaining, only one showed no evidence of paradoxical motion by either

criterion, while 5 showed abnormal IPRCa. A significantly lower FVC%pred (p<0.05, Cohen’s

d=1.26) was observed in PRCa+ [median of 42 (28.8-55.6)], when compared with PRCa- subgroup

[median of 62.6 (50.9-72.6)] during cough as well as higher ΔVT,RCp/Ti [median of 0.10 (0.08-

0.15) vs 0.06 (0.05-0.07) L/sec-1, p<0.01, Cohen’s d=1.67].

During QB, the upper and lower limits for θ were, respectively, -3.03° and -8.67°; while

the upper limit for IPRCa was 6.95%. PRCa+ was observed in 6 subjects, while the 6 remaining

did not. Of these, 5 subjects showed IPRCa values above threshold and 2 showed no evidence

of paradoxical motion by either criterion (See appendix table A6). A significantly lower FVC

[median of 1.59 (0.89-2.32) vs 2.66 (2.39-2.91) L, p<0.05, Cohen’s d=1.58], FVC%pred [median

of 37 (28.8-46) vs 62.6 (56-72.6), p<0.01, Cohen’s d=2.35], FEV1 [median of 37.4 (29.7-44) vs

59.5 (51-61.4) p<0.01, Cohen’s d=2.14] and VC [median of 1.47 (0.98-2.17) vs 2.34 (1.94-2.70)

p<0.05, Cohen’s d=1.46] were observed in PRCa+ when comparing with PRCa-, respectively.

4.2.6. Discussion

Main findings

The main findings of the study were that middle stage ALS positioned at 45° trunk

inclination a) Display higher TAA between the upper ribcage compartments and AB during QB

when compared to controls and the magnitude of this TAA is negatively related to forced vital

capacity, inspiratory capacity and vital capacity; b) During cough, TAA is negatively related to

cough peak flow, peak expiratory flow, inspiratory capacity and chest wall tidal volume; c)

Paradoxical abdominal and ribcage motion can be observed in middle stage ALS subjects at

rest and during cough; d) Subjects with paradoxical motion exhibit a decreased VC, FVC and

FEV1 as well as increased MEP/MIP%pred ratio and ΔVT,RCp/Ti.

Page 58: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

58

Thoracoabdominal asynchrony

TAA has long been thought clinically useful in the assessment of airflow obstruction in

infants (Allen, et al. 1990), early-onset hyperinflation and dyspnoea in chronic obstructive

pulmonary disease (Aliverti, et al. 2009; Priori, et al. 2013) as well as in estimating pulmonary

function and efficiency of mechanical ventilation in Duchenne muscular dystrophy (Diaz, et al.

1993) and spinal muscular atrophy (Hardart, et al. 2002; Testa, et al. 2005). According to Allen

(Allen 2010), TAA is a consequence of weakness and inefficiency of respiratory muscles in

neuromuscular disease subjects leading to a decrease in VCW, increase in work of breathing

(Mortola & Sant'Ambrogio 1979) and, consequently, respiratory muscle fatigue (Diaz, et al.

1993).

A significantly higher TAA between RCp and AB and RCa and AB were observed in

ALS when compared to controls during QB. These findings are in agreement with other studies

performed in neuromuscular disease (Diaz, et al. 1993; Perez, et al. 1996) and, although no

correlations with respiratory muscle strength were found, it is likely to be associated with the

weakness and inefficiency of the diaphragm (Allen 2010). In the early stages of ALS, the

intercostals and accessory muscles assume the primary role in decrease intrathoracic pressure

and increase ventilation during spontaneous breathing leading to a paradoxical inward

abdominal motion and decreased tidal volume (Higenbottam, et al. 1977; Kreitzer, et al. 1978;

Romer, et al. 2017; Similowski, et al. 2000). In our study, this fact is supported by a significantly

higher IPAB and IPRCa, showing that both compartments move in opposite directions in relation

to the RCp expansion during inspiration. The former can be explained by the failure of the

diaphragm in decreasing intrathoracic pressure, and consequently increasing

transdiaphragmatic pressure, being compensated by an expansion of the RCp promoted by the

intercostals and accessory muscles (Allen 2010; Diaz, et al. 1993; Similowski, et al. 2000); and

the latter, by the fact that the part apposed to the diaphragm (RCa) may possibly be influenced

by the inward motion of the abdomen during inspiration due to the insertional expiratory muscle

component (rectus abdominis and external and internal obliquus) (De Troyer, et al. 1983; Mier,

et al. 1985).

In infants, Allen et al. (Allen, et al. 1991) and Stromberg and Nelson (Stromberg &

Nelson 1998) observed that TAA during sleep was positively related to the severity of

abnormalities in pulmonary resistance and negatively related to compliance, suggesting that

the quantification of TAA could provide a useful indicator of infant lung function. In ALS

subjects, respiratory compliance is reduced and negatively related to FVC and respiratory

muscle weakness (Lechtzin, et al. 2006). Although we did not measure compliance in our

subjects, we have shown for the first time that the degree of TAA during QB is negatively

related to FVC, VC, IC and PCF and positively related to rapid shallow breathing in middle

stage ALS subjects suggesting that TAA reflects lung restriction being also related to the

generation of insufficient volume prior to cough in this population (LoMauro, et al. 2014).

During cough, Lanini et al. (Lanini, et al. 2007) observed that differences in muscle force

acting on upper and lower ribcages result in substantial ribcage distortion in healthy subjects. In

neuromuscular disease, insufficient deflation of chest wall compartments in addition to ribcage

Page 59: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

59

distortion result in cough ineffectiveness (Lanini, et al. 2008). Although we had measured θ

during cough instead of distortion, our results suggest an imbalance between compartments,

probably because of different compartmental pressures and elastic and resistive forces during

the expulsive maneuver (Allen 2010). Moreover, the negative relationships between RCp and

AB θ, as well as RCa and AB θ, with CPF, PEF, IC and VT,CW are in agreement with Lanini et al.

(Lanini, et al. 2007; Lanini, et al. 2008) and LoMauro et al. (LoMauro, et al. 2014) and may be

explained by a delayed or slower activation of the diaphragm(Lo Mauro, et al. 2010) and

abdominal muscles (Perez, et al. 1996) which contributes to a generation of insufficient

inspiratory volume previous to cough(Smith, et al. 2012) and expiratory pressure (De Troyer &

Estenne 1995), respectively, thus decreasing cough effectiveness (LoMauro, et al. 2014).

Paradoxical motion

To our knowledge, this is the first study in which paradoxical ribcage and abdominal

motion during cough and QB are quantified in ALS subjects. The accurate estimation of chest

wall volume and motion by surface measurements using of optoelectronic plethysmography

allowed the assessment of TAA between the two ribcage subcompartments (RCp - the part

apposed to the lung and RCa – the part apposed to the diaphragm) and AB (Aliverti, et al.

2009; Zoumot, et al. 2015), being different from studies using respiratory inductance

plethysmography in which chest wall was composed of two compartments (Allen, et al. 1990;

Diaz, et al. 1993; Perez, et al. 1996).

Previous studies (Higenbottam, et al. 1977; Kreitzer, et al. 1978) have shown that

patients with diaphragmatic dysfunction display paradoxical abdominal motion. In this case,

inspiration relies primarily on the intercostals drawing the diaphragm into the chest wall due to

its slower activation (Hammer & Newth 2009; Similowski, et al. 2000). In our study, subjects

classified as PABM+ during QB exhibited a significantly higher MEP/MIP%pred ratio indicating an

imbalance between respiratory muscle strengths and also suggesting that MIP is the first

impaired in middle ALS (Fregonezi, et al. 2015). On the other hand, when subdividing subjects

in PRCa+ and PRCa- during cough and QB, it was observed that PRCa+ subjects exhibited a lower

VC, FVC (in absolute and percentage of predicted values) and FEV1, as well as a higher

ΔVT,RCp/Ti, when compared to PRCa- subjects. These results can be explained by a lower chest

wall compliance and lung elastance (Lechtzin, et al. 2006), as well as reduced ventilatory

efficiency (Orsini, et al. 2015) and respiratory muscle performance (Kang & Bach 2000; Park, et

al. 2010), which may lead to a decrease in two predictive biomarkers for survival in ALS: The

strength of the diaphragm contraction (Polkey, et al. 2017) and VC (Carrié, et al.). In addition to

the progression of the disease, the increased ΔVT,RCp/Ti may tend to compensate for the

decreased VT,CW and maintain minute ventilation through recruitment of ribcage and accessory

muscles during inspiration (Diaz, et al. 1993; Mortola & Sant'Ambrogio 1978; Perez, et al. 1996;

Romer, et al. 2017; Similowski, et al. 2000).

Although the above patterns must be confirmed in a larger population, our results

demonstrated for the first time the negative impacts of TAA on FVC, VT,CW and CPF in middle

stage ALS subjects. Secondly, our results also showed that RCp compartment leads the RCa

Page 60: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

60

and AB expansion in this population (which may also cause an inward motion of RCa and AB

during inspiration), being consistent with increased thoracic muscle effort (Hammer & Newth

2009) and/or weakened diaphragm (Goldman, et al. 1993) (i.e. delayed diaphragm activation

and inability to sustain a maximal inspiration previous to cough). These features also suggest

that the diaphragm is impaired prior to the muscles of the upper ribcage (Polkey, et al. 2017;

Romer, et al. 2017) and this sign is clearly observed in the lower ribcage compartment rather

than the abdomen. In addition, these findings are in agreement with Similowski et al.

(Similowski, et al. 2000), who showed that paradoxical abdominal motion, measured by two

mechanical strain gauges, was related to diaphragm impairment in ALS subjects and

compensated by an increase in inspiratory neck muscles activity. Moreover, our results are also

in agreement with those of Layton et al. (Layton, et al. 2016) who recently observed, using

optoelectronic plethysmography, that ALS subjects with weakened diaphragm have a

paradoxical motion pattern of the lower ribcage.

Strengths and limitations of the study

This study has some limitations. Firstly, the sample size was small and TAA was

assessed in 45º trunk inclination only. Secondly, there was an absence of hemodynamic and

transdiaphragmatic pressure monitoring and we also did not measure FVC in prone and supine

position. However, it is important to highlight the use of the optoelectronic plethysmography in

detecting the early signs of respiratory muscle impairment in the neuromuscular population. As

shown in the study, minimal collaboration was required from the patients during both quiet

breathing and cough and accurately assessments were performed with no interferences of

nose clips, mouth-pieces, face masks or invasive techniques which may alter the movements of

the mouth and cheeks and the respiratory system response.

4.2.7. Conclusion

We have shown evidence that middle stage ALS subjects exhibit TAA and paradoxical

motion during quiet spontaneous breathing and cough. These features were also related to

diaphragm impairment and changes in forced vital capacity, cough peak flow, peak expiratory

flow, inspiratory capacity, chest wall volumes and breathing pattern. In these subjects,

abnormalities in breathing are dependent on lung restriction and diaphragmatic impairment may

occur prior to the upper ribcage inspiratory muscles being early observed in the lower ribcage

compartment rather than the abdomen through optoelectronic plethysmography.

Page 61: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

61

4.2.8. References

Agostoni E and Mognoni P. Deformation of the chest wall during breathing efforts. J Appl

Physiol (1966); 21: 1827-1832.

Aliverti A, Iandelli I, Duranti R, Cala SJ, Kayser B, Kelly S, Misuri G, Pedotti A, Scano G,

Sliwinski P, Yan S and Macklem PT. Respiratory muscle dynamics and control during

exercise with externally imposed expiratory flow limitation. Journal of applied physiology

(2002); 92: 1953-1963.

Aliverti A and Pedotti A. Opto-electronic plethysmography. Monaldi archives for chest disease =

Archivio Monaldi per le malattie del torace / Fondazione clinica del lavoro, IRCCS [and]

Istituto di clinica tisiologica e malattie apparato respiratorio, Universita di Napoli,

Secondo ateneo (2003); 59: 12-16.

Aliverti A, Quaranta M, Chakrabarti B, Albuquerque AL and Calverley PM. Paradoxical

movement of the lower ribcage at rest and during exercise in COPD patients. The

European respiratory journal (2009); 33: 49-60.

Allen J. Pulmonary complications of neuromuscular disease: a respiratory mechanics

perspective. Paediatric respiratory reviews (2010); 11: 18-23.

Allen JL, Greenspan JS, Deoras KS, Keklikian E, Wolfson MR and Shaffer TH. Interaction

between chest wall motion and lung mechanics in normal infants and infants with

bronchopulmonary dysplasia. Pediatric pulmonology (1991); 11: 37-43.

Allen JL, Wolfson MR, McDowell K and Shaffer TH. Thoracoabdominal asynchrony in infants

with airflow obstruction. The American review of respiratory disease (1990); 141: 337-

342.

American Thoracic Society/European Respiratory S. ATS/ERS Statement on respiratory

muscle testing. American journal of respiratory and critical care medicine (2002); 166:

518-624.

Araujo PR, Resqueti VR, Nascimento Junior J, Carvalho Lde A, Cavalcanti AG, Silva VC, Silva

E, Moreno MA, Andrade Ade F and Fregonezi GA. Reference values for sniff nasal

inspiratory pressure in healthy subjects in Brazil: a multicenter study. Jornal brasileiro

de pneumologia : publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia

(2012); 38: 700-707.

Bach JR, Mahajan K, Lipa B, Saporito L, Goncalves M and Komaroff E. Lung insufflation

capacity in neuromuscular disease. American journal of physical medicine &

rehabilitation / Association of Academic Physiatrists (2008); 87: 720-725.

Balendra R, Jones A, Jivraj N, Steen IN, Young CA, Shaw PJ, Turner MR, Leigh PN and Al-

Chalabi A. Use of clinical staging in amyotrophic lateral sclerosis for phase 3 clinical

trials. Journal of neurology, neurosurgery, and psychiatry (2015); 86: 45-49.

Baydur A. Respiratory muscle strength and control of ventilation in patients with neuromuscular

disease. Chest (1991); 99: 330-338.

Brooks BR, Miller RG, Swash M, Munsat TL and World Federation of Neurology Research

Group on Motor Neuron D. El Escorial revisited: revised criteria for the diagnosis of

amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis and other motor neuron

Page 62: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

62

disorders : official publication of the World Federation of Neurology, Research Group on

Motor Neuron Diseases (2000); 1: 293-299.

Cala SJ, Kenyon CM, Ferrigno G, Carnevali P, Aliverti A, Pedotti A, Macklem PT and

Rochester DF. Chest wall and lung volume estimation by optical reflectance motion

analysis. Journal of applied physiology (1996); 81: 2680-2689.

Carrié C, Bonnardel E, Vally R, Revel P, Marthan R and Biais M. Vital Capacity Impairment due

to Neuromuscular Disease and&#xa0;its&#xa0;Correlation with Diaphragmatic

Ultrasound: A&#xa0;Preliminary Study. Ultrasound in Medicine and Biology; 42: 143-

149.

Chihara K, Kenyon CM and Macklem PT. Human rib cage distortability. Journal of applied

physiology (1996); 81: 437-447.

Cleary S, Misiaszek JE, Kalra S, Wheeler S and Johnston W. The effects of lung volume

recruitment on coughing and pulmonary function in patients with ALS. Amyotrophic

lateral sclerosis & frontotemporal degeneration (2013); 14: 111-115.

Cohen J. Statistical power analysis for the behavioral sciences. 2ª ed Hillsdale, New Jersey:

Lawrence Erbaum (1988).

Crawford AB, Dodd D and Engel LA. Changes in rib cage shape during quiet breathing,

hyperventilation and single inspirations. Respiration physiology (1983); 54: 197-209.

Crescimanno G, Canino M and Marrone O. Asynchronies and sleep disruption in

neuromuscular patients under home noninvasive ventilation. Respiratory medicine

(2012); 106: 1478-1485.

De Troyer A and Estenne M. The respiratory system in neuromuscular disorders. Lung Biology

in Health and Disease (1995); 85: 2177-2177.

De Troyer A, Sampson M, Sigrist S and Kelly S. How the abdominal muscles act on the rib

cage. Journal of applied physiology: respiratory, environmental and exercise physiology

(1983); 54: 465-469.

Diaz CE, Deoras KS and Allen JL. Chest wall motion before and during mechanical ventilation

in children with neuromuscular disease. Pediatric pulmonology (1993); 16: 89-95.

Faul F, Erdfelder E, Buchner A and Lang AG. Statistical power analyses using G*Power 3.1:

tests for correlation and regression analyses. Behavior research methods (2009); 41:

1149-1160.

Ferrigno G, Carnevali P, Aliverti A, Molteni F, Beulcke G and Pedotti A. Three-dimensional

optical analysis of chest wall motion. Journal of applied physiology (1994); 77: 1224-

1231.

