14
2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas de concreto armado no item 8.2. 8.2.1 Classes Esta Norma se aplica aos concretos compreendidos nas classes de resistência dos grupos I e II, da ABNT NBR 8953, até a classe C90. Tabela 1 Classes de resistência do grupo 1 Grupo I de resistência Resistência característica à compressão (MPa) C20 C25 C30 C35 C40 C45 C50 20 MPa 25 MPa 30 MPa 35 MPa 40 MPa 45 MPa 50 MPa Fonte: NBR 8953 (1992) Tabela 2 Classes de resistência do grupo 2 Grupo I de resistência Resistência característica à compressão (MPa) C55 C60 C70 C80 C90 55 MPa 60 MPa 70 MPa 80 MPa 90 MPa Fonte: NBR 8953 (1992) A classe C20, ou superior, se aplica ao concreto com armadura passiva e a classe C25, ou superior, ao concreto com armadura ativa. A classe C15 pode ser usada apenas em obras provisórias ou concreto sem fins estruturais, conforme a ABNT NBR 8953. O concreto estrutural deve ter resistência característica à compressão aos 28 dias (fck) mínimo de 20 MPa para estruturas em concreto armado podendo chegar até 90 MPa. A norma ainda nos fornece definições importantes a respeito do concreto estrutural: 3.1.2 elementos de concreto simples estrutural: Elementos estruturais elaborados com concreto que não possui qualquer tipo de armadura, ou que a possui em quantidade inferior ao mínimo exigido para o concreto armado (ver 17.3.5.3.1 e tabela 17.3). Se ao dimensionar uma estrutura em concreto armado, o aço calculado for menor do que a quantidade mínima estabelecida pela norma não podemos usar o aço calculado, pois a estrutura será considerada uma estrutura de concreto simples

2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

2 Concreto Estrutural

A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas de

concreto armado no item 8.2.

8.2.1 Classes

Esta Norma se aplica aos concretos compreendidos nas classes de resistência dos

grupos I e II, da ABNT NBR 8953, até a classe C90.

Tabela 1 – Classes de resistência do grupo 1

Grupo I de resistência Resistência característica à compressão

(MPa)

C20 C25 C30 C35 C40 C45 C50

20 MPa 25 MPa 30 MPa 35 MPa 40 MPa 45 MPa 50 MPa

Fonte: NBR 8953 (1992)

Tabela 2 – Classes de resistência do grupo 2

Grupo I de resistência Resistência característica à

compressão (MPa)

C55 C60 C70 C80 C90

55 MPa 60 MPa 70 MPa 80 MPa 90 MPa

Fonte: NBR 8953 (1992)

A classe C20, ou superior, se aplica ao concreto com armadura passiva e a classe

C25, ou superior, ao concreto com armadura ativa. A classe C15 pode ser usada

apenas em obras provisórias ou concreto sem fins estruturais, conforme a ABNT

NBR 8953.

O concreto estrutural deve ter resistência característica à compressão aos 28 dias

(fck) mínimo de 20 MPa para estruturas em concreto armado podendo chegar até 90

MPa. A norma ainda nos fornece definições importantes a respeito do concreto

estrutural:

3.1.2 elementos de concreto simples estrutural: Elementos estruturais elaborados

com concreto que não possui qualquer tipo de armadura, ou que a possui em

quantidade inferior ao mínimo exigido para o concreto armado (ver 17.3.5.3.1 e

tabela 17.3).

Se ao dimensionar uma estrutura em concreto armado, o aço calculado for menor do

que a quantidade mínima estabelecida pela norma não podemos usar o aço

calculado, pois a estrutura será considerada uma estrutura de concreto simples

Page 2: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

estrutural. Devemos sempre atender a quantidade de aço mínima exigida pela NBR

6118 para que tenhamos uma estrutura em concreto armado.

