20o.EBA

Embed Size (px)

Citation preview

  • 7/22/2019 20o.EBA

    1/278

    FUNDAMENTOS DE ADSORO

    ANAIS DO 5o ENCONTRO BRASILEIRO SOBRE ADSORO(Natal/RN, 2004)

    Antonio S. AraujoDiana C. S. Azevedo

    (Organizadores)

  • 7/22/2019 20o.EBA

    2/278

  • 7/22/2019 20o.EBA

    3/278

    FUNDAMENTOS DE ADSORO

    ANAIS DO 5o ENCONTRO BRASILEIRO SOBRE ADSORONatal, RN, 18-21 de Julho de 2004.

    Organizado por:

    Antonio S. Araujo

    Universidade Federal do Rio Grande do NorteDepartamento de Qumica, CP 1662,59078-970, Natal, RN

    Brasile-mail: [email protected]

    Diana C. S. Azevedo

    Universidade Federal do CearDepartamento de Engenharia Qumica, Bl. 709

    60.455-760, Fortaleza, CEBrasil

    e-mail: [email protected]

    2004

    EDUFRN CNPQ CAPES

    Natal Rio Grande do Norte Brasil

  • 7/22/2019 20o.EBA

    4/278

    UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

    Reitor: Jos Ivonildo do Rgo

    Vice-Reitor: Nilsen Carvalho F. de Oliveira FilhoDiretor da EDUFRN: Enilson Medeiros dos Santos

    Editor: Francisco Alves da Costa Sobrinho

    Capa: Marcos Devito

    Normalizao: Liana Maria Nobre Teixeira

    Coordenao de reviso: Risoleide Rosa

    Editorao eletrnica: Antonio S. Araujo

    Superviso editorial: Alva Medeiros da CostaSuperviso grfica: Francisco Guilherme de Santana

    Diviso de Servios Tcnicos

    Catalogao da publicao na Fonte. UFRN / Biblioteca Central Zila Mamede___________________________________________________________

    Encontro Brasileiro Sobre Adsoro (5. : 2004 : Natal, RN).Anais ... / Antonio S. Araujo, Diana C. S. Azevedo

    (Organizadores). Natal, RN : EDUFRN, 2004.278 P.

    Tema : Fundamentos de Adsoro

    1. Adsoro Fundamentos Congressos. 2. Petrleo e gs Congressos. 3. Biotecnologia Congressos. 4. Meio ambiente Congressos. 5. Adsorventes nanoporosos Congressos. 6. Processosde adsoro Congresso. 7. Sntese e caracterizao - Congressos. I.Arajo, Antonio S. II. Azevedo, Diana C. S. III. Ttulo.

    CDD 541.33

    RN/UF/BCZM 2004/ 19 CDU 544.723(063)___________________________________________________________

    Todos os direitos desta edio reservados EDUFRN Editora da UFRNCampus Universitrio, s/n Lagoa Nova 59.078-970 Natal/RN Brasil

    e-mail: [email protected] www.editora.ufrn.brTelefone: 84 215-3236 Fax: 84 215-3206

  • 7/22/2019 20o.EBA

    5/278

    v

    PREFCIO

    Desde o primeiro Encontro Brasileiro sobre Adsoro, em 1996, em Fortaleza, CE, a rea deadsoro no Brasil tem mostrado um significativo desenvolvimento, deixando claro a necessidade de

    reunies peridicas deste evento, agora com a edio deste 5o Encontro Brasileiro sobre Adsoro(5o EBA), em Natal, Rio Grande do Norte, no perodo de 18 a 21 de julho de 2004. Isto tem ficadonotrio por dois fatos principais: praticamente houve duplicao na quantidade dos trabalhoscientficos, hoje com cerca de 130 trabalhos, e tambm pela participao de diversos pesquisadores derenome internacional. Destaca-se tambm o interesse das empresas e centros de pesquisa pelo evento,seja como participantes ou patrocinadores.

    O 5o EBA um frum de discusses, onde os pesquisadores discutem suas atividades eresultados de pesquisa desenvolvidas em suas universidades, indstrias ou centros de pesquisas. Ostpicos em adsoro e suas aplicaes incluem: fundamentos de adsoro; sntese e caracterizao deadsorventes; materiais adsorventes nanoestruturados; modelagem e simulao; aplicao de adsoro

    nas indstrias de alimentos e farmacutica; aplicao de adsoro ao meio ambiente; aplicao deadsoro na indstria de petrleo e gs natural; reatores industriais (PSA, leito mvel simulado);reatores de membranas e monlitos. Os trabalhos selecionados foram divididos nas seguintes reas: 1.Fundamentos de Adsoro; 2. Processos de Adsoro; 3. Materiais nanoporosos; 4. Sntese ecaracterizao de adsorventes e catalisadores; 5. Petrleo e gs natural; 6. Meio ambiente e 7.Biotecnologia.

    A programao cientfica inclui conferncias plenrias, apresentaes de trabalhos orais e emforma de painis, e trs mini-cursos: 1. Adsorventes para armazenamento de energia; 2. Adsorventes

    para proteo ambiental; 3. Caracterizao de adsorventes via anlise trmica. Os conferencistasconvidados foram: Francisco Rodrigues-Reinoso (Universidad de Alicante, Espanha); Gino Baron(Vyije Universiteit Brussel, Blgica); Marc Douglas LeVand (Vanderbilt University, EstadosUnidos); Peter Harting (Center for Non-Classic Chemistry, Alemanha); Mietek Jaroniec (Kent StateUniversity, Estados Unidos); Stefano Brandani (University College London, Inglaterra) e AnthonyChiang (Nacional Central University, Taiwan).

    Agradecemos a participao de todos os estudantes de graduao e ps-graduao eprofessores que atendem ao 5o EBA, e as empresas ACIL & WEBER Quantachrome, VARIAN,MICRONAL S/A e SHIMADZU.

    Finalmente, em nome da Comisso Organizadora, pelo apoio e suporte financeiro ao 5oEBA,

    agradecemos ao Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (CNPq),Coordenao de Apoio ao Ensino Superior (CAPES), Ministrio de Cincia e Tecnologia /Financiadora de Estudos e Projetos / Rede de Catlise (MCT / FINEP / RECAT), Centro deTecnologias do Gs (CTGAS), CENPES / PETROBRAS, Programa de Recursos Humanos daAgncia Nacional do Petrleo (ANP / PRH-30) e ao Programa de Ps-Graduao em Qumica daUniversidade Federal do Rio Grande do Norte (PPGQ / UFRN).

    Natal, 18 de julho de 2004.

    Antonio S. AraujoDiana C. S. Azevedo

  • 7/22/2019 20o.EBA

    6/278

    vi

    COMISSO ORGANIZADORA

    PresidenteAntonio S. Arajo Universidade Federal do Rio Grande do Norte, Natal, RN

    Vice-PresidenteDiana C. S. Azevedo Universidade Federal do Cear, Fortaleza, CE

    MembrosAntonio Eurico. B. Torres Universidade Federal do Cear, Fortaleza, CEAntonio Osimar S. Silva Universidade Federal do Rio Grande do Norte, Natal, RNCsar A. M. Abreu Universidade Fedear de Pernambuco, Recife, PEDulce M. A. Melo Universidade Federal do Rio Grande do Norte, Natal, RNEveraldo S. Santos Universidade Federal do Rio Grande do Norte, Natal, RNGlauber J. T. Fernandes Centro de Tecnologias do Gs, Natal, RNJoana M. F. B. Aquino Universidade Federal do Rio Grande do Norte, Natal, RN

    Jos Alcides Santoro Martins Centro de Tecnologias do Gs, Natal, RNMarcelo J. B. Souza Universidade Federal do Rio Grande do Norte, Natal, RNMarcus A. F. Melo Universidade Federal do Rio Grande do Norte, Natal, RNOsvaldo C. Filho Universidade Federal do Rio Grande do Norte, Natal, RN

    COMISSO CIENTFICA

    PresidenteAntonio S. Araujo Universidade Federal do Rio Grande do Norte, Natal, RN

    Vice-PresidenteClio L. Cavalcante Jr. Universidade Federal do Cear, Fortaleza, CE

    MembrosCsar A. M. Abreu Universidade Fedear de Pernambuco, Recife, PECsar C. Santana Universidade Estadual de Campinas, Campinas, SPDiana C. S. Azevedo Universidade Federal do Cear, Fortaleza, CEDulce M. A. Melo Universidade Federal do Rio Grande do Norte, Natal, RNEledir V. Sobrinho Universidade Salvador, Salvador, BAEveraldo S. Santos Universidade Federal do Rio Grande do Norte, Natal, RN

    Evaristo C. Biscaia Jr. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJJos C. Gubulin Universidade Federal de So Carlos, So Carlos, SPJos Soares Andrade Jr. Universidade Federal do Cear, Fortaleza, CELeonel T. Pinto Universidade Federal de Santa Catarina, Florianpolis, SCLuiz A. M. Pontes Universidade Salvador, Salvador, BAMarcia M. L. Duarte Universidade Federal do Rio Grande do Norte, Natal, RNMarcus A. F. Melo Universidade Federal do Rio Grande do Norte, Natal, RNMaria Anglica Barros Universidade Estadual do Maring, Maring, PROdelsia L. S. Alsina Universidade Federal de Campina Grande, Campina Grande, PBRicardo C. R. Pinto CENPES / PETROBRAS, Rio de Janeiro, RJSelene M.A.G. Ulson Souza Universidade Federal de Santa Catarina, Florianpolis, SC