Fregonezi G, Azevedo IG, Resqueti VR, De Andrade AD, Gualdi LP, Aliverti A, Dourado-Junior

ME and Parreira VF. Muscle impairment in neuromuscular disease using an

expiratory/inspiratory pressure ratio. Respiratory care (2015); 60: 533-539.

Fritz CO, Morris PE and Richler JJ. Effect size estimates: current use, calculations, and

interpretation. Journal of experimental psychology General (2012); 141: 2-18.

Gibson GJ, Pride NB, Davis JN and Loh LC. Pulmonary mechanics in patients with respiratory

muscle weakness. The American review of respiratory disease (1977); 115: 389-395.

Page 63: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

63

Gilmartin JJ and Gibson GJ. Abnormalities of chest wall motion in patients with chronic airflow

obstruction. Thorax (1984); 39: 264-271.

Goldman MD, Pagani M, Trang HT, Praud JP, Sartene R and Gaultier C. Asynchronous chest

wall movements during non-rapid eye movement and rapid eye movement sleep in

children with bronchopulmonary dysplasia. The American review of respiratory disease

(1993); 147: 1175-1184.

Gordon PH, Miller RG and Moore DH. Alsfrs-R. Amyotrophic lateral sclerosis and other motor

neuron disorders : official publication of the World Federation of Neurology, Research

Group on Motor Neuron Diseases (2004); 5 Suppl 1: 90-93.

Gregory SA. Evaluation and management of respiratory muscle dysfunction in ALS.

NeuroRehabilitation (2007); 22: 435-443.

Guedes K, Pereira C, Pavan K and Valerio BC. Cross-cultural adaptation and validation of als

Functional Rating Scale-Revised in Portuguese language. Arq Neuropsiquiatr (2010);

68: 44-47.

Hammer J and Newth CJ. Assessment of thoraco-abdominal asynchrony. Paediatric respiratory

reviews (2009); 10: 75-80.

Hardart MK, Burns JP and Truog RD. Respiratory support in spinal muscular atrophy type I: a

survey of physician practices and attitudes. Pediatrics (2002); 110: e24.

Heritier F, Rahm F, Pasche P and Fitting JW. Sniff nasal inspiratory pressure. A noninvasive

assessment of inspiratory muscle strength. American journal of respiratory and critical

care medicine (1994); 150: 1678-1683.

Higenbottam T, Allen D, Loh L and Clark TJ. Abdominal wall movement in normals and patients

with hemidiaphragmatic and bilateral diaphragmatic palsy. Thorax (1977); 32: 589-595-

509ENG.

Hillman DR, Prentice L and Finucane KE. The pattern of breathing in acute severe asthma. The

American review of respiratory disease (1986); 133: 587-592.

Kang SW and Bach JR. Maximum insufflation capacity. Chest (2000); 118: 61-65.

Kreitzer SM, Feldman NT, Saunders NA and Ingram RH, Jr. Bilateral diaphragmatic paralysis

with hypercapnic respiratory failure. A physiologic assessment. The American journal of

medicine (1978); 65: 89-95.

Lanini B, Bianchi R, Binazzi B, Romagnoli I, Pala F, Gigliotti F and Scano G. Chest wall

kinematics during cough in healthy subjects. Acta physiologica (2007); 190: 351-358.

Lanini B, Masolini M, Bianchi R, Binazzi B, Romagnoli I, Gigliotti F and Scano G. Chest wall

kinematics during voluntary cough in neuromuscular patients. Respiratory physiology &

neurobiology (2008); 161: 62-68.

Layton AM, Moran SL, Roychoudhury A, Hupf J, Thomashow BM and Mitsumoto H. Non-

invasive measurement of abnormal ventilatory mechanics in amyotrophic lateral

sclerosis. Muscle & nerve (2016); 54: 270-276.

Lechtzin N, Shade D, Clawson L and Wiener CM. Supramaximal inflation improves lung

compliance in subjects with amyotrophic lateral sclerosis. Chest (2006); 129: 1322-

1329.

Page 64: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

64

Lima IN, Fregonezi GA, Melo R, Cabral EE, Aliverti A, Campos TF and Ferreira GM. Acute

effects of volume-oriented incentive spirometry on chest wall volumes in patients after a

stroke. Respiratory care (2014); 59: 1101-1107.

Lo Mauro A, D'Angelo MG, Romei M, Motta F, Colombo D, Comi GP, Pedotti A, Marchi E,

Turconi AC, Bresolin N and Aliverti A. Abdominal volume contribution to tidal volume as

an early indicator of respiratory impairment in Duchenne muscular dystrophy. The

European respiratory journal (2010); 35: 1118-1125.

LoMauro A, Romei M, D'Angelo MG and Aliverti A. Determinants of cough efficiency in

Duchenne muscular dystrophy. Pediatric pulmonology (2014); 49: 357-365.

Lyall RA, Donaldson N, Polkey MI, Leigh PN and Moxham J. Respiratory muscle strength and

ventilatory failure in amyotrophic lateral sclerosis. Brain : a journal of neurology (2001);

124: 2000-2013.

Mier A, Brophy C, Estenne M, Moxham J, Green M and De Troyer A. Action of abdominal

muscles on rib cage in humans. Journal of applied physiology (1985); 58: 1438-1443.

Mortola JP and Sant'Ambrogio G. Mechanics of breathing in tetraplegics. The American review

of respiratory disease (1979); 119: 131-134.

Mortola JP and Sant'Ambrogio G. Motion of the rib cage and the abdomen in tetraplegic

patients. Clinical science and molecular medicine (1978); 54: 25-32.

Neder JA, Andreoni S, Lerario MC and Nery LE. Reference values for lung function tests: II.

Maximal respiratory pressures and voluntary ventilation. Brazilian Journal of Medical

and Biological Research (1999); 32: 719-727.

Orsini M, Oliveira AB, Nascimento OJ, Reis CH, Leite MA, de Souza JA, Pupe C, de Souza

OG, Bastos VH, de Freitas MR, Teixeira S, Bruno C, Davidovich E and Smidt B.

Amyotrophic Lateral Sclerosis: New Perpectives and Update. Neurology international

(2015); 7: 5885.

Park JH, Kang SW, Lee SC, Choi WA and Kim DH. How respiratory muscle strength correlates

with cough capacity in patients with respiratory muscle weakness. Yonsei medical

journal (2010); 51: 392-397.

Pereira CAdC, Sato T and Rodrigues SC. Novos valores de referência para espirometria

forçada em brasileiros adultos de raça branca. Jornal Brasileiro de Pneumologia (2007);

33: 397-406.

Perez A, Mulot R, Vardon G, Barois A and Gallego J. Thoracoabdominal pattern of breathing in

neuromuscular disorders. Chest (1996); 110: 454-461.

Polkey MI, Lyall RA, Yang K, Johnson E, Leigh PN and Moxham J. Respiratory Muscle

Strength as a Predictive Biomarker for Survival in Amyotrophic Lateral Sclerosis.

American journal of respiratory and critical care medicine (2017); 195: 86-95.

Priori R, Aliverti A, Albuquerque AL, Quaranta M, Albert P and Calverley PM. The effect of

posture on asynchronous chest wall movement in COPD. Journal of applied physiology

(2013); 114: 1066-1075.

Page 65: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

65

Ringel ER, Loring SH, McFadden ER, Jr. and Ingram RH, Jr. Chest wall configurational

changes before and during acute obstructive episodes in asthma. The American review

of respiratory disease (1983); 128: 607-610.

Roche JC, Rojas-Garcia R, Scott KM, Scotton W, Ellis CE, Burman R, Wijesekera L, Turner

MR, Leigh PN, Shaw CE and Al-Chalabi A. A proposed staging system for amyotrophic

lateral sclerosis. Brain : a journal of neurology (2012); 135: 847-852.

Romer SH, Seedle K, Turner SM, Li J, Baccei ML and Crone SA. Accessory respiratory

muscles enhance ventilation in ALS model mice and are activated by excitatory V2a

neurons. Experimental neurology (2017); 287: 192-204.

Senent C, Golmard JL, Salachas F, Chiner E, Morelot-Panzini C, Meninger V, Lamouroux C,

Similowski T and Gonzalez-Bermejo J. A comparison of assisted cough techniques in

stable patients with severe respiratory insufficiency due to amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology

Research Group on Motor Neuron Diseases (2011); 12: 26-32.

Similowski T, Attali V, Bensimon G, Salachas F, Mehiri S, Arnulf I, Lacomblez L, Zelter M,

Meininger V and Derenne JP. Diaphragmatic dysfunction and dyspnoea in amyotrophic

lateral sclerosis. The European respiratory journal (2000); 15: 332-337.

Simon NG, Turner MR, Vucic S, Al-Chalabi A, Shefner J, Lomen-Hoerth C and Kiernan MC.

Quantifying disease progression in amyotrophic lateral sclerosis. Annals of neurology

(2014); 76: 643-657.

Smith JA, Aliverti A, Quaranta M, McGuinness K, Kelsall A, Earis J and Calverley PM. Chest

wall dynamics during voluntary and induced cough in healthy volunteers. The Journal of

physiology (2012); 590: 563-574.

Stromberg NO and Nelson N. Thoracoabdominal asynchrony in small children with lung

disease--methodological aspects and the relationship to lung mechanics. Clinical

physiology (1998); 18: 447-456.

Testa MB, Pavone M, Bertini E, Petrone A, Pagani M and Cutrera R. Sleep-disordered

breathing in spinal muscular atrophy types 1 and 2. American journal of physical

medicine & rehabilitation / Association of Academic Physiatrists (2005); 84: 666-670.

Vitacca M, Clini E, Facchetti D, Pagani M, Poloni M, Porta R and Ambrosino N. Breathing

pattern and respiratory mechanics in patients with amyotrophic lateral sclerosis. The

European respiratory journal (1997); 10: 1614-1621.

Ward ME, Ward JW and Macklem PT. Analysis of human chest wall motion using a two-

compartment rib cage model. Journal of applied physiology (1992); 72: 1338-1347.

Warren RH, Horan SM and Robertson PK. Chest wall motion in preterm infants using

respiratory inductive plethysmography. The European respiratory journal (1997); 10:

2295-2300.

Yang KL and Tobin MJ. A prospective study of indexes predicting the outcome of trials of

weaning from mechanical ventilation. The New England journal of medicine (1991); 324:

1445-1450.

Page 66: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

66

Zoumot Z, LoMauro A, Aliverti A, Nelson C, Ward S, Jordan S, Polkey MI, Shah PL and

Hopkinson NS. Lung Volume Reduction in Emphysema Improves Chest Wall

Asynchrony. Chest (2015); 148: 185-195.

Page 67: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

67

4.2.9. Appendix and supplementary material

Thoracoabdominal asynchrony and paradoxical motion in amyotrophic lateral sclerosis subjects

Antonio Sarmento, Guilherme Fregonezi, Mario Emílio Teixeira Dourado-Junior, Andrea Aliverti, Armele Dornelas de Andrade, Verônica Franco Parreira, Vanessa Resqueti

Page 68: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

68

SUPPLEMENTARY MATERIAL IN DEPTH OF STATISTICAL ANALYSIS AND RESULTS

STATISTICAL ANALYSIS

As all statistically significant data regarding intergroup and subgroup analysis were

performed using non-parametric tests (Wilcoxon or Man-Whitney tests). Thus, Cohen’s d was

calculated as the quotient between the z score and the square root of the number of

observations and interpreted as low (<0.20), moderate (between 0.20 and 0.50) and high

(>0.80)(Fritz, et al. 2012). On the other hand, since f2 for non-parametric correlations may be

biased, f2 was calculated only for parametric data and interpreted as small (<0.02), moderate

(between 0.02 and 0.15), and large (>0.35)(Cohen 1988; Faul, et al. 2009).

Page 69: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

69

RESULTS

Table A1. Definition of clinical stages of amyotrophic lateral sclerosis

Clinical Stages Definition

1 Involvement of a single central nervous system region (symptom onset)

2 Involvement of a second central nervous system region

3 Involvement of a third central nervous system region

4A Swallowing impairment sufficient to require gastrostomy

4B Respiratory involvement sufficient to require ventilatory support (non-invasive ventilation)

5 Death

Table A2. Clinical stage of each amyotrophic

lateral sclerosis subject of the study

Subjects Classification

#1 3

#2 3

#3 3

#4 3

#5 3

#6 3

#7 3

#8 3

#9 3

#10 3

#11 3

#12 3

Page 70: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

70

Table A3. Functionality of each amyotrophic lateral sclerosis subject of the study according to the Amyotrophic Lateral Sclerosis Functional Rating Scale-revised

*Respiratory sub-score of the Amyotrophic Lateral Sclerosis Functional Rating Scale-revised.

Subjects

Speech Salivation Swallowing Handwritting Cutting

food

Dressing and

hygiene

Turning in bed and

adjusting bed

clothes

Walking Climbing

stairs Dyspnea* Orthopnea

*

Respiratory

insufficiency*

#1 1 3 2 0 0 0 0 0 0 2 2 4 #2 2 3 3 1 2 2 3 3 3 4 4 4 #3 3 2 2 0 0 0 0 0 0 2 2 4 #4 2 4 2 0 0 0 0 1 0 2 2 4 #5 4 4 4 2 1 1 2 2 1 4 4 4 #6 2 4 3 0 0 0 2 1 0 3 3 4

#7 1 3 3 3 3 2 2 1 0 2 2 4 #8 1 0 0 3 2 2 1 2 0 2 2 4 #9 4 4 4 1 1 2 3 3 1 3 3 4

#10 4 4 4 2 2 0 0 0 4 4 4 4 #11 2 3 3 2 1 3 3 2 1 3 3 4 #12 3 3 4 3 3 2 3 4 4 3 3 4

Page 71: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

71

Table A4. Diagnosis criteria, region of onset, local of muscle weakness symptoms onset, clinical phenotype as well as the

presence of familial ALS and cognitive impairment of all ALS subjects included in the study. All parameters shown were

assessed by a neurologist.

Diagnosis Region of onset Distal or proximal Phenotype Familial

ALS Cognitive

impairment

#1 Definitive Left upper limb Distal Classic No No

#2 Probable Right upper limb Proximal Classic No No

#3 Probable Right upper limb Distal Classic No No

#4 Definitive Right lower limb Proximal Classic No No

#5 Definitive Left lower limb Distal Classic No No

#6 Probable Lower limbs Proximal Flail legs No No

#7 Definitive Right upper limb Distal Classic No No

#8 Probable Lower limbs Distal Flail legs No No

#9 Probable Right lower limb Distal Classic No No

#10 Probable Lower limbs Distal Flail legs No No

#11 Definitive Right upper limb Distal Classic No No

#12 Definitive Right upper limb Distal Classic No No

Page 72: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

72

Table A5. Paradoxical abdominal motion classification of each amyotrophic lateral sclerosis subject of the

study during quiet breathing and cough.

θ: Phase shift. IPAB: Inspiratory paradox time of abdominal compartment. °: Degrees; %: Percentage.

Table A6. Paradoxical ribcage motion classification of each amyothrophic lateral sclerosis subject of the

study during quiet breathing and cough.

θ : Phase shift. IPRCa: Inspiratory paradox time of abdominal ribcage compartment. °: Degrees; %: Percentage.

During quiet breathing During cough

Subject θ (°) IPAB (%) Classification θ (°) IPAB (%) Classification

#1 -3.63 11.11 - -52.89 28.24 + #2 -0.07 10.24 + -9.52 13.04 - #3 1.97 10.07 + -39.8 2.59 - #4 -9.02 9.73 + -21.46 4.41 - #5 -7.76 8.97 - -52.57 18.51 + #6 -1.34 5.27 - -10.97 3.39 - #7 -8.42 10.62 + 17.11 13.33 + #8 12.69 7.43 - 24.39 10.02 - #9 6.16 16.63 + 16.74 15.97 + #10 -7.79 6.34 - -16.79 5.56 - #11 66.54 49.93 + 45.71 51.90 + #12 0.05 2.66 - 0.79 7.10 -

During quiet breathing During cough

Subject θ (°) IPRCa (%) Classification θ (°) IPRCa (%) Classification

#1 -19.37 10.72 + -32.48 6.82 + #2 -3.22 8.52 - -1.84 14.40 - #3 -3.92 8.87 - -3.45 4.92 - #4 -12.40 7.77 + -13.21 3.68 + #5 -7.19 6.72 - -7.62 6.92 - #6 3.44 11.20 + -20.4 7.32 + #7 -14.38 8.36 + 1.42 3.92 - #8 -1.78 8.30 + 5.25 8.08 + #9 -3.61 10.74 - 11.85 17.65 + #10 -17.43 6.72 - 0.95 1.56 - #11 16.40 9.03 + 13.66 6.29 + #12 -2.20 5.78 - -1.59 35.23 -

Page 73: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

73

REFERENCES

E 1. Cohen J. Statistical power analysis for the behavioral sciences. 2ª ed Hillsdale, New

Jersey: Lawrence Erbaum (1988).