8.2.2 Massa Específica

Esta Norma se aplica aos concretos de massa específica normal, que são aqueles

que, depois de secos em estufa, têm massa específica (ρc) compreendida entre 2

000 kg/m³ e 2 800 kg/m³.

Se a massa específica real não for conhecida, para efeito de cálculo, pode-se adotar

para o concreto simples o valor 2 400 kg/m³ e para o concreto armado, 2 500 kg/m³.

Quando se conhecer a massa específica do concreto utilizado, pode-se considerar

para valor da massa específica do concreto armado aquela do concreto simples

acrescida de 100 kg/m³ a 150 kg/m³.

Não é usual a realização de ensaios para determinação da massa específica do

concreto, então como prática recorrente utilizamos como massa específica do

concreto armado 2500 kg/m³.

8.2.3 Coeficiente de dilatação térmica

Para efeito de análise estrutural, o coeficiente de dilatação térmica pode ser admitido

como sendo igual a 10-5/°C.

O coeficiente dilatação térmica é utilizado para o cálculo do alongamento e

encurtamento devido à variação de temperatura no dimensionamento de juntas de

dilatação.

8.2.4 Resistência à compressão

As prescrições desta Norma referem-se à resistência à compressão obtida em

ensaios de corpos de prova cilíndricos, moldados segundo a ABNT NBR 5738 e

rompidos como estabelece a ABNT NBR 5739.

Quando não for indicada a idade, as resistências referem-se à idade de 28 dias. A

estimativa da resistência à compressão média, fcmj, correspondente a uma

resistência fckj especificada, deve ser feita conforme indicado na ABNT NBR 12655.

A evolução da resistência à compressão com a idade deve ser obtida por ensaios

especialmente executados para tal. Na ausência desses resultados experimentais,

pode-se adotar, em caráter orientativo, os valores indicados em 12.3.3.

O parâmetro mais importante para a execução de um projeto estrutural é a

resistência característica à compressão do concreto aos 28 dias (fck). É ela que irá

determinar a classe do concreto, portanto devemos sempre realizar ensaios para

que o concreto usado na obra seja correspondente ao concreto definido em projeto.

8.2.5 Resistência à tração

Page 3: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

A resistência à tração indireta fct,sp e a resistência à tração na flexão fct,f devem ser

obtidas em ensaios realizados segundo as ABNT NBR 7222 e ABNT NBR 12142,

respectivamente.

A NBR 7222 (2011) determina a resistência à tração por compressão diametral de

corpos de prova cilíndricos. O ensaio de compressão diametral ou ensaio de tração

indireta, também conhecido como splitting test criado pelo Prof. Fernando Luiz Lobo

Carneiro se tornou referência mundial. Para conhecer como foi criado este ensaio

acesse o link abaixo: http://aquarius.ime.eb.br/~webde2/prof/ethomaz/lobocarneiro/comp_diametral.pdf

Figura 2 – Ensaio de resistência à tração por compressão diametral

Fonte:

𝑓𝑐𝑡, 𝑠𝑝 =2

𝜋∗𝐹𝑐

𝑑 ∗ ℎ

A NBR 12142 (2010) determina a resistência à tração na flexão de corpos de prova

prismáticos. Para a realização deste ensaio, um corpo de prova se seção prismática

é submetido à flexão, com carregamentos em duas seções simétricas, até a ruptura.

O ensaio também é conhecido por ―carregamento nos terços‖, pelo fato das seções

carregadas se encontrarem nos terços do vão.