    Valter J. Fernandes Jr. Universidade Federal do Rio Grande do Norte, Natal, RN

  • 7/22/2019 20o.EBA

    7/278

    vii

    NDICE

    PREFCIO v

    COMISSO ORGANIZADORA vi

    COMISSO CIENTFICA vi

    CONFERNCIAS PLENRIAS

    EXPLOITING ENTHALPIC, ENTROPIC AND PACKING EFFECTS IN ZEOLITES 2

    FOR THE CONVERSION AND SEPARATION OF HYDROCARBONSJoeri F.M. Denayer, Refik Ahmet Ocakoglu, Gino V. Baron

    ADSORPTION RESEARCH FOR SPACE EXPLORATION 5M. Douglas LeVan

    THERMODYNAMIC DESCRIPTION OF HIGH PRESSURE ADSORPTION 7ISOTHERMS ON BASE OF EXCESS MEASUREMENTS

    Peter Harting, Alexander Herbst, Reiner Staudt

    TAILOR-MADE NANOPOROUS CARBONS FOR GAS SEPARATION AND 8

    STORAGEFrancisco Rodrguez-Reinoso

    A NEW NUMERICAL METHOD FOR ACCURATE SIMULATION OF FAST 9CYCLIC ADSORPTION PROCESSES

    Hyungwoong Ahn, Stefano Brandani

    NOVEL DEVELOPMENTS IN GAS ADSORPTION STIMULATED BY RECENT 11ADVANCES IN THE SYNTHESIS OF ORDERED MESOPOROUS MATERIALS

    Mietek Jaroniec

    RECONFIRMATION OF THE DBdB THEORY FOR MESOPORE ANALYSIS 13Anthony Chiang, Kuei-jung Chao

    Parte 1. FUNDAMENTOS DE ADSORO

    SIMULATION OF THE SEPARATION OF A TERNARY MIXTURE IN A 19SIMULATED MOVING BED USING A HYBRID SOLUTION

    Axel Starquit, Marco A.Cremasco

  • 7/22/2019 20o.EBA

    8/278

    viii

    ADSORPTION OF PHENOLIC COMPOUNDS FROM WATER ON ACTIVATED 21CARBON: PREDICTION OF MULTICOMPONENT EQUILIBRIUM ISOTHERMSUSING SINGLE-COMPONENT DATA

    Anabela Leito, Rosalina Serro

    DIFUSIVIDADE DO MERCRIO EM CARVO ATIVO ADITIVADO 24Talita F. Mendes, Keiko Wada, M. Patricia M. P. Cardozo, Jos M. P. Ferreira,Sara B. M. Schmidt, Vanderli R. R. da Silva,

    ADSORPTION OF PURE GASES AND THEIR MIXTURES ON ACTIVATED 26CARBON

    Ricardo Bazan, Reiner Staudt, Peter Harting

    POSSIBILITIES AND LIMITS FOR THE DETERMINATION OF PARTIAL LOADS 27BY GAS MIXTURE ADSORPTION

    Peter Harting, Ricardo Bazan, Reiner Staudt

    ESTUDOS DE CINTICA DE ADSORO DE 1,3,5-TRIISOPROPILBENZENO 28EM MCM-41 ATRAVS DO MTODO ZLC

    N. M. S. Buarque, C. L. Cavalcante Jr, D. C. S. Azevedo, A. S. Arajo,J.M.F.B. Aquino

    CLCULO DE EQUILBRIO TERMODINMICO DE SISTEMAS QUE 30APRESENTAM MAIS DE UMA FASE ADSORVIDA

    Vladimir F. Cabral, Marcelo Castier, Frederico W. Tavares

    SIMULAO DE MONTE CARLO DA ADSORO DE MISTURAS 32

    MULTICOMPONENTES EM SLIDOS HETEROGN EOSViadimir F. Cabral, Marcelo Castier, Frederico W. Tavares

    EFFECT OF ADSORBATE SIZE AND SOLIDS HETEROGENEITY ON THE 34AVAILABILITY OF MODELS TO PREDICT AZEOTROPIC BEHAVIOR

    L. L. Romanielo, M. A. Krhenbhl

    CINTICA DE ADSORCIN DE PROPILENO Y PROPANO EN ZEOLITA 5A-K 36Gelacio Aguilar Armenta, Mara Eugenia Patio Iglesias

    EMPLEO DE SILICA POROSA PARA ESTUDIAR LA DINMICA MOLECULAR 38Y COMPORTAMIENTO DE FASES DE COMPUESTOS ORGNICOS ADSORBIDOS

    Griselda A. Eimer , Julio D. Fernndez y Aldo H. Brunetti

    NEW DEVELOPMENTS IN THE FREQUENCY RESPONSE METHOD FOR MASS 40TRANSFER RATE MEASUREMENTS FOR NANOPOROUS ADSORBENTS

    Yu Wang, M. Douglas LeVan

    AVALIAO DE REGRAS DE MISTURA PARA O CLCULO DO PARMETRO 42DE INTERAO INTERMOLECULAR CRUZADO.

    L. L. Romanielo, Alves, K. C. N.

  • 7/22/2019 20o.EBA

    9/278

    i

    Parte 2. PROCESSOS DE ADSORO

    PREDIO DA CINTICA DE TINGIMENTO DE FIOS DE ACRLICO 45EMPACOTADOS UTILIZANDO CORANTES BSICOS

    Souza, D. P., Guelli U. Souza, S. M. A, Ulson de Sousa, A. A.

    ADSORPTION OF CO2 ON HYDROTALCITE IN A FIXED BED 47J. L. Soares, G. L. Casarin, H. J. Jos, R. F. P. M. Moreira, A. E. Rodrigues

    SEPARAO DO TAXOL EM LEITO MVEL SIMULADO 50Marco Aurelio Cremasco, Benjamin J. Hritzko, N.-H. Linda Wang

    MODELAGEM E SIMULAO DA SEPARAO DO TAXOL EM LEITO 52MVEL SIMULADO

    Axel Starquit, Marco Cremasco

    ADSORO DE METANO EM CARVO ATIVADO ESTUDO DO EQUILBRIO 54DE ADSORO A PARTIR DE MEDIDAS GRAVIMTRICAS A ALTAS PRESSES

    M. Bastos, J. C. S. Arajo, A.E.B. Torres, C. L. Cavalcante Jr., D.C.S. Azevedo

    ANLISE DINMICA PARA REMOO DE H2 EM REATOR DE LEITO FIXO 56COM MEMBRANA SELETIVA A HIDROGNIO

    Silva, J. D.

    ADSORO DE HIDROGNIO NOS MICROPOROS DE PARTCULAS 58CATALTICAS EM COLUNA DE LEITO FIXO

    Silva, J. D.; Lucena, S.

    SEPARAO DE PRINCPIOS ATIVOS DO CAF POR ADSORO 60A. B. A. de Azevedo, C. Bondioli, P. Mazzafera, R. S. Mohamed

    FRACIONAMENTO DO LEO BRUTO DE CAF VERDE UTILIZANDO 62DIXIDO DE CARBONO SUPERCRTICO E ADSORO EM SLICA GEL.

    A. B. A. de Azevedo, P. Mazzafera, R. S. Mohamed

    DESORPTION PROCESSES: SUPERCRITICAL FLUID REGENERATION OF 64

    ODIFIED CLAYSMarisa F. Mendes, Gerson L. V. Coelho

    ESTUDO DO DESEMPENHO DE UMA COLUNA DE LEITO FIXO DE BIOMASSA 66PARA A ADSORO DE CONTAMINANTES ORGNICOS PROVENIENTESDO PETRLEO

    E. G dos Santos, O. L. S de Alsina, F. L. H da Silva.

    ESTUDO NUMRICO DA ADSORO DE CORANTES EM COLUNAS DE 68LEITO FIXO

    Peruzzo, L.C., Ulson de Souza, A. A., Guelli U. Souza, S. M. A

  • 7/22/2019 20o.EBA

    10/278

    OTIMIZAO DE SISTEMAS CROMATOGRFICOS PARA A RECUPERAO 70DE LAPACHOL DE SOLUO ETANLICA

    Amaro Gomes Barreto Jr., Sergio Freire de Carvalhae, Evaristo C. Biscaia Jr.

    ANLISE ESTRUTURAL E STIOS ATIVOS DE XILENOS EM AlPO4-5 E AlPO4-11 72

    UTILIZANDO SIMULAO MOLECULARS. Mardnio P. Lucena, Joo A. F. R. Pereira, Clio L. Cavalcante Jr.

