78
Universidade Presbiteriana Mackenzie Curso de Engenharia El ´ etrica Pr´ aticas de Engenharia El´ etrica II Notas de Aula Prof. Marcio Eisencraft Primeiro semestre de 2006

Universidade Presbiteriana Mackenzie Práticas de Engenharia

Embed Size (px)

Citation preview

Page 1: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Universidade Presbiteriana Mackenzie

Curso de Engenharia Eletrica

Praticas de Engenharia Eletrica II

Notas de Aula

Prof. Marcio Eisencraft

Primeiro semestre de 2006

Page 2: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 1 – Professor Marcio Eisencraft – julho 2005

1

Universidade Presbiteriana Mackenzie

Práticas de Engenharia Elétrica II Professor Marcio Eisencraft ([email protected])

2° semestre 2005

1. Objetivos

Apresentar uma introdução à modelagem de sinais e sistemas através de

variáveis aleatórias e processos estocásticos. Estes conceitos são muito im-

portantes para o Engenheiro Elétrico atual sendo aplicado em diversas á-

reas como:

o Telecomunicações;

o Automação e Controle (Controle estocástico)

o Projeto e dimensionamento de redes de computadores

o Projeto e dimensionamento de redes de Distribuição de energia

o Estudos de Engenharia biomédica

o Mercados financeiros.

2. Metodologia das aulas

Aulas expositivas utilizando transparências e quadro negro.

3. Conteúdo programático

O curso abordará:

1. Probabilidades (PEEBLES, 1993; p. 1-38)

2. A Variável Aleatória (PEEBLES, 1993; p.39-74).

3. Operações sobre uma variável – Esperança (PEEBLES, 1993; pp. 75-99).

4. Múltiplas variáveis aleatórias (PEEBLES, 1993; p. 100-133).

5. Operações sobre múltiplas variáveis (PEEBLES, 1993; p. 134-162).

Page 3: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 1 – Professor Marcio Eisencraft – julho 2005

2

6. Processos aleatórios (PEEBLES, 1993; p. 163-198).

4. Avaliação

A média do aluno será formada por três provas (P1, P2 e PAF).

A média final será calculada como:

4221 PAFPPMF ++

=

As provas serão realizadas no horário das aulas nos seguintes dias:

PROVA Turma 10F (5ª feira) Peso

P1 22/09 Peso 1

P2 27/10 Peso 2

PAF A ser definida Peso dois

5. Bibliografia

As notas de aula do curso estão organizadas aula a aula e estão disponíveis

na página do curso http://meusite.mackenzie.com.br/marcioft/.

Livros que serão usados durante o semestre:

COSTA NETO, P. L. O. Probabilidades: resumos teóricos, exercícios re-

solvidos, exercícios propostos [por] Pedro Luiz de Oliveira Neto [e] Mel-

vin Cymbalista. São Paulo: Edgard Blücher, 1993.

DEVORE, J. L. Probability and Statistics for Engineering and the

Sciences, 6th edition, New York: Duxbury, 2003.

HSU, H. Schaum´s outline Theory and Problems of Probability, random

variables, and random processes, New York: McGraw-Hill, 1997.

Page 4: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 1 – Professor Marcio Eisencraft – julho 2005

3

HSU, H. Schaum´s outline Theory and Problems of Analog and Digital

Communications. 2nd edition, New York: McGraw-Hill, 2003.

KAY, S. M. Fundamentals of Statistical Signal Processing: Estimation

Theory. New Jersey: Prentice Hall, 1993.

LATHI, B. P. Modern Digital and Analog Communication Systems, 3rd

edition, New York: Oxford University, 1998.

MONTGOMERY, D. C. Estatística aplicada e probabilidade para enge-

nheiros, 2ª edição, Rio de Janeiro: LTC, 2003.

PAPOULIS, A.; PILLAI, U. Probability, random variables and stochastic

processes. 4th edition, New York: McGraw-Hill, 2002.

PEEBLES, P. Z. Probability, random variables and random signal prin-

ciples. 3rd edition, New York: McGraw-Hill, 1993.

5. Exemplos de questões a serem debatidas no curso

1. (PEEBLES, 1993; p.69) A central de um sistema de intercomunicação pro-

vê música para seis quartos de um hospital. A probabilidade de que cada

quarto seja ativado e consuma potência a qualquer instante é 0,4. Quando

ativado, o quarto consome 0,5W.

(a) Encontre e faça um gráfico das funções distribuição e densidade para a va-

riável aleatória “potência fornecida pela central”.

Page 5: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 1 – Professor Marcio Eisencraft – julho 2005

4

(b) Se o amplificador da estação principal fica sobrecarregado quando mais do

que 2W é necessário, qual a probabilidade de sobrecarga?

2. A potência refletida por uma aeronave com um formato complexo é rece-

bida por um radar e pode ser descrita por uma variável aleatória exponen-

cial P . A densidade de P é, portanto,

( )⎪⎩

⎪⎨

⎧>

=

contrário caso , 0

0 ,10

0

PePPf

PP

P

em que 0P é o valor médio da potência recebida. Em um instante particular, P

pode ter um valor diferente do seu valor médio. Qual a probabilidade de que a

potência recebida seja maior do que o seu valor médio?

3. Uma tensão aleatória X tem densidade gaussiana segundo

( )( )

2

2

2

221

X

Xax

X

X exf σ

πσ

−−

=

Esta tensão é aplicada a um amplificador linear que gera em sua saída a tensão

( ) baXXTY +== . Determine a função densidade de probabilidade de Y , ( )yfY .

4. (PEEBLES, 1993; p.173) Num sistema de controle, sabe-se que uma ten-

são aleatória X tem média 21 −== mX V e momento de segunda ordem

922 == mX V2. Se a tensão X é amplificada por um amplificador que for-

nece como saída 25,1 +−= XY encontre 2Xσ , Y , 2Y , 2

Yσ e XYR .

5. (HSU, 2003; p. 149) Todos os dispositivos e máquinas produzidos falham

mais cedo ou mais tarde. Se a taxa de falha é constante, o tempo até uma

Page 6: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 1 – Professor Marcio Eisencraft – julho 2005

5

falha T é modelado por uma variável aleatória exponencial. Suponha que

se descobriu que uma classe particular de chips de memória para computa-

dores tem uma lei de falha exponencial dada por:

( ) ( )tuaetf atT

−= ,

com t em horas.

(a) Medidas mostraram que a probabilidade de que o tempo de falha exceda

104 horas para chips desta classe é de 1−e ( 368,0≈ ). Calcule o valor do parâme-

tro a para este caso.

(b) Usando o valor do parâmetro a determinado na parte (a), calcule o tempo

0t tal que a probabilidade de que o tempo de falha seja menor do que 0t seja

de 0,05.

6. (PEEBLES, 1993; p. 71) Uma linha de produção fabrica resistores de

1000Ω que devem satisfazer uma tolerância de 10%.

(a) Se a resistência é descrita adequadamente por uma variável aleatória gaus-

siana X com 1000=Xa Ω e 40=xσ Ω, qual fração de resistores espera-se que

seja rejeitada?

(b) Se a máquina não está ajustada corretamente, os resistores produzidos pas-

sam a ter 1050=Xa Ω (5% de erro). Qual fração será rejeitada agora?

7. (GIROD et al., 2003; p. 224) A figura a seguir mostra dois processos alea-

tórios A e B que possuem valores esperados idênticos. Porém, as funções-

amostra do processo A variam mais lentamente no tempo do que as do

processo B . O que pode se esperar das funções de autocorrelação dos pro-

cessos A e B ?

Page 7: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 1 – Professor Marcio Eisencraft – julho 2005

6

Page 8: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 2 – Professor Marcio Eisencraft – julho 2005

1

Aula 2 - Probabilidades - Definição Bibliografia

PEEBLES, P. Z. Probability, random variables and random signal principles. 3rd edition, New York:

McGraw-Hill, 1993.

LATHI, B. P. Modern Digital and Analog Communication Systems, 3rd edition, New York: Oxford Uni-

versity, 1998.

1. Probabilidades

1.0. Introdução ao curso e ao capítulo

Os objetivos principais deste curso são introduzir os princípios de sinais

aleatórios e prover as ferramentas através das quais pode-se lidar com sis-

temas envolvendo tais sinais.

Para chegar a esses objetivos, talvez a primeira coisa que deve ser feita é

definir o que é um sinal aleatório:

Sinal aleatório (ou randômico) é uma forma de onda que pode ser caracteri-

zada apenas de uma maneira probabilística. Em geral, pode ser uma forma de

onda desejada ou não.

Exemplos:

O ruído de fundo ouvido quando escutamos uma rádio. A forma de onda

causadora do ruído, se observada em um osciloscópio, apareceria como

uma tensão flutuando aleatoriamente com o tempo. Ela é indesejável já que

interfere com nossa habilidade de ouvir o programa de rádio e é chamada

de ruído.

Num sistema de televisão, o ruído aparece na forma de interferência de i-

magem, freqüentemente chamada de “snow”.

Num sistema sonar, sons do mar gerados de forma aleatória geram ruídos

que interferem com os ecos desejados.

Page 9: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 2 – Professor Marcio Eisencraft – julho 2005

2

Bits em uma comunicação entre computadores parecem flutuar aleatoria-

mente com o tempo entre os níveis zero e um gerando um sinal aleatório.

A saída de tensão em um gerador eólico é aleatória por cauda da variação

randômica da velocidade do vento.

A tensão de um detector solar varia aleatoriamente devido à imprevisibili-

dade das condições das nuvens e do tempo.

A tensão de um analisador de vibração acoplado a um carro dirigido sobre

um terreno irregular

Para definir precisamente as características de um sinal aleatório precisa-

mos dos conceitos da teoria das probabilidades.

1.1. Definições de conjuntos

Um conjunto é uma coleção de objetos. Os objetos são chamados de ele-

mentos do conjunto.

Existem dois modos para especificar os elementos de um conjunto:

o método tabular – todos os elementos são enumerados explicita-

mente. Exemplo: 9;8;7;6 .

o método da regra – o conteúdo do conjunto é determinado por uma

regra. Exemplo: 10 e 5 entre inteiros .

Um conjunto é dito enumerável se seus elementos podem ser postos em

correspondência 1-a-1 (biunívoca) com os números naturais. Caso contrá-

rio será não-enumerável.

Um conjunto é dito vazio (φ ) se não possui elementos.

Um conjunto finito é aquele que contém um número finito de elementos.

Caso contrário será infinito.

Dois conjuntos, A e B, são disjuntos ou mutuamente exclusivos se não têm

nenhum elemento em comum.

Page 10: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 2 – Professor Marcio Eisencraft – julho 2005

3

Exercícios

1. Os conjuntos a seguir representam os possíveis valores que podem ser ob-

tidos na medição de certa corrente:

5,85,0

;3;2;17;5;3;1

≤<===

cCBA

125

14;12;10;8;6;4;20

≤<−===

fFED

Determine se são finitos ou não, enumeráveis ou não e especificados de forma

tabular ou por regra.

2. Ainda com relação aos conjuntos do exercício anterior, diga se é verdadei-

ro ou falso:

(a) BA ⊂ (d) FC ⊂

(b) CA ⊂ (e) FD ⊄

(c) FA ⊄ (f) BE ⊂

3. Escreva todos os pares de conjuntos que são mutuamente exclusivos.

o O conjunto que contém todos os objetos em discussão é chamado de con-

junto universo ( S ).