Figura 3 – Ensaio de resistência à tração na flexão

Page 4: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

Fonte:

𝑓𝑐𝑡,𝑓 =6 ∗𝐿3 ∗ 𝐹

𝑏 ∗ ℎ²

No ensaio de tração direta, a resistência à tração direta (fct) é determinada,

aplicando-se tração axial, até a ruptura, em corpos de prova de concreto simples. Figura 4 – Ensaio de resistência à tração direta

Fonte: Pinheiro (2010)

𝑓𝑐𝑡 =𝐹𝑡

𝐴

A resistência à tração direta fct pode ser considerada igual a 0,9 fct,sp ou 0,7 fct,f,

ou, na falta de ensaios para obtenção de fct,sp e fct,f, pode ser avaliado o seu valor

médio ou característico por meio das seguintes equações:

— para concretos de classes até C50:

𝑓𝑐𝑡𝑘 = 𝑓𝑐𝑡,𝑚 = 0,3 ∗ 𝑓𝑐𝑘²3

— para concretos de classes C55 até C90:

𝑓𝑐𝑡𝑘 = 𝑓𝑐𝑡,𝑚 = 2,12 ∗ ln(1 + 0,11 ∗ 𝑓𝑐𝑘)

Page 5: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

onde:

fct,m e fck são expressos em megapascal (MPa).

sendo

fckj ≥ 7 MPa, estas expressões podem também ser usadas para idades diferentes de

28 dias.

A NBR 6118 (2014) estabelece um limite mínimo e máximo para a resistência à

tração o fctk,inf e o fctk,sup respectivamente limite inferior e limite superior. O fctk,inf

é utilizado nas análises estruturais e o fctk,sup é utilizado para determinação das

armaduras mínimas.

onde:

𝑓𝑐𝑡𝑘, 𝑖𝑛𝑓 = 0,7 ∗ 𝑓𝑐𝑡,𝑚

𝑓𝑐𝑡𝑘, 𝑠𝑢𝑝 = 1,3 ∗ 𝑓𝑐𝑡,𝑚

8.2.8 Módulo de elasticidade

É um parâmetro mecânico que proporciona uma medida da rigidez de um material

sólido. Um determinado material ao ser submetido a uma tensão (σ) sofre uma

deformação específica (𝜀) onde temos o diagrama tensão-deformação que pode ser

considerado linear.

Figura 5 – Módulo de elasticidade ou módulo deformação longitudinal

Fonte: Arquivo pessoal

𝐸 =𝜎

𝜀

Como o diagrama tensão-deformação do concreto não é linear, conforme figura 6

abaixo, a expressão do módulo e elasticidade é aplicada somente à parte retilínea

Page 6: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

da curva, ou quando não existir uma parte retilínea, a expressão aplica-se à

tangente da curva na origem, por isso é chamado módulo de elasticidade

tangencial ou módulo de deformação tangencial inicial (Eci).

Figura 6 – Módulo de elasticidade ou módulo deformação tangencial inicial do concreto

Fonte: Arquivo pessoal

O módulo de elasticidade (Eci) deve ser obtido segundo o método de ensaio

estabelecido na ABNT NBR 8522, sendo considerado nesta Norma o módulo de

deformação tangente inicial, obtido aos 28 dias de idade.

Quando não forem realizados ensaios, pode-se estimar o valor do módulo de

elasticidade inicial usando as expressões a seguir:

— para fck de 20 MPa a 50 MPa:

𝐸𝑐𝑖 = 𝛼𝑒 ∗ 5600√𝑓𝑐𝑘

— para fck de 55 MPa a 90 MPa:

𝐸𝑐𝑖 = 21,5 ∗ 10³ ∗ 𝛼𝑒 ∗ 𝑓𝑐𝑘

10+ 1,25

1/3

sendo:

αe = 1,2 para basalto e diabásio

αe = 1,0 para granito e gnaisse

αe = 0,9 para calcário

αe = 0,7 para arenito

onde

Eci e fck são dados em megapascal (MPa).

Obs: No Brasil a grande maioria dos agregados procede do granito e basalto.

Page 7: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

O módulo de elasticidade secante é utilizado nas análises elásticas de projeto,

especialmente para determinação de esforços solicitantes e verificação de estados

limites de serviço.