    MODELING OF ADSORPTION PHENOMENA IN A TEMPERATURE-SWING 74ADSORPTION COMPRESSOR (TSAC)

    Yuan Wang, Clio L. Cavalcante Jr., M. Douglas LeVan

    Lila M. Mulloth, Dave L. Affleck

    PURIFICAO DE GS NATURAL UTILIZANDO PENEIRAS MOLECULARES 76MODIFICADAS

    Fransuliton A. Souza, Valter J. F. Jnior, Djalma R. Silva, Antonio S. Araujo

    Parte 3. MATERIAIS NANOPOROSOS

    ESTUDO DAS PROPRIEDADES CIDAS DAS PENEIRAS MOLECULARES DO 79TIPO SBA-15 E AlSBA-15

    Ana C.S.L.S. Coutinho, Antonio S. Arajo, Antonio O. S. Silva,Marcelo J. B. Souza, J.M.F.B Aquino

    ESTUDO DA INFLUNCIA DO LA COMO DOPANTE NA MORFOLOGIA E 80PROPRIEDADES DO SNO2 NANOMTRICO

    Humberto V. Fajardo, Neftal L. V. Carreo, Antoninho Valentini,Adeilton P. Maciel, Luiz F. D. Probst, Edson R. Leite, Elson Longo.

    SNTESE E CARACTERIZAO DE NANOCOMPSITO DE NI/CEO2 PARA 82APLICAO CATALTICA

    Antoninho Valentini, Neftal L.V. Carreo, Edson R. Leite, Elson Longo,Luiz F.D. Probst, Fenelon M. Pontes

    SNTESE DE MACROESFERAS DE ALUMINA MESOPOROSAS 84

    Antoninho Valentini, Amarildo O. Martins, Humberto V. Fajardo,Luiz F.D. Probst

    AVALIAAO DAS PROPRIEDADES SUPERFICIAIS DE PENEIRAS 86MOLECULARES MCM-41 OBTIDAS EM DIFERENTES TEMPOS DE SNTESE

    Marcelo J. B. Souza, Antonio O. S. Silva, Joana M. F. B. Aquino,Valter J. Fernandes Jr., Antonio S. Araujo

    SNTESE, CARACTERIZAAO E ESTUDO DAS PROPRIEDADES CIDAS 88DE PENEIRAS MOLECULARES AlMCM-41 COM DIFERENTES RAZOES Si/Al

    Marcelo J. B. Souza, Antonio O. S. Silva, Anne M. G. Pedrosa,

    Ana C. S. L. S. Silva, Valter J. Fernandes Jr., Antonio S. Araujo

  • 7/22/2019 20o.EBA

    11/278

    xi

    ADSORPTION MONITORING OF HYDROTHERMALLY TREATED CAGE-LIKE 90MESOPOROUS SILICAS

    Ewa B. Celer, Michal Kruk, Mietek Jaroniec

    SPREADING OF Cu CATIONS ONTO SBA-15 MESOPOROUS SILICA 92

    E. I. Basaldella, J.C. Tara, M.E. Garca, G. Aguilar Armenta

    HYDROPHOBIC MCM41 SUPPORTED COMPOSITE ADSORBENTS FOR 94ACID GAS SEPARATION

    Peter Harlick, Robert Franchi, Yong Yang, Abdelhamid Sayari

    EQUILIBRIUM ADSORPTION OF ALKANES ON COCONUT NANOPOROUS 96ACTIVATED CARBON

    Krista S. Walton, Celio L. Cavalcante Jr., M. Douglas LeVan

    IMMOBILIZATION OF THE COBALT(II) TETRASULFOPHTHALOCYANINE 98

    IN MCM-41-TYPE MOLECULAR SIEVES BY IMPREGNATION WITHDIFFERENT SOLVENT

    Joana M. F. B. Aquino, Francisco L. Castro, Glauber J. T. FernandesValter J. Fernandes Jr., Antonio S. Araujo

    MICROFLUIDIC SEPARATIONS IN 1-D NANO-CHANNELS 99D. Clicq, S. Vankrunkelsven, G. Desmet, G. V. Baron

    Parte 4. SNTESE E CARACTERIZAO DE ADSORVENTES E

    CATALISADORES

    EFEITO DA CONCENTRAO DO CIDO FOSFRICO, E OUTRAS VARIVEIS 101DE PROCESSO DE PRODUO, NA REA SUPERFICIAL DE CARVESATIVADOS DE ENDOCARPO DE COCO DA BAHA

    Jaguaribe, E. F.; Medeiros,L. L.; Viera, H. M.; Jaguaribe , D. C. A.;Barreto, M.C.S.; Lopes,F. P.

    ESTUDO DE MODIFICAES TEXTURAIS EM CARVO ATIVADO TRATADO 103POR PLASMA

    Silva C. F., Souza J. R., Rojas L. O. A., Alves Jr. C.

    SNTESE E CARACTERIZAO DE CATALISADORES BIFUNCIONAIS DE 105COBALTO E NQUEL SUPORTADOS NA ZELITA HZSM-12

    A. M. Garrido Pedrosa, M. J. B. Souza, A. O. S. Silva, D. M. A. Melo,A. S. Araujo,

    CRISTALIZAO DA ZELITA ZSM-12 COM DIFERENTES CONCENTRAES 107DE ALUMNIO

    Antonio O. S. Silva, Marcelo J. B. Souza, Jos A. Moura,Ana C.S. L.S. Coutinho, Joana M. F. B. Aquino, Antonio S. Araujo

  • 7/22/2019 20o.EBA

    12/278

    xii

    CARACTERIZAO DA ACIDEZ DAS ZELITAS HZSM-12 E HZSM-5 POR 109ADSORO DE DIFERENTES BASES

    Antonio O. S. Silva, Marcelo J. B. Souza, Jos A. Moura,Anne M. G. Pedrosa, Valter J. Fernandes Junior, Antonio S. Arajo

    DISTRIBUIO DE P E AL NA SUPERFCIE DE ZELITAS ZSM-5 111Mauri Jos Baldini Cardoso, Danielle de Oliveira Rosas, Lam Yiu Lau

    ION EXCHANGE OF NaY ZEOLITE WITH Cr3+, Ca2+, Mg2+ ANDK+ IONS 114M. A. S. D. Barros, P. A. Arroyo, C. R. G. Tavares, E. F. Sousa-Aguiar

    CHEMICAL ACTIVATION OF QUERCUS AGRIFOLIA CHAR 116Alejandro Robau-Snchez, Alfredo Aguilar-Elguzabal, Julia Aguilar-Pliego

    STUDY OF THE EFFECT OF CROSSLINKING OF POLYBUTADIENE IN ITS 119HYDROCARBON SORPTION PROPERTIES

    J. Enrique Gonzlez Colomo, Cesar Leyva Porras, Daniel Lardizbal G.,Alfredo Mrquez Lucero, Alfredo Aguilar Elguzabal

    ZEOLITE BETA MEMBRANES AND ITS POTENTIAL IN ALKANE SEPARATION 121PROCESSES

    M.L. Maloncy, A.W.C. Van den Berg, L.Gora, J.C.Jansen

    ADSORO DE ETANOL SOBRE ALUMINA EM MEIO OXIDANTE. PARTE I 123Altair Marques da Silva, Williams Gonalves Vieira, Monik Granga de Souza,Patrice Marecot, Jacques Barbier

    ADSORO DE ETANOL SOBRE ALUMINA MODIFICADA POR LA2O3 E CEO2 125EM MEIO OXIDANTE . PARTE II

    Altair Marques da Silva, Williams Gonalves Vieira, Monik Granga de Souza,Patrice Marecot, Jacques Barbier.

    PREPARAO E CARACTERIZAO COBRE E NQUEL SUPORTADOS EM 127SLICA E ALUMINA

    Jos A. Moura, Antonio S. Araujo

    SNTESE E CARACTERIZACO DAS ZELITA HZSM-12 E HZSM-5 129IMPREGNADAS COM MOLIBDNIO

    Antonio O. S. Silva, Marcelo J. B. Souza, Antonio S. Araujo,Nat M. Cruz, Sara A. Costa, Mohand Benachour

    Parte 5. PETRLEO E GS NATURAL

    AVALIAO DO PROCESSO DE ADSORO DE H2S PROVENIENTE DO 132GS NATURAL USANDO DOLOMITAS MODIFICADAS

    Silveira, V. R.; Bezerra, G. H. A. C.; Melo, D. M. A.; Balthar, A. R.,

    Oliveira, V. M.

  • 7/22/2019 20o.EBA

    13/278

    xiii

    DESSULFURIZAO DA GASOLINA UTILIZANDO PROCESSOS ADSORTIVOS 134Melgarejo Navarro, M. L., Ulson de Sousa, A. A., Guelli U. Souza, S. M. A

    MODELAGEM E SIMULAO PARA REMOO DO SO2 DO GS NATURAL 136POR PROCESSO DE ADSORO EM COLUNA DE LEITO FIXO

    Silva, J. C. S., Cabral, A.C.S., Silva, J. D. Lucena, S.

    ESTUDO DA CAPACIDADE DE ARMAZENAMENTO DE METANO POR 138ADSORO EM CARVO ATIVADO DE CASCA DE COCO

    Oliveira A. K.C., Souza J. R., Rojas L. O. A., Dantas, J. H. A., Moraes, C.

    ESTUDO COMPARATIVO DA ADSORO DE POLMEROS EM ARENITO 140CONSOLIDADO E NO-CONSOLIDADO DO AFLORAMENTO BOTUCATU

    Medeiros, A.C.R; Maia, A.M.S.; Marcelino, C.P.; Fagundes, F.P.; Vidal, R.R.L;Garcia, R. B.