Exercício

4. Suponha que se considere o problema de jogar um dado. Estamos interes-

sados nos números que aparecem na face superior. Pede-se:

(a) Escreva o conjunto universo S de todos os resultados possíveis.

(b) Num jogo, suponha que uma pessoa ganhe se sair um número ímpar. Es-

creva o conjunto A dos resultados que interessam a esta pessoa.

Page 11: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 2 – Professor Marcio Eisencraft – julho 2005

4

(c) Suponha que uma outra pessoa vence se sair um número menor ou igual a

4. Escreva o conjunto de todos os resultados que interessam a esta pessoa.

(d) Quantos subconjuntos de S existem?

1.2. Operações com conjuntos

Igualdade e diferença

o Dois conjuntos A e B são iguais se todos os elementos de A estão presen-

tes em B e vice-versa.

o A diferença de dois conjuntos BA − é o conjunto contendo todos os ele-

mentos de A que não estão em B .

União e intersecção

o A união de dois conjuntos ( BA∪ ) é o conjunto de todos os elementos per-

tencentes a A , B ou ambos.

o A intersecção de dois conjuntos ( BA∩ ) é o conjunto de elementos comuns

a A e B . Se A e B forem mutuamente exclusivos, φ=∩ BA .

Complemento

o O complemento de um conjunto A , denotado por A é o conjunto de todos

os elementos que não estão em A .

Exercício

5. Dados os conjuntos:

12inteiros1 ≤≤=S 11;10;9;8;7;6;2=B

12,5,3,1=A 8;7;6;4;3;1=C

pede-se:

(a) BA∪ (d) BA∩ (g) A

(b) CA∪ (e) CA∩ (h) B

(c) CB ∪ (f) CB ∩ (i) C

Page 12: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 2 – Professor Marcio Eisencraft – julho 2005

5

Álgebra de conjuntos

o Valem as propriedades comutativa, distributiva e associativa para união e

intersecção.

1.3. Probabilidade introduzida através de conjuntos

Experimentos e espaços amostrais

o Espaço amostral: conjunto de todos os possíveis resultados de um experi-

mento. Símbolo: S .

Espaços amostrais discretos e contínuos

o O espaço amostral é dito discreto se S é enumerável. O espaço amostral é

dito contínuo se S é não-enumerável.

Eventos

o Um evento é definido como um subconjunto do espaço amostral. Como um

evento é um conjunto, todas as definições e operações anteriores aplicadas

a conjuntos se aplicam a eventos. Por exemplo, se dois eventos não têm re-

sultados comuns eles serão mutuamente exclusivos.

Definição de probabilidade e axiomas

o A cada evento definido no espaço amostral S associa-se um número não

negativo chamado de probabilidade. A probabilidade é, portanto uma fun-

ção; é uma função dos eventos definidos. Adota-se a notação ( )AP para a

“probabilidade do evento A ”.

o A probabilidade deve satisfazer os seguintes axiomas para quaisquer even-

tos definidos num espaço amostral S :

Page 13: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 2 – Professor Marcio Eisencraft – julho 2005

6

Axioma um: ( ) 0≥AP

Axioma 2: ( ) 1=SP

Axioma três: ( )∑==

=⎟⎟⎠

⎞⎜⎜⎝

⎛ N

nn

N

nn APAP

11∪ se φ=∩ nm AA

Modelo matemático de experimentos

o Para resolver problemas de probabilidades são necessários 3 passos:

(1) estabelecimento do espaço amostral

(2) definição dos eventos de interesse

(3) associar probabilidade aos eventos de forma que os axiomas sejam satisfei-

tos

Exercício

6. Um experimento consiste em observar a soma dos números que saem

quando dois dados são jogados. Determine a probabilidade dos seguintes

eventos:

(a) 7soma ==A

(b) 11soma8 ≤<=B

(c) soma10 <=C

7. [PEEBLES, p. 30] Um dado é jogado. Encontre a probabilidade dos even-

tos obtido éímpar número um=A , obtido é 3 que domaior número um=B , BA∪

e BA∩ .

Page 14: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

1

Aula 3 - Probabilidade conjunta e condicional

Independência estatística Bibliografia

PEEBLES, P. Z. Probability, random variables and random signal principles. 3rd edition, New York:

McGraw-Hill, 1993. Páginas 13 – 35.

LATHI, B. P. Modern Digital and Analog Communication Systems, 3rd edition, New York: Oxford Uni-

versity, 1998. Páginas 439 – 445.

1.4. Probabilidade conjunta e condicional

Probabilidade conjunta

( )BAP ∩ é chamada de probabilidade conjunta para dois eventos A e B

que se interceptam no espaço amostral.

Estudando um diagrama de Venn, obtém-se:

( ) ( ) ( ) ( ) ( ) ( )BPAPBAPBPAPBAP +≤∩−+=∪ .

Portanto,

( ) ( ) ( ) ( )BAPBPAPBAP ∪−+=∩

Para eventos mutuamente exclusivos, ( ) φ=∩ BAP e ( ) ( ) ( )BAPBPAP ∪=+ .

Probabilidade condicional

Dado um evento B com probabilidade não-nula, define-se a probabilidade

condicional de um evento A , dado B , como:

( ) ( )( )BP

BAPBAP ∩=

Page 15: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

2

Exercício

1. Em uma caixa existem 100 resistores tendo a resistência e a tolerância

mostradas na tabela a seguir:

Figura 1 – Resistores em uma caixa (PEBLES, 1993).

Considere que um resistor é selecionado da caixa e assuma que cada resistor

tem a mesma possibilidade de ser escolhido. Defina três eventos: A como “se-

lecionar um resistor de 47Ω”, B como “selecionar um resistor com tolerância

de 5%” e C como “selecionar um resistor de 100Ω”. A partir da tabela, de-

termine as seguintes probabilidades:

(a) ( )AP (b) ( )BP (c) ( )CP (d) ( )BAP ∩ (e) ( )CAP ∩

(f) ( )CBP ∩ (g) ( )BAP (h) ( )CAP (i) ( )CBP

Probabilidade Total

Dado N eventos mutuamente exclusivos nB , Nn ,,2,1 …= , cuja união

seja o espaço amostral S , a probabilidade de qualquer evento A pode ser

escrita como:

Page 16: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

3

( ) ( ) ( )∑=

=N

nnn BPBAPAP

1

Figura 2 – N eventos mutuamente exclusivos nB e A (PEEBLES, 1993).

Teorema de Bayes

O Teorema de Bayes, um dos mais importantes e usados na área de proba-

bilidades e na teoria de estimação estabelece que:

( ) ( ) ( )( )AP

BPBAPAP nn=nB

.

Usando a probabilidade total,

Page 17: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

4

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )NN

nn

BPBAPBPBAPBPBAPBPBAP

AP+++

=2211

nB

.

As probabilidades ( )nBP são geralmente chamadas de probabilidades a

priori já que são aplicadas a eventos antes de ocorrer o experimento.

As probabilidades ( )ABP n são chamadas de a posteriori já que elas se apli-

cam quando um evento A é obtido.

Exercício

2. Um sistema de comunicação binário elementar consiste de um transmissor

que envia um de dois símbolos possíveis (1 ou 0) sobre um canal para o re-

ceptor. O canal ocasionalmente causa erros de forma que um 1 é detectado

quando foi transmitido um zero e vice-versa.

O espaço amostral tem dois elementos (0 ou 1). Denota-se por iB , 2,1=i ,

como os eventos “o símbolo antes do canal é um” e “o símbolo antes do

canal é zero”, respectivamente. Além disso, define-se iA , 2,1=i , como os

eventos “o símbolo depois do canal é um” e “o símbolo depois do canal é

zero”, respectivamente.

Assume-se que as probabilidades de que os símbolos um e zero sejam sele-

cionados para transmissão sejam ( ) 6,01 =BP e ( ) 4,02 =BP .

O seguinte diagrama mostra as probabilidades condicionais que descrevem

o efeito que o canal tem sobre os símbolos transmitidos:

Page 18: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

5

Figura 3 – Sistema de comunicação binário simétrico [PEEBLES].

Pede-se:

(a) as probabilidades de se receber um um e de receber um 0 ( )1AP e ( )2AP .

(b) as probabilidades de acerto de bit ( )11 ABP e ( )22 ABP .

(c) as probabilidades de erro de bit ( )12 ABP e ( )21 ABP .

1.5. Eventos independentes

Sejam dois eventos A e B tais que ( ) 0≠AP e ( ) 0≠BP . Dizemos que estes

eventos são estatisticamente independentes se a probabilidade de ocorrên-

cia de um evento não afeta a ocorrência do outro evento. Matematicamen-

te, temos:

( ) ( )APBAP = e ( ) ( )BPABP =

Por substituição no teorema de Bayes, temos que, para eventos estatistica-

mente independentes,

Page 19: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

6

( ) ( ) ( )BPAPBAP ⋅=∩

Cuidado: não confundir independência estatística com eventos mutuamente

exclusivos. Dois eventos serem independentes significa que a ocorrência de

um não depende, não é influenciado, pela ocorrência do outro. Dois even-

tos serem mutuamente exclusivos significa que um não pode ocorrer se ou-

tro ocorreu.

Em suma,

A e B Independentes: ( ) ( ) ( )BPAPBAP ⋅=∩

A e B mutuamente exclusivos: ( ) 0=∩BAP

Pelas definições, dois eventos não podem ser simultaneamente independen-

tes e mutuamente exclusivos.

Exercícios

3. Em um experimento, uma carta é selecionada de um conjunto comum de

52 cartas. Defina os eventos A como “selecionar um rei”, B como “sele-

cionar um valete ou uma rainha” e C “selecionar uma carta de copas”.

Pede-se:

(a) Determine ( )AP , ( )BP e ( )CP .

(b) Determine as probabilidades conjuntas ( )BAP ∩ , ( )CBP ∩ e ( )CAP ∩ .

(c) Determine se os pares A e B , A e C e B e C são estatisticamente inde-

pendentes ou não.

4. Considere a retirada de quatro cartas de um conjunto com 52 cartas. Sejam

os eventos 4321 ,,, AAAA definidos como a retirada de um ás na primei-

Page 20: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

7

ra, segunda, terceira e quarta tentativas. Determine a probabilidade conjun-

ta ( )4321 AAAAP ∩∩∩ (ou seja, retirar quatro ases seguidos) nos seguintes

casos:

(a) cada carta é recolocada no baralho após ser retirada.

(b) as cartas retiradas não são retornadas ao baralho.

Em qual dos dois experimentos os eventos 4321 ,,, AAAA são independen-

tes?

1.6. Tentativas de Bernoulli

Problema: Seja A com ( ) pAP = um evento elementar tendo um de dois

possíveis resultados como elemento. Deseja-se repetir esse experimento N

vezes e determinar a probabilidade do evento A ser observado k vezes

nessas N tentativas. Esse experimento é chamado de tentativas de Ber-

noulli (“Bernoulli trials”).

Pode-se mostrar que:

( ) ( ) kNk ppkN

kAP −−⎟⎟⎠

⎞⎜⎜⎝

⎛= 1 vezes exatamenteocorrer ,

com ( )!!!

kNkN

kN

−=⎟⎟

⎞⎜⎜⎝

⎛ .