O módulo de deformação secante pode ser obtido segundo método de ensaio

estabelecido na ABNT NBR 8522, ou estimado pela expressão:

𝐸𝑐𝑠 = 𝛼𝑖 ∗ 𝐸𝑐𝑖

sendo:

𝑎𝑖 = 0,8 + 0,2 ∗𝑓𝑐𝑘

80≤ 1,0

A Tabela 3 apresenta valores estimados arredondados que podem ser usados no

projeto estrutural.

Tabela 3 – Valores estimados de módulo de elasticidade em função da resistência característica à

compressão do concreto (considerando o uso de granito como agregado graúdo)

Classe de resistência

C20 C25 C30 C35 C40 C45 C50 C60 C70 C80 C90

Eci (GPa)

25 28 31 33 35 38 40 42 43 45 47

Ecs (GPa)

21 24 27 29 32 34 37 40 42 45 47

αi 0,85 0,86 0,88 0,89 0,90 0,91 0,93 0,95 0,98 1,00 1,00

Fonte: NBR 6118 (2014)

A deformação elástica do concreto depende da composição do traço do concreto,

especialmente da natureza dos agregados.

Na avaliação do comportamento de um elemento estrutural ou seção transversal,

pode ser adotado módulo de elasticidade único, à tração e à compressão, igual ao

módulo de deformação secante Ecs.

No cálculo das perdas de protensão, pode ser utilizado em projeto o módulo de

elasticidade inicial Eci.

O módulo de elasticidade em uma idade menor que 28 dias pode ser avaliado pelas

expressões a seguir:

— para os concretos com fck de 20 MPa a 45 MPa:

Page 8: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

𝐸𝑐𝑖(𝑡) = 𝑓𝑐𝑘𝑗

𝑓𝑐𝑘

0,5

— para os concretos com fck de 50 MPa a 90 MPa:

𝐸𝑐𝑖(𝑡) = 𝑓𝑐𝑘𝑗

𝑓𝑐𝑘

0,3

onde:

Eci(t) é a estimativa do módulo de elasticidade do concreto em uma idade entre 7

dias e 28 dias;

fckj é a resistência característica à compressão do concreto na idade em que se

pretende estimar o módulo de elasticidade, em megapascal (MPa).

A importância da determinação dos módulos de elasticidade está na determinação

das deformações nas estruturas de concreto, como nos cálculos de flechas em lajes

e vigas (Figura 2.11). Nos elementos fletidos, como as vigas e as lajes, por exemplo,

o conhecimento das flechas máximas é muito importante e é um dos parâmetros

básicos utilizados pelo projetista estrutural.

8.2.9 Coeficiente de Poisson

Ao se aplicar uma força no concreto surgem deformações em duas direções, na

direção da força e na direção transversal à força. A relação entre a deformação

transversal e a deformação longitudinal é chamada coeficiente de Poisson (ν).

Figura 7 – Deformações longitudinais (Δl) e transversais (Δt)

Fonte: Arquivo pessoal

Para tensões de compressão menores que 0,5 fc e tensões de tração menores que

fct, o coeficiente de Poisson ν pode ser tomado como igual a 0,2 e o módulo de

elasticidade transversal Gc igual a Ecs/2,4.

𝜈 = 0,2

Page 9: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

𝐺𝑐 =𝐸𝑐𝑠

2,4

8.2.10 Diagramas tensão-deformação

8.2.10.1 Compressão

Para tensões de compressão menores que 0,5 fc, pode-se admitir uma relação

linear entre tensões e deformações, adotando-se para módulo de elasticidade o

valor secante dado pela expressão constante em 8.2.8.

Para análises no estado-limite último, podem ser empregados o diagrama tensão-

deformação idealizado mostrado na Figura ou as simplificações propostas na Seção

17.