E 2. Faul F, Erdfelder E, Buchner A and Lang AG. Statistical power analyses using G*Power

3.1: tests for correlation and regression analyses. Behavior research methods (2009);

41: 1149-1160.

E 3. Fritz CO, Morris PE and Richler JJ. Effect size estimates: current use, calculations, and

interpretation. Journal of experimental psychology General (2012); 141: 2-18.

Page 74: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

74

4.3. Artigo 3

Multiparametric analysis of sniff nasal inspiratory pressure test in

middle stage amyotrophic lateral sclerosis

___________________________________________

Antonio Sarmento, Andrea Aliverti, Layana Marques, Francesca Pennati, Mario

Emílio Dourado-Júnior, Guilherme Fregonezi, Vanessa Resqueti

Artigo publicado no Periódico Frontiers in Neurology

Page 75: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

75

4.3.1. Abstract

The relaxation rates and contractile properties of inspiratory muscles are altered with inspiratory

muscle weakness and fatigue. This fact plays an important role in neuromuscular disorders

patients and had never been extensively studied in amyotrophic lateral sclerosis (ALS). In this

cross-sectional study, these parameters were investigated non-invasively through nasal

inspiratory sniff pressure test (SNIP) in 39 middle stage spinal onset ALS subjects and

compared with 39 healthy controls. ALS patients were also divided into three subgroups

according to a decline in their percentage of predicted forced vital capacity (FVC%pred) as well as

a decline in the ALS functional rating-scale score and its respiratory subscore in order to

determine the best parameter linked to early respiratory muscle weakness. When compared

with healthy subjects, middle stage ALS subjects exhibited a significantly lower (p<0.0001)

maximum relaxation rate (MRR) and maximum rate of pressure development (MRPD), as well

as a significantly higher (p<0.0001) tau (τ), contraction time and half-relaxation time. The results

from ROC curves showed that MRPD (AUC 0.735, p<0.001) and FVC%pred (AUC 0.749,

p=0.009) were the best discriminator parameters between ALS patients with ≤30 and >30 points

in the ALS functional rating scale. In addition, ½RT (AUC 0.720, p=0.01), FVC%pred (AUC 0.700,

p=0.03), τ (AUC 0.824, p<0.0001) and MRPD (AUC 0.721, p=0.01) were the parameters more

sensitive in detecting a fall of 3 points in the respiratory subscore. On the other hand, MRPD

(AUC 0.781, p<0.001), τ (AUC 0.794, p=0.0001) and percentage of predicted of SNIP (AUC

0.769, p=0.002) were the parameters able to detect a fall in 30% of the FVC%pred in middle stage

ALS patients. The contractile properties and relaxation rates of the diaphragm are altered in

middle stage spinal onset ALS when compared with healthy subjects. These parameters are

able to discriminate between those middle stage ALS subjects with early decline in inspiratory

muscle function and those who not.

KEYWORDS: Amyotrophic lateral sclerosis, forced vital capacity, inspiratory muscle weakness,

relaxation rates, respiratory subscore, sniff nasal inspiratory pressure.

Page 76: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

76

4.3.2. Introduction

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized

by progressive weakness of the skeletal and respiratory muscle (1). The median survival from

first symptoms ranges from 2 to 4 years (2) and, although respiratory insufficiency can be

present in approximately 3% of patients (3, 4), it frequently emerges in the late phase of the

disease representing the most frequent cause of death (1).

Global assessment scores, such as the ALS functional rating scale (5) (ALSFRS-R), is a

useful and valid parameter in predicting survival in this population (6, 7) and has proved to be

related to forced vital capacity (8) (FVC). Since respiratory function and muscle strength are of

clinical importance and represent crucial factors influencing survival in ALS (9, 10), the

monitoring of these parameters is essential during disease progression. The gold standard

measurement of respiratory muscle strength involves the insertion of esophageal and/or gastric

balloon catheters through the nose (11). However, the sniff nasal inspiratory pressure (SNIP)

has been proposed as a non-invasive alternative method and proved to accurately reflect

diaphragm strength (12) and global inspiratory muscle strength (13).

In ALS patients the already weakened respiratory muscles are easily suitable to fatigue

(14) and this fact may play an important role in the development of ventilatory failure (15). It has

been demonstrated that the relaxation rate of inspiratory muscles is altered by the development

of inspiratory muscle fatigue (16, 17) and that relaxation rates obtained from a maximal sniff

accurately reflect those obtained from esophageal pressure (16, 18). Relaxation rates can be

described in terms of maximum relaxation rate (MRR), half-relaxation time (½RT) and time

constant of the pressure decay curve (τ, tau) after voluntary contraction of a muscle (16).

Furthermore, the contractile properties of the diaphragm [namely maximum rate of pressure

development (MRPD) and contraction time (CT)] are also altered in fatigue and have been used

as an index of the motor output of the respiratory centre (19) as well as to assess inspiratory

muscle function (11, 20, 21).

Apart from fatigue in healthy subjects (16-18, 22-24), physiological and/or disease-

related changes in diaphragm relaxation have not been extensively investigated in ALS patients

through the SNIP test. The present work aimed to non-invasively measure the relaxation rates

and the contractile properties of the inspiratory muscles in ALS patients through SNIP test 1) in

comparison to healthy subjects and 2) in relation to early respiratory symptoms in order to

determine the best parameter linked to early respiratory muscle weakness. We hypothesized

that these parameters are altered in ALS patients and can be indicators of inspiratory muscle

weakness.

4.3.3. Material and Methods

Subjects

This cross-sectional study was conducted according to the World Medical Association

Declaration of Helsinki and approved by the Research Ethics Committee under number

1.344.512/2015. All individuals involved in the study signed an Informed Consent Form.

Page 77: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

77

We investigated 39 subjects with ALS (22 males), recruited from the Hospital

Universirátio Onofre Lopes and diagnosed by a neurologist according to the El Escorial criteria

(25) as ‘Probable or definite’, and 39 healthy controls (19 males). ALS subjects with

cardiovascular, pulmonary or other neurological diseases, as well as with bulbar dysfunction

signs or tracheostomy were not included. Those who failed to perform the assessments or

refuse to participate in the study were excluded.

Control group included self-reported age-matched healthy subjects with no history of

cardiovascular, neurological or pulmonary diseases. Those with FVC and FEV1 <80% of

predicted were excluded.

Spirometry

Spirometry was performed using a Koko Digidoser spirometer (nSpire Health,

Longmont, Colorado) and carried out with the subjects positioned sitting on a chair with feet

supported and trunk flexion of 90° according to the ATS/ERS guidelines (11). All values

obtained were compared with absolute and percentage of predicted values for the Brazilian

population (26).

Respiratory muscle strength

Maximum inspiratory and expiratory pressures (MIP and MEP, respectively) and SNIP

were measured using a digital manometer (NEPEB-Labcare, Belo Horizonte) with the subjects

seated on a chair. MIP was measured starting from residual volume and MEP from total lung

capacity, while SNIP was performed starting from functional residual capacity (FRC) (27). Data

obtained were compared with previous reference values (28, 29) and the highest value of each

test was considered for analysis.

SNIP curve analysis

All subjects were asked to perform a short, sharp inspiratory effort through the nostrils

with lips closed. Since some sniff parameters can be affected by changes in muscle length and

the activity of expiratory muscles could interfere in the analysis, the sniff maneuvers were

performed from FRC and a passive relaxation right after reaching the peak of pressure was

requested (23, 30). At least 10 maximal sniffs, with an interval of about 30 s in between, were

performed by all subjects. The following criteria were used to select those sniffs suitable for

analysis: 1) sniff performed from FRC; 2) peak pressure maintained for less than 50 ms; 3)

duration of the inspiratory effort less than 500 ms and 4) sniff pressure waveform with smooth

decay curve (16, 31).

Figure 1 shows the parameters derived from the SNIP test. From the sniff maneuver

trace, CT and ½RT were calculated as the time to reach the peak pressure of the sniff and the

half-time of the relaxation curve, respectively (32). MRPD, expressed as cmH2O·ms-1, was

calculated as the negative peak of the first derivative of pressure-time curve (21, 33) while

MRR, expressed as ms-1, was defined as the positive peak of the first derivative of pressure-

Page 78: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

78

time curve normalized to the sniff peak pressure, in order to make contractions of different

intensities comparable (18).

The time constant (τ), was also calculated. When the natural logarithm of pressure is

plotted as a function of time, the lower 50 to 70% of the pressure decay follows a straight line

(18, 34) (Fig. 1c), indicating that the pressure follows a monoexponential decay with a time

constant τ (τ =1/slope). For the measurement of τ to be accepted, the correlation coefficient of

the individual regression line (ln P vs time) had to be ≥0.96 (35).

SNIP curve analysis was performed by custom software developed in MATLAB (The

MathWorksInc, Natick, MA).

Figure 1. Representative tracings of the SNIP test and its parameters. A: Tracings of sniff nasal inspiratory pressure

change; peak sniff pressure (Psniff); time to reach Psniff, contraction time (CT); and half-time of the relaxation curve

(½RT). B: Derivative signal of sniff pressure (dPsniff/dT = cmH2O/ms); negative peak dPsniff/dT, maximum rate of

pressure development (MRPD) positive peak dPsniff/dT normalized by Psniff, maximum relaxation rate (MRR). C:

Psniff plotted on semilog scale vs. time (ms). Linear black portion indicates a single exponential function with a time

constant, τ = 1/slope. Ms: milliseconds; cmH2O: centimeters of water.

Functionality and stage of the disease

Functionality was measured using the ALSFRS-R (maximum 48 points), validated for the

Brazilian population (5), as well as its respiratory subscore (R-subscore) alone (36) (maximum

Page 79: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

79

12 points). In addition, the stage of the disease was determined according to disease

progression proposed by Roche et al (37).

4.3.4. Statistical analysis

To statistical analysis, data from ALS subjects were divided into three subgroups,

defined by the degree of decline of the 1) respiratory function (2, 38, 39) (≤70 and >70 of

FVC%pred), 2) ALSFRS-R total score (≤30 and >30 points) and 3) R-subscore (≤9 and >9 points)

(40, 41).

Data are expressed as median [25-75th percentile] unless otherwise stated. Normality

and distribution of data were performed using Shapiro-Wilk test. Data between ALS and healthy

subjects (intergroup analysis) were studied using the Unpaired t-test or Mann-Whitney test for

parametric and non-parametric data, respectively. One-way ANOVA or Kruskal-Wallis test was

applied to compare subgroup with control group data and, in the event of statistical significance;

Bonferroni’s or Dunn’s post hoc test was applied, respectively, to identify differences between

groups.

To avoid type II error, the power of the study was calculated as well as effect sizes for all

data. For parametric data, effect sizes were calculated using Cohen’s d for intergroup analysis

and Cohen’s f for subgroup analysis (42). For non-parametric data, Cohen’s d was calculated

for intergroup analysis according to Fritz et al (43) and ɛ2 for subgroup analysis according to

Tomczak & Tomczak (44) (see supplementary material).

Receiver operating characteristic (ROC) curves were calculated for SNIP parameters

between middle stage ALS and healthy subjects, as well as between subgroups. The area

under the curve (AUC) and its 95% confidence interval were calculated. Optimal cutoff point and

its 95% confidence interval were also calculated for each parameter according to the Youden

index (45).

Inferential data analysis was performed using GraphPad Prism® software version 6.01.

The power of the study and effect sizes were analyzed using G*Power software, version 3.1.9.2

(Kiel, Germany), and ROC curves were analyzed using MedCalc (Ostend, Belgium) version

14.8.1. For all statistical analysis, a p-value of <0.05 (2-sided) was considered as statistically

significant.

4.3.5. Results

Data related to diagnosis criteria, region of onset, clinical phenotype as well as the

presence of familial ALS and cognitive impairment of all ALS included in the study are shown in

supplementary table S1. Anthropometric, spirometric, respiratory muscle strength and

functionality data are shown in Table 1. ALS subjects were characterized by significant lower

spirometric and respiratory muscle strength values. All ALS subjects were classified as middle

stage. The mean ALSFRS-R score was 32.5±8.8 (67.7±18.3%) and the mean R-subscore was

10±2 (83.3±16.6) (see supplementary table S2).

All parameters extracted from the sniff curve were significantly different between ALS

and healthy subjects. A significantly lower MRR (p<0.0001, Cohen’s d=0.44) and MRPD

Page 80: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

80

(p<0.0001, Cohen’s d=0.71) were found in ALS subjects, as well as a higher contraction time

(p<0.0001, Cohen’s d=1.21), ½RT (p<0.001, Cohen’s d=0.42) and τ (p<0.0001, Cohen’s

d=0.64) (Figure 2).

A post hoc analysis considering a p-value of <0.01 and the calculated effect size for τ

between ALS and healthy subjects (Cohen’s d=0.64) showed a statistical power (1-ß)=0.99 for

this study.

Figure 2. Data are shown as median [25-75th

percentile]. Comparisons between the parameters obtained from the

SNIP curve (maximum relaxation rate [MRR], maximum rate of pressure development [MRPD], contraction time, half

relaxation time [½RT] and tau [τ]) and percentage of predicted of the sniff nasal inspiratory pressure test (SNIP%pred)

between ALS and healthy subjects. Ms: milliseconds; cmH2O: centimeters of water; +: mean for parametric analysis.

Page 81: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

81

Table 1. Characteristics of the subjects in relation to

anthropometric data, absolute and predicted values of lung

function, respiratory muscle strength and functional

capacity.

Healthy ALS p

Subjects (n) 39 39 -

Age (years) 47.9±11.1 52.9±12.5 .111

Height (ms) 1.63±0.1 1.65 ±0.1 .500

Weight (kg) 69.6 ±11 65 ±13 .100

BMI (kg/m2

) 26.2±5.6 23.9±5.7 .07

FVC (L) 3.79±0.8 2.49±1.06 <.0001

FVC %pred 98.8±10.7 63.1±23.1 <.0001

FEV1 (L) 3.10±0.68 1.87±0.83 <.0001

FEV1 %pred 98.8±10.4 58.5±21.9 <.0001

FVC/FEV1 0.81±0.04 0.76±0.12 .008

FVC/FEV1 %pred 100.1±4.4 94.3±15.6 .02

FEF25-75% 3.29±0.87 1.86±1.05 <.0001

PEF (L/s) 6.41±1.91 3.32±2.19 <.0001

SNIP (cmH2O) 103.3±29.4 48.36±27.04 <.0001

SNIP %pred 100.4±24 47.2±24.7 <.0001

MIP (cmH2O) 105±27.45 48.1±22.50 <.0001

MIP %pred 103.3±20.9 48.4±22.7 <.0001

MEP (cmH2O) 125.4±36.46 58.46±31.92 <.0001

MEP %pred 121.8±31.9 56.6±32.1 <.0001

ALSFRS-R - 32.5±8.8 -

Respiratory subscore - 10±2 -

Data presented as mean ± standard deviation. FVC: Forced Vital Capacity;

FEV1: Forced expiratory volume in the 1st second; FEV1/FVC: Ratio of

forced expiratory volume in the first second to forced vital capacity; FEF25-

75%: Forced expiratory flow at 25-75%; PEF: Peak expiratory flow; MIP:

Maximum inspiratory pressure; MEP: Maximum expiratory pressure; SNIP:

Sniff nasal inspiratory pressure; ALSFRS-R: Amyotrophic Lateral Sclerosis

functional rating scale-revised; m: meters; kg: kilograms; L: Liters; %pred:

Percentage of predicted; L/s: Liters per second; cmH2O: centimeters of

water.

ALSFRS-R, R-subscore, and FVC%pred subgroups

As shown in Table 2, all subgroups of ALS subjects presented a lower FVC%pred,

SNIP%pred, MRR, MRPD and higher CT, ½RT, and τ when compared with healthy subjects.

However, subjects with functional capacity ≤30 (13 subjects) exhibited significantly lower values

of FVC%pred when compared to ALS subjects with >30 points; and those with ≤9 (14 subjects)

Page 82: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

82

presented a significantly lower FVC%pred as well as higher ½RT and τ values when compared to

those with >9 points. On the other hand, when ALS subjects were classified according to

FVC%pred, those with <70% exhibited significantly higher τ and lower SNIP%pred values when

compared to ALS with values >70%.