    ANLISE DA CARGA E DESCARGA DE VASOS DE ARMAZENAMENTO DE 142GS NATURAL ADSORVIDO (GNA)

    M. Bastos Neto, A. E. B. Torres, D. C. S. Azevedo, C. L. Cavalcante Jr.

    CINTICA E EQUILBRIO DE ADSORO PARA ARMAZENAMENTO DEGS 144GS NATURAL

    Oliveira, M. H. A, Esprito Santo, L. S., Rocha, R. M, Jaguaribe, E. F.,Knoechedmann, A., Medeiros, N., Abreu, C. A. M.

    ADSORO DE GS NATURAL EM CARVES ATIVADOS 147Alessandra Passos Bassotelli, Aparecido dos Reis Coutinho

    EFEITO DA NATUREZA DA CARGA DE POLIELETRLITOS SOBRE A 150ADSORO EM ARENITO DO AFLORAMENTO BOTUCATU

    Vidal, R.R.L.; Vidal, E.L.F.; Silva, A.C.M.; Garcia, R.B.

    EQUILBRIO DE ADSORO EM FASE LQUIDA DE HIDROCARBONETOS 152POLIAROMTICOS EM H-MCM-41

    R.S. Arajo, H.L.B. Buarque, D.A.S. Maia , R .N. Costa Filho,C.L. Cavalcante Jr, D.C.S. Azevedo, H.B. De Santana

    SELETIVIDADE DA ZELITA ZnY POR COMPOSTOS SULFURADOS PRESENTES 154EM COMBUSTVEIS AUTOMOTIVOS

    M.L.M Oliveira, A.A. L. Miranda, N. M. S. Buarque, C. B. M. Barbosa,C.L. Cavalcante Jr, D.C.S. Azevedo

    ESTUDO DA ELIMINAO DE COMPOSTOS DE ENXOFRE EN NAFTA 156Rachel V. R. A. Rios, Francisco Rodrguez-Reinoso, Antonio Sepulveda-Escribano.

    CARACTERIZAO DE COMPOSTOS NITROGENADOS EM GASLEO DE 158PETRLEO MARLIM

    Leandro da Conceio, Cristina de Almeida Lopes,

    Luiz Carlos Alves de Oliveira , Iraj do Nascimento Filho

  • 7/22/2019 20o.EBA

    14/278

    xiv

    SNTESE E CARACTERIZAO DE MATERIAIS CARBONOSOS ATIVADOS 160PARA ARMAZENAMENTO DE GS NATURAL

    Coutinho, A.R., Mendez, M.O.A., Capobianco, G., Otani, C., Petraconi,G.,Maciel, H.S., Massi, M., Urruchi, W., Pereira, A.C., Campos, F.B.,Fabianski, M., Furini, R.

    ADSORO DE H2S DO GS NATURAL USANDO PALIGORSQUITA COMO 162MATERIAL ADSORVENTE

    Bezerra, G. H. A. C.; Silveira, V. R.; Melo,D. M. A.; Melo M. A. F;Cunha, J.D.; Balthar, A.R.; Oliveira, V.M.; Barbosa, C. M. B. M.

    UTILIZAO DE REOLOGIA NA OBTENO DE ISOTERMAS DE ADSORO 164DE POLMEROS SOBRE ARENITOS

    Maia, A. M. S.;Vidal, R.R.L.; Garcia, R. B.

    INTERAO E DEGRADAO DE DIESEL DE MISTURA EM SOLOS DA 166

    REGIO DE MORRETES NO PARANCarmen Guedes, Ilza Lobo, Milton Faccione, Jurandir Pinto, Iara Cal,

    Rafael Tarozo,Leandro Mazzochin, Eduardo Di Mauro,Robson Lewis,Marcos Rachwal.

    REMOO DE NITROGENADOS DE DESTILADOS MDIOS DE PETRLEO: 168EFEITO DA ATIVAO DO ADSORVENTE NA CAPACIDADE DE ADSORO

    Marco A. Gaya de Figueiredo, Walter Camillo S. Souza, Fatima Maria Z. Zotin,Ricardo R. da Cunha Pinto

    EQUILBRIO DE ADSORO E SELETIVIDADE DAS ZELITAS AgY e NaY 170

    POR COMPOSTOS SULFURADOS E AROMTICOS UTILIZANDOCROMATOGRAFIAHEADSPACE

    M.L.M Oliveira, A.A. L. Miranda, N. M. S. Buarque, C.L. Cavalcante Jr,D.C.S. Azevedo

    ESTUDO DE VIABILIDADE TECNO-ECONOMICA PRELIMINAR PARA 172PRODUO DE CARVO ATIVADO NO BRASIL A PARTIR DO RESIDUOSDO COCO: ESTUDO COMPARATIVO DE CENARIOS DE PRODUO

    Santiago B. H. S., Barbosa, D. B. , Fernandes, R., Selvam, P. V. P.

    Parte 6. MEIO AMBIENTE

    ADSORO E SIMULTNEA DEGRADAO DE EFLUENTE TXTIL ATRAVS 174DO PROCESSO FENTON HETEROGNEO

    Dantas T. L. P., Mendona V. P., Madeira V.S., Moreira R. F. P. M.

    ESTUDOS DO MECANISMO DE SORO DE MERCRIO EM HIDROXIAPATITA 176Patrcia C. Reis, Neuman S. Resende, Tito L. M. Alves, Vera M. M. Salim

  • 7/22/2019 20o.EBA

    15/278

    xv

    NOVOS MATERIAIS BASEADOS EM ZELITAS MAGNTICAS PARA A 178REMOO DE METAIS PESADOS EM SOLUO AQUOSA

    Luiz C. A. Oliveira, Sibele B. C. Pergher, Alessandra Smaniotto,Diego I. Petkowicz

    ADSORO E DESSORO DE ONS Hg(II) UTILIZANDO QUITOSANA 180NATURAL E RETICULADA NA FORMA DE MEMBRANAS E ESFERASRodrigo S. Vieira, Marisa M. Beppu

    USO DE ARGILAS MODIFICADAS NO TRATAMENTO DE EFLUENTES AQUOSOS 182CONTENDO Mn(II) E Cd(II)

    Sandra Maria Dal Bosco, Ricardo Sarti Jimenez, Wagner Alves Carvalho

    AVALIAO DA REMOO DE ZINCO EM ARGILA NACIONAL 184Carlo de F. Sebok, Roberta M. dos Santos, Meuris G. C. Da Silva

    REMOO DE ON CDMIO UTILIZANDO SLICA-GEL 186ORGANOFUNCIONALIZADA

    ngela M. F. Cruz; Klcia M. Santos; Rina L. S. Medeiros;Maria F. V. Moura; Robson F. Farias

    INVESTIGACO DA INFLUNCIA DE TRATAMENTOS QUMICOS DA 187QUITOSANA EM SUA CAPACIDADE DE ADSORO DE CROMO

    Baroni, P.; Sebok, C. F., Vieira, R. S., Beppu, M. M.; Silva, M. G. C.

    MODELAGEM CINTICA DA ADSORO DE CORANTE TXTIL "REMAZOL 189BLACK B" SOBRE BAGAO DE CANAIN NATURA E CARVO ATIVADO

    Cynara Conceio Neves de Oliveira, Nelson Medeiros de Lima Filho,Fbio Ribeiro Campos da Silva.

    ARGILA BENTONITA NA REMOO DE CHUMBO DE EFLUENTES SINTTICOS 191R. A. S. Costa, M. G. F. Rodrigues

    ADSORO E SIMULTNEA DEGRADAO DE EFLUENTE TXTIL ATRAVS 192DO PROCESSO FENTON HETEROGNEO

    Dantas T. L. P., Mendona V. P., Madeira V.S., Moreira R. F. P. M.

    ELIMINAO DE CORANTES TXTEIS UTILIZANDO RESDUOS SLIDOS DE 194CURTUMES

    Luiz Carlos Oliveira, Rogrio Dallago, Diego Petkowicz, Alessandra Smaniotto

    REMOO DE CTIONS DE METAIS PESADOS DE EFLUENTES AQUOSOS 196PELAS ARGILAS K-10 E NT-25

    Sandra Maria Dal Bosco, Ricardo Sarti Jimenez, Wagner Alves Carvalho

    REMOO DE COR EM EFLUENTES DA INDSTRIA TXTIL UTILIZANDO 198ADSORO COM ARGILAS ESMECTITAS DA REGIO DO ARARIPE-PE

    G. Lima, G.Honrio, M. G.C. Da Silva , O. Barana, C. Abreu, V. Silva

  • 7/22/2019 20o.EBA

    16/278

    xvi

    ESTUDO DA ADSORO DE CHUMBO UTILIZANDO CARVO ATIVADO E 200QUITOSANA

    A. L. P. Araujo, O. A. A. Santos, M. L. Gimenes, T. W. Sereza

    OBTENO DE MODELOS TERMODINMICOS DA ADSORO DE LEO EM 202

    VERMICULITA HIDROFBICAL. M. J. Gonalves, I. Maia, P. M. Pimentel, M. P.Tvora , M. A. F. Melo,D. M. A. Melo, A. E. Martinelli, G. G. Maldonado

    ESTUDO CINTICO DA ADSORO DO PB, CU E CR EM XISTO RETORTADO 204A.L.C. Assuno, P.M. Pimentel, D.H. Macedo, C.N.J.Silva, M. A. F. Melo,D. M. A. Melo, A. E. Martinelli, G. G. Maldonado

    SORPTION OF CR (III) ON ACTIVATED CARBONS 206Svetlana S. Lyubchik, Olga L. Galushko, Vitalij E. Shavkutin, Isabel M. Fonseca

    CHROMIUM UPTAKE FROM TRICOMPONENT SOLUTION IN ZEOLITE 209FIXED BED

    M.A.S.D. Barros, A.S. Zola, P. A. Arroyo, C. R. G. Tavares, E. F. Sousa-Aguiar

    ADSORPTIVE PURIFICATION OF PHENOLIC WASTEWATERS: OPERATION OF 211A PARAMETRIC PUMPING UNIT

    Marta Otero, Miriam Zabkova, Alrio E. Rodrigues.