Quando N é muito grande, uma aproximação para a fórmula acima é a a-

proximação de De Moivre-Laplace:

( )( )

( )( )⎥⎦

⎤⎢⎣

⎡−

−−

−=

pNpNpk

pNpkAP

12exp

121 vezes exatamenteocorrer

2

π

Page 21: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

8

Exercícios

5. Um submarino deseja afundar um porta-aviões. Ele terá sucesso apenas se

dois ou mais torpedos atingirem a embarcação. Se o submarino dispara três

torpedos e a probabilidade de cada torpedo atingir o alvo é 0,4, qual a pro-

babilidade do porta-aviões naufragar?

6. Em uma cultura usada para pesquisa biológica, o crescimento inevitável de

bactérias ocasionalmente estraga os resultados de um experimento que re-

quer pelo menos três de quatro culturas não estejam contaminadas para se

obter um ponto de dado. Experiências mostram que cerca de 6 em cada 100

culturas são aleatoriamente contaminadas por bactérias.

Se um experimento requer três pontos de dados, encontre a probabilidade

de sucesso para um conjunto de 12 culturas (três pontos de dados usando

quatro culturas cada).

7. Suponha que certa arma automática dispara balas por 3 segundos a uma

taxa de 2400 por minuto e que a probabilidade de acertar um alvo seja 0,4.

Encontre a probabilidade de que exatamente 50 balas atinjam o alvo. (Use

a aproximação de De Moivre-Laplace).

8. (PEEBLES, 1993; p. 32) Uma companhia vende amplificadores de alta fi-

delidade capazes de gerar potências de 10, 25 e 50W. Ela tem em mãos 100

unidades de 10W das quais 15% são defeituosas, 70 unidades de 25W dos

quais 10% são defeituosos e 30 dos de 50W dos quais 10% são defeituosos.

(a) Qual a probabilidade de que um amplificador vendido entre os de 10W

seja defeituoso?

Page 22: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 3 – Professor Marcio Eisencraft – julho 2005

9

(b) Se cada amplificador de potência é vendido com mesma probabilidade,

qual a probabilidade de uma unidade selecionada aleatoriamente ser de

50W e defeituoso?

(c) Qual a probabilidade de uma unidade aleatoriamente selecionada para

venda ser defeituosa?

Page 23: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 4 – Professor Marcio Eisencraft – agosto 2005

1

Aula 4 - Variáveis aleatórias

Funções densidade e distribuição Bibliografia

PEEBLES, P. Z. Probability, random variables and random signal principles. 3rd edition, New York:

McGraw-Hill, 1993. Páginas 41 – 51.

LATHI, B. P. Modern Digital and Analog Communication Systems, 3rd edition, New York: Oxford Uni-

versity, 1998. Páginas 445 – 452.

2. A variável aleatória

2.0. Introdução

Neste capítulo é introduzido um conceito que permite definir eventos de

uma forma mais consistente. Este novo conceito é o de variáveis aleatórias

e se constitui em uma poderosa ferramenta na solução de problemas proba-

bilísticos práticos.

2.1. O conceito de variável aleatória

Definição de uma variável aleatória

Define-se uma variável aleatória real como uma função real dos elementos

de um espaço amostral S .

Representa-se uma variável aleatória por letras maiúsculas (como W , X ou

Y ) e um valor particular que ela assume por letras minúsculas (como w , x

ou y ).

Assim, dado um experimento definido pelo espaço amostral S com ele-

mentos s , atribui-se a cada s o número real ( )sX de acordo com alguma

regra e diz-se que ( )sX é uma variável aleatória.

Variáveis aleatórias contínuas e discretas

Uma variável aleatória é discreta se possui apenas valores discretos.

Page 24: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 4 – Professor Marcio Eisencraft – agosto 2005

2

Uma variável aleatória é contínua se abrange um contínuo de valores.

Exercícios

1. Um experimento consiste em jogar um dado e uma moeda. Considere uma

variável aleatória X tal que: (1) uma cara (H) corresponde a valores positi-

vos de X que são iguais aos números que aparecem no dado e (2) uma co-

roa (T) corresponde a valores negativos de X cuja magnitude é o dobro do

número que aparece no dado. Pede-se:

(a) Represente o espaço amostral deste experimento;

(b) Para cada evento s deste espaço amostral, determine ( )sX .

2. Um espaço amostral é definido pelo conjunto 4;3;2;1=S sendo as

probabilidades de seus elementos ( )2441 =P , ( )

2432 =P e ( )

2473 =P . Definin-

do a variável aleatória ( ) 3ssXX == , calcule as probabilidades:

(a) 1=XP (b) 8=XP (c) 27=XP (d) 64=XP

3. Suponha que a temperatura de uma localidade seja modelada como uma

variável aleatória contínua T que se sabe encontrar entre -5ºC e 35ºC. A-

lém disso, considere que todos os valores 355 ≤≤− t são igualmente pro-

váveis. Calcule:

(a) 10≤TP (b) 205 ≤≤ TP (c) 10=TP

2.2. Função distribuição

A probabilidade xXP ≤ é a probabilidade do evento xX ≤ . É um núme-

ro que depende de x . Esta função, denotada por ( )xFX , é chamada de fun-

Page 25: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 4 – Professor Marcio Eisencraft – agosto 2005

3

ção distribuição de probabilidade cumulativa da variável aleatória X . As-

sim,

( ) xXPxFX ≤=

Freqüentemente, ( )xFX é chamada de função distribuição de X . O argu-

mento x é qualquer número real entre ∞− e ∞ .

Propriedades:

(1) ( ) 0=∞−XF

(2) ( ) 1=∞XF

(3) 10 ≤≤ XF

(4) ( ) ( )21 xFxF XX ≤ se 21 xx <

(5) ( ) ( )1221 xFxFxXxP XX −=≤<

Exercícios

4. Considere que X assuma valores discretos no conjunto

3;5,1;7,0;5,0;1 −− . As probabilidades correspondentes são

2,0;4,0;1,0;2,0;1,0 . Determine e faça um gráfico de ( )xFX .

2.3. Função Densidade

A função densidade de probabilidade ( )xf X é definida como a derivada da

função de distribuição:

( ) ( )dx

xdFxf X

X =

Page 26: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 4 – Professor Marcio Eisencraft – agosto 2005

4

Freqüentemente, chama-se ( )xf X apenas de função densidade da variável

aleatória X .

Existência

( )xf X existe desde que a derivada de ( )xFX exista. No caso de variáveis

aleatórias discretas, pode ser necessária a utilização de funções impulso

( ) ( )dx

xdux =δ para sua representação.

Propriedades da função densidade

(1) ( )xf X≤0 para todo x

(2) ( ) 1=∫

∞−

dxxf X

(3) ( ) ( )∫∞−

=x

XX dfxF ξξ

(4) ( )∫=<<2

1

21

x

xX dxxfxXxP

Exercícios

5. A tensão contínua X sobre um capacitor é uma variável aleatória cuja fun-

ção densidade ( )xg X é dada na figura a seguir:

Page 27: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 4 – Professor Marcio Eisencraft – agosto 2005

5

Figura 2 – Função densidade triangular (PEEBLES, 1993).

(a) Determine a para que ( )xg X seja uma função densidade.

(b) Para o valor de a do item anterior, determine e esboce ( )xGX .

6. Suponha que uma tensão aleatória X tenha a densidade de probabilidade

triangular do exercício anterior com 80 =x , 5=α e 511

==α

a . Determine a

probabilidade 7,65,4 ≤< XP .

7. A quantidade acessos normalizada a um servidor durante um dia é descrita

por uma variável aleatória X que tem distribuição:

( ) ( )⎥⎥⎦

⎢⎢⎣

⎡−=

−bx

X exuxF2

1

Determine a função densidade ( )xf X .

8. (PEEBLES, 2001, p.69) A central de um sistema de intercomunicação

provê música para seis quartos de um hospital. A probabilidade de que ca-

Page 28: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 4 – Professor Marcio Eisencraft – agosto 2005

6

da quarto seja ativado e consuma potência a qualquer instante é 0,4. Quan-

do ativado, o quarto consome 0,5W.

(a) Encontre e faça um gráfico das funções distribuição e densidade para a

variável aleatória “potência fornecida pela central”.

(b) Se o amplificador da estação principal fica sobrecarregado quando mais

do que 2W é necessário, qual a probabilidade de sobrecarga?

Page 29: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

1

Aula 5 - Exemplos de funções densidade e distribuição Bibliografia

PEEBLES, P. Z. Probability, random variables and random signal principles. 4ª edição, McGraw-Hill,

2001. Páginas 51 – 65.

LATHI, B. P. Modern Digital and Analog Communication Systems, 3ª edição, Oxford University Press,

1998. Páginas 452 – 463.

2. 4. A variável aleatória gaussiana.

Uma variável aleatória X é chamada de gaussiana se sua função densidade

de probabilidade tem a forma

( )( )

2

2

2

221

x

xax

x

X exf σ

πσ

−−

=

em que 0>xσ e ∞<<∞− xa são constantes reais.

A densidade gaussiana é a mais importante de todas as densidades e apare-

ce praticamente em todas as áreas da ciência e da Engenharia.

Esta importância vem de sua descrição precisa de muitas quantidades práti-

cas e significado no mundo real, especialmente as quantidades resultantes

de muitos efeitos aleatórios pequenos que se somam agindo para criar a

quantidade de interesse.

A função distribuição é dada por:

( )( )

∫∞−

−−

=x a

x

X dexF x

x

ξπσ

σξ

2

2

2

221

.

Esta integral não tem forma fechada conhecida. Para obter ( )xFX , define-

se:

Page 30: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

2

( ) ∫∞−

−=

x

dexF ξπ

ξ2

2

21

.

Com esta definição,

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

x

xX

axFxF

σ

A função ( )xF ou a função ( ) ( )xFxQ −= 1 são tabeladas e podem ser encon-

tradas em muitos livros para 0≥x . Para 0<x , usa-se ( ) ( )xFxF −=− 1 .

Figura 1 – Valores tabelados de ( )xF [PEEBLES].

Page 31: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

3

Exercícios

1. A relação sinal-ruído no canal de um sistema de comunicações dada em dB

pode ser aproximada por uma variável aleatória gaussiana tendo 3=xa e

2=xσ . Encontre a probabilidade do evento 5.5≤X .

2. Assuma que a altura das nuvens sobre o solo em um determinado local é

uma variável aleatória gaussiana X com 1830=xa m e 460=xσ m. Encontre

a probabilidade de que uma nuvem esteja a uma altura superior a 2750m.

3. Seja uma variável aleatória gaussiana para a qual 7=xa e 5,0=Xσ . Encon-

tre a probabilidade do evento 3,7≤X .

2.5. Outros exemplos de distribuições e densidades

Binomial

Para 10 << p e …,2,1=N então a função

( ) ( ) ( )∑=

−−⎟⎟⎠

⎞⎜⎜⎝

⎛=

N

k

kkX kxpp

kN

xf0

1 δ

é chamada de função densidade binomial.

A densidade binomial pode ser aplicada aos experimentos de Bernoulli. É

aplicada a muitos problemas de detecção em radar e sonar e muitos expe-

rimentos tendo apenas dois possíveis resultados.

Integrando, obtém-se a função distribuição binomial:

( ) ( ) ( )∑=

−−⎟⎟⎠

⎞⎜⎜⎝

⎛=

N

k

kkX kxupp

kN

xF0

1 .

A figura a seguir ilustra as funções densidades e distribuição binomial para

6=N e 25,0=p .

Page 32: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

4

Figura 2 – Exemplo de densidade e distribuição binomial [PEEBLES].