ROC analysis

Since SNIP%pred is one of the respiratory prognostic markers mostly considered in ALS

(38, 46), this parameter was also included in the ROC analysis. As shown in Table 3, all sniff

parameters were significantly able to discriminate between ALS and healthy. Of these, MRPD

was the parameter with the highest AUC. When dividing the ALS subjects between those with

ALSFRS-R score ≤30 and >30, only the MRPD and FVC%pred were statistically significant (Table

4). However, taking into account the subdivision between those ALS with R-subscore ≤9 and >9

points, MRPD, ½RT, τ and FVC%pred showed to be statistically significant (Table 5). On the other

hand, MRPD, τ and SNIP%pred parameters were statistically significant when subjects were

classified according to FVC%pred classification (Table 6 and Figure 3).

Figure 3. Receiver operating characteristic curves of the SNIP parameters that showed to be statistically significant

in middle ALS subjects according to a decline in the percentage of predicted forced vital capacity and in the ALSFRS-

R score and R-subscore.

Page 83: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

83

Table 2. Relaxation rates and contraction properties of the diaphragm extracted from the SNIP curve of healthy and amyotrophic lateral sclerosis subgroup subjects

Values are shown as median [25th

-75th

percentile]. ALSFRS-R: Amyotrophic Lateral Sclerosis functional rating scale-revised; MRR: Maximum relaxation rate: MRPD: maximum rate of pressure development; τ: tau; ½RT: half-relaxation time; CT: Contraction time; SNIP: Sniff nasal inspiratory pressure; FVC: Forced vital capacity; ES: Effect-size; %pred: Percentage of predicted; n: number;

sec: Seconds; cmH2O: centimeter of water; ms: milliseconds; *<0.001 compared with healthy; †<0.001 compared with >30; †† <0.001 compared with >9; †††<0.001 compared with >70%; a: epsilon squared; b: Cohen’s f;

§Parametric data distribution.

Healthy Amyotrophic Lateral Sclerosis

ALSFRS-R Respiratory subscore Forced Vital Capacity(%pred)

>30 points ≤30 points ES >9 points ≤9 points ES >70% ≤70% ES

Subjects (n) 39 26 13 - 25 14 - 15 24 -

MRR (ms-1

) 0.078 [0.075 ‒ 0.085] 0.069 [0.061 ‒ 0.074]* 0.064 [0.042 ‒ 0.083]* 0.19a 0.071 [0.063 ‒ 0.079]* 0.063 [0.047 ‒ 0.079]* 0.21a 0.071 [0.060 ‒ 0.079]* 0.066 [0.060 ‒ 0.080]* 0.19a

MRPD (cmH2O·ms-1

) -0.620 [-0.821 ‒ -0.540] -0.348 [-0.470 ‒ -0.272]* -0.250 [-0.318 ‒ -0.196]* 0.55a -0.357 [-0.480 ‒ -0.265]* -0.250 [-0.344 ‒ -0.187]* 0.55a -0.460 [-0.535 ‒ -0.280]* -0.255 [-0.357 ‒ -0.196]* 0.59a

τ (ms) 50.4 [42.3 ‒ 58.8]

78.6 [57 ‒ 121.1]* 127.7 [76.5 ‒ 157.5]* 0.44a 69.6 [56 ‒ 102.5]* 128.4 [101 ‒ 177]*†† 0.50a 65.4 [55.8 ‒ 85.9]* 111 [83.7 ‒ 158]*††† 0.84b

½ RT (ms)§ 142 [116 ‒ 162]

174 [135 ‒ 206]* 174 [151 ‒ 204]* 0.42b 160 [131 ‒ 194]* 191 [169 ‒ 267]*†† 0.57b 168 [132 ‒ 190]* 181 [158 ‒ 207]* 0.46b

CT (ms) 188 [176 ‒ 214] 229 [197 ‒ 274]* 268 [230 ‒ 281]* 0.28a 220 [197 ‒ 277]* 266 [244 ‒ 278]* 0.30a 254 [210 ‒ 282]* 241 [201 ‒ 276]* 0.56b

SNIP (%pred)§ 94.4 [83.5 ‒ 119]

47.4 [24.8 ‒ 75.2]* 39.2 [26.2 ‒ 51.1]* 1.98b 46.7 [24.4 ‒ 76.7]* 40.9 [25.9 ‒ 56.8]* 1.13b 61 [38.3 ‒ 81.5]* 38 [23.5 ‒ 46.6]*††† 1.17b

FVC (%pred)§ 97.5 [91.5 ‒ 107.5] 68.3 [54.3 ‒ 82.4]* 41.7 [32 ‒ 64.9]*† 0.97b 70.6 [51.3 ‒ 82.8]* 54.7 [32.2 ‒ 65.3]*†† 1.01b ‒ ‒ ‒

Page 84: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

84

Table 3. Receiver operating characteristic analysis between healthy and amyotrophic lateral sclerosis subjects

Healthy and Amyotrophic Lateral Sclerosis

AUC (95% CI) Optimal Cutoff (95%

CI) Sensitivity

(%) Specificity

(%) p

MRR (ms-1

) 0.755 (0.645 to 0.845) 0.073 (0.068 to 0.073) 66.67 89.74 <0.0001

MRPD (cmH2O ·ms-1

) 0.916 (0.830 to 0.967) -0.420 (-0.540 to -0.398.5) 74.36 97.44 <0.0001

τ (ms) 0.874 (0.779 to 0.938) 66 (53.7 to 79.8) 74.36 89.74 <0.0001

½ RT (ms) 0.743 (0.631 to 0.835) 154 (120.9 to 164) 71.79 71.79 <0.0001

CT (ms) 0.795 (0.688 to 0.878) 215 (202 to 262) 69.23 82.05 <0.0001

SNIP (%pred) 0.936 (0.856 to 0.979) 81.5 (73.7 to 81.5) 92.31 84.62 <0.0001

FVC (%pred) 0.911 (0.825 to 0.964) 81.1 (67.9 to 83.7) 79.49 97.44 <0.0001

AUC: Area under curve; CI: Confidence interval; MRR: Maximum relaxation rate: MRPD: maximum rate of pressure development; τ: tau;

½RT: half-relaxation time; CT: Contraction time; SNIP: Sniff nasal inspiratory pressure; FVC: Forced vital capacity; %pred: Percentage of

predicted; sec: Seconds; cmH2O: centimeter of water; ms: milliseconds.

Table 4. Receiver operating characteristic analysis between amyotrophic lateral sclerosis subjects classified

according to a decrease in the ALSFRS-R scale score.

AUC: Area under curve; CI: Confidence interval; MRR: Maximum relaxation rate: MRPD: maximum rate of pressure development; τ:

tau; ½RT: half-relaxation time; CT: Contraction time; SNIP: Sniff nasal inspiratory pressure; FVC: Forced vital capacity; %pred:

Percentage of predicted; sec: Seconds; cmH2O: centimeter of water; ms: milliseconds.

Amyotrophic Lateral Sclerosis – ALSFRS-R

AUC (95% CI) Optimal Cutoff (95% CI) Sensitivity

(%) Specificity

(%) p

MRR (ms-1

) 0.533 (0.366 to 0.694) 0.053 (0.031 to 0.073) 30.77 100 0.779

MRPD (cmH2O ·ms-1

) 0.735 (0.570 to 0.863) -0.300 (-0.535 to -0.232) 76.92 73.98 <0.001

τ (ms) 0.655 (0.486 to 0.800) 89.08 (48.5 to 147.6) 69.23 61.24 0.094

½ RT (ms) 0.506 (0.341 to 0.669) 160 (106 to 206) 76.92 42.31 0.853

CT (ms) 0.648 (0.479 to 0.794) 250 (198 to 282) 76.92 65.38 0.118

SNIP (%pred) 0.618 (0.449 to 0.769) 46.33 (17.4 to 67.0) 76.92 53.85 0.194

FVC (%pred) 0.749 (0.584 to 0.873) 41.7 (35.3 to 106.3) 53.85 92.31 0.009

Page 85: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

85

Table 5. Receiver operating characteristic analysis between amyotrophic lateral sclerosis subjects classified according

to a decrease in the respiratory subscore of the ALSFRS-R scale.

Amyotrophic Lateral Sclerosis – Respiratory subscore

AUC (95% CI) Optimal Cutoff (95% CI) Sensitivity

(%) Specificity

(%) p

MRR (ms-1

) 0.654 (0.485 to 0.799) 0.064 (0.053 to 0.086) 64.29 72 0.130

MRPD (cmH2O ·ms-1

) 0.721 (0.555 to 0.853) -0.300 (-0.500 to -0.288) 71.43 72 0.01

τ (ms) 0.824 (0.669 to 0.927) 89.1 (70.1 to 168) 85.71 72 <0.0001

½ RT (ms) 0.720 (0.553 to 0.852) 160 (158 to 256) 92.86 52 0.01

CT (ms) 0.657 (0.488 to 0.801) 232 (199 to 280) 78.57 64 0.08

SNIP (%pred) 0.614 (0.445 to 0.765) 67 (60 to 67) 100 32 0.216

FVC (%pred) 0.700 (0.532 to 0.836) 67.5 (63.7 to 106) 85.71 52 0.03

AUC: Area under curve; CI: Confidence interval; MRR: Maximum relaxation rate: MRPD: maximum rate of pressure development; τ: tau; ½RT:

half-relaxation time; CT: Contraction time; SNIP: Sniff nasal inspiratory pressure; FVC: Forced vital capacity; %pred: Percentage of predicted;

sec: Seconds; cmH2O: centimeter of water; ms: milliseconds.

Table 6. Receiver operating characteristic analysis between amyotrophic lateral sclerosis subjects classified

according to a decrease in forced vital capacity.

Amyotrophic Lateral Sclerosis – Forced Vital Capacity%pred

AUC (95% CI) Optimal Cutoff (95% CI) Sensitivity (%) Specificity (%) p

MRR (ms-1

) 0.572 (0.485 to 0.799) 0.086 (0.053 to 0.086) 95.83 26.67 0.467

MRPD (cmH2O ·ms-1

) 0.781 (0.555 to 0.853) -0.460 (-0.500 to -0.288) 95.83 53.33 <0.001

τ (ms) 0.794 (0.669 to 0.927) 73.1 (70.1 to 168) 79.17 73.33 0.0001

½ RT (ms) 0.632 (0.553 to 0.852) 174 (158 to 256) 62.50 73.33 0.162

CT (ms) 0.536 (0.488 to 0.801) 304 (199 to 280) 100 13.33 0.713

SNIP (%pred) 0.769 (0.445 to 0.765) 46.7 (60 to 67) 79.17 73.33 0.002

AUC: Area under curve; CI: Confidence interval; MRR: Maximum relaxation rate: MRPD: maximum rate of pressure development; τ: tau;

½RT: half-relaxation time; CT: Contraction time; SNIP: Sniff nasal inspiratory pressure; %pred: Percentage of predicted; sec: Seconds;

cmH2O: centimeter of water; ms: milliseconds.

Page 86: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

86

4.3.6. Discussion

The main findings of this study are that 1) the sniff test provides parameters, apart from

its peak pressure, able to discriminate between healthy and middle stage ALS subjects, and

that 2) some of these parameters, namely τ, MRPD, and ½RT, are more sensitive in detecting

impaired inspiratory muscle function in ALS than the peak pressure itself.

According to Kyroussis et al (22), measurements of relaxation rates obtained from nasal

sniffs accurately reflects those from esophageal pressure curves and can be used as an index

of the onset and recovery of respiratory muscle fatigue. Moreover, measurements of nasal sniffs

are simple, tolerated, and minimally invasive and can provide a quantitative response index to

fatigue and therapeutic interventions in neuromuscular disease patients (47, 48). In our study all

parameters derived from the SNIP curve were significantly different between middle stage ALS

and healthy subjects, being in agreement with two previous studies performed in subjects with

neuromuscular disorders (47, 49). Evangelista et al (49), observed that a reduced MRR was

reliable in identifying the delayed relaxation of the respiratory muscles in myotonic dystrophy

type 1 patients when compared to healthy controls; while Garcia-Rio et al (47), despite

heterogeneity of the study population, found that the decreased MRR of neuromuscular disease

patients was accompanied by the deterioration in the functional reserve of the diaphragm as

well as of the inspiratory muscles.

The rationale for measuring relaxation rates from pressure curves is based on the

assumption that the decay portion of the curve, when expiration is totally passive, corresponds

to the relaxation phase of inspiratory muscle contraction (18). The decrease in MRR and

increase in τ are adaptive mechanisms and had been shown to be an early sign of the onset of

fatigue (17, 50). The alterations of these parameters occur before the decrease in peak

diaphragmatic pressure (17, 31, 47). When respiratory muscles do develop fatigue the peak

pressure decreases linearly with the slowing of the MRR and exponentially with the increase of

τ due to common or concomitant metabolic changes of the muscle fiber (17, 34, 51). In addition,

the loss of muscular force during fatigue makes the muscle contractile speed to decrease

resulting in an increase in contraction time and prolongation of relaxation time as an adaptive

mechanism (52, 53) which is also related to intracellular and metabolic factors (i.e. the decline

of the calcium uptake from the sarcoplasmic reticulum, depletion of ATP and intracellular

acidosis) (48, 54).

To our knowledge, apart from various studies about the relaxation rate in healthy adults

(21, 23, 33) and different diseases (COPD (51), cystic fibrosis (55, 56) and intubated patients

weaning from mechanical ventilation (31)), the literature is scarce about the measurements of

MRPD, τ, CT and ½RT in neuromuscular disease patients precluding the possibility of

comparing our data to data derived from a similar population. Our results showed a decreased

MRPD in middle stage ALS when compared to healthy subjects and, as it is derived from the

initial incline of the SNIP curve and reflects respiratory muscle function (11) as well as

respiratory motor output (19), we believe that this parameter is linked to the decreased capacity

of the diaphragm to generate force and expand the lungs (39). Furthermore, as the already

weakened respiratory muscles of patients with ALS are easily fatigable (14) the results found

Page 87: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

87

about the contractile properties (CT and MRPD) and dynamics of relaxation (MRR, τ and ½RT)

of the diaphragm (11, 16) indicates a high respiratory muscle load and reinforces the hypothesis

that the middle stage ALS subjects were presumably at risk of developing respiratory muscle

fatigue (14, 18, 21, 33, 56).

The ALSFRS-R is a simple and reliable scale that predicts survival and can be used as

the only functional outcome measure in early phase trials (40), while its R-subscore was

designed to assess indirectly the respiratory function (36) being also sensitive in detecting early

respiratory symptoms of ventilatory insufficiency (57-59). Castrillo-Viguera et al (41) suggested

that a percentage change of at least 20 to 25% in the slope of decline of the ALSFRS-R scale

would represent a clinically meaningful effect. Because of this, we chose to subdivide the ALS

subjects into those with ALSFRS-R of ≤30 and >30 points (decline of 15 points – 37.5%) and

with the R-subscore of ≤9 and >9 points (decline of 3 points – 25%). Moreover, as changes in

FVC%pred over time strongly predicts respiratory muscle weakness, ventilatory failure and death

in ALS (2, 38, 39), subjects were also subdivided into ≤70 and >70% FVC%pred subgroups.

The value of the FVC%pred was the only parameter that differed between middle stage

ALS subjects of both ALSFRS-R and R-subscore subgroups, possibly because the decrease of

this parameter is not related only to respiratory musculature function (36, 60). On the other

hand, when subdividing according to the R-subscore, ½RT and τ values were significantly

different between middle stage ALS subjects which demonstrate that these diaphragmatic

properties (32, 61) are probably related to the respiratory function assessed by this subdomain.

Presumably the most interesting fact is that SNIP%pred, a parameter that reflects the

diaphragmatic strength and predicts survival in ALS (62), only differ between those middle stage

ALS subjects classified according to the decline in FVC%pred. Although data were collected in a

single point of the disease stage, it is known that the peak pressure of sniff test declines less

when compared to the decline in ALSFRS-R (8) leading us to consider that SNIP%pred is not a

parameter that is sensitive to small changes in the ALSFRS-R and R-subscore. Regarding

MRPD and τ, the results were not surprising since the first is related to respiratory muscle

function (11) as well as related to neural adaptations (19, 20, 63) and the second increases well

before diaphragmatic pressure is reduced during respiratory muscle weakness or fatigue (17,

34).

The results of the ROC curves show that all parameters extracted from the sniff curve

can highly discriminate middle stage ALS from healthy subjects. When taking into account the

functional decline of ALS subjects, only MRPD and FVC%pred could predict a fall in 37.5% of the

ALSFRS-R score. Among all parameters, τ provides the highest discriminative power in

predicting a decline of 25% in the R-subscore. This power was even higher than FVC%pred,

possibly because the R-subscore is less sensitive in predicting a fall in FVC%pred (57). Moreover,

as ALS patients with R-subscore <11 points are considered with relevant symptoms of

respiratory distress as well as at risk of respiratory insufficiency (57, 58) and peak pressure of

sniff test could not detect a fall in the ALSFRS-R and R-subscore, we believe that the SNIP%pred

might not be a parameter as reliable as some parameters extracted from the SNIP curve (i.e. τ,

MRPD, and ½RT) or FVC%pred in detecting a clinically meaningful decline in functional and

Page 88: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

88

respiratory status. The SNIP%pred was reliable in detecting respiratory muscle weakness (39, 60)

in our middle stage ALS subjects only when considering the FVC%pred classification,

nevertheless, MRPD and τ parameters were still more sensitive than SNIP%pred.