    KINETICS OF PENTACHLOROPHENOL ADSORPTION ONTO GRANULAR 214ACTIVATED CARBON

    Leyva-Ramos R., Bernal-Jacome L. A., Hernandez-Orta M. M. G.

    BIOSSORO DE CDMIO, EM EFLUENTES INDUSTRIAIS, ATRAVS DA 216LEVEDURA SACCHAROMYCES CEREVISIAE

    Ferreira, J.M.; Conrado, L.S.; Alsina, O.L.S.; Silva, F.L.H

    DESSORO DE CONTAMINANTES (BTEX E GLIFOSATO) NA REMEDIAO 218DE SOLOS CONTAMINADOS COM CO2

    Leite, A. O. B., Mendes, M. F., Coelho, G. L. V

    ANLISE DO EQUILBRIO DE TROCA INICA DE Cr3+ EM ZELITA NaY 220Gazola, F. C., Pereira, M. R., Arroyo, P. A., Silva, E. A., Barros, M. A. S. D.

    ADSORPTION BEHAVIOR OF PB (II) ION ON PHTHALIC ACID LOADED XAD-16 222AT DIFFERENT TEMPERATURES

    Saima. Q. Memon, M. Iqbal Bhanger, M. Y. Khuhawar

    Parte 7. BIOTECNOLOGIA

    AN EXPERIMENTAL STUDY ON TERNARY SEPARATION OF AROMATIC 224

    AMINO ACIDS IN SIMULATED MOVING BEDMarco Aurelio Cremasco, Benjamin J. Hritzko, N.-H. Linda Wang

  • 7/22/2019 20o.EBA

    17/278

    xvii

    ESTUDO DA ADSORO SIMULTNEA DA HIALURONIDASE E BSA EM 226HIDROXIAPATITA

    Slvia Belm Gonalves, Neuman Solange de Resende, Tito Lvio Moitinho Alves,Vera Maria Martins Salim

    ESTUDO DA ISOMERIZAO DA GLUCOSE EM UNIDADES DE LEITO MVEL 229SIMULADO REATIVOBorges da Silva, E. A., Ulson de Sousa, A. A., Rodrigues, A. E.,Guelli U. Souza, S. M. A

    DETERMINAO DE PARMETROS CROMATOGRFICOS E DE 231TRANSFERNCIA DE MASSA NA SEPARAO DOS ENANTIMEROSDO ANESTSICO BUPIVACANA SOB CONDIES LINEARES

    Silva Junior, I. J., Veredas, V., Santos, M. A. G., Santana, C. C.

    UTILIZAO DA BIOSSORO NA REMOO DO FERRO E COBRE RESIDUAL 233

    EM LEOS LUBRIFICANTES USADOSAlbina da S. Moreira, Mrcia Maria L. Duarte, Jlio Nandenha,Gorete R. de Macedo

    ESTUDO COMPARATIVO DA ADSORO DE LISOZIMA EM ADSORVENTES 234DE NATUREZA QUMICA DIFERENCIADA

    Ktia C. S. Figueiredo, Vera M. M. Salim, Tito L. M. Alves, Jos C. C. S. Pinto

    ADSORO DE ALBUMINA DE SORO BOVINO E LISOZIMA EM MICROESFERAS 236DE QUITOSANA RETICULADA

    M.A.Torres, M.M.Beppu, C.C.Santana

    IMOBILIZAO DO AGENTE COMPLEXANTE 5-CIDO SULFNICO-8- 238HIDROXIQUINOLENA NO BIOPOLMERO QUITOSANA VIA SPRAY DRYING:APLICAO EM UM SISTEMA DE PR-CONCENTRAO EM LINHA

    Amarildo Otavio Martins; Edson Luiz da Silva; Eduardo Carasek;Valfredo T. de Fvere; Mauro C. M. Laranjeira; Antoninho Valentini

    SEPARAO DOS ENANTIMEROS DO N-BOC-BACLOFENO-LACTAMA POR 240CROMATOGRAFIA CONTNUA EM LEITO MVEL SIMULADO EMPREGANDOO ADSORVENTE TRIS 3,5-DIMETILFENILCARBAMATO DE CELULOSE

    V. Veredas, M. A. G. Santos, M. J. S. Carpes, I. J. Silva Jr.,C. R. D. Correia, C. C. Santana

    INVESTIGAO DO EFEITO DO pH NA BIOSSORO DO ON COBRE (II) 242PELA BIOMASSA DA ALGA SARGASSUM sp EM SOLUO AQUOSA

    Mrcia R. Fagundes Klen, Edson A. da Silva, Priscila Ferri,Clia R. G. Tavares

    MODELAGEM DA BIOSSORO DE CROMO POR BIOMASSA DA ALGA 244SARGASSUM SP. EM COLUNAS DE LEITO FIXO EM SRIE

    Hudson Marleygino Mesquita , Leonardo Schimidt Eidam,

    Eneida Sala Cossich, Edson Antonio da Silva

  • 7/22/2019 20o.EBA

    18/278

    xviii

    ALERGIA: SELEO DE ADSORVENTES PARA ADSORO DE IgE 246Isa S. Duarte, Ricardo de L. Zollner, Snia M.A. Bueno

    ADSORO DE PROINSULINA RECOMBINANTE EM NQUEL IMOBILIZADO 248EM MEMBRANAS DE FIBRAS OCAS

    Luciana C.L. de Aquino, Everson A. Miranda, Luciano Vilela ,Helosa R.T. de Souza, Snia M.A. Bueno

    ADSORO DE CARBOXIMETIL CELULOSE SOBRE MICELAS DE BROMETO 250DE CETILTRIMETILAMNIO

    L. B. R. Castro, K. V. Soares, A. F. Naves, D.F.S. Petri

    ESTUDO DA ADSORO DE AMOXICILINA EM GLUTARALDEDO-QUITOSANA 252W. S. Adriano, V. Veredas, C. C. Santana, L. R. B. Gonalves

    PHOTOPHYSICAL AND PHOTOCHEMICAL CHARACTERIZATION OF AMINO 255

    ACID AND PEPTIDE DERIVATIVES OFN, N-BIS(2 PHOSPHONOETHYL)-1, 4, 5, 8-NAPHTALENEDIIMIDE SYNTHESIZED ON SILICA PARTICLES

    Magali A. Rodrigues, Marcelo P. Bemquerer, Mario J. Politi,Dayane B. Tada, Erick L. Bastos, Mauricio S. Baptista

    NDICE DE AUTORES 256

  • 7/22/2019 20o.EBA

    19/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    1

    CONFERNCIAS PLENRIAS

  • 7/22/2019 20o.EBA

    20/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    2

    EXPLOITING ENTHALPIC, ENTROPIC AND PACKING EFFECTS IN ZEOLITESFOR THE CONVERSION AND SEPARATION OF HYDROCARBONS

    Joeri F.M. Denayer, Refik Ahmet Ocakoglu, Gino V. Baron

    Department of Chemical Engineering, Vrije Universiteit BrusselPleinlaan 2, B-1050 Brussel, Belgium

    Refineries are under increasing pressure to reduce olefins, benzene, total aromatics contentand try to avoid adding oxygenates to gasoline. Sufficiently high octane numbers can then only beachieved by higher contents of mono- and preferably multi-branched alkanes. This requiresisomerization of the linear fraction coupled to separation of the branched components, such as with5A zeolites. Linear hydrocarbons are usually not very well separated, except on narrow porezeolites, where strong interactions occur similar to gas phase. For most materials, linearhydrocarbons are able to enter the pore network and are very strongly adsorbed, and the branchedcompounds are eluted first. There is no selectivity for the more highly branched compounds.

    Materials that would rather preferentially adsorb the branched compounds, or even be selective forthe more highly branched ones, would potentially allow for better operation of the integrated reactor/ separator unit. The different enthalpic, entropic and packing effects occurring in zeolites arereviewed which can be used to control elution order in the gas and liquid phase separation of linearand branched alkanes.