Figura 8 – Diagrama tensão-deformação do concreto à compressão

Fonte: Arquivo pessoal

Os valores a serem adotados para os parâmetros εc2 (deformação específica de

encurtamento do concreto no início do patamar plástico) e εcu (deformação

específica de encurtamento do concreto na ruptura) são definidos a seguir:

— para concretos de classes até C50:

εc2 = 2,0 ‰;

εcu = 3,5 ‰

— para concretos de classes C55 até C90:

Page 10: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

ε𝑐2 = 2,0‰+ 0,085‰∗ (fck − 50)0,53

ε𝑐𝑢 = 2,6‰+ 35‰∗ (90 − 50

100)4

Ver indicação sobre o valor de fcd em 12.3.3.

A resistência à compressão de cálculo do concreto (fcd) é obtida a partir da

expressão abaixo:

𝑓𝑐𝑑 =𝑓𝑐𝑘

𝛾𝑐

A resistência à tração de cálculo do concreto (fctd) é obtida a partir da expressão

abaixo:

𝑓𝑐𝑡𝑑 =𝑓𝑐𝑡𝑘, 𝑖𝑛𝑓

𝛾𝑐

γc é o coeficiente de minoração da resistência do concreto, obtido na tabela 12.1 da

NBR 6118 (2014) conforme tabela abaixo.

Tabela 4 – Valores dos coeficientes γc e γs

Combinações Concreto Aço

Normais 1,4 1,15

Especiais ou de construção

1,2 1,15

Excepcionais 1,2 1,0 Fonte: extraída da NBR 6118 (2014)

As resistências dos materiais serão minoradas e as cargas serão majoradas, ou

seja, aplicaremos um coeficiente de segurança para reduzir as resistências dos

materiais e um coeficiente de segurança para aumentar as cargas.

Segundo a NBR as resistências dos materiais devem ser minoradas pelo coeficiente:

𝛾𝑚 = 𝛾𝑚1 ∗ 𝛾𝑚2 ∗ 𝛾𝑚3

No concreto este coeficiente será o γc e no aço será o γs.

Segundo o item 12.1 da NBR 6118 (2014):

γm1 – Parte do coeficiente de ponderação das resistências γm, que considera a

variabilidade da resistência dos materiais envolvidos.

γm2 – Parte do coeficiente de ponderação das resistências γm, que considera a

diferença entre a resistência do material no corpo de prova e na estrutura.

γm3 – Parte do coeficiente de ponderação das resistências γm, que considera os

desvios gerados na construção e as aproximações feitas em projeto do ponto de

vista das resistências.

Page 11: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

O fator 0,85 encontrado no diagrama σ x ε da Figura 8 funciona como um fator

corretivo, dado que a resistência de cálculo fcd é determinada por meio de ensaios

de corpos-de-prova cilíndricos em ensaios de compressão que têm a duração em

torno de 2, 3 ou 4 minutos, enquanto que nas estruturas de concreto o carregamento

é aplicado durante toda a vida útil da estrutura, ou seja, durante muitos anos.

Exercício 1

Calcule as características do concreto a partir do fck adotado.

Concreto fck

(MPa) fcd

(MPa) fctk

(MPa) fctk,inf (MPa)

fctk,sup (MPa)

fctd (Mpa)

Eci (MPa)

Ecs (MPa)

C20

C40

C50

Espaço para cálculo

3 Aço

A NBR 6118 (2014) nos fornece as propriedades do aço para estruturas de concreto

armado no item 8.3.

8.3.1 Categoria

Nos projetos de estruturas de concreto armado deve ser utilizado aço classificado

pela ABNT NBR 7480, com o valor característico da resistência de escoamento nas

categorias CA-25, CA-50 e CA-60. Os diâmetros e seções transversais nominais

devem ser os estabelecidos na ABNT NBR 7480.

De acordo com a NBR 7480 (2007) o aço para armadura passiva é dividido em:

Tabela 5 – Categorias de aços destinados a armaduras para estruturas de concreto armado

CATEGORIA fyk (MPa)

CA-25 250 MPa

CA-50 500 MPa

CA-60 600 MPa Fonte: extraída da NBR 7480 (2007)

Onde fyk é a resistência característica do aço ao escoamento na tração.