Poisson

Densidade e distribuição dadas por:

( ) ( )∑∞

=

− −=0 !k

kb

X kxkbexf δ

( ) ( )∑∞

=

− −=0 !k

kb

X kxukbexF

em que 0>b é uma constante positiva.

Caso limite em que ∞→N e 0→p da distribuição binomial com bNp = .

Usada para descrever número de unidades defeituosas numa linha de pro-

dução, o número de chamadas telefônicas feitas durante um período de

Page 33: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

5

tempo, o número de elétrons emitidos de uma pequena porção de um cáto-

do num intervalo de tempo.

Se o intervalo de tempo de interesse tem duração T e os eventos sendo

contados ocorrem a uma taxa λ , então b é dado por:

Tb λ=

Exercício

4. Assuma que a chegada de carros num posto de gasolina é uma distribuição

de Poisson e ocorrem a uma taxa média de 50/h. O posto tem apenas uma

bomba. Assumindo que todos os carros necessitam de 1 minuto para abas-

tecer, qual a probabilidade de que uma fila se forme na bomba?

Uniforme

A densidade de probabilidade uniforme e a sua função de transferência são

definidas por:

( )⎪⎩

⎪⎨⎧ ≤≤

−=contrário caso ,0

,1 bxaabxf X

( )

⎪⎪⎩

⎪⎪⎨

<≤−−

<

=

bx

bxaabax

ax

xFX

,1

,

,0

para constantes reais ∞<<∞− a e ab > .

Page 34: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

6

Figura 3 – Funções densidade e distribuição uniforme [PEEBLES].

Aplicação importante: quantização de sinais amostrados precedente à codi-

ficação em sistemas de comunicações digitais erro introduzido por arre-

dondamentos são distribuídos uniformemente.

Exponencial

As funções distribuição e densidade são:

( )( )

⎪⎩

⎪⎨

<

>=

−−

ax

axebxf

bax

X

,0

,1

( )( )

⎪⎩

⎪⎨⎧

<>−=

−−

axaxexF b

ax

X ,0

,1

para números reais ∞<<∞− a e 0>b .

Page 35: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

7

Figura 4 – Densidade e distribuição exponencial [PEEBLES].

Aplicações: descrição do tamanho das gotas de chuva, flutuação da inten-

sidade de um sinal de radar recebido da reflexão de certas aeronaves.

Exercício

5. A potência refletida por uma aeronave com um formato complexo é rece-

bida por um radar e pode ser descrita por uma variável aleatória exponen-

cial P . A densidade de P é, portanto,

( )⎪⎩

⎪⎨

⎧>

=

contrário caso , 0

0 ,10

0

PePPf

PP

P

Page 36: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

8

em que 0P é o valor médio da potência recebida. Em um instante particular, P

pode ter um valor diferente do seu valor médio. Qual a probabilidade de que a

potência recebida seja maior do que o seu valor médio?

Rayleigh

As funções densidade e distribuição de Rayleigh são

( ) ( )( )

⎪⎩

⎪⎨

<

≥−=

−−

ax

axeaxbxf

bax

X

, 0

,22

( )( )

⎪⎩

⎪⎨⎧

<≥−=

−−

axaxexF b

ax

X

, 0 ,1

2

para constantes reais ∞<<∞− a e 0>b .

Figura 5 – Funções densidade e distribuição de Rayleigh [PEEBLES].

Page 37: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 5 – Professor Marcio Eisencraft – agosto 2005

9

Aplicações: descreve a envoltória de um tipo de ruído quando passa por um

filtro passa-faixas. Também é importante na análise de erros em vários sis-

temas de medição.

Exercício

6. O valor 0xx = tal que 00 xXPxXP >=≤ é chamado de mediana de uma

distribuição. Determine a mediana de uma distribuição de Rayleigh.

7. [PEEBLES, p.72] Uma tensão aleatória gaussiana X para o qual 0=Xa e

2,4=Xσ V aparece através de um resistor de 100Ω com uma potência má-

xima tolerável de 0,25W. Qual a probabilidade de que esta tensão cause

uma potência instantânea que exceda a máxima do resistor?

Page 38: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 7 – Professor Marcio Eisencraft – setembro 2005

1

Aula 7 - Questões da Prova P1 1. (SOARES NETO; CYMBALISTA, 1974) Um método A de diagnóstico de certa en-

fermidade dá resultados positivos para 80% dos portadores da enfermidade e para 10%

dos sãos. Um método B de diagnóstico da mesma enfermidade dá positivo para 70%

dos portadores e para 5% dos sãos. Se 15% da população são portadores da dita enfer-

midade, calcular a probabilidade: (a) (1,0) de uma pessoa fornecer resultado positivo pelos dois métodos.

(b) (1,5) de, entre duas pessoas enfermas, pelo menos uma fornecer resultado positivo por

algum método.

2. (SOARES NETO; CYMBALISTA, 1974) Considere dois eventos A e B tais que:

( )41

=AP ; ( )21

=ABP ; ( )41

=BAP .

(a) (1,0) Os eventos A e B são mutuamente exclusivos? Justifique.

(b) (0,5) Os eventos A e B são independentes? Justifique.

(c) (1,0) Calcule ( )BAP , ( ) ( )BAPBAP + e ( )BAP .

3. (HSU, 1996) Seja X uma variável aleatória contínua com função densidade de proba-

bilidade:

( )⎩⎨⎧ <<

=contrário caso,0

10, xkxxf X .

em que k é uma constante.

(a) (0,5) Determine o valor de k e esboce ( )xf X .

(b) (1,0) Encontre e esboce a função distribuição de probabilidade correspondente.

(c) (1,0) Encontre ⎟⎠⎞

⎜⎝⎛ ≤< 2

41 XP .

4. (SOARES NETO; CYMBALISTA, 1974) (2,5) No circuito abaixo é igualmente prová-

vel que a chave seletora esteja nas posições A ou B , bem como que os interruptores

Page 39: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 7 – Professor Marcio Eisencraft – setembro 2005

2

P , Q , R , S e T estejam abertos ou fechados. Calcular a probabilidade de que a lâm-

pada esteja acesa. Se a lâmpada está acesa, qual a probabilidade de que a chave seletora

esteja na posição A ?

Page 40: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 8 – Professor Marcio Eisencraft – outubro 2005

1

Aula 8 - Valor esperado e variância Bibliografia

PEEBLES, P. Z. Probability, random variables and random signal principles. 3rd edition, New York:

McGraw-Hill, 1993. Páginas 66 – 87.

LATHI, B. P. Modern Digital and Analog Communication Systems, 3rd edition, New York: Oxford Uni-

versity, 1998. Páginas 463 – 472.

3. Operações sobre uma variável aleatória – Valor esperado

3.0. Introdução

Introduziremos neste capítulo algumas operações importantes que podem

ser realizadas sobre uma variável aleatória.

3.1. Valor esperado

Valor esperado é o nome dado ao processo de tomar uma média quando

uma variável aleatória está envolvida.

Para uma variável aleatória X , usa-se a notação [ ]XE , que pode ser lida

como “a esperança matemática de X ”, “o valor esperado de X ”, “o valor

médio de X ” ou “a média estatística de X ”.

Ocasionalmente, usa-se a notação X que é lida da mesma forma que [ ]XE ,

ou seja, [ ]XEX = .

Vamos começar com um exemplo:

Exercício

1. Noventa pessoas foram selecionadas aleatoriamente e o valor em reais fra-

cionário das moedas em seus bolsos foi contado. Se a conta dava acima de

um real, o valor inteiro era descartado e tomava-se apenas a parte que ia de

0 a 99 centavos. Observou-se que 8, 12, 28, 22, 15 e 5 pessoas tinham 18,

Page 41: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 8 – Professor Marcio Eisencraft – outubro 2005

2

45, 64, 72, 77 e 95 centavos respectivamente. Determine o valor médio da

quantidade de centavos nos bolsos.

Valor esperado de uma variável aleatória

Seguindo o exemplo do exercício anterior, o valor esperado de uma variá-

vel aleatória X é definido por:

[ ] ( )∫∞

∞−

== dxxxfXXE X .

Caso X seja discreta com N possíveis valores de ix com probabilidades

( )ixP , então:

[ ] ( )∑=

=N

nii xPxXE

1

Exercício

2. A potência captada na entrada de uma antena interna pode ser modelada

aproximadamente por uma variável aleatória contínua distribuída exponen-

cialmente com:

( )( )

⎪⎩

⎪⎨

<

>=

−−

ax

axebxf

bax

X

,0

,1

Determine o valor médio da potência recebida.

Dica: ( )axa

edxxeax

ax +−=−

−∫ 12 .

Page 42: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 8 – Professor Marcio Eisencraft – outubro 2005

3

Valor esperado de uma função de uma variável aleatória

Como ficará evidente na próxima seção, muitos parâmetros úteis relacio-

nados a uma variável aleatória X podem ser obtidos encontrando o valor

esperado de uma função real ( )⋅g de X . Pode-se mostrar que este valor es-

perado é dado por

( )[ ] ( ) ( )∫∞

∞−

= dxxfxgXgE X (1)

Se X for uma variável aleatória discreta,

( )[ ] ( ) ( )∑=

=N

nii xPxgXgE

1

Exercícios

3. Sabe-se que uma dada tensão aleatória pode ser representada por uma vari-

ável aleatória de Rayleigh V com função densidade dada por:

( ) ( )( )

⎪⎩

⎪⎨

<

≥−=

−−

av

aveavbvf

bav

V

,0

,22

com 0=a e 5=b . Esta tensão é aplicada a um dispositivo que gera uma ten-

são ( ) 2VVgY == que é igual, numericamente, à potência de V (sobre um re-

sistor de 1Ω). Encontre a potência média de V .

4. Um problema em sistemas de comunicações é como definir a informação

de uma fonte. Considere a modelagem de uma fonte capaz de emitir L

símbolos distintos (mensagem) representada pelos valores

Page 43: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 8 – Professor Marcio Eisencraft – outubro 2005

4

Lixi ,,2,1, …= de uma variável aleatória discreta X ( 2=L é o caso

binário). Seja ( )ixP a probabilidade do símbolo ixX = . Pergunta-se, qual a

informação contida nesta fonte, em média. É necessário fazer três conside-

rações.

Primeiro, considera-se que a informação deve ser maior para saídas da fon-

te com baixa probabilidade. Por exemplo, contém pouca informação prever

tempo quente e seco para o deserto do Saara já que estas condições preva-

lecem quase todo o tempo. Mas prever tempo frio e chuvas fortes carrega

“muita informação”. A seguir, as informações de duas fontes independen-

tes devem se somar de acordo e finalmente a informação deve ser uma

quantidade positiva (uma escolha feita) e zero para um evento que ocorre

com certeza. A única função com estas propriedades é a logarítmica. Como

duas quantidades representam o menor número para uma escolha, o loga-

ritmo na base 2 é escolhido para medir informação e sua unidade é chama-

da de bit.

Para uma fonte, definimos a informação de um símbolo ix como

( ) ( )[ ]ii

xPxP 22 log1log −=⎥

⎤⎢⎣

⎡ . Determine então a informação média de uma fon-

te, ou entropia, discreta com L símbolos possíveis.

3.2. Momentos

Uma aplicação imediata do valor esperado de uma função ( )⋅g de uma va-

riável aleatória X é o cálculo de momentos. Dois tipos de momentos são

de interesse, os em torno da origem e os em torno da média.