    LIQUID PHASE ADSORPTION OF LINEAR HYDROCARBONS IN ZSM-5

    Saturation capacities[1] of linear alkanes depend strongly on the chain length (Figure 1). Thenumber of CHx groups adsorbed per unit cell drops steeply between heptane and octane and thenincreases steadily to reach a plateau of 53-54 for C14 C22, where the pores of ZSM-5 are densely

    packed with alkane molecules. Unexpected selectivities, depending on even subtle differences incarbon numbers were found[2]. In some binary alkane mixtures, adsorption of the longer chain isfavored, in others the shorter chain, and azeotrope formation[3] as well is encountered (Figure 2), as

    predicted by configurational bias grand canonical Monte Carlo simulations.

    0

    1

    2

    3

    4

    5

    6

    7

    8

    5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22

    carbon number

    mo

    leculesperunitcell

    0

    7

    14

    21

    28

    35

    42

    49

    56

    carbonatomsperunitcell

    molecules per unit cell

    C-atoms per unit cell

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    xi

    yi

    C8/C12 C9/C13C9/C11 C6/C10C5/C7 C17/C18C14/C15 C15/C16

    a

    bc

    d

    f

    e

    gh

    aceg

    bdfh

    Figure 1: Pore filling in ZSM-5 by linear hydrocarbons Figure 2: Selectivity diagrams for binaryalkane mixtures

    Inverse selectivity on MCM-22 due to entropic effect.The compensation plot of C5 and C6 isomers in MCM-22 is given in Figure 3a. Clearly, the

    isomers have less energetic interaction with the zeolite walls, but are more strongly adsorbed by anentropic advantage over the linear molecules. The more compact branched isomers can be shown tofreely rotate in either the side lobe or central cavity of MCM-22 (Figure 3b) for C5 and C6

  • 7/22/2019 20o.EBA

    21/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    3

    respectively, resulting in a rotational entropic advantage over the linear molecule that is too long todo so. Although the preference for a more compact molecule has been predicted theoretically, this

    phenomenon was only found at high coverage or high pressure. Here, it is for the first time shownexperimentally to occur both in the Henry low coverage region and in liquid phase adsorption.

    C6

    C4

    2MeC5

    3MeC5C5

    2MeC4

    C3

    50

    55

    60

    65

    70

    75

    80

    35 40 45 50 55 60 65

    - H0 / kJ.mol-1

    -S0/J.mol-1.K

    -1

    (a) (b)

    Figure 3. Compensation plot for C3-C6 in MCM-22 (a); MCM-22 supercage with central cavityand side lobes (b).

    Preferential adsorption of multibranched hydrocarbons on SAPO-5Figure 4 shows the possibility to change the elution order of the C6 isomers by selection of the

    proper material. The thermodynamic analysis shows that for ZSM-22 [4], the pore mouthadsorption mechanism for the branched compounds and strong adsorption of the linear moleculeinside the micropores result in the normal selectivity. MCM-22 and SAPO-5[5] then give

    different and inverted orders of elution by respectively an entropic and enthalpic effect.

    SAPO-5

    1 2 3 4 5

    ZSM-22

    0 1 2 3

    MCM-22

    1 2 3 4 5 6 7 8 9

    Time (min.)

    n-C6

    n-C6

    n-C6

    2-MeC5

    2-MeC5

    2-MeC5

    2,2-DMeC4

    2,2-DMeC4

    2,2-DMeC4

    SAPO-5

    1 2 3 4 5

    ZSM-22

    0 1 2 3

    MCM-22

    1 2 3 4 5 6 7 8 9

    SAPO-5

    1 2 3 4 5

    ZSM-22

    0 1 2 3

    MCM-22

    1 2 3 4 5 6 7 8 9

    Time (min.)

    n-C6

    n-C6

    n-C6

    2-MeC5

    2-MeC5

    2-MeC5

    2,2-DMeC4

    2,2-DMeC4

    2,2-DMeC4

    Figure 4. Controlling the elution order of C6 isomers by adsorbent material selection ZSM-22,

    MCM-22 and SAPO-5.

  • 7/22/2019 20o.EBA

    22/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    4

    ACKNOWLEDGEMENTS.

    This research was financially supported by the Belgian Federal Government IUAP Vprogramme, and FWO Vlaanderen (G0231.03N) which is gratefully acknowledged. J. Denayer isthankful to the F.W.O.-Vlaanderen, for a fellowship as postdoctoral researcher.

    REFERENCES

    [1] Chempath, S., De Meyer, K., Denayer, J.F.M, Baron, G.V., Snurr, R.Q., Langmuir, 20(1), 150-156 (2004).[2] De Meyer, K., Chempath, S., Denayer, J.F.M., Martens, J.A., Snurr, R.Q. and Baron, G.V., J.

    Phys. Chem. B, 107, 10760-10766 (2003).[3] Denayer, De Meyer, K., J.F.M., Martens, J.A. and Baron, G.V., Angew. Chem. Int. Ed., 42, 2774

    2777 (2003).[4] Ocakoglu, A.R., Denayer, J.F.M., Marin, G.B., Martens, J.A. and Baron, G.V., J. Phys. Chem.B 207, 398-406 (2003).

    [5] J.F.M. Denayer, A.R. Ocakoglu, J.A. Martens, G.V. Baron, Investigation of Inverse ShapeSelectivity in Alkane Adsorption on SAPO-5 Zeolite using the Tracer Chromatography Technique,

    J. Catal., in print (2004).

  • 7/22/2019 20o.EBA

    23/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    5

    ADSORPTION RESEARCH FOR SPACE EXPLORATION

    M. Douglas LeVan

    Department of Chemical Engineering, Vanderbilt University

    VU Station B #351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USAE-mail: [email protected]

    INTRODUCTION

    Several applications of adsorption have been used in the past and are envisioned for thefuture for space exploration. Many research groups from around the world have contributed to thiseffort. Many such applications of adsorption will be described in the talk.

    Two areas of prime importance for application of adsorption technology are tracecontaminant removal and carbon dioxide removal from spacecraft cabin air. But there are alsoother applications.

    APPLICATIONS

    Over the past decade, my research group has been involved in many cooperative projectswith NASA. All of these have been concerned with the development and analysis of systems. Theapplications considered have been:

    1. Separating CO and CO2 for Mars In-Situ Resource Utilization

  • 7/22/2019 20o.EBA

    24/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    6

    2a. Considering effects of humidity swings on trace contaminant control systems2b. Regenerating activated carbon beds using humidity swings

    3. Modeling the trace contaminant control system on the International Space Station4. Developing a hybrid membrane/adsorber system for dehydration/rehydration and CO2 removal

    5a. Modeling a new air-cooled temperature swing adsorption compressor5b. Developing a next-generation integrated CO2 removal and compression system (starting)

    Elements of these and other applications will be described in the talk.

  • 7/22/2019 20o.EBA

    25/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    7

    -200

    -150

    -100

    -50

    0

    50

    100

    0 10 20 30 40 50

    pressure [MPa]

    microbalancesignal[mg/g]

    298 K - measurement

    298 K - modelling

    313 K - measurement

    313 K - modelling

    328 K - measurement

    328 K - modelling

    343 K - measurement

    343 K - modelling

    THERMODYNAMIC DESCRIPTION OF HIGH PRESSURE ADSORPTION ISOTHERMSON BASE OF EXCESS MEASUREMENTS

    Peter Harting, Alexander Herbst, Reiner Staudt

    Center for Non-Classical Chemistry, Permoserstr. 15, 04318 Leipzig, Germanye-mail: [email protected], http://www.uni-leipzig.de/inc

    In gravimetric measurements of adsorption the reading of the balance is the sumofadsorption and buoyancy,mbalance = mexcess Vads* gas (1)

    Under high pressure the term V ads * gas can become very high and can cause immenseerrors in description of excess. Therefore the meaning of determination of the volume of theadsorbents is increasing. If Vads is determinated by measuring the buoyance with helium, a goodthermodynamic description of the function mexcess = f (p) can be reached for the pure gases methane,

    nitrogen and argon under high pressure up to 15 MPa by the 3-parameter-isotherm-equationmexcess = [fi / ( fi + ki* exp (vi* p / RT))] * Io (2)with f = fucacity of the gas phase, k = Henry constant, v = molar volume of the adsorbat and Io =max. loading.

    Measurements on the same gases at pressures up to 50 MPa show significant deviations inthe isothermal curve. It is caused by the helium volume and the buoyance correction.If the reading of the balance mbalance = f (p) is adapted to equation (1) intercepting equation (2) the values for Vads differ from the values determined with helium. The se results will be introducedon wide measurements with methane, nitrogen and argon on activated carbon andzeolite in pressure range up to 50 MPa and discussed under the aspect of the phenomenologicalmeaning of volume of adsorbents. The figures demonstrate the high quality of the adaption ofmeasured values on the equation (1).

    Fig.: Modelling of the measured values of nitrogen on a coal by various temperatures.

  • 7/22/2019 20o.EBA

    26/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    8

    TAILOR-MADE NANOPOROUS CARBONS FOR GAS SEPARATION AND STORAGE

    Francisco Rodrguez-Reinoso

    Laboratorio de Materiales Avanzados, Departamento de Qumica Inorgnica, Universidad de

    Alicante, Apartado 99, 03080 Alicante. Spain.