It is unlikely that the results found are investigator related since all measurements were

performed by the same experienced respiratory physiotherapist. We believe that four are the

main limitations of the study. First, even with a calculated statistical power of 1-ß=0.99, our ALS

cohort may be limited in terms of sample size; second, the mean age of ALS included is lower

than those of the main epidemiological studies (64, 65); third, we included only ALS patients at

middle stage of the disease and fourth, not all subjects could be paired by the same exact age

and BMI. Further studies including patients at later stages of the disease as well as possible

ALS and patients with other motor neuron disorders are needed. Finally, ongoing longitudinal

studies should are already investigating these parameters during varying levels of disease

progression as well as in order to identify differences between patients with and without non-

invasive ventilation as well as the optimal parameter and its cutoff point able to predict an

appropriate timing for the initiation of non-invasive ventilation.

In terms of clinical applicability, the calculation of the SNIP curve parameters can be

easily performed and give more information about the state of the respiratory muscles, thus

possibly allowing an early detection of weakness or fatigue before respiratory failure is reached

(35, 53) as well as early implementation of new therapeutic interventions before the beginning

of the peak pressure decay of the SNIP curve (17, 31, 51).

4.3.7. Conclusion

The contractile properties and relaxation rates of the diaphragm are altered in middle

stage spinal onset ALS when compared with healthy subjects. When assessed through the

nasal inspiratory sniff test, these parameters are able to discriminate between those ALS

subjects with early decline in inspiratory muscle function and those who not. In addition, despite

the limitations of our cohort and especially the lack of longitudinal data, we suggest that τ,

MRPD, and ½RT parameters may be able to predict ALS patients at risk of ventilatory failure

before the beginning of the fall in peak pressure of sniff test.

Page 89: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

89

4.4.8. References

1. Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a

database population. Validation of a scoring system and a model for survival prediction. Brain :

a journal of neurology (1995) 118 ( Pt 3):707-19. PubMed PMID: 7600088.

2. Czaplinski A, Yen AA, Simpson EP, Appel SH. Predictability of disease progression in

amyotrophic lateral sclerosis. Muscle & nerve (2006) 34(6):702-8. doi: 10.1002/mus.20658.

PubMed PMID: 16967489.

3. de Carvalho M, Matias T, Coelho F, Evangelista T, Pinto A, Luis ML. Motor neuron

disease presenting with respiratory failure. Journal of the neurological sciences (1996) 139

Suppl:117-22. PubMed PMID: 8899670.

4. Chen R, Grand'Maison F, Strong MJ, Ramsay DA, Bolton CF. Motor neuron disease

presenting as acute respiratory failure: a clinical and pathological study. Journal of neurology,

neurosurgery, and psychiatry (1996) 60(4):455-8. PubMed PMID: 8774419; PubMed Central

PMCID: PMC1073907.

5. Guedes K, Pereira C, Pavan K, Valerio BC. Cross-cultural adaptation and validation of

als Functional Rating Scale-Revised in Portuguese language. Arq Neuropsiquiatr (2010)

68(1):44-7. PubMed PMID: 20339651.

6. Kaufmann P, Levy G, Thompson JL, Delbene ML, Battista V, Gordon PH, et al. The

ALSFRSr predicts survival time in an ALS clinic population. Neurology (2005) 64(1):38-43. doi:

10.1212/01.WNL.0000148648.38313.64. PubMed PMID: 15642901.

7. Kollewe K, Mauss U, Krampfl K, Petri S, Dengler R, Mohammadi B. ALSFRS-R score

and its ratio: a useful predictor for ALS-progression. Journal of the neurological sciences (2008)

275(1-2):69-73. doi: 10.1016/j.jns.2008.07.016. PubMed PMID: 18721928.

8. Bauer M, Czell D, Hartmann S, Goldman B, Muller D, Weber M. Limitations of sniff

nasal pressure as an outcome measurement in amyotrophic lateral sclerosis patients in a

clinical trial. Respiration; international review of thoracic diseases (2012) 84(4):306-11. Epub

2012/08/01. doi: 10.1159/000339415. PubMed PMID: 22846608.

9. Magnus T, Beck M, Giess R, Puls I, Naumann M, Toyka KV. Disease progression in

amyotrophic lateral sclerosis: predictors of survival. Muscle & nerve (2002) 25(5):709-14. doi:

10.1002/mus.10090. PubMed PMID: 11994965.

10. Polkey MI, Lyall RA, Yang K, Johnson E, Leigh PN, Moxham J. Respiratory Muscle

Strength as a Predictive Biomarker for Survival in Amyotrophic Lateral Sclerosis. American

journal of respiratory and critical care medicine (2017) 195(1):86-95. Epub 2016/08/06. doi:

10.1164/rccm.201604-0848OC. PubMed PMID: 27494149; PubMed Central PMCID:

PMCPmc5214920.

11. American Thoracic Society/European Respiratory S. ATS/ERS Statement on respiratory

muscle testing. American journal of respiratory and critical care medicine (2002) 166(4):518-

624. doi: 10.1164/rccm.166.4.518. PubMed PMID: 12186831.

12. Miller JM, Moxham J, Green M. The maximal sniff in the assessment of diaphragm

function in man. Clinical science (1985) 69(1):91-6. PubMed PMID: 4064560.

Page 90: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

90

13. Laroche CM, Mier AK, Moxham J, Green M. The value of sniff esophageal pressures in

the assessment of global inspiratory muscle strength. The American review of respiratory

disease (1988) 138(3):598-603. doi: 10.1164/ajrccm/138.3.598. PubMed PMID: 3202414.

14. Schiffman PL, Belsh JM. Effect of inspiratory resistance and theophylline on respiratory

muscle strength in patients with amyotrophic lateral sclerosis. The American review of

respiratory disease (1989) 139(6):1418-23. doi: 10.1164/ajrccm/139.6.1418. PubMed PMID:

2729751.

15. Troyer AD, Estenne M. The respiratory system in neuromuscular disorders. in Roussos

CH (ed): The Thorax. New York, Marcel Dekker (1995).

16. Koulouris N, Vianna LG, Mulvey DA, Green M, Moxham J. Maximal relaxation rates of

esophageal, nose, and mouth pressures during a sniff reflect inspiratory muscle fatigue. The

American review of respiratory disease (1989) 139(5):1213-7. doi: 10.1164/ajrccm/139.5.1213.

PubMed PMID: 2712448.

17. Esau SA, Bellemare F, Grassino A, Permutt S, Roussos C, Pardy RL. Changes in

relaxation rate with diaphragmatic fatigue in humans. Journal of applied physiology: respiratory,

environmental and exercise physiology (1983) 54(5):1353-60. doi:

10.1152/jappl.1983.54.5.1353. PubMed PMID: 6863095.

18. Mador MJ, Kufel TJ. Effect of inspiratory muscle fatigue on inspiratory muscle relaxation

rates in healthy subjects. Chest (1992) 102(6):1767-73. PubMed PMID: 1446487.

19. Matthews AW, Howell JB. The rate of isometric inspiratory pressure development as a

measure of responsiveness to carbon dioxide in man. Clinical science and molecular medicine

(1975) 49(1):57-68. PubMed PMID: 1149395.

20. Tzelepis GE, Kasas V, McCool FD. Inspiratory muscle adaptations following pressure or

flow training in humans. European journal of applied physiology and occupational physiology

(1999) 79(6):467-71. PubMed PMID: 10344453.

21. Romer LM, McConnell AK. Inter-test reliability for non-invasive measures of respiratory

muscle function in healthy humans. European journal of applied physiology (2004) 91(2-3):167-

76. doi: 10.1007/s00421-003-0984-2. PubMed PMID: 14605897.

22. Kyroussis D, Mills G, Hamnegard CH, Wragg S, Road J, Green M, et al. Inspiratory

muscle relaxation rate assessed from sniff nasal pressure. Thorax (1994) 49(11):1127-33.

PubMed PMID: 7831629; PubMed Central PMCID: PMC475274.

23. Levy RD, Esau SA, Bye PT, Pardy RL. Relaxation rate of mouth pressure with sniffs at

rest and with inspiratory muscle fatigue. The American review of respiratory disease (1984)

130(1):38-41. doi: 10.1164/arrd.1984.130.1.38. PubMed PMID: 6742608.

24. Benicio K, Dias FA, Gualdi LP, Aliverti A, Resqueti VR, Fregonezi GA. Effects of

diaphragmatic control on the assessment of sniff nasal inspiratory pressure and maximum

relaxation rate. Brazilian journal of physical therapy (2016) 20(1):96-103. doi: 10.1590/bjpt-

rbf.2014.0101. PubMed PMID: 26578254; PubMed Central PMCID: PMC4835170.

25. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research

Group on Motor Neuron D. El Escorial revisited: revised criteria for the diagnosis of

amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis and other motor neuron disorders :

Page 91: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

91

official publication of the World Federation of Neurology, Research Group on Motor Neuron

Diseases (2000) 1(5):293-9. PubMed PMID: 11464847.

26. Pereira CAC, Neder, J.A. Sociedade Brasileira de Pneumologia e Tisiologia – SBPT.

Diretrizes para testes de função pulmonar. J Bras Pneumol (2002) 29 (3):207-21.

27. Heritier F, Rahm F, Pasche P, Fitting JW. Sniff nasal inspiratory pressure. A

noninvasive assessment of inspiratory muscle strength. American journal of respiratory and

critical care medicine (1994) 150(6 Pt 1):1678-83. doi: 10.1164/ajrccm.150.6.7952632. PubMed

PMID: 7952632.

28. Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II.

Maximal respiratory pressures and voluntary ventilation. Brazilian Journal of Medical and

Biological Research (1999) 32:719-27.

29. Araujo PR, Resqueti VR, Nascimento Junior J, Carvalho Lde A, Cavalcanti AG, Silva

VC, et al. Reference values for sniff nasal inspiratory pressure in healthy subjects in Brazil: a

multicenter study. Jornal brasileiro de pneumologia : publicacao oficial da Sociedade Brasileira

de Pneumologia e Tisilogia (2012) 38(6):700-7. PubMed PMID: 23288114.

30. Smith J, Bellemare F. Effect of lung volume on in vivo contraction characteristics of

human diaphragm. Journal of applied physiology (1987) 62(5):1893-900. doi:

10.1152/jappl.1987.62.5.1893. PubMed PMID: 3597263.

31. Goldstone JC, Green M, Moxham J. Maximum relaxation rate of the diaphragm during

weaning from mechanical ventilation. Thorax (1994) 49(1):54-60. PubMed PMID: 8153941;

PubMed Central PMCID: PMC474088.

32. Bellemare F, Bigland-Ritchie B, Woods JJ. Contractile properties of the human

diaphragm in vivo. Journal of applied physiology (1986) 61(3):1153-61. doi:

10.1152/jappl.1986.61.3.1153. PubMed PMID: 3759756.

33. Romer LM, McConnell AK. Specificity and reversibility of inspiratory muscle training.

Medicine and science in sports and exercise (2003) 35(2):237-44. doi:

10.1249/01.MSS.0000048642.58419.1E. PubMed PMID: 12569211.

34. Esau SA, Bye PT, Pardy RL. Changes in rate of relaxation of sniffs with diaphragmatic

fatigue in humans. Journal of applied physiology: respiratory, environmental and exercise

physiology (1983) 55(3):731-5. doi: 10.1152/jappl.1983.55.3.731. PubMed PMID: 6629910.

35. Wilcox PG, Eisen A, Wiggs BJ, Pardy RL. Diaphragmatic relaxation rate after voluntary

contractions and uni- and bilateral phrenic stimulation. Journal of applied physiology (1988)

65(2):675-82. doi: 10.1152/jappl.1988.65.2.675. PubMed PMID: 3170421.

36. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-

R: a revised ALS functional rating scale that incorporates assessments of respiratory function.

Journal of the neurological sciences (1999) 169(1):13-21. doi: https://doi.org/10.1016/S0022-

510X(99)00210-5.

37. Roche JC, Rojas-Garcia R, Scott KM, Scotton W, Ellis CE, Burman R, et al. A proposed

staging system for amyotrophic lateral sclerosis. Brain : a journal of neurology (2012) 135(Pt

3):847-52. doi: 10.1093/brain/awr351. PubMed PMID: 22271664; PubMed Central PMCID:

PMC3286327.

Page 92: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

92

38. Pinto S, Carvalho M. Breathing new life into treatment advances for respiratory failure in

amyotrophic lateral sclerosis patients. Neurodegenerative disease management (2014) 4(1):83-

102. Epub 2014/03/20. doi: 10.2217/nmt.13.74. PubMed PMID: 24640982.

39. Andrews JA, Meng L, Kulke SF, Rudnicki SA, Wolff AA, Bozik ME, et al. Association

Between Decline in Slow Vital Capacity and Respiratory Insufficiency, Use of Assisted

Ventilation, Tracheostomy, or Death in Patients With Amyotrophic Lateral Sclerosis. JAMA

neurology (2018) 75(1):58-64. Epub 2017/11/29. doi: 10.1001/jamaneurol.2017.3339. PubMed

PMID: 29181534.

40. Gordon PH, Cheng B, Montes J, Doorish C, Albert SM, Mitsumoto H. Outcome

measures for early phase clinical trials. Amyotrophic lateral sclerosis : official publication of the

World Federation of Neurology Research Group on Motor Neuron Diseases (2007) 8(5):270-3.

doi: 10.1080/17482960701547958. PubMed PMID: 17852017.

41. Castrillo-Viguera C, Grasso DL, Simpson E, Shefner J, Cudkowicz ME. Clinical

significance in the change of decline in ALSFRS-R. Amyotrophic lateral sclerosis : official

publication of the World Federation of Neurology Research Group on Motor Neuron Diseases

(2010) 11(1-2):178-80. doi: 10.3109/17482960903093710. PubMed PMID: 19634063.

42. Cohen J. Statistical power analysis for the behavioral sciences. 2ª ed Hillsdale, New

Jersey: Lawrence Erbaum (1988).

43. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and

interpretation. Journal of experimental psychology General (2012) 141(1):2-18. Epub

2011/08/10. doi: 10.1037/a0024338. PubMed PMID: 21823805.

44. Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview

of some recommended measures of effect size. Trends in Sport Sciences (2014) 1(21):19-25.

45. Youden WJ. Index for rating diagnostic tests. Cancer (1950) 3(1):32-5. PubMed PMID:

15405679.

46. Capozzo R, Quaranta VN, Pellegrini F, Fontana A, Copetti M, Carratu P, et al. Sniff

nasal inspiratory pressure as a prognostic factor of tracheostomy or death in amyotrophic

lateral sclerosis. Journal of neurology (2015) 262(3):593-603. Epub 2014/12/20. doi:

10.1007/s00415-014-7613-3. PubMed PMID: 25522696.

47. Garcia-Rio F, Mediano O, Pino JM, Lores V, Fernandez I, Alvarez-Sala JL, et al.

Noninvasive measurement of the maximum relaxation rate of inspiratory muscles in patients

with neuromuscular disorders. Respiration; international review of thoracic diseases (2006)

73(4):474-80. doi: 10.1159/000091804. PubMed PMID: 16508243.

48. Mulvey DA, Koulouris NG, Elliott MW, Moxham J, Green M. Maximal relaxation rate of

inspiratory muscle can be effort-dependent and reflect the activation of fast-twitch fibers. The

American review of respiratory disease (1991) 144(4):803-6. Epub 1991/10/01. doi:

10.1164/ajrccm/144.4.803. PubMed PMID: 1928952.

49. Evangelista MA, Dias FAL, Dourado Junior MET, do Nascimento GC, Sarmento A,

Gualdi LP, et al. Noninvasive assessment of respiratory muscle strength and activity in

Myotonic dystrophy. PloS one (2017) 12(6):e0177318. doi: 10.1371/journal.pone.0177318.

PubMed PMID: 28594857; PubMed Central PMCID: PMC5464542.

Page 93: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

93

50. Coirault C, Chemla D, Lecarpentier Y. Relaxation of diaphragm muscle. Journal of

applied physiology (1999) 87(4):1243-52. doi: 10.1152/jappl.1999.87.4.1243. PubMed PMID:

10517748.

51. Polkey MI, Kyroussis D, Mills GH, Hamnegard CH, Keilty SE, Green M, et al. Inspiratory

pressure support reduces slowing of inspiratory muscle relaxation rate during exhaustive

treadmill walking in severe COPD. American journal of respiratory and critical care medicine

(1996) 154(4 Pt 1):1146-50. doi: 10.1164/ajrccm.154.4.8887619. PubMed PMID: 8887619.