Momentos em torno da origem

A função

Page 44: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 8 – Professor Marcio Eisencraft – outubro 2005

5

( ) …,2,1,0== nXXg n

quando usada em (1) dá o momento em torno da origem da variável aleatória

X . Denotando o n-ésimo momento por nm , temos:

[ ] ( )∫∞

∞−

== dxxfxXEm Xnn

n

Claramente, 10 =m , a área sob a função ( )xf X e Xm =1 , o valor esperado

de X .

Momentos centrais

Momentos em torno da média são chamados de momentos centrais e são

simbolizados por nμ . São definidos pelo valor esperado da função

( ) ( ) …,2,1,0, =−= nXXXg n

que é

( )[ ] ( ) ( )∫∞

∞−

−=−= dxxfXxXXE Xnn

nμ .

O momento 10 =μ , a área sob ( )xf X , enquanto 01 =μ . (Por quê?).

Variância e distorção (skew)

O segundo momento central 2μ é tão importante que é conhecido por um

nome especial: variância representada por 2Xσ . Assim, a variância é dada

por:

Page 45: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 8 – Professor Marcio Eisencraft – outubro 2005

6

( )[ ] ( ) ( )∫∞

∞−

−=−== dxxfXxXXE XX22

22 μσ .

A raiz positiva Xσ da variância é chamada de desvio padrão de X e é uma

medida do espalhamento da função ( )xf X ao redor da média.

A variância pode ser determinada conhecendo-se o primeiro e segundo

momento em torno da origem. Temos:

( )[ ] [ ] [ ] [ ] 212

222222 22 mmXXEXXEXXXXEXXEX −=+−=+−=−=σ

O terceiro momento central ( )[ ]33 XXE −=μ é uma medida da assimetria de

( )xf X ao redor de 1mXx == . É chamada de distorção (skew) da função

densidade.

Se uma densidade é simétrica em torno de Xx = então ela tem distorção

zero.

O terceiro momento central normalizado 33

Xσμ é chamado de coeficiente de

distorção (skewness).

Exercícios

5. Seja X uma variável aleatória com a função densidade exponencial do E-

xercício dois. Determine a variância de X .

6. Ainda para a variável X do exercício anterior,

(a) Mostre que 3233 3 XXX X −−= σμ .

(b) Calcule 3μ e o coeficiente de distorção.

Dicas: ⎥⎦

⎤⎢⎣

⎡+−=∫ 32

22 22

mmx

mxedxex mxmx . ⎥

⎤⎢⎣

⎡−+−=∫ 432

233 663

mmx

mx

mxedxex mxmx .

Page 46: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 8 – Professor Marcio Eisencraft – outubro 2005

7

7. (PEEBLES, 2001, p.101) Certo medidor é projetado para ler pequenas ten-

sões, porém comete erros por causa de ruídos. Os erros são representados

de forma acurada por uma variável aleatória gaussiana com média nula e

desvio padrão 10-3V. Quando o nível DC é desconectado, descobre-se que

a probabilidade da leitura do medidor ser positiva devido ao ruído é 0,5.

Quando a tensão DC é presente, a probabilidade torna-se 0,2514. Qual o

nível DC?

Page 47: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

1

Aula 9 - Variáveis aleatórias múltiplas Bibliografia PEEBLES, P. Z. Probability, random variables and random signal principles. 3rd edition, New York:

McGraw-Hill, 1993. Páginas 109 – 122.

HSU, H. Schaum´s outline Theory and Problems of Analog and Digital Communications. 2nd edition,

New York: McGraw-Hill, 2003. Páginas 133-135.

4. Múltiplas variáveis aleatórias

4.0. Introdução

• Estendemos agora a teoria para incluir duas variáveis aleatórias na discri-

ção de um fenômeno. Por exemplo, a posição de um ponto aleatório no

plano.

4.1.Variáveis aleatórias vetoriais

• Suponha que duas variáveis aleatórias X e Y sejam definidas num espaço

amostral S em que valores específicos de X e Y são denotados por x e y

respectivamente.

• Então, qualquer para ordenado de números ( )yx, pode ser convenientemen-

te considerado como um ponto aleatório no plano xy .

• O ponto pode ser tomado como o valor específico de uma variável aleatória

vetorial ou um vetor aleatório. A Figura 1 a seguir ilustra o mapeamento

envolvido em ir de S para o plano xy .

4.2. Distribuição conjunta e suas propriedades

As probabilidades dos eventos xXA ≤= e yYB ≤= já foram definidas

como funções de x e y , respectivamente e chamadas de funções distribui-

ção de probabilidades:

Page 48: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

2

Figura 1 – Mapeamento do espaço amostral S para o plano xy (PEEBLES,

2001).

( ) ( ) yYPyF

xXPxF

Y

X

≤=

≤=.

Será introduzido agora um novo conceito para incluir a probabilidade do

evento conjunto yYxX ≤≤ , .

Função Distribuição Conjunta

Define-se a probabilidade do evento conjunto yYxX ≤≤ , , que é uma fun-

ção dos números x e y como uma função distribuição de probabilidades

conjunta e a denotamos pelo símbolo ( )yxF YX ,, . Assim,

( ) yYxXPyxF YX ≤≤= ,,,

( )BAPyYxXP ∩=≤≤ , em que o evento BA∩ foi definido em S .

Page 49: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

3

Exercício

1. Assuma que o espaço amostral conjunto JS tenha apenas três elementos

possíveis: (1,1), (2,1) e (3,3). As probabilidades destes elementos são

( ) 2,01,1 =P , ( ) 3,01,2 =P e ( ) 5,03,3 =P . Encontre ( )yxF YX ,, .

Resposta:

Figura 2 – Função distribuição conjunta do Exercício 1 [PEEBLES].

Propriedades da distribuição conjunta

(1) ( ) 0,, =−∞∞−YXF ( ) 0,, =∞− yF YX ( ) 0,, =−∞xF YX .

(2) ( ) 1,, =∞∞YXF .

(3) ( ) 1,0 , ≤≤ yxF YX

(4) ( )yxF YX ,, é uma função não-decrescente de x e y .

(5) ( ) ( ) ( ) ( ) 0,,,,, 212112,21,11,22, ≥≤≤≤≤=−−+ yYyxXxPyxFyxFyxFyxF YXYXYXYX .

Page 50: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

4

(6) ( ) ( )xFxF XYX =∞,, ( ) ( )yFyF YYX =∞,, .

Funções de distribuição marginal

A propriedade (6) acima afirma que a função distribuição de uma variável

aleatória pode ser obtida fazendo o valor da outra variável aleatória ser in-

finito em ( )yxF YX ,, . As funções ( )xFX ou ( )yFY obtidas desta forma são

chamadas de funções de distribuição marginal.

Exercício

2. Encontre expressões explícitas para ( )yxF YX ,, e as distribuições marginais

( )xFX e ( )yFY para o espaço amostral conjunto do Exercício um.

4.3. Densidade conjunta e suas propriedades

Função densidade conjunta

Para duas variáveis aleatórias X e Y , a função densidade de probabilidade

conjunta, denotada por ( )yxf YX ,, é definida como a segunda derivada da

função distribuição conjunta onde quer que ela exista.

( ) ( )yx

yxFyxf YX

YX ∂∂

∂=

,, ,

2

,

Propriedades da densidade conjunta

(1) ( ) 0,, ≥yxf YX

(2) ( ) 1,, =∫ ∫∞

∞−

∞−

dxdyyxf YX

Page 51: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

5

(3) ( ) ( )∫ ∫∞− ∞−

=y x

YXYX ddfyxF 2121,, ,, ξξξξ

(4) ( ) ( )∫ ∫∞−

∞−

=x

YXX ddfxF 1221, , ξξξξ ( ) ( )∫ ∫∞−

∞−

=y

YXY ddfyF 2121, , ξξξξ

(5) ( )∫ ∫=≤<≤<2

1

2

1

,, ,2121

y

y

x

xYX dxdyyxfyYyxXxP

(6) ( ) ( )∫∞

∞−

= dyyxfxf YXX ,, ( ) ( )∫∞

∞−

= dxyxfyf YXY ,,

As propriedades (1) e (2) podem ser usadas para testar se uma dada função

pode ser uma função densidade válida.

Exercício

3. Seja b uma constante positiva. Determine seu valor para que a função

( )⎪⎩

⎪⎨

⎧ ≤≤≤≤=

contrário caso,0

20 e 20,cos

,πyxybe

yxgx

seja uma função densidade de probabilidade válida.

Função Densidade Marginal

As funções ( )xf X e ( )yfY da propriedade (6) são chamadas de funções den-

sidade de probabilidade marginal ou apenas funções densidade marginal.

Elas são as funções densidades das variáveis simples X e Y , definidas co-

mo as derivadas das funções distribuição marginais:

( ) ( )

( ) ( )dy

ydFyf

dxxdFxf

Y

X

=

=

Page 52: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

6

Exercício

4. As tensões X e Y foram medidas em volts em dois pontos diferentes de

um circuito elétrico. Encontre ( )xf X e ( )yfY se a função densidade de pro-

babilidade conjunta dada dessas tensões é dada por:

( ) ( ) ( ) ( )1, , +−= yxYX xeyuxuyxf .

4.4. Densidade e distribuição condicional

A função distribuição condicional de uma variável aleatória X , dado al-

gum evento B é definida como:

( ) ( )BP

BxXPBxXPBxFX∩≤

=≤= .

A função densidade condicional correspondente foi definida através da de-

rivada

( ) ( )dx

BxdFBxf X

X = .

Densidade e distribuição condicional – condição pontual

Pode-se mostrar que, para variáveis discretas, vale:

( ) ( )( ) ( )∑

=

−==N

ii

k

kikX xx

yPyxP

yYxf1

,δ .

Para o caso contínuo vale:

Page 53: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

7

( ) ( ) ( )( )yf

yxfyxfyYxf

Y

YXX

,,===

Exercício

5. Encontre ( )xyfY para a função densidade definida no Exercício quatro.

4.5. Independência Estatística

Dois eventos A e B são independentes se (e somente se):

( ) ( ) ( )BPAPBAP =∩ .

Assim, pela definição de funções distribuição, duas variáveis aleatórias X e

Y são estatisticamente independentes se:

( ) ( ) ( )yFxFyxF YXYX ⋅=,,

ou

( ) ( ) ( )yfxfyxf YXYX ⋅=,, .

Usando a densidade e a distribuição condicionais, vemos que se duas vari-

áveis aleatórias X e Y forem independentes, vale:

( ) ( )( )

( ) ( )( ) ( )xfyf

yfxfyf

yxfyxf X

Y

YX

Y

YX ===,,

( ) ( )( )

( ) ( )( ) ( )yfxf

yfxfxf

yxfxyf Y

X

YX

X

YX ===,,

.

Assim, as densidades deixam de ser condicionais e tornam-se iguais às

marginais.

Exercícios

6. Verifique se as tensões do Exercício quatro são independentes.

Page 54: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 9 – Professor Marcio Eisencraft – outubro 2005

8

7. A densidade conjunta de duas variáveis aleatórias X e Y tem densidade

conjunta

( )⎪⎩

⎪⎨

⎧<<−<<−⎟

⎠⎞

⎜⎝⎛

=

contrário caso,0

11 e 11,2

cos,

2

,

yxxykyxf YX

π

em que ( ) 315,02 ≈+

=ππ

π

Sik e o seno integral é definido por:

( ) ( )∫=x

dxSi0

sin ξξξ

.

Determine se X e Y são estatisticamente independentes.