Aços mais usados em estruturas de concreto armado:

CA-50: 6,3 mm (1/4‖), 8 mm (5/16‖), 10 mm (3/8‖), 12,5 mm (1/2‖), 16 mm (5/8‖), 20

mm (3/4‖), 25 mm (1‖), 32 mm (1 1/4"), 40 mm (1 9/16‖).

CA-60: 4,2 mm (5/32’’), 5 mm (3/16’’).

Page 12: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

De acordo com a NBR 7480 (2007) as barras de aço são classificadas nas

categorias CA-25 e CA-50, e os fios de aço na categoria CA-60.

8.3.1 Tipo de superfície aderente

Os fios e barras podem ser lisos, entalhados ou providos de saliências ou mossas. A

configuração e a geometria das saliências ou mossas devem satisfazer também o

que é especificado nesta Norma, nas Seções 9 e 23.

Para os efeitos desta Norma, a capacidade aderente entre o aço e o concreto está

relacionada ao coeficiente η1, cujo valor está estabelecido na abaixo.

Tabela 6 – Valor do coeficiente de aderência η1

TIPO DE SUPERFÍCIE η1

Lisa 1

Entalhada 1,4

Nervurada 2,25 Fonte: extraída da NBR 6118 (2014)

8.3.3 Massa específica

Pode-se adotar para a massa específica do aço de armadura passiva o valor de 7

850 kg/m3.

8.3.4 Coeficiente de dilatação térmica

O valor de 10−5/°C pode ser considerado para o coeficiente de dilatação térmica do

aço, para intervalos de temperatura entre -20 °C e 150 °C.

8.3.5 Módulo de elasticidade

Na falta de ensaios ou valores fornecidos pelo fabricante, o módulo de elasticidade

do aço pode ser admitido igual a 210 GPa.

8.3.6 Diagrama tensão-deformação, resistência ao escoamento e à tração

O diagrama tensão-deformação do aço e os valores característicos da resistência ao

escoamento fyk, da resistência à tração fstk e da deformação na ruptura εuk devem

ser obtidos de ensaios de tração realizados segundo a ABNT NBR ISO 6892-1. O

valor de fyk para os aços sem patamar de escoamento é o valor da tensão

correspondente à deformação permanente de 0,2 %.

Para o cálculo nos estados-limite de serviço e último, pode-se utilizar o diagrama

simplificado mostrado na Figura 8.4, para os aços com ou sem patamar de

escoamento.

Page 13: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

Onde:

fyk é a resistência característica do aço ao escoamento na tração.

fyd é a resistência de cálculo do aço ao escoamento na tração.

εyd é a deformação específica do aço correspondente ao limite do patamar de

escoamento.

𝜎 = 𝐸 ∗ 𝜀

𝜀 =𝜎

𝐸

𝜀𝑦𝑑 =𝑓𝑦𝑑

𝐸𝑠

Tendo em vista o trabalho conjunto concreto/aço a deformação do aço na

compressão também será 3,5 ‰, já na tração limitamos em 10 ‰, pois além disso,

o concreto cria grandes fissuras.

A resistência de cálculo do aço ao escoamento na tração (fyd) é obtida a partir da

expressão abaixo:

𝑓𝑦𝑑 =𝑓𝑦𝑘

𝛾𝑠

Exercício 2

Calcule as características do aço a partir da categoria adotada.

CATEGORIA fyk fyd 𝜀𝑦𝑑 ‰

Page 14: 2 Concreto Estrutural - Site Pessoalemilioqueiroz.com.br/wp-content/uploads/2018/08/Aula-2...2 Concreto Estrutural A NBR 6118 (2014) nos fornece as propriedades do concreto para estruturas

CA-25

CA-50

CA-60

Espaço para cálculo