52. Bigland-Ritchie B, Johansson R, Lippold OC, Woods JJ. Contractile speed and EMG

changes during fatigue of sustained maximal voluntary contractions. Journal of

neurophysiology (1983) 50(1):313-24. doi: 10.1152/jn.1983.50.1.313. PubMed PMID: 6308182.

53. Grassino A, Macklem PT. Respiratory muscle fatigue and ventilatory failure. Annual

review of medicine (1984) 35:625-47. doi: 10.1146/annurev.me.35.020184.003205. PubMed

PMID: 6372673.

54. Dawson MJ, Gadian DG, Wilkie DR. Mechanical relaxation rate and metabolism studied

in fatiguing muscle by phosphorus nuclear magnetic resonance. The Journal of physiology

(1980) 299:465-84. PubMed PMID: 6966688; PubMed Central PMCID: PMC1279237.

55. Dassios T, Kaditis A, Katelari A, Chrousos G, Doudounakis S, Dimitriou G. Time

constant of inspiratory muscle relaxation in cystic fibrosis. Pediatric research (2015) 77(4):541-

5. doi: 10.1038/pr.2015.2. PubMed PMID: 25642662.

56. Dassios TG, Doudounakis S, Dimitriou G. Maximum rate of pressure development and

maximal relaxation rate of respiratory muscles in patients with cystic fibrosis. Respiratory care

(2013) 58(3):474-81. doi: 10.4187/respcare.01930. PubMed PMID: 22781492.

57. Pinto S, Geraldes R, Vaz N, Pinto A, de Carvalho M. Changes of the phrenic nerve

motor response in amyotrophic lateral sclerosis: longitudinal study. Clinical neurophysiology :

official journal of the International Federation of Clinical Neurophysiology (2009) 120(12):2082-

5. doi: 10.1016/j.clinph.2009.08.025. PubMed PMID: 19833553.

58. Park JS, Park D. The terminal latency of the phrenic nerve correlates with respiratory

symptoms in amyotrophic lateral sclerosis. Clinical neurophysiology : official journal of the

International Federation of Clinical Neurophysiology (2017) 128(9):1625-8. doi:

10.1016/j.clinph.2017.06.039. PubMed PMID: 28719826.

59. Kwon S, Min JH, Cho HJ, Joo BE, Cho EB, Seok JM, et al. Usefulness of phrenic

latency and forced vital capacity in patients with ALS with latent respiratory dysfunction. Clinical

neurophysiology : official journal of the International Federation of Clinical Neurophysiology

(2015) 126(7):1421-6. doi: 10.1016/j.clinph.2014.10.006. PubMed PMID: 25454281.

60. Pinto S, de Carvalho M. Correlation between Forced Vital Capacity and Slow Vital

Capacity for the assessment of respiratory involvement in Amyotrophic Lateral Sclerosis: a

prospective study. Amyotrophic lateral sclerosis & frontotemporal degeneration (2017) 18(1-

2):86-91. Epub 2016/12/06. doi: 10.1080/21678421.2016.1249486. PubMed PMID: 27915482.

61. Rochester DF. The diaphragm: contractile properties and fatigue. The Journal of clinical

investigation (1985) 75(5):1397-402. doi: 10.1172/JCI111841. PubMed PMID: 3889054;

PubMed Central PMCID: PMC425476.

Page 94: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

94

62. Morgan RK, McNally S, Alexander M, Conroy R, Hardiman O, Costello RW. Use of Sniff

nasal-inspiratory force to predict survival in amyotrophic lateral sclerosis. American journal of

respiratory and critical care medicine (2005) 171(3):269-74. Epub 2004/11/02. doi:

10.1164/rccm.200403-314OC. PubMed PMID: 15516537.

63. Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-

specific training response. Journal of applied physiology (1993) 74(1):359-68. Epub

1993/01/01. doi: 10.1152/jappl.1993.74.1.359. PubMed PMID: 8444715.

64. Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, et al. Global

epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature.

Neuroepidemiology (2013) 41(2):118-30. doi: 10.1159/000351153. PubMed PMID: 23860588;

PubMed Central PMCID: PMC4049265.

65. Marin B, Boumediene F, Logroscino G, Couratier P, Babron MC, Leutenegger AL, et al.

Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. International

journal of epidemiology (2017) 46(1):57-74. doi: 10.1093/ije/dyw061. PubMed PMID:

27185810; PubMed Central PMCID: PMC5407171.

Page 95: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

95

4.3.9. Supplementary material

Multiparametric analysis of sniff nasal inspiratory pressure test in middle stage amyotrophic lateral sclerosis

Antonio Sarmento, Guilherme Fregonezi, Layana Marques, Francesca Pennati, Mario Emílio Dourado-Júnior, Vanessa Resqueti, Andrea Aliverti

Page 96: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

96

SUPPLEMENTARY MATERIAL IN DEPTH OF STATISTICAL ANALYSIS AND RESULTS

STATISTICAL ANALYSIS

For parametric data, effect sizes were calculated using Cohen’s d for intergroup

analysis and interpreted as small (<0.50), moderate (between 0.50 and 0.80), and large

(>0.80)] and Cohen’s f for subgroup analysis as small (<0.25), moderate (between 0.25 and

0.40), and large (>0.40)].(1) For non-parametric data, Cohen's d was calculated for intergroup

analysis and interpreted as small (<0.10), moderate (between 0.10 and 0.30), and large

(>0.50)(2) and ɛ2 for subgroup analysis as small (<0.06), moderate (between 0.06 and 0.14),

and large (>0.14)] (3, 4).

Page 97: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

97

RESULTS

Supplementary table S1. Diagnosis criteria, region of onset, local of muscle weakness symptoms onset, clinical

phenotype as well as the presence of familial ALS and cognitive impairment of all ALS subjects included in the study. All

parameters shown were assessed by a neurologist.

Diagnosis Region of onset Distal or proximal Phenotype Familial

ALS Cognitive

impairment

#1 Definitive Left upper limb Distal Classic No No

#2 Probable Right upper limb Proximal Classic No No

#3 Definitive Right lower limb Proximal Classic No No

#4 Probable Right upper limb Distal Classic No No

#5 Probable Left lower limb Distal Primary lateral

sclerosis No No

#6 Definitive Left upper limb Proximal Classic No No

#7 Definitive Lower limbs Distal Flail legs No No

#8 Probable Right upper limb Distal Classic No No

#9 Definitive Right lower limb Proximal Classic No No

#10 Definitive Left lower limb Distal Classic No No

#11 Probable Lower limbs Proximal Flail legs No No

#12 Definitive Right upper limb Distal Classic No No

#13 Probable Lower limbs Distal Flail legs No No

#14 Definitive Right upper limb Distal Classic No No

#15 Definitive Right lower limb Distal Classic No No

#16 Probable Left lower limb Proximal Classic No No

#17 Probable Upper limbs Distal Primary lateral

sclerosis No No

#18 Definiive Left lower limb Distal Classic No No

#19 Probable Right lower limb Distal Classic No No

#20 Probable Lower limbs Distal Flail legs No No

#21 Definitive Right upper limb Distal Classic No No

#22 Definitive Right upper limb Distal Classic No No

#23 Definitive Right upper limb Distal Progressive

muscular atrophy No No

#24 Probable Right lower limb Distal Classic No No

#25 Definitive Left upper limb Distal Classic No No

#26 Probable Lower limbs Proximal Classis No No

#27 Probable Right lower limb Distal Polyneuritic pattern No No

#28 Probable Upper limbs Distal Classis No No

#29 Probable Right lower limb Distal Classic No No

#30 Definitive Right upper limb Distal Classic No No

#31 Probable Right lower limb Distal Classic No No

#32 Probable Right lower limb Distal Classic No No

#33 Probable Left upper limb Distal Primary lateral

sclerosis No No

#34 Probable Left upper limb Distal Classic No No

#35 Probable Lower limbs Distal Progressive

muscular atrophy No No

#36 Probable Right upper limb Distal Primary lateral

sclerosis No No

#37 Probable Right upper limb Distal Polyneuritic pattern No No

#38 Definitive Right upper limb Distal Progressive

muscular atrophy No No

#39 Probable Right upper limb Distal Progressive

muscular atrophy No No

Page 98: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

98

Subjects Clinical

Stage

Amyotrophic Lateral Sclerosis Functional Rating Scale-revised

Speech Salivation Swallowing Handwriting Cutting

food

Dressing and

hygiene

Turning in bed

and adjusting

bed clothes

Walking Climbing

stairs Dyspnea

* Orthopnea

*

Respiratory

insufficiency*

#1 3 4 4 4 1 1 2 3 3 1 3 4 4

#2 3 4 2 4 3 3 3 3 3 1 3 3 4

#3 3 4 4 4 4 2 2 3 3 3 3 3 4

#4 3 4 4 4 4 1 3 2 2 1 3 3 4

#5 3 3 4 4 3 3 2 2 1 0 4 4 4

#6 3 4 1 2 4 0 1 3 4 4 1 3 4

#7 3 2 3 3 1 2 3 3 3 3 4 4 4

#8 3 2 4 2 0 0 0 0 1 0 2 3 4

#9 3 4 4 4 2 1 1 2 2 1 4 4 4

#10 3 2 4 3 0 0 0 2 1 0 3 4 4

#11 3 1 0 0 3 2 2 1 2 0 2 2 4

#12 3 3 2 2 0 0 0 0 0 0 2 3 4

#13 3 4 4 3 4 4 4 3 3 2 4 4 4

#14 3 4 4 4 4 4 4 4 4 4 3 3 4

#15 3 3 4 3 3 3 3 4 2 1 4 4 4

#16 3 3 3 3 3 1 2 1 1 0 2 2 2

#17 3 2 3 3 2 3 3 3 3 3 3 4 4

#18 3 1 3 2 0 0 0 0 0 0 2 2 4

#19 3 1 3 3 3 3 2 2 1 0 2 3 4

#20 3 4 4 4 2 2 0 0 0 4 4 4 4

#21 3 2 3 3 2 1 3 3 2 1 3 4 4

#22 3 3 3 4 3 3 2 3 4 4 3 2 4

#23 3 3 4 3 3 1 1 1 2 0 1 2 2

#24 3 1 0 0 3 2 2 1 2 0 2 2 4

#25 3 4 4 4 4 4 3 3 1 0 2 3 4

#26 3 3 3 3 4 4 4 4 4 3 3 4 4

#27 3 3 4 3 3 1 2 1 1 0 2 1 2

#28 3 4 4 3 2 0 0 2 3 0 1 2 4

#29 3 2 3 2 3 1 1 1 1 0 4 4 4

#30 3 3 2 2 3 3 3 2 2 1 2 3 4

#31 3 4 4 4 3 1 2 3 2 0 4 4 4

#32 3 4 4 4 4 4 3 4 3 2 4 4 4

#33 3 2 3 2 4 2 3 4 3 3 3 4 4

#34 3 4 4 4 3 3 2 2 0 0 4 4 4

#35 3 4 4 4 4 3 3 3 3 1 2 4 4

#36 3 3 3 3 4 3 4 4 4 3 3 3 4

#37 3 4 4 4 4 3 4 4 4 4 4 4 4

#38 3 3 2 3 3 4 4 3 4 3 4 4 4

#39 3 4 3 4 4 3 4 3 4 3 4 4 4

Supplementary table S2. Clinical stage and functional capacity of each amyotrophic lateral sclerosis subject of the study according to Roche et al (5) and Cerdabaum

et al (6), respectively. *Respiratory subscore items.

Page 99: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

99

REFERENCES E1. Cohen J. Statistical power analysis for the behavioral sciences. 2ª ed Hillsdale, New

Jersey: Lawrence Erbaum (1988).

E2. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and

interpretation. Journal of experimental psychology General (2012) 141(1):2-18. Epub

2011/08/10. doi: 10.1037/a0024338. PubMed PMID: 21823805.

E3. Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview

of some recommended measures of effect size. Trends in Sport Sciences (2014) 1(21):19-25.

E4. Olejnik S, Algina J. Measures of Effect Size for Comparative Studies: Applications,

Interpretations, and Limitations. Contemporary educational psychology (2000) 25(3):241-86.

Epub 2000/06/30. doi: 10.1006/ceps.2000.1040. PubMed PMID: 10873373.

E5. Roche JC, Rojas-Garcia R, Scott KM, Scotton W, Ellis CE, Burman R, et al. A proposed

staging system for amyotrophic lateral sclerosis. Brain : a journal of neurology (2012) 135(Pt

3):847-52. doi: 10.1093/brain/awr351. PubMed PMID: 22271664; PubMed Central PMCID:

PMC3286327.

E6. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-

R: a revised ALS functional rating scale that incorporates assessments of respiratory function.

Journal of the neurological sciences (1999) 169(1):13-21. doi: https://doi.org/10.1016/S0022-

510X(99)00210-5.

Page 100: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

100

5. Discussão geral

A diminuição da função pulmonar e da força muscular respiratória na ELA leva à

redução do volume pulmonar e consequente insuficiência ventilatória.72 Nesses pacientes, o

grau de comprometimento dos músculos respiratórios é considerado difícil de ser

quantificado.73 Com a progressão da doença, o PFT diminui consideravelmente ao ponto de se

tornar ineficiente,74 fazendo essencial tanto o uso de técnicas de higiene brônquica quanto a

detecção precoce de fraqueza muscular respiratória a fim de monitorar a progressão da

doença e antecipar a introdução de intervenções.

Apesar da manobra de air stacking ser amplamente utilizada em sujeitos com doença

neuromuscular, os resultados obtidos em sujeitos saudáveis e apresentados no capítulo 2

podem ajudar a ampliar ainda mais o conhecimento sobre os efeitos fisiológicos dessa técnica.

Sabia-se, até pouco tempo, que a aplicação de uma pressão positiva além da capacidade

pulmonar total através da técnica de air stacking proporcionava somente um aumento da

complacência31 e do PFT37,38 em sujeitos com ELA. Em estudos prévios utilizando esta técnica

foram demonstrados, pela primeira vez, seus efeitos fisiológicos de forma mais detalhada sem

a aplicação de bocais ou qualquer interface que alterasse o padrão respiratório.53,61 O estudo

apresentado no capítulo 2 foi capaz de ir além, mensurando não só a quantidade de

compressão de gás produzida durante a técnica em sujeitos saudáveis assim como estimando

volumes pulmonares absolutos.

A quantificação da compressão de gás utilizando a POE e a integração do sinal de

fluxo obtido a partir de um pneumotacógrafo acoplado na boca não é um método novo na

literatura. Iandeli e colaboradores75 mostraram que a aplicação de uma limitação de fluxo

expiratório durante exercício em bicicleta estacionária acarreta em uma compressão de gás de

163 ± 4.6 ml em sujeitos saudáveis, além de um deslocamento de 325 ml de líquido do tórax

para as extremidades. Em consonância, Smith e colaboradores76 mensuraram a quantidade de

compressão de gás gerada durante picos de tosse voluntária e induzida em sujeitos

saudáveis. Ambos os estudos utilizaram a lei de Boyle para transformações isotérmicas com o

intuito de calcular a compressão de gás, e os volumes absolutos foram mensurados através da

pletismografia de corpo inteiro. Em contrapartida, o estudo apresentado no capítulo 2

mensurou diretamente o volume de compressão gerado durante a técnica de air stacking e

estimou os volumes pulmonares através da lei de Boyle. É importante salientar que nesse

estudo a quantidade de deslocamento de líquido do tórax para as extremidades foi omitida,

visto que 1) durante a inspiração até a capacidade pulmonar total há uma diminuição da

pressão intratorácica e consequente entrada de líquido no tórax e 2) durante a aplicação da

técnica de air stacking a partir de uma inspiração máxima há um aumento da pressão

intratorácica e consequente deslocamento de líquido do tórax para as extremidades,

considerando, dessa forma,a quantidade de deslocamento de líquido como nula. Através

desse novo método, a avaliação de volumes pulmonares absolutos necessita de uma

colaboração mínima dos sujeitos, sendo então proposto como alternativa ao uso de outras

técnicas que podem ser de difícil colaboração e que dependem de profissionais habilitados

para obter resultados consistentes, como as de diluição de gás e pletismografia de corpo

Page 101: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

101

inteiro.77 Além disso, estudos ainda são necessários para conhecer a aplicação dessa nova

técnica de avaliação em outras posições e em doenças pulmonares restritivas e obstrutivas.