Page 55: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 10 – Professor Marcio Eisencraft – outubro 2005

1

Aula 10 - Correlação e covariância Bibliografia PEEBLES, P. Z. Probability, random variables and random signal principles. 3rd edition, New York:

McGraw-Hill, 1993. Páginas 122 – 146.

HSU, H. Schaum´s outline Theory and Problems of Analog and Digital Communications. 2nd edition,

New York: McGraw-Hill, 2003. Páginas 137-138.

5. Operações sobre múltiplas variáveis aleatórias

5.0. Introdução

Vamos estender o conceito de valor esperado para o caso de duas ou mais

variáveis aleatórias.

5.1. Valor esperado de uma função de variáveis aleatórias

O valor esperado de uma função de uma variável aleatória foi definido no

Capítulo 3 como:

( )[ ] ( ) ( )∫∞

∞−

= dxxfxgxgE X .

Quando mais de uma variável aleatória é envolvida, o valor esperado deve

ser tomado em relação a todas as variáveis envolvidas.

Por exemplo, se ( )YXg , é uma função de duas variáveis aleatórias X e Y ,

o valor esperado de ( )⋅⋅,g é dado por:

( )[ ] ( ) ( )∫ ∫∞

∞−

∞−

== dxdyyxfyxgYXgEg YX ,,, ,

Para N variáveis aleatórias 1X , 2X ,..., NX e uma função dessas variáveis

denotada por ( )NXXg ,,1 … , o valor esperado dessa função se torna:

( )[ ] ( ) ( )∫ ∫∞

∞−

∞−

== NNXXNN dxdxxxfxxgXXgEgN

………… … 11,,11 ,,,,,,1 .

Page 56: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 10 – Professor Marcio Eisencraft – outubro 2005

2

Um resultado que segue diretamente da definição acima é que o valor

esperado de uma soma ponderada de variáveis aleatórias

( ) ∑=

=N

iiiN XXXg

11 , α…

é a soma ponderada de seus valores médios:

[ ]∑∑==

=⎥⎦

⎤⎢⎣

⎡=

N

iii

N

iii XEXEg

11αα

Momentos Conjuntos em torno da origem

Uma importante aplicação do valor esperado é na definição de momentos

conjuntos em torno da origem.

Eles são denotados por nkm e são definidos por:

[ ] ( )∫ ∫∞

∞−

∞−

== dxdyyxfyxYXEm YXknkn

nk ,,

para o caso de duas variáveis aleatórias X e Y .

Claramente, [ ]nn XEm =0 são os momentos nm de X e [ ]k

k YEm =0 são os

momentos de Y .

A soma kn + é chamada de ordem dos momentos.

Assim, 02m , 20m e 11m são todos momentos de segunda ordem de X e Y .

Os momentos de primeira ordem [ ] YYEm ==01 e [ ] XXEm ==10 são os

valores esperados de X e Y respectivamente e são as coordenadas do

“centro de gravidade” da função ( )yxf YX ,, .

O momento de segunda ordem [ ]XYEm =11 é chamado de correlação de X

e Y .

Ele é tão importante que recebe um símbolo especial XYR .Assim,

Page 57: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 10 – Professor Marcio Eisencraft – outubro 2005

3

[ ] ( )∫ ∫∞

∞−

∞−

=== dxdyyxxyfXYEmR YXXY ,,11

Se a correlação puder ser escrita na forma

[ ] [ ]YEXERXY ⋅= ,

então X e Y são ditas não correlacionadas.

Independência estatística de X e Y é suficiente para garantir que elas são

não correlacionadas. Porém, o contrário não é verdade em geral. Ou seja,

independência implica não-correlação, mas não-correlação não implica

independência.

Se 0=XYR as variáveis X e Y são ditas ortogonais.

Resumindo:

( ) ( ) ( )yfxfyxf YXYX ⋅=,, X e Y são independentes

[ ] [ ]YEXERXY ⋅= X e Y são não-correlacionadas

0=XYR X e Y são ortogonais

X e Y independentes ⇒ X e Y não correlacionadas

Exercício

1. Seja X uma variável aleatória com um valor médio [ ] 3== XEX e

variância 22 =Xσ e uma outra variável Y dada por 226 +−= XY . Pede-se:

(a) [ ]2XE (b) Y (c) XYR

(d) as variáveis são correlacionadas?

(e) as variáveis são ortogonais?

Page 58: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 10 – Professor Marcio Eisencraft – outubro 2005

4

Momentos conjuntos centrais

Uma outra aplicação importante da definição de valores esperado é a

definição de momentos centrais conjuntos.

Para duas variáveis aleatórias X e Y , estes momentos denotados por mμ

são dadas por:

( ) ( )[ ] ( ) ( ) ( )∫ ∫∞

∞−

∞−

−−=−−= dxdyyxfYyXxYYXXE YXknkn

nk ,,μ

Os momentos centrais de segunda ordem

( )[ ]( )[ ] 22

02

2220

Y

X

YYE

XXE

σμ

σμ

=−=

=−=

são as variâncias de X e Y .

O momento conjunto de segunda ordem 11μ é muito importante. É

chamado de covariância de X e Y e é simbolizado por XYC . Assim,

( )( )[ ] ( )( ) ( )∫ ∫∞

∞−

∞−

−−=−−== dxdyyxfYyXxYYXXEC YXXY ,,11μ

Expandindo diretamente o produto ( )( )YYXX −− esta integral se reduz a:

[ ] [ ]YEXERYXRC XYXYXY −=−=

Se X e Y forem independentes ou não correlacionadas, então

[ ] [ ]YEXERXY = e 0=XYC .

Se X e Y forem ortogonais então

[ ] [ ]YEXECXY −= , X e Y ortogonais.

Claramente, 0=XYC se X ou Y também tiverem média nula além de serem

ortogonais.

Page 59: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 10 – Professor Marcio Eisencraft – outubro 2005

5

O momento de segunda ordem normalizado:

YX

XYCσσμμ

μρ ==

0220

11

dado por

( ) ( )⎥⎦

⎤⎢⎣

⎡ −−=

YX

YYXXEσσ

ρ

é conhecido como coeficiente de correlação de X e Y . Pode-se mostrar que

11 ≤≤− ρ .

Uma aplicação direta das definições acima é que se X é uma soma

ponderada de variáveis aleatórias iX , ∑=

=N

iii XX

1α , então:

[ ] ∑=

=N

iii XXE

1α e

2

1

22iX

N

iiX σασ ∑

=

= .

Exercício

2. (PEEBLES, 2001, p.173) Num sistema de controle, sabe-se que uma tensão

aleatória X tem média 21 −== mX V e momento de segunda ordem

922 == mX V2. Se a tensão X é amplificada por um amplificador que

fornece como saída 25,1 +−= XY encontre 2Xσ , Y , 2Y , 2

Yσ e XYR .

Page 60: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 12 – Professor Marcio Eisencraft – novembro 2005

1

Aula 12 - Questões da Prova P2 1. (PEEBLES, 2001, p. 173) (2,5) Em um sistema de controle, sabe-se que

uma tensão aleatória X tem valor médio 21 −== mX V e um momento de

segunda ordem [ ] 922 == mXE V2. Se a tensão X é amplificada por um am-

plificador que tem como saída 25,1 +−= XY , encontre 2Xσ , Y , [ ]2YE , 2

Yσ e

XYR .

2. (PEEBLES, 2001, p. 101) (2,5) Certo medidor é projetado para medir pe-

quenas tensões dc, mas comete erros por causa de ruído. Estes erros podem

ser representados de forma precisa por uma variável aleatória gaussiana

com média zero e desvio padrão 310− V. Quando a tensão dc está desconec-

tada descobre-se que a probabilidade do medidor registrar um valor positi-

vo é 0,5 por causa do ruído. Quando a tensão dc está presente, esta proba-

bilidade torna-se 0,2514. Qual o valor da tensão dc?

3. (PEEBLES, 2001, p. 99) (2,5) Mostre que o valor médio e a variância de

uma tensão aleatória com função densidade uniforme dada por:

( )⎪⎩

⎪⎨⎧ ≤≤

−=contrário caso,0

,1 bxaabxf X

são [ ] ( )2

baXEX +== e ( )

12

22 abX

−=σ .

4. (HSU, 1997, p. 98) A pdf conjunta de um v.a. bivariada ( YX , ) é dada por:

( )⎩⎨⎧ <<<<

=contrário caso,0

10,10,,,

yxkxyyxf YX

em que k é uma constante.

Page 61: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 12 – Professor Marcio Eisencraft – novembro 2005

2

(a) (1,0) Determine o valor de k .

(b) (1,0) X e Y são independentes?

(c) (0,5) Encontre ( )1<+YXP .

Page 62: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 13– Professor Marcio Eisencraft – novembro 2005

1

Aula 13 Variáveis aleatórias gaussianas conjuntas Bibliografia PEEBLES, P. Z. Probability, random variables and random signal principles. 3rd edition, New York:

McGraw-Hill, 1993. Páginas 148 – 178.

KAY, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey: Prentice

Hall, 1993. Páginas 1-14.

5.3. Variáveis aleatórias gaussianas conjuntas

Variáveis aleatórias gaussianas são muito importantes porque aparecem

praticamente em todas as áreas da Engenharia e das Ciências.

Nesta seção o caso de duas variáveis aleatórias conjuntas gaussianas será

examinado.

Duas variáveis aleatórias

Duas variáveis aleatórias X e Y são ditas conjuntamente gaussianas se sua

função densidade conjunta é

( ) ( )( ) ( )( ) ( )

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡ −+

−−−

−−−

−=

YYXXYX

YXYyYyXxXxyxf

σσσρ

σρρσπσ

2

2

2

22,2

121exp

121,

com:

[ ][ ]

( )[ ]( )[ ]( )( )[ ]

YX

XY

YX

Y

X

CYYXXE

YYE

XXE

YEY

XEX

σσσσρ

σ

σ

=−−

=

−=

−=

=

=

22

22

Page 63: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 13– Professor Marcio Eisencraft – novembro 2005

2

A Figura 1 ilustra a aparência da função densidade gaussiana. Seu máximo

ocorre em ( )YX , .

Figura 1 – Densidade conjunta de duas v.a. ’s gaussianas (PEEBLES, 2001).

Page 64: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica 2 – Aula 13– Professor Marcio Eisencraft – novembro 2005

3

Pode-se ver que se 0=ρ , correspondendo a variáveis X e Y não-

correlacionadas, ( )yxf YX ,, pode ser reescrita como:

( ) ( ) ( )yfxfyxf YXYX ⋅=,,

em que ( )xf X e ( )yfY são as densidades marginais de X e Y dadas por:

( ) ( )

( ) ( )⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧ −−=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧ −−=

2

2

2

2

2

2

2exp

21

2exp

21

YY

Y

XX

X

Yyyf

Xxxf

σπσ

σπσ

.

Assim, concluímos que quaisquer variáveis aleatórias gaussianas não cor-

relacionadas são estatisticamente independentes.

Exercício

1. Sejam duas variáveis aleatórias gaussianas X e Y com médias X e Y , va-

riâncias 2Xσ e 2

Yσ e coeficiente de correlação ρ . Determine o ângulo θ tal

que as variáveis:

θθ

θθ

cossin

sincos

YXB

YXA

+−=

+=

sejam independentes.