    Activated carbon, the most important type of porous carbons, exhibits some very attractive

    characteristics such as chemical inertness, thermal stability, slit-shaped microporosity, etc. The newapplication demanded by the advancing industrial technology require more and more sophisticatedmaterials and recent years have seen many developments in this area. The talk will be centred onthe development of carbon molecular sieves for gas separation/purification and carbon monolithsfor gas (mainly natural gas) storage.

    Carbon molecular sieves (CMS) constitute a relatively new type of activated carbon inwhich the porosity is tailored to make it as uniform and homogeneous as possible, thus acting as an

    alternative to classical inorganic molecular sieves such as zeolites. The talk will include thedifferent approaches used to prepare CMS from lignocellulosic materials such as coconut shells andpeach stones: i) controlled carbonization followed by careful pore opening with carbon dioxide athigh temperature; ii) controlled partial closure of porosity in activated carbon by chemical vapourdeposition; and iii) controlled oxidation treatments in the carbonized or activated materials.Micropore size distributions of resulting CMS were measured by immersion calorimetry into liquidsof different molecular dimensions and the separation ability was determined for O2/N2 andCH4/CO2 mixtures. It is important to note that although the equilibrium adsorption of nitrogen andoxygen is very similar in a given CMS, the diffusion of oxygen into the micropores is two-to-threeorders of magnitude larger than for nitrogen, this being the main reason for the separation ability.

    In the case of gas storage, it has been shown that porous carbons are the best adsorbents,mainly because the slit-shaped microporores allow a higher packing density of adsorbed moleculesthan in cylindrical pores. Provided one is able to prepare a porous carbon combining a very highmicropore volume and a high bulk density the energy density that it can deliver for the case ofnatural gas (methane) is up to 220 V/V, similar to the delivery reached with compressed natural gas.However, the preparation of a carbon with these characteristics is not an easy task and the values ofdelivery reported up to now are somewhat lower that the estimated 220 V/V. The best approach toget high values of delivery is to use lignocellulosic precursors such as olive stones and to carry out acombination of chemical (impregnation with phosphoric acid or zinc chloride) and physical(gasification with carbon dioxide or steam) activation. If the material is conformed under pressurealong the process, it is possible to obtain solid monoliths with a given shape without the use of a

    binder. In this way exceptionally high surface area and porosity can be coupled with high bulkdensity, thus increasing the uptake and delivery of natural gas. However, the results obtained so farfor the storage of hydrogen are not as high as one could expect, and further work is being carriedout to improve the actual figures.

    REFERENCES

    F. Rodrguez-Reinoso. Activated Carbon and Adsorption. In Encyclopedia of Materials: Scienceand Technology, edited by K.H. Jrgen Buschow et al. Elsevier, 22-35 (2001)F. Rodrguez-Reinoso. Production and Applications of Activated Carbons. In Handbook of Porous

    Solids, edited by F. Schtz, K.S.W. Sing and J. Weitkamp. Wiley-VCH, 1766-1827 (2002)

  • 7/22/2019 20o.EBA

    27/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    9

    A NEW NUMERICAL METHOD FOR ACCURATE SIMULATION OF FAST CYCLICADSORPTION PROCESSES

    Hyungwoong Ahn, Stefano Brandani

    Centre for CO2 Technology, Department of Chemical Engineering,University College London, Torrington Place, London WC1E 7JE, [email protected]

    In the simulation of fast cyclic adsorption process to apply the Fickian diffusion model it isnecessary to include an increasing number of numerical discretization points as the cycle time isreduced in comparison to the characteristic diffusional time constant. In order to simplify the modeland shorten the simulation time, it is also possible to apply the Linear Driving Force approximation,

    but this requires a cycle time dependent correction, Nakao and Suzuki [1]. The LDF equivalence [1]can only match the amplitude ratios of the concentration but does not yield the correct phase lag. Inorder to obtain the correct cyclic steady state concentration profiles, we suggested recently that the

    solid volume should be corrected also [2].

    Even though the new LDF approximation was in a perfect agreement with the diffusionmodel at cyclic steady state, it does not describe correctly the transient behaviour since the systemcapacity is reduced in order to take into account the fact that at cyclic steady state the internal partof the solid adsorbent is unaffected by the varying external concentration.

    The internal concentration profile for fast cyclic adsorption processes is thereforecharacterised by two distinct regions. The outer layer where the concentration varies significantlywith large internal gradients leading to enhanced mass fluxes, and an internal region where theconcentration profile is virtually flat. The aim this contribution is to develop a predictive method to

    assign a numerical grid for the solution of the diffusion equation for fast cyclic adsorption processesthat is scaled so that the number of collocation intervals is independent of the cycle time.

    We propose a two-domain grid that separates the internal and external layers, which can bepredicted from the volume correction parameter of the LDF equivalence [2]. For the internal layeronly a single collocation element is required, while for the outer layer 4 elements are needed toaccurately reproduce the concentration profile. The validity of the two-domain diffusion model wasevaluated initially through the simulation of a CSTR model with sinusoidal input function, usinggPROMS [3]. As an example the simulation results for 0.001 dimensionless cycle time (D/R2) isshown in figure 1. 30 collocation points are needed to represent accurately the diffusion model.We have extended our analysis to the simulation of the heatless drier model [4], a 4-step PSAsystem, in order to show the efficiency of the optimised grid in terms of simulation time, whencompared to the direct simulation of the diffusion model.

  • 7/22/2019 20o.EBA

    28/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    10

    Figure. Simulations of CSTR model with one-domain and two-domain diffusion models.

    REFERENCES

    [1] Nakao, S. and M. Suzuki, Mass Transfer Coefficient in Cyclic Adsorption andDesorption,J. Chem. Eng. Japan16, 114-119, 1983.

    [2] Rouse, A. J. and S. Brandani, A New LDF Approximation for Cyclic AdsorptionProcesses,AIChE annual meeting, November, 2001.

    [3] Process Systems Enterprise LtD, gPROMS Advanced User Guide, London, 1999.[4] Raghavan, N. S., M. M. Hassan, and D. M. Ruthven, Numerical Simulation of aPSA System Using a Pore Diffusion Model, Chem. Eng. Sci.41, 2787-2793, 1986.

    0.49

    0 . 4 9 5

    0 .5

    0 . 5 0 5

    0.51

    98 98.5 9 9 99.5 1 0 0

    Di m e n s i o n l e s s t i m e [ - ]

    Dimensionlesssolidconcentrat

    ion[-]

    Two-domain

    (1+4 points )

    On e -d o m a i n

    (30 points )

    On e -d o m a i n

    (5 p o i n t s )

    0 .25

    0.35

    0.45

    0.55

    0.65

    0.75

    98 98.5 9 9 99.5 1 0 0

    Di m e n s i o n l e s s t i m e [ - ]

    Dimensionlessexternalgasconcent

    ration[-]

    Two -d o m a i n

    ( 1 + 4 p o i n t s )

    On e -d o m a i n

    (30 points )

    On e -d o m a i n

    (5 points )

  • 7/22/2019 20o.EBA

    29/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    11

    NOVEL DEVELOPMENTS IN GAS ADSORPTION STIMULATED BY RECENTADVANCES IN THE SYNTHESIS OF ORDERED MESOPOROUS MATERIALS

    Mietek Jaroniec

    Department of ChemistryKent State University, Kent, Ohio 44242, USAE-mail: [email protected]

    INTRODUCTION

    Gas adsorption, especially adsorption of nitrogen and argon, has been an important tool forcharacterization of surface and structural properties of nanoporous solids such as adsorbents,catalysts and other related materials. Numerous adsorption methods have been developed andextensively used for surface area determination, pore size analysis and surface heterogeneityanalysis. Unfortunately, many of those methods produce inconsistent and unreliable results.

    Experimental verification of the aforementioned methods was hampered by the lack of nanoporoussolids with well-defined pore shape, size and connectivity. This situation changed dramaticallyduring the last decade thanks to the discovery of ordered mesoporous materials (OMM). The aim ofthis presentation is to show some recent achievements in adsorption at the gas/solid interface, theappearance of which was possible due to the availability of well-defined mesoporous materials,mostly silicas and organosilicas.

    DISCUSSION

    The discovery of hexagonally ordered mesoporous silica, MCM-41, reported in 1992 byMobil researchers (Kresge et al.) was a significant breakthrough in the design and synthesis of

    nanomaterials of tailored porous structures and pore sizes. Five years later it was demonstrated howMCM-41 silicas can be used as model adsorbents to develop a practical method to calculateaccurate pore size distribution for adsorbents with cylindrical pores (Kruk et al., 1997). MCM-41

    pore sizes were determined on the basis of a geometrical relation that involves the X-ray diffractioninterplanar spacing and the volume of ordered mesopores. Subsequently, the experimental relations

    between the capillary condensation/evaporation pressures and the pore size were determined fornitrogen and argon adsorption on silicas and organosilicas (Kruk and Jaroniec, 2001). It was shownthat the use of the adsorption branch of the isotherm instead of desorption branch for the calculationof pore size distribution has several advantages. Therefore, a practical method was developed byusing the well-known Barrett-Joyner-Halenda (BJH) algorithm, which was implemented in arigorous way without approximations originally proposed (Kruk and Jaroniec, 2001). Also, theMCM-41 materials led to a significant improvement of the pore size analysis based on the densityfunctional theory (Ravikovitch et al., 2001).