A avaliação e detecção precoce da fraqueza muscular respiratória resultante da ELA

têm ganhado mais interesse no campo da pesquisa nas últimas décadas. Em sujeitos

saudáveis, durante a inspiração, os compartimentos da parede torácica se movem em

sincronia.78 Por outro lado, em pacientes com doença neuromuscular, o avanço da doença e

perda de força muscular respiratória acarreta na ação não coordenada dos músculos

inspiratórios acessórios e diafragma, resultando em um movimento assíncrono tanto durante a

inspiração quanto a expiração.55,56,79 A assincronia, mensurada através do ângulo de fase e

definida como um retardo entre as excursões ou retrações dos compartimentos da parede

torácica,80 também pode ser consequência de fadiga muscular respiratória e leva a uma

diminuição do volume corrente e aumento do trabalho respiratório24,79,81 em sujeitos com

doença neuromuscular. Quando esses compartimentos se movem em direções totalmente

opostas82 (expansão da caixa torácica pulmonar e retração do abdômen, por exemplo), o

movimento paradoxal está presente e o diagnóstico de fraqueza muscular diafragmática ou

intercostal pode ser feito observando qual dos compartimentos se retrai durante a inspiração.79

Como exposto no capítulo 3, os pacientes com ELA apresentaram assincronia

toracoabdominal e movimento paradoxal durante a respiração espontânea e tosse. Esses

achados se correlacionaram com a diminuição na CVF, PFT, pico de fluxo expiratório,

capacidade inspiratória e no volume da parede torácica, sendo indicativos de fraqueza

desproporcional de alguns músculos respiratórios, como o diafragma54,55,79 e músculos

abdominais,83 e consequente desequilíbrio entre as pressões nos compartimentos da parede

torácica.79 O fato mais importante demonstrado nesse capítulo é que o comprometimento

diafragmático ocorre anterior ao nos músculos inspiratórios da caixa torácica superior e esse

sinal é observado primeiramente na CTa e não no compartimento abdominal. Essa mesma

característica foi descrita por Layton e colaboradores,56 os quais, utilizando a POE,

observaram que pacientes com ELA apresentavam movimento paradoxal da CTa diante de

uma fraqueza do diafragma. Talvez esse mesmo padrão estivesse presente nos pacientes do

estudo de Similowski e colaboradores84, no qual foi observado o um movimento paradoxal

abdominal em pacientes com ELA durante a aplicação de estimulação magnética

transcraniana, o que indicava fraqueza extrema do diafragma. Pelo fato de ter sido utilizada a

pletismografia respiratória por indutância, na qual somente dois compartimentos são

considerados como componentes da parede torácica, não foi possível ser realizada a

mensuração de variação de movimento da CTa.

Embora os padrões acima citados devam ser confirmados através de mais estudos, os

sinais de fraqueza muscular diafragmática foram obtidos sem a necessidade de técnicas

invasivas ou colaboração por parte dos pacientes. Esse ponto é de principal importância, pois

a ELA é uma doença progressiva e debilitante, e a simples constatação da assincronia e do

movimento paradoxal pode ser relevante para detecção precoce de fraqueza muscular e o

monitoramento clínico de progressão da doença.

Page 102: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

102

Vários outros parâmetros são indicadores de fraqueza muscular, progressão da doença

e sobrevivência nessa população. Dentre os parâmetros diretamente ligados à respiração

podem-se destacar a capacidade vital lenta e forçada e força muscular respiratória (MIP, MEP

e SNIP).10,11,85-87 Fatores não respiratórios, incluindo a idade avançada, o início do

acometimento bulbar, o estado nutricional e a ALSFRS-R, também estão associados à

mortalidade.8 Mensurações diretas da função respiratória usando medidas como capacidade

vital são muito importantes e têm sido o método mais utilizado para avaliação respiratória na

ELA10 por serem também marcadores fisiológicos de aplicação de ventilação não invasiva,

preditivos de fraqueza muscular, insuficiência ventilatória e mortalidade.10,39,44,88 O pico de

pressão gerado pela manobra de SNIP, por sua vez, é um biomarcador de mortalidade mais

sensitivo que a CVF11 e se correlaciona tanto com a função do músculo

esternocleidomastóideo89 quanto com testes invasivos e não volitivos de força diafragmática.90

No entanto, parâmetros intrínsecos à curva do SNIP também podem fornecer informações

importantes sobre o estado dos músculos inspiratórios, principalmente o diafragma. Estudos

demonstraram que as propriedades contráteis e de relaxamento dos músculos inspiratórios

estão alteradas durante o desenvolvimento de fraqueza e fadiga musculares inspiratórias.91-93

Segundo Coirault e colaboradores,94 a avaliação desses parâmetros é de crucial importância

em situações clínicas, o que torna relevante a elaboração de índices confiáveis para detecção

precoce de fadiga muscular. O fato mais interessante é que esses parâmetros não foram

estudados de forma detalhada em pacientes com ELA. Até o momento, somente dois

estudos95,96 avaliaram o envolvimento da taxa máxima de relaxamento (MRR) do diafragma em

pacientes com doença neuromuscular, tornando difícil a comparação dos resultados

apresentados no capítulo 4 com outros estudos. Dentre os dois estudos, somente o de Garcia-

Rio e colaboradores96 incluiu pacientes com ELA (5 pacientes dentre 18 com doença

neuromuscular) e concluiu que a MRR poderia ser utilizado como um índice de fadiga dos

músculos respiratórios.

No estudo apresentado no capítulo 4 foi demonstrado que todos os parâmetros

extraídos da curva de SNIP estavam alterados nos pacientes com ELA quando comparados

com saudáveis pareados, o que sugere que esses pacientes estejam em risco de desenvolver

fadiga muscular respiratória.65,97 Adicionalmente, a taxa máxima de desenvolvimento de

pressão (MRPD), a constante de tempo durante o decaimento da curva de SNIP (τ - tau) e o

tempo para atingir a metade da curva de relaxamento (½ RT) foram mais sensíveis em

detectar diminuição da função muscular inspiratória do que o próprio pico de pressão da curva

de SNIP. Assim, visto os resultados obtidos e sabendo que os parâmetros supracitados podem

estar alterados durante a fadiga muscular respiratória antes mesmo da diminuição do pico de

pressão diafragmático (devido a alterações metabólicas da fibra muscular, como depleção de

ATP, alteração no pH e declínio da absorção de cálcio pelo retículo sarcoplasmático),92,98,99 é

possível hipotetizar que os parâmetros obtidos a partir da curva de SNIP sejam melhores

indicadores precoces de fadiga e/ou fraqueza muscular em sujeitos com ELA.

Page 103: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

103

5.1. Principais limitações

Os estudos apresentados nessa tese têm algumas limitações importantes. No capítulo

2, os resultados obtidos no estudo foram comparados com valores de equações de

predição,100 sendo, no entanto, ideal que os volumes pulmonares de todos os sujeitos também

fossem avaliados diretamente pela pletismografia de corpo inteiro. Além disto, os sujeitos não

foram capazes de realizar manobras confiáveis de capacidade vital, o que inviabilizou a

estimativa e comparação do volume residual.

Alguns aspectos de desenho dos diferentes estudos também limitam sua interpretação.

No capítulo 3, a assincronia dos pacientes estudados foi mensurada em um único

posicionamento (deitado a 45°), tornando difícil a comparação desses dados com outros

estudos. No entanto, essa foi a primeira vez em que o movimento paradoxal foi obtido durante

a respiração espontânea e tosse voluntária utilizando a POE e relacionado com fraqueza

muscular respiratória em sujeitos com ELA.

5.2. Implicações clínicas, perspectivas futuras e conclusões

Em termos de aplicabilidade clínica, espera-se que a introdução de novos métodos de

mensuração de volumes pulmonares possa ampliar as pesquisas na área da saúde,

principalmente a medicina e fisioterapia respiratória, além de ser útil para pesquisas futuras em

laboratórios que não possuem equipamentos de alto custo e nem profissionais especializados.

Adicionalmente, a avaliação de todos os parâmetros citados nessa tese pode ser facilmente

realizada de forma não invasiva e são capazes de oferecer informações relevantes sobre o

estado dos músculos respiratórios em pacientes com ELA.

Sabe-se que há uma necessidade crítica de grandes avanços nas doenças

neuromusculares em geral, em particular a compreensão mecanicista detalhada da

patogênese da doença e da descoberta de terapias eficazes para aumento da sobrevida desta

população. Assim, apesar de estudos ainda serem necessários para melhor entender os

parâmetros aqui avaliados e apresentados, esta tese serve como ponto inicial para guiar

futuros desenhos de ensaios clínicos e servir como biomarcadores para o curso natural de

outras doenças neuromusculares. Mais ainda, a detecção precoce dos primeiros sinais de

alteração destes parâmetros e do desequilíbrio da cinemática dos compartimentos da parede

torácica pode permitir não só um monitoramento mais detalhado da progressão da doença,

mas também diferenciação entre sujeitos com ELA espinhal ou bulbar além de implementação

de novas e precoces intervenções clínicas e terapêuticas (como a tempo apropriado para início

da ventilação não invasiva e decisão de realizar traqueostomia, por exemplo) a fim de

prolongar a sobrevida destes pacientes.

Como conclusão, a presente tese mostrou que 1) a partir da mensuração simultânea da

variação de volume pulmonar e da parede torácica tanto a compressão de gás produzida

durante a técnica de air stacking pode ser quantificada quanto os volumes pulmonares

absolutos podem ser estimados em sujeitos saudáveis e 2) a identificação da alteração de

parâmetros, como assincronia toracoabdominal, presença de movimento paradoxal entre os

Page 104: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

104

compartimentos da parede torácica, τ, MRPD, e ½RT, representam um sinal precoce de

fraqueza muscular inspiratória em sujeitos com ELA.

Page 105: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

105

Referências

1. Gallo V, Wark PA, Jenab M, et al. Prediagnostic body fat and risk of death from amyotrophic

lateral sclerosis: the EPIC cohort. Neurology 2013; 80:829-838.

2. Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a

database population. Validation of a scoring system and a model for survival prediction.

Brain 1995; 118 ( Pt 3):707-719.

3. Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet 2007; 369:2031-2041.

4. Huisman MH, de Jong SW, van Doormaal PT, et al. Population based epidemiology of

amyotrophic lateral sclerosis using capture-recapture methodology. J Neurol Neurosurg

Psychiatry 2011; 82:1165-1170.

5. Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. The Lancet; 377:942-

955.

6. van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet 2017;

390:2084-2098.

7. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of

amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 7:639-649.

8. Chio A, Logroscino G, Hardiman O, et al. Prognostic factors in ALS: A critical review.

Amyotroph Lateral Scler 2009; 10:310-323.

9. Magnus T, Beck M, Giess R, et al. Disease progression in amyotrophic lateral sclerosis:

predictors of survival. Muscle Nerve 2002; 25:709-714

10. Andrews JA, Meng L, Kulke SF, et al. Association Between Decline in Slow Vital Capacity

and Respiratory Insufficiency, Use of Assisted Ventilation, Tracheostomy, or Death in

Patients With Amyotrophic Lateral Sclerosis. JAMA Neurol 2018; 75:58-64.

11. Polkey MI, Lyall RA, Yang K, et al. Respiratory Muscle Strength as a Predictive Biomarker

for Survival in Amyotrophic Lateral Sclerosis. Am J Respir Crit Care Med 2017; 195:86-

95.

12. Cedarbaum JM, Stambler N. Performance of the Amyotrophic Lateral Sclerosis Functional

Rating Scale (ALSFRS) in multicenter clinical trials. J Neurol Sci 1997; 152 Suppl 1:S1-

9.

13. Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: a revised ALS functional rating

scale that incorporates assessments of respiratory function. Journal of the Neurological

Sciences 1999; 169:13-21.

14. Rooney J, Burke T, Vajda A, et al. What does the ALSFRS-R really measure? A

longitudinal and survival analysis of functional dimension subscores in amyotrophic

lateral sclerosis. J Neurol Neurosurg Psychiatry 2017; 88:381-385.

15. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary

neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment

Study Group. Neurology 1996; 46:1244-1249.

16. Kaufmann P, Levy G, Thompson JL, et al. The ALSFRSr predicts survival time in an ALS

clinic population. Neurology 2005; 64:38-43.

Page 106: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

106

17. Kollewe K, Mauss U, Krampfl K, et al. ALSFRS-R score and its ratio: a useful predictor for

ALS-progression. J Neurol Sci 2008; 275:69-73.

18. Bauer M, Czell D, Hartmann S, et al. Limitations of sniff nasal pressure as an outcome

measurement in amyotrophic lateral sclerosis patients in a clinical trial. Respiration

2012; 84:306-311.

19. Pinto S, Geraldes R, Vaz N, et al. Changes of the phrenic nerve motor response in

amyotrophic lateral sclerosis: longitudinal study. Clin Neurophysiol 2009; 120:2082-

2085.

20. Macklem PT. Normal and abnormal function of the diaphragm. Thorax 1981; 36:161-163.

21. Macklem PT. Respiratory muscles: the vital pump. Chest 1980; 78:753-758.

22. Hammer J, Newth CJ. Assessment of thoraco-abdominal asynchrony. Paediatr Respir Rev

2009; 10:75-80.

23. Chihara K, Kenyon CM, Macklem PT. Human rib cage distortability. J Appl Physiol (1985)

1996; 81:437-447.

24. Diaz CE, Deoras KS, Allen JL. Chest wall motion before and during mechanical ventilation

in children with neuromuscular disease. Pediatr Pulmonol 1993; 16:89-95.

25. Allen JL, Wolfson MR, McDowell K, et al. Thoracoabdominal asynchrony in infants with

airflow obstruction. Am Rev Respir Dis 1990; 141:337-342.

26. Laghi F, Tobin MJ. Disorders of the respiratory muscles. Am J Respir Crit Care Med 2003;

168:10-48.

27. Kravitz RM. Airway clearance in Duchenne muscular dystrophy. Pediatrics 2009; 123 Suppl

4:S231-235.

28. Smith JA, Aliverti A, Quaranta M, et al. Chest wall dynamics during voluntary and induced

cough in healthy volunteers. J Physiol 2012; 590:563-574.

29. Lo Mauro A, Aliverti A. Physiology of respiratory disturbances in muscular dystrophies.

Breathe (Sheff) 2016; 12:318-327.

30. Lechtzin N. Respiratory effects of amyotrophic lateral sclerosis: problems and solutions.

Respir Care 2006; 51:871-881; discussion 881-874.

31. Lechtzin N, Shade D, Clawson L, et al. Supramaximal inflation improves lung compliance in

subjects with amyotrophic lateral sclerosis. Chest 2006; 129:1322-1329.

32. Corcia P, Pradat PF, Salachas F, et al. Causes of death in a post-mortem series of ALS

patients. Amyotroph Lateral Scler 2008; 9:59-62.

33. Benditt JO. The neuromuscular respiratory system: physiology, pathophysiology, and a

respiratory care approach to patients. Respir Care 2006; 51:829-837; discussion 837-

829.

34. Fallat RJ, Jewitt B, Bass M, et al. Spirometry in amyotrophic lateral sclerosis. Arch Neurol

1979; 36:74-80.

35. Stewart H, Eisen A, Road J, et al. Electromyography of respiratory muscles in amyotrophic

lateral sclerosis. J Neurol Sci 2001; 191:67-73.

Page 107: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

107

36. Schiffman PL, Belsh JM. Effect of inspiratory resistance and theophylline on respiratory

muscle strength in patients with amyotrophic lateral sclerosis. Am Rev Respir Dis 1989;

139:1418-1423.

37. Kang SW, Bach JR. Maximum insufflation capacity: vital capacity and cough flows in

neuromuscular disease. Am J Phys Med Rehabil 2000; 79:222-227.

38. Kang SW, Bach JR. Maximum insufflation capacity. Chest 2000; 118:61-65.

39. Pinto S, Carvalho M. Breathing new life into treatment advances for respiratory failure in

amyotrophic lateral sclerosis patients. Neurodegener Dis Manag 2014; 4:83-102.

40. Jackson CE, Rosenfeld J, Moore DH, et al. A preliminary evaluation of a prospective study

of pulmonary function studies and symptoms of hypoventilation in ALS/MND patients. J

Neurol Sci 2001; 191:75-78.

41. Laroche CM, Mier AK, Moxham J, et al. The value of sniff esophageal pressures in the

assessment of global inspiratory muscle strength. Am Rev Respir Dis 1988; 138:598-

603.

42. Miller JM, Moxham J, Green M. The maximal sniff in the assessment of diaphragm function

in man. Clin Sci (Lond) 1985; 69:91-96.

43. Pinto S, Pinto A, De Carvalho M. Do bulbar-onset amyotrophic lateral sclerosis patients

have an earlier respiratory involvement than spinal-onset amyotrophic lateral sclerosis

patients? Eura Medicophys 2007; 43:505-509.