2. (PEEBLES, 2001, p. 176) Suponha que a queda de neve anual (quantidade

de neve acumulada em metros) em dois hotéis de esqui alpinos vizinhos se-

ja representada por variáveis aleatórias gaussianas conjuntas X e Y para as

quais 82,0=ρ , 5,1=Xσ m, 2,1=Yσ m e 476,81=XYR m2. Se a queda de neve

média no primeiro hotel é 10m, qual a taxa de queda média no outro hotel?

Page 65: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 1 – Professor Marcio Eisencraft – agosto 2005

1

Práticas de Engenharia Elétrica II

Lista de Exercícios Suplementares 1 – 2º semestre 2005

1. Resolver Exercício 10.1-9 da página 481 do (LATHI, 1998). O primeiro aluno a

entregar uma resolução completa e correta deste exercício ganhará 0,5 ponto

na P1. RESP: (a) 9,562%; (b) 0,001004.

2. (NETO, 1993, p. 17] Um meteorologista acerta 80% dos dias em que chove e 90%

dos dias em que faz bom tempo. Chove em 10% dos dias. Tendo havido previsão de

chuva, qual a probabilidade de chover? RESP: 47,06%.

3. (HSU, 2003, p. 149) Todos os dispositivos e máquinas produzidos falham mais cedo

ou mais tarde. Se a taxa de falha é constante, o tempo até uma falha T é modelado

por uma variável aleatória exponencial. Suponha que se descobriu que uma classe

particular de chips de memória para computadores tem uma lei de falha exponencial

dada por:

( ) ( )tuaetf atT

−= ,

com t em horas.

(a) Medidas mostraram que a probabilidade de que o tempo de falha exceda 104 horas

para chips desta classe é de 1−e ( 368,0≈ ). Calcule o valor do parâmetro a para este

caso.

(b) Usando o valor do parâmetro a determinado na parte (a), calcule o tempo 0t tal que

a probabilidade de que o tempo de falha seja menor do que 0t seja de 0,05.

RESP: (a) 410−=a ; (b) 512,93h.

4. (PEEBLES, 1993, p. 71) Uma linha de produção fabrica resistores de 1000Ω que

devem satisfazer uma tolerância de 10%.

(a) Se a resistência é descrita adequadamente por uma variável aleatória gaussiana X

com 1000=Xa Ω e 40=xσ Ω, qual fração de resistores espera-se que seja rejeitada?

Page 66: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 1 – Professor Marcio Eisencraft – agosto 2005

2

(b) Se a máquina não está ajustada corretamente, os resistores produzidos passam a ter

1050=Xa Ω (5% de erro). Qual fração será rejeitada agora? RESP: (a) 1,24%; (b) 10,57%.

5. (PEEBLES, 1993, p.101) Certo medidor é projetado para ler pequenas tensões, po-

rém comete erros por causa de ruídos. Os erros são representados de forma acurada

por uma variável aleatória gaussiana com média nula e desvio padrão 10-3V. Quan-

do o nível DC é desconectado, descobre-se que a probabilidade da leitura do medi-

dor ser positiva devido ao ruído é 0,5. Quando a tensão DC é presente, a probabili-

dade torna-se 0,2514. Qual é o nível DC? RESP: -0,67mV.

6. (NETO, 1993, p. 25) Rivelino e Zé Maria estão machucados e talvez não possam

defender o Corinthians em sua próxima partida contra o Palmeiras. A probabilidade

de Rivelino jogar é de 40% e a de Zé Maria, 70%. Com ambos os jogadores, o Co-

rinthians terá 60% de probabilidade de vitória; sem nenhum deles, 30%; com Rive-

lino, mas sem Zé Maria, 50%, e com Zé Maria, mas sem Rivelino, 40%. Qual é a

probabilidade de o Corinthians ganhar a partida? RESP: 0,45.

7. (PEEBLES, 1993, p. 67) O resistor 2R na Figura 1 a seguir é escolhido aleatoria-

mente de uma caixa de resistores contendo resistores de 180Ω, 470Ω, 1000Ω e

2200Ω. Todos os valores de resistores têm mesma possibilidade de ser selecionado.

A tensão 2E é uma variável aleatória discreta. Encontre o conjunto de valores que

2E pode assumir e dê a suas probabilidades.

Figura 1 – Circuito do Exercício 2 [PEEBLES].

RESP: VVVVE 74,8;59,6;37,4;16,22 ∈ sendo que cada valor tem 25% de probabilidade.

Page 67: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 1 – Professor Marcio Eisencraft – agosto 2005

3

8. (HSU, 1997, p. 26) Duas máquinas produzem peças semelhantes. A maquina A pro-

duz 1000 peças, 100 das quais são defeituosas. A maquina B produz 2000 peças

sendo 150 defeituosas. Uma peça é selecionada aleatoriamente e é considerada de-

feituosa. Qual a probabilidade dela ter sido produzida pela máquina A? RESP: 0,4.

9. (HSU, 1997, p. 33) Um sistema constituído de n componentes separados é chamado

de sistema paralelo se ele funciona quando pelo menos um dos componentes fun-

ciona (Figura a seguir). Assuma que os componentes falhem de forma independente

e que a probabilidade de falha do componente i seja ip , ni ,,2,1 …= . Encon-

tre a probabilidade de funcionamento do sistema.

RESP: ∏=

−n

iip

1

1 .

10. (HSU, 1997, p. 37) A rede de relês mostrada na figura a seguir funciona se e somen-

te se existe um caminho fechado de relês da esquerda para a direita. Assuma que os

relês falhem de forma independente e que a probabilidade de falha de cada relê seja

a indicada na figura. Qual a probabilidade da rede funcionar?

(HSU, 1997)

1s

ns

2s

....

Page 68: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 1 – Professor Marcio Eisencraft – agosto 2005

4

RESP: 0,865.

11. (HSU, 1997, p. 37) Sejam A e B dois eventos independentes em S . Sabe-se que

( ) 16,0=∩ BAP e ( ) 64,0=∪ BAP . Encontre ( )AP e ( )BP .

RESP: ( ) ( ) 4,0== BPAP .

12. (HSU, 1997, p. 56) A função densidade de probabilidade (p.d.f.) de uma variável

aleatória (v.a.) X é dada por:

( )

⎪⎪⎪

⎪⎪⎪

<<

<<

=

contrário caso,0

21,32

10,31

x

x

xf X .

Encontre a correspondente função distribuição (c.d.f.) ( )xFx e esboce ( )xf X e ( )xFx .

13. (HSU, 1997, p. 57) Seja X uma v.a. contínua com p.d.f.

( )⎩⎨⎧ <<

=contráriocasoxkx

xf X 010,

em que k é uma constante.

(a) Determine o valor de k e esboce ( )xf X .

(b) Encontre e esboce a correspondente c.d.f. ( )xFX .

(c) Encontre ⎟⎠⎞

⎜⎝⎛ ≤< 2

41 XP .

RESP: (a) 2; (c) 1615

.

14. (HSU, 1997, p. 75) Um sistema de transmissão digital tem uma probabilidade de

erro de 610− por dígito. Encontre a probabilidade de três ou mais erros em 610 dígi-

tos utilizando a aproximação da distribuição de Poisson. RESP: 0,08.

15. (HSU, 1997, p. 75) Sabe-se que os disquetes produzidos por uma companhia A são

defeituosos com uma probabilidade de 0,01. A companhia vende os discos em paco-

Page 69: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 1 – Professor Marcio Eisencraft – agosto 2005

5

tes de 10 e oferece garantia de troca se ao menos 1 dos 10 discos for defeituoso. En-

contre a probabilidade de que um pacote comprado tenha que ser trocado. RESP: 0,004.

16. (HSU, 1997, p. 77) Um lote constituído de 100 fusíveis é inspecionado pelo seguinte

processo: cinco fusíveis são selecionados aleatoriamente e se os cinco “queimarem”

na corrente especificada, o lote é aceito. Suponha que um lote contenha 10 fusíveis

defeituosos. Qual a probabilidade de se aceitar o lote? RESP: 0,584.

17. (NETO, 1993, p. 25) Uma cápsula espacial aproxima-se da Terra com dois defeitos:

nos seus circuitos elétricos e no sistema de foguetes propulsores. O comandante

considera que, até o instante de reingresso na atmosfera, existe 20% de probabilida-

de de reparar os circuitos elétricos e 50% de probabilidade de reparar o sistema de

foguetes. Os reparos se processam independentemente. Por outro lado, os especialis-

tas em Terra consideram que as probabilidades de êxito no retorno são as seguintes:

(a) 90% com os circuitos elétricos e o sistema de foguetes reparados.

(b) 80% só com o sistema de foguetes reparado.

(c) 60% só com os circuitos elétricos reparados.

(d) 40% com os circuitos elétricos e o sistema de foguetes defeituosos. Com base nas

considerações acima, qual é a probabilidade de êxito no retorno? Se o retorno se proces-

sar com êxito, qual a probabilidade de que tenha se realizado nas condições mais adver-

sas (ambos os sistemas não-reparados)? RESP: 63% e 25,40% respectivamente.

18. (PEEBLES, 1993, p. 73) Assuma que as lâmpadas fluorescentes fabricadas por uma

empresa tenham probabilidade de 0,05 de serem inoperantes quando novas. Uma

pessoa compra oito lâmpadas para uso doméstico.

(a) Qual a probabilidade de exatamente uma lâmpada ser inoperante entre as oito?

(b) Qual a probabilidade de que as oito lâmpadas estejam funcionando?

(c) Determine a probabilidade de que uma ou mais lâmpadas sejam inoperantes.

(d) Faça um gráfico da função distribuição de probabilidades da variável aleatória “o

número de lâmpadas inoperantes”. RESP: (a) 27,93%; (b) 66,34%; (c) 33,66%.

Page 70: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 1 – Professor Marcio Eisencraft – agosto 2005

6

19. (PEEBLES, 1993, p. 72) Suponha que a altura da base das nuvens seja uma variável

aleatória gaussiana X com 4000=Xa m e 1000=Xσ m. João afirma que a altura

das nuvens amanhã estará no conjunto m3300m1000 ≤<= XA enquanto Pedro

afirma que a altura estará no conjunto m4200m2000 ≤<= XB . Paulo afirma que

os dois estarão corretos. Encontre a probabilidade de cada um acertar a previsão. RESP: João: 24,07%; Pedro: 55,66% e Paulo: 21,93%.

Page 71: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 2 – Professor Marcio Eisencraft – outubro2005

1

Práticas de Engenharia Elétrica II

Lista de Exercícios Suplementares 2 – 2º semestre 2005

1. Resolver Exercício 10.2-8 da página 483 do (LATHI, 1998).

Resposta: (a) ( ) ( )xuxexfx

X2

2−

= ; ( ) ( )yuyeyfy

Y2

2−

= ; ( ) ( )xfyxf XYX = ; ( ) ( )yfxyf YXY = ; (b)

Sim.

2. Resolver Exercício 10.3-5 da página 485 do (LATHI, 1998).

Respostas: [ ]181;

617;

35 22 === XXEX σ .

3. Resolver Exercício 10.5-2 da página 486 do (LATHI, 1998).

4. Resolver Exercício 10.5-3 da página 486 do (LATHI, 1998). O primeiro aluno a

entregar uma resolução completa e correta deste exercício ganhará 0,5 ponto

na P2.

5. (PEEBLES, 2001, p. 173) 21

=X , 25____

2 =X , 2=Y , 2

19____2 =Y e

321

−=XYC para

variáveis aleatórias X e Y .

(a) Encontre 2Xσ , 2

Yσ , XYR e ρ .

(b) Qual a media da variável aleatória ( ) 323 2 +++= XYXW ?

Resposta: (a) 492 =Xσ ;

2112 =Yσ ;

636 −

=XYR ; 99

66−=ρ ; (b) 96,27.

6. (DEVORE, 2003, p. 210) Dois componentes de um microcomputador têm a seguin-

te pdf conjunta para seus tempos de vida útil X e Y :

( )( )

⎩⎨⎧ ≥≥

=+−

contrário caso,00 e 0,

,1 yxxe

yxfyx

XY .

(a) Quais são as pdf’s marginais de X e Y ? Estes tempos de vida são independentes?

Justifique.

(b) Qual a probabilidade de que o tempo de vida X do primeiro componente exceda 3?

Page 72: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 2 – Professor Marcio Eisencraft – outubro2005

2

Resposta: (a) ( ) 0, ≥= − xexf xX ; ( )

( )211y

yfY+

= ; (b) 0,0498.

7. Duas variáveis aleatórias podem assumir os valores indicados na tabela.

x y PROBABILIDADE

-1 -2 1/8

-0,5 -1 1/4

0,5 1 1/2

1 2 1/8

(a) (MONTGOMERY, 2003, p. 103) Determine as seguintes probabilidades:

( )5,1;5,0 << YXP , ( )5,0<XP , ( )5,1<YP e ( )5,4;25,0 <> YXP .

(b) (MONTGOMERY, 2003, p. 103) Determine [ ]XE e [ ]YE . Respostas: (a) 3/8; 3/8; 7/8; 5/8 respectivamente. (b) 0,125 e ¼ respectivamente.

8. (COSTA NETO; CYMBALISTA, 1974, p. 55) Seja X uma variável aleatória con-

tínua com função densidade constante entre a e b , ba < . Mostre que:

[ ]2

baXE += e ( )

12

22 abX

−=σ .

9. (COSTA NETO; CYMBALISTA, 1974, p. 70) Sendo a função densidade conjunta

de ( )YX , dada por ( ) yeyxf −=41, , para 04 >> x , 0>y e zero em qualquer outro

ponto, calcular a probabilidade ( )4,2 <> YXP . Resposta: 0,4908.

10. (PEEBLES, 2001, p. 174) As variáveis aleatórias estatisticamente independentes X

e Y têm respectivamente médias 1=X e 21

−=Y . Seus momentos de segunda or-

dem são 42 =X e 4

112 =Y . Uma outra variável aleatória é definida como

123 2 ++= YXW . Encontre 2Xσ , 2

Yσ , XYR , XYC e WYR .

Page 73: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 2 – Professor Marcio Eisencraft – outubro2005

3

Resposta: 32 =Xσ ; 5,22 =Yσ ; 5,0−=XYR ; 0=XYC ; 1−=WYR .

11. (HSU, 1997, p. 77) Uma variável aleatória X é chamada de variável aleatória de

Laplace se sua função densidade de probabilidade é dada por:

( ) ∞<<∞−>= − xkexf xX ,0, λλ

em que k é uma constante.

(a) Encontre o valor de k .

(b) Encontre ( )xFX .

(c) Encontre a média e a variância de X .

Resposta: (a) 2λ

=k ; (b) ( )⎪⎪⎩

⎪⎪⎨

≥−

<=

0,211

0,21

xe

xexF

x

x

λ

; (c) [ ] [ ] 2

2;0λ

== XVarXE .

12. (PEEBLES, 2001, p.98) Uma tensão aleatória gaussiana X tem valor médio

0== XaX e variância 92 =Xσ . A tensão X é aplicada a um diodo detector de on-

da completa com lei quadrática que tem função de transferência 25XY = . Encontre

o valor médio da tensão de saída Y .

13. (PEEBLES, 2001, p. 98) Uma variável aleatória X tem função densidade:

( )⎪⎩

⎪⎨⎧ <<−

=contrário caso,0

22,cos

21 ππ xx

xf X .

Encontre o valor médio da função ( ) 24XXg = .

14. (HSU, 1997, p. 98) A função densidade conjunta das variáveis aleatórias X e Y é

dada por:

( ) ( )⎩⎨⎧ <<<<+

=contrário. caso,0

20,20,,,

yxyxkyxf YX .

em que k é uma constante.

(a) Encontre o valor de k .

(b) Encontre as funções densidade marginais de X e Y .

(c) X e Y são independentes?

Page 74: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 2 – Professor Marcio Eisencraft – outubro2005

4

Resposta: (a) 81

=k ; (b) ( ) ( )⎪⎩

⎪⎨⎧ <<+

=contrário caso ,0

20,141 xx

xf X

( ) ( )⎪⎩

⎪⎨⎧ <<+

=contrário caso ,0

20,141 yy

yfY ; (c) Não.

15. (HSU, 1997, p. 101) Suponha que se escolha um ponto de forma aleatória dentro de

um círculo de raio R . Se considerarmos o centro do círculo na origem e definirmos

X e Y como as coordenadas do ponto escolhido (ver figura abaixo), então ( X ,Y )

forma uma v.a. bidimensional cuja p.d.f. é dada por:

( )⎪⎩

⎪⎨⎧

≥+

≤+=

222

222

, ,0,

,RyxRyxk

yxf YX

sendo k uma constante.

(a) Determine o valor de k ;

(b) Encontre as p.d.f.’s marginais de X e Y ;

(c) Encontre a probabilidade de que a distância do ponto selecionado à origem não seja

maior do que a .

Resposta: (a) 2

1R

= ; (b) ( )⎪⎩

⎪⎨

>

≤−=

Rx

RxxRRxf X

,0

,2 222π

( )⎪⎩

⎪⎨

>

≤−=

Ry

RyyRRxf X

,0

,2 222π ; (c) 2

2

Ra

para Ra ≤≤0 .

16. (HSU, 1997, p. 103) Um industrial tem usado dois diferentes processos de produção

para fazer chips de memória para computadores. Seja ( X ,Y ) uma v.a. bidimensio-

Page 75: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 2 – Professor Marcio Eisencraft – outubro2005

5

nal em que X denota o tempo até a falha dos chips feitos pelo processo A e Y de-

nota o tempo até a falha dos chips feitos pelo processo B. Assumindo que a p.d.f.

conjunta de ( X ,Y ) é:

( )( )

⎩⎨⎧ >>

=+−

contrário caso,00,0,

,yxabe

yxfbyax

XY

em que 410−=a e 4102,1 −×=b , determine ( )YXP > . Resposta: 0,545.

17. (HSU, 1997, p. 108) Seja ( X ,Y ) uma v.a. bidimensional com p.d.f. conjunta:

( )( )

222

,

22

4,

yx

YX eyxyxf+−+

.

Mostre que X e Y não são independentes, mas são não correlacionadas.

18. (PEEBLES, 2001, p. 176) Suponha que a queda de neve anual (profundidade acu-

mulada em metros) para dois hotéis de esqui próximos seja adequadamente repre-

sentada por duas variáveis aleatórias gaussianas conjuntas X e Y para as quais

82,0=ρ , 5,1=Xσ m, 2,1=Yσ m e 476,81=XYR m2. Se a média de queda de neve

em um dos hotéis é 10m, qual a média no outro hotel?

19. (HSU, 2003, p.159) Encontre a covariância de X e Y se (a) elas são independentes

(b) Y está relacionada com X por baXY += .

Resposta: (a) 0; (b) 2XXY aσσ = .

20. (HSU, 2003, p. 159) Seja bYaXZ += , em que a e b são constantes arbitrárias.

Mostre que se X e Y são independentes então: 22222YXZ ba σσσ += .

Page 76: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 3 – Prof. Marcio Eisencraft – novembro 2005

1

Práticas de Engenharia Elétrica II

Lista de Exercícios Suplementares 3 – 2º semestre 2005

1. Resolver Exercício 10.1-15 da página 483 do (LATHI, 1998).

2. Resolver Exercício 10.2-3 da página 483 do (LATHI, 1998).

3. Resolver Exercício 10.2-10 da página 484 do (LATHI, 1998).

4. Resolver Exercício 10.3-5 da página 485 do (LATHI, 1998).

5. Resolver Exercício 10.5-2 da página 486 do (LATHI, 1998).

6. Resolver Exercício 3.32 da página 36 do (MONTGOMERY, 2003).

7. Resolver Exercício 3.41 da página 38 do (MONTGOMERY, 2003).

Resposta no livro.

8. Resolver Exercício 3.51 da página 41 do (MONTGOMERY, 2003).

Resposta no livro.

9. Resolver Exercício 3.58 da página 43 do (MONTGOMERY, 2003).

10. Resolver Exercício 3.76 da página 46 do (MONTGOMERY, 2003).

11. Resolver Exercício 3.80 da página 47 do (MONTGOMERY, 2003).

12. Resolver Exercício 5.33 da página 79 do (MONTGOMERY, 2003).

Resposta no livro.

13. Resolver Exercício 5.51 da página 85 do (MONTGOMERY, 2003).

Resposta no livro.

Page 77: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 3 – Prof. Marcio Eisencraft – novembro 2005

2

14. Resolver Exercício 5.74 da página 92 do (MONTGOMERY, 2003).

15. Resolver Exercício 6.102 da página 124 do (MONTGOMERY, 2003).

16. (COSTA NETO; CYMBALISTA, 1993, p. 16) No circuito elétrico dado abaixo,

em que existe tensão entre os pontos A e B, determine a probabilidade de passar cor-

rente entre A e B, sabendo-se que a probabilidade de cada chave estar fechada é ½ e

que cada chave está aberta ou fechada independentemente de qualquer outra.

RESPOSTA: 0,53125

17. (HSU; 1997, p. 159) Considere as variáveis aleatórias X , Y e bYaXZ += , em

que a e b são constantes arbitrárias. Mostre que, se X e Y são independentes então 22222YXZ ba σσσ += .

18. (PAPOULIS; PILLAI, 2002, p. 87) Suponha que o tempo de espera de um clien-

te por uma mesa num restaurante seja uma distribuição exponencial com média 5

minutos. Determine a probabilidade de que um cliente espere mais do que 10 minu-

tos por uma mesa.

Dado: função densidade exponencial: ( )⎩⎨⎧ ≥

=−

contrário caso,00, xe

xfx

X

λλ.

RESPOSTA: 13,53%.

19. (HSU; 1997, p.98) A p.d.f. conjunta de uma v.a. bivariada ( YX , ) é dada por:

( )⎩⎨⎧ <<<<

=contrário caso,0

10,10,,,

yxkxyyxf YX .

em que k é uma constante. Pede-se:

A B

Page 78: Universidade Presbiteriana Mackenzie Práticas de Engenharia

Práticas de Engenharia Elétrica II - Lista de Exercícios Suplementares 3 – Prof. Marcio Eisencraft – novembro 2005

3

(a) Encontre o valor de k .

(b) X e Y são independentes?

(c) Encontre ( )1<+YXP .

RESPOSTAS: (a) 4; (c) 61

.

20. (COSTA NETO; CYMBALISTA, 1993, p. 118) Certo tipo de resistor é conside-

rado aceitável se seu valor estiver entre 45 e 55Ω e é considerado ideal se estiver en-

tre 48 e 52Ω. O valor desses resistores tem distribuição normal com média de 53Ω e

desvio padrão de 3Ω. Em um lote de 200 resistores aceitáveis, quantos resistores ide-

ais devem-se esperar? RESPOSTA: 87 resistores.