44. Czaplinski A, Yen AA, Appel SH. Forced vital capacity (FVC) as an indicator of survival and

disease progression in an ALS clinic population. J Neurol Neurosurg Psychiatry 2006;

77:390-392.

45. Cheung HJ, Cheung L. Coaching patients during pulmonary function testing: A practical

guide. Can J Respir Ther 2015; 51:65-68.

46. Aliverti A, Pedotti A. Opto-electronic plethysmography. Monaldi Arch Chest Dis 2003;

59:12-16.

47. Cala SJ, Kenyon CM, Ferrigno G, et al. Chest wall and lung volume estimation by optical

reflectance motion analysis. J Appl Physiol (1985) 1996; 81:2680-2689.

48. Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen

during breathing. J Appl Physiol 1967; 22:407-422.

49. Romagnoli I, Lanini B, Binazzi B, et al. Optoelectronic Plethysmography has Improved our

Knowledge of Respiratory Physiology and Pathophysiology. Sensors (Basel) 2008;

8:7951-7972.

50. Aliverti A, Dellaca R, Pelosi P, et al. Compartmental analysis of breathing in the supine and

prone positions by optoelectronic plethysmography. Ann Biomed Eng 2001; 29:60-70.

51 Lo Mauro A, D'Angelo MG, Romei M, et al. Abdominal volume contribution to tidal volume

as an early indicator of respiratory impairment in Duchenne muscular dystrophy. Eur

Respir J 2010; 35:1118-1125.

52. Aliverti A, Stevenson N, Dellaca RL, et al. Regional chest wall volumes during exercise in

chronic obstructive pulmonary disease. Thorax 2004; 59:210-216.

Page 108: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

108

53. Sarmento A, Resqueti V, Dourado-Junior M, et al. Effects of Air Stacking Maneuver on

Cough Peak Flow and Chest Wall Compartmental Volumes of Subjects With

Amyotrophic Lateral Sclerosis. Arch Phys Med Rehabil 2017; 98:2237-2246.e2231.

54. LoMauro A, Romei M, D'Angelo MG, et al. Determinants of cough efficiency in Duchenne

muscular dystrophy. Pediatr Pulmonol 2014; 49:357-365.

55. Lanini B, Masolini M, Bianchi R, et al. Chest wall kinematics during voluntary cough in

neuromuscular patients. Respir Physiol Neurobiol 2008; 161:62-68.

56. Layton AM, Moran SL, Roychoudhury A, et al. Non-invasive measurement of abnormal

ventilatory mechanics in amyotrophic lateral sclerosis. Muscle Nerve 2016; 54:270-276.

57. Aliverti A, Quaranta M, Chakrabarti B, et al. Paradoxical movement of the lower ribcage at

rest and during exercise in COPD patients. Eur Respir J 2009; 33:49-60.

58. Dohna-Schwake C, Ragette R, Teschler H, et al. IPPB-assisted coughing in neuromuscular

disorders. Pediatr Pulmonol 2006; 41:551-557.

59. Ishikawa Y, Bach JR, Komaroff E, et al. Cough augmentation in Duchenne muscular

dystrophy. Am J Phys Med Rehabil 2008; 87:726-730.

60. Panitch HB. Airway clearance in children with neuromuscular weakness. Curr Opin Pediatr

2006; 18:277-281.

61. Sarmento A, de Andrade AF, Lima IN, et al. Air Stacking: A Detailed Look Into Physiological

Acute Effects on Cough Peak Flow and Chest Wall Volumes of Healthy Subjects.

Respir Care 2017.

62. Aliverti A, Dellaca R, Pelosi P, et al. Optoelectronic plethysmography in intensive care

patients. Am J Respir Crit Care Med 2000; 161:1546-1552.

63 Carry PY, Baconnier P, Eberhard A, et al. Evaluation of respiratory inductive

plethysmography: accuracy for analysis of respiratory waveforms. Chest 1997; 111:910-

915.

64. Hardart MK, Burns JP, Truog RD. Respiratory support in spinal muscular atrophy type I: a

survey of physician practices and attitudes. Pediatrics 2002; 110:e24.

65. Mador MJ, Kufel TJ. Effect of inspiratory muscle fatigue on inspiratory muscle relaxation

rates in healthy subjects. Chest 1992; 102:1767-1773.

66. Grassino A, Macklem PT. Respiratory muscle fatigue and ventilatory failure. Annu Rev Med

1984; 35:625-647.

67. Bigland-Ritchie B, Johansson R, Lippold OC, et al. Contractile speed and EMG changes

during fatigue of sustained maximal voluntary contractions. J Neurophysiol 1983;

50:313-324.

68 American Thoracic Society/European Respiratory S. ATS/ERS Statement on respiratory

muscle testing. Am J Respir Crit Care Med 2002; 166:518-624.

69 Pereira CAC, Neder, J.A. Sociedade Brasileira de Pneumologia e Tisiologia – SBPT.

Diretrizes para testes de função pulmonar. J. Bras. Pneumol. 2002; 29 (3):207-221.

70. Neder JA, Andreoni S, Lerario MC, et al. Reference values for lung function tests: II.

Maximal respiratory pressures and voluntary ventilation. Brazilian Journal of Medical

and Biological Research 1999; 32:719-727.

Page 109: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

109

71. Araujo PR, Resqueti VR, Nascimento Junior J, et al. Reference values for sniff nasal

inspiratory pressure in healthy subjects in Brazil: a multicenter study. J Bras Pneumol

2012; 38:700-707.

72. Orsini M, Oliveira AB, Nascimento OJ, et al. Amyotrophic Lateral Sclerosis: New

Perpectives and Update. Neurol Int 2015; 7:5885.

73. Just N, Bautin N, Danel-Brunaud V, et al. The Borg dyspnoea score: a relevant clinical

marker of inspiratory muscle weakness in amyotrophic lateral sclerosis. Eur Respir J

2010; 35:353-360.

74. Bach JR, Mahajan K, Lipa B, et al. Lung insufflation capacity in neuromuscular disease. Am

J Phys Med Rehabil 2008; 87:720-725.

75. Iandelli I, Aliverti A, Kayser B, et al. Determinants of exercise performance in normal men

with externally imposed expiratory flow limitation. J Appl Physiol (1985) 2002; 92:1943-

1952.

76. Smith JA, Aliverti A, Quaranta M, et al. Chest wall dynamics during voluntary and induced

cough in healthy volunteers. J Physiol 2012; 590:563-574.

77 O'Donnell CR, Bankier AA, Stiebellehner L, et al. Comparison of plethysmographic and

helium dilution lung volumes: which is best for COPD? Chest 2010; 137:1108-1115.

78. Ward ME, Ward JW, Macklem PT. Analysis of human chest wall motion using a two-

compartment rib cage model. J Appl Physiol (1985) 1992; 72:1338-1347.

79. Allen J. Pulmonary complications of neuromuscular disease: a respiratory mechanics

perspective. Paediatr Respir Rev 2010; 11:18-23.

80 Prisk GK, Hammer J, Newth CJ. Techniques for measurement of thoracoabdominal

asynchrony. Pediatr Pulmonol 2002; 34:462-472.

81. Mortola JP, Sant'Ambrogio G. Motion of the rib cage and the abdomen in tetraplegic

patients. Clin Sci Mol Med 1978; 54:25-32.

82. Kinnear WJM, Sovani M, Khanna A, et al. Correction of Paradoxical Ribcage Motion in

Scoliosis by Non-Invasive Ventilation. Spine (Phila Pa 1976) 2017.

83. Perez A, Mulot R, Vardon G, et al. Thoracoabdominal pattern of breathing in neuromuscular

disorders. Chest 1996; 110:454-461.

84. Similowski T, Attali V, Bensimon G, et al. Diaphragmatic dysfunction and dyspnoea in

amyotrophic lateral sclerosis. Eur Respir J 2000; 15:332-337.

85. Pinto S, de Carvalho M. Correlation between Forced Vital Capacity and Slow Vital Capacity

for the assessment of respiratory involvement in Amyotrophic Lateral Sclerosis: a

prospective study. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:86-91.

86. Morgan RK, McNally S, Alexander M, et al. Use of Sniff nasal-inspiratory force to predict

survival in amyotrophic lateral sclerosis. Am J Respir Crit Care Med 2005; 171:269-274.

87. Gordon PH, Cheng B, Montes J, et al. Outcome measures for early phase clinical trials.

Amyotroph Lateral Scler 2007; 8:270-273.

88. Miller RG, Jackson CE, Kasarskis EJ, et al. Practice parameter update: the care of the

patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management,

and cognitive/behavioral impairment (an evidence-based review): report of the Quality

Page 110: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

110

Standards Subcommittee of the American Academy of Neurology. Neurology 2009;

73:1227-1233.

89. Pinto S, de Carvalho M. Motor responses of the sternocleidomastoid muscle in patients with

amyotrophic lateral sclerosis. Muscle Nerve 2008; 38:1312-1317.

90. Lyall RA, Donaldson N, Polkey MI, et al. Respiratory muscle strength and ventilatory failure

in amyotrophic lateral sclerosis. Brain 2001; 124:2000-2013.

91. Koulouris N, Vianna LG, Mulvey DA, et al. Maximal relaxation rates of esophageal, nose,

and mouth pressures during a sniff reflect inspiratory muscle fatigue. Am Rev Respir

Dis 1989; 139:1213-1217

92. Esau SA, Bellemare F, Grassino A, et al. Changes in relaxation rate with diaphragmatic

fatigue in humans. J Appl Physiol Respir Environ Exerc Physiol 1983; 54:1353-1360.

93. Tzelepis GE, Kasas V, McCool FD. Inspiratory muscle adaptations following pressure or

flow training in humans. Eur J Appl Physiol Occup Physiol 1999; 79:467-471.

94. Coirault C, Chemla D, Lecarpentier Y. Relaxation of diaphragm muscle. J Appl Physiol

(1985) 1999; 87:1243-1252.

95 Evangelista MA, Dias FAL, Dourado Junior MET, et al. Noninvasive assessment of

respiratory muscle strength and activity in Myotonic dystrophy. PLoS One 2017;

12:e0177318.

96 Garcia-Rio F, Mediano O, Pino JM, et al. Noninvasive measurement of the maximum

relaxation rate of inspiratory muscles in patients with neuromuscular disorders.

Respiration 2006; 73:474-480.

97. Dawson MJ, Gadian DG, Wilkie DR. Mechanical relaxation rate and metabolism studied in

fatiguing muscle by phosphorus nuclear magnetic resonance. J Physiol 1980; 299:465-

484.

98. Esau SA, Bye PT, Pardy RL. Changes in rate of relaxation of sniffs with diaphragmatic

fatigue in humans. J Appl Physiol Respir Environ Exerc Physiol 1983; 55:731-735.

99. Polkey MI, Kyroussis D, Mills GH, et al. Inspiratory pressure support reduces slowing of

inspiratory muscle relaxation rate during exhaustive treadmill walking in severe COPD.

Am J Respir Crit Care Med 1996; 154:1146-1150.

100. Roca J, Burgos F, Barbera JA, et al. Prediction equations for plethysmographic lung

volumes. Respir Med 1998; 92:454-460.

Page 111: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

111

Lista de publicações

Artigos originais publicados em jornais com revisão por pares

SARMENTO, A.; ALIVERTI, A. ; MARQUES, L. ; PENNATI, F. ; DOURADO JUNIOR, M. E. ; FREGONEZI, G. A. F. ; RESQUETI, V. R. Multiparametric analysis of sniff nasal inspiratory pressure test in middle stage amyotrophic lateral sclerosis. Frontiers in Neurology, 2018 (in press).

SARMENTO, A.; ANDRADE, A. F. D. ; LIMA, Í. N. D. F ; ALIVERTI, A.; FREGONEZI, G. A. F.; RESQUETI, V. R. Air Stacking: A Detailed Look Into Physiological Acute Effects on Cough Peak Flow and Chest Wall Volumes of Healthy Subjects. Respiratory Care, v. 62, p. respcare.05189-432-443, 2017.

EVANGELISTA, M. A. ; DIAS, F. A. L. ; DOURADO-JUNIOR, M. E. ; NASCIMENTO, G. C. ; SARMENTO, A. ; GUALDI, L. P. ; ALIVERTI, A. ; RESQUETI, V. R. ; FREGONEZI, G. A. F. Noninvasive assessment of respiratory muscle strength and activity in Myotonic dystrophy. PLoS One, v. 12, p. e0177318, 2017.

SARMENTO, A.; RESQUETI, V.; DOURADO-JÚNIOR, M. E. ; SATURNINO, L.; ALIVERTI, A.; FREGONEZI, G.; ANDRADE, A. D. Effects of Air Stacking Maneuver on Cough Peak Flow and Chest Wall Compartmental Volumes of Subjects With Amyotrophic Lateral Sclerosis. Archives of Physical Medicine and Rehabilitation, v.

98, p. 2237-2246.e1, 2017. AGUIAR, K. A. A. ; SARMENTO, A. ; DINIZ, J. ; FREGONEZI, G. A. ; ANDRADE, A. F. D. ; RESQUETI, V. R. . A single section of stretch of the respiratory muscles does not influence the pulmonary volume of asthmatics during exercise. Journal of Respiratory and Cardiovascular Physical Therapy, v. 3, p. 3-13, 2016.

SARMENTO, A.; RESQUETI, V. R. ; FREGONEZI, G. A. F. ; ALIVERTI, A. Assessment of gas compression and lung volume during air stacking maneuver. European Journal of Applied Physiology, v. 117, p. 189-199, 2016.

Page 112: Universidade Federal do Rio Grande do Norte Centro de ... · LMN – Lower motor neuron UMN – Upper motor neuron PCF – Peak cough flow IP – Inspiratory paradox time OEP –

112

Resumos apresentados em congressos internacionais com publicações em anais

SARMENTO, A.; FREGONEZI, G. A. F. ; DOURADO JUNIOR, M. E. ; ALIVERTI, ANDREA ; ANDRADE, A. F. D. ; PARREIRA, V. F. ; RESQUETI, V. R. Thoracoabdominal asynchrony and paradoxical motion during cough and quiet breathing in middle stage amyotrophic lateral sclerosis subjects. In: European Respiratory Society

Congress, 2017, Milão. European Respiratory Journal - Clinical Respiratory Physiology, Exercise and Functional Imaging, 2017. v. 50. p. PA2226. SARMENTO, A.; RESQUETI, V. R. ; DOURADO JUNIOR, M. E. ; ALIVERTI, A. ; FREGONEZI, G. A. F. ; ANDRADE, A. F. D. Effects of air stacking maneuver on cough peak flow and chest wall compartmental volumes of amyotrophic lateral sclerosis subjects. In: European Respiratory Society Congress, 2017, Milão.

European Respiratory Journal - Clinical Respiratory Physiology, Exercise and Functional Imaging, 2017. v. 50. p. PA2224. LIRA, M. G. A. ; SARMENTO, A. ; ALIVERTI, A. ; OLIVEIRA, L. M. ; DIAS, F. A. L. ; RESQUETI, V. R. ; FREGONEZI, G. A. F. Inspiratory muscle maximum relaxation rate measured from maximal sniff nasal pressure in patients with Amyotrophic Lateral Sclerosis. In: European Respiratory Society Congress, 2017,

Milão. European Respiratory Journal - Clinical Respiratory Physiology, Exercise and Functional Imaging, 2017. v. 50. p. PA2225. SARMENTO, A.; RESQUETI V. R. ; SATURNINO, L. ; FREGONEZI, G. A. ; ALIVERTI, A. ; DOURADO JUNIOR, M. E. ; ANDRADE, A. F. D. Benefícios da técnica de Air Stacking em sujeitos com Esclerose Lateral Amiotrófica.

In: 10° Congresso da Associação Latino Americana de Tórax, 2016, Santiago. Arch Bronconeumol, 2016. v. 52. p. 61-61. SARMENTO, A.; RESQUETI, V. R. ; LIMA, I. N. D. F. ; GUALDI, L. P. ; FREGONEZI, G. A. F. ; ALIVERTI, A. ; ANDRADE, A. F. D. Acute effects of air stacking maneuver on chest wall volumes and peak cough flow of healthy subjects. In: European Respiratory Society Congress, 2015, Amsterdam. European Respiratory Journal -

Clinical Respiratory Physiology, Exercise and Functional Imaging, 2015. v. 46. p. PA2278. RESQUETI, V. R. ; DINIZ, J. ; AGUIAR, K. A. A. ; GUALDI, L. P. ; SARMENTO, A. ; ANDRADE, A. F. D. ; FREGONEZI, G. A. F. Electrical activity behavior of respiratory and peripheral muscles during incremental shuttle walking test in asthmatic subjects. In: European Respiratory Society Congress, 2015, Amsterdam.

European Respiratory Journal - Clinical Respiratory Physiology, Exercise and Functional Imaging, 2015. v. 46. p. PA4825.