    Recently, some methods for the elucidation of the pore entrance size in OMM with cage-likepores were developed. One of them was based on the electron crystallography, which solves the 3-D structure of OMM, providing a wealth of information about pore diameter, pore entrance size and

    pore connectivity (Sakamoto et al., 2000). The other method was based on the modification of theOMM surface with ligands of different size to find out what the smallest size of ligand is thatrenders the pores inaccessible to gas molecules (Kruk et al., 2002). It was found that the poreentrance sizes in OMM with cage-like pores are either in the micropore or in the mesopore range,depending on the synthesis conditions. Another study suggested that the examination of the shape

    of the adsorption-desorption hysteresis loop for large-pore OMM with cage-like pores allows one toinvestigate defects in the pore opening structure. However, when nitrogen adsorption at 77 K isused, this method appears to allow one to study openings of sizes down to only ca. 5 nm, which is

  • 7/22/2019 20o.EBA

    30/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    12

    beyond the typical range of the entrance sizes in mesoporous cages. There is a strong incentive tofind out gases and experimental conditions that would allow one to obtain information about

    practically important pore entrance sizes from the shape of hysteresis loops of adsorption isotherms.Argon at 77 K was found promising, as it allows one to probe the pore entrance sizes down to ca. 4nm, but further work on the elaboration of this methodology and extending the range of the pore

    entrance sizes probed is required.This work was supported in part by NSF Grant CHE-0093707. The author would like tothank Dr. M. Kruk for valuable discussions.

    REFERENCES

    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck,Nature, 359, 710, 1992.M. Kruk, M. Jaroniec, A. Sayari,Langmuir, 13, 6267, 1997.M. Kruk, M. Jaroniec, Chem. Mater., 13, 3169, 2001.P.I. Ravikovitch, D. Wei, W.T. Chueh, G.L. Haller, A.V. Neimark, J. Phys. Chem. B, 101, 3671,1997.

    Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G.D. Stucky, H.J. Shin, R. Ryoo,Nature, 408, 449, 2000.M. Kruk, V. Antochshuk, J.R. Matos, L.P. Mercuri, M. Jaroniec, M. J. Am. Chem. Soc. 124, 768,2002.

  • 7/22/2019 20o.EBA

    31/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    13

    RECONFIRMATION OF THE DBdB THEORY FOR MESOPORE ANALYSIS

    Anthony Chiang(a)*, Kuei-jung Chao(b)(a) Depart. of Chemical & Materials Enging., National Central Univ., Chung-Li, Taiwan, ROC(b) Depart. of Chemistry, National Tsing Hua Univ., Hsinchu, Taiwan, ROC

    ABSTRACT

    Recent density function simulation on capillary condensation revealed that the classicalDBdB theory is correct only for pores larger than about 7nm. We believe that the inaccuracy forsmaller pores cam from the inadequate film thickness correlation commonly employed in the DBdBtheory. A better correlation that satisfies both the Henrys law at zero coverage and the fractalexponent of rough surface at high loading has been proposed and fitted to the reported standardisotherms of nitrogen and argon. When the new thickness correlation was substituted into the DBdBtheory, the capillary equilibrium pressure predicted by the density function theory could befaithfully reproduced. The correctness of the classical theory is thus reconfirmed, and the analysis

    of pore size distribution can be performed with only a small modification of the traditional method.

    INTRODUCTION

    The adsorption of Nitrogen, Argon and Krypton at low temperature has been the mostfrequently used technique for the analysis of pore size distribution in many solids, including therecently developed ordered mesoporous molecular sieves (MMs). On the other hand, since anindependent estimation of the pore size (hydrolytic or geometric) can be made from the structureand density of these ordered materials, chances are now provided to confirm and refine the existingtheories on capillary condensation of gases. From these studies, it has been found that the standardBJH-Hesley analysis underestimates the pore size of MMs. The DbdB (Derjaguin, Broekhoff & de

    Boer) theory was suggested as more appropriate for SBA-15 type MMs (1) whose pores are in therange of 6~10 nm, while an empirical correlation has been established by Jaroneic et al. (2,3) usingthe capillary condensation pressures of a series of MCM-41 type MMs with pores in 2~4 nm.The existing theories on capillary condensation and evaporation can be broadly classified into those

    based on macroscopic thermodynamics, such as the Kelvin equation and DBdB theory, and thosebased on molecular level modeling using Monte Carlo simulation, molecular dynamics or densityfunctional theory proposed recently by Ravikovitch et al. (4,5). By choosing proper parameters offluid-fluid and fluid-solid intermolecular interactions, the non-local density functional theory(NLDFT) was demonstrated to reproduce the spinodal and equilibrium conditions predicted by thefull-scale GCMC simulation on one hand(6), and matching the prediction of macroscopic DBdBtheory on the other hand (7,8), at least for pores larger than ~7nm, but in the lower size range wasnot as good.

    Molecular level theories are important because they lead to a fundamental understanding ofthe condensation and evaporation mechanism. However, there are several limitations. First, theresults are limited to the specific model structure and the molecular parameters employed. Second,although simulated isotherms can be obtained on a prescribed list of pore sizes, the recovery of poresize distribution from the measure isotherm of an unknown sample is not a simple task. For poresize distribution analysis in practice, the macroscopic theory or even empirical correlation may be

    preferred because most of the required parameters can be directly measured and the existingalgorithm used in BJH method can be easily implemented.

    We believe that if the remaining gap between the macroscopic DBdB theory and NLDFT

    can be resolved, added with the experimental data obtained from different MMs, a method for poresize distribution determination that is both practical and thermodynamic consistent may beestablished. In here, we will demonstrate that by adopting a theoretically sound functional form for

  • 7/22/2019 20o.EBA

    32/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    14

    x

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    statisticthickness[A]

    0

    5

    10

    15

    20

    statistic thickness [A]

    0.01 0.1 1 10

    ln(x)

    0.001

    0.01

    0.1

    1

    10

    10-7 10-6 10-5 10-4 10-3 10-2 10-1

    0.01

    0.1

    1

    N2

    @77.14K

    Ar @ 87.14K

    (C)

    (A)

    (B)

    Figure 1: Fitting of N2 and Ar standard isothermswith the proposed functional form.

    the standard thickness relationship, the gap between the NLDFT and the DBdB theories can be thenarrowed. This allows the easy calculation of pore size distribution form measured isotherm.

    MACROSCOPIC THEORY OFADSORPTION HYSTERESIS

    The classical Cohan equationsuggested that capillary condensation occursat

    ( )tRRTVn

    xp

    L

    =

    ln (1)

    where x=p/po and Rp is the radius of thecapillary in which gas is condensed, t is thestatistical thickness of the layer alreadyadsorbed before condensation and n is a

    shape factor ( 1=n for cylindrical and 2 forsemispherical meniscus).The statistical thickness t of the

    adsorbed film is a function of the pressure aswell as the pore size. According toDerjaguin, Broekhoff & de Boer (9,10), theequilibrium thickness of the adsorbed filmin pore is determined by the balance of thecapillary and disjoining pressures )(t andis given by

    ( )( ) L

    p

    L VttR

    VnxRT +

    = ln (2)

    The disjoining pressure can be foundfrom the standard adsorption isotherm of aflat (low surface area) material of the samechemical nature, so that

    [ ]RT

    VttFx Lflat

    )()(ln

    == as pR (3)

    During adsorption, the adsorbed film is stable if ( F/ t)

  • 7/22/2019 20o.EBA

    33/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    15

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    4

    5

    6

    7

    9

    20

    30

    40

    50

    10

    NLDFT equilibriumNLDFT spinodalDBdB theory

    Relative pressurex

    0.0 0.1 0.2 0.3

    Porediameter[nm]

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Figure 2: Comparison of the DBdB theory andNLDFT for N2 condensation in cylindrical poresat 77K.

    condensation and equilibrium desorptionpressure. In the original work of Broekhoff& de Boer, the function F(t) was taken as

    tettF 1137.02 1682.0/11.16)( = , while inmore recent works, the Frenkel-Halsey-Hill

    (FHH) approximation mFHH ttF =)( (1) or Harkins & Jura type

    equation mHJ ttF+= )( are more often

    used. For example, Neimark & Ravikovitch(7) fitted the thickness result of NLDFTwith =44.54, m=2.241 and =0.0078288.As mentioned previously, the prediction ofDBdB theory using this F(t) functiondeviated from that of NLDFT at pore sizeless than ~7nm.

    THE CORRECT FORM FORF(t)

    An obvious possibility for thisdifference seems to be the inadequacy of thedisjointing pressure function used. Although the mttF =)( function form fits the standardisotherm at high pressure, it usually fails to describe the adsorption at low pressure, where the solid-fluid interaction is more important. At the limit of low pressure, we expect that the Henrys lawshould prevail. In other word, tddF ln/ should approach 1 at the limit of 0t . This is clearly

    violated by all the F(t) functional forms proposed so far. In order to adhere to the Henrys law atlow pressure, we propose a new form as

    1

    2

    1

    21

    1

    1

    0 )ln(

    1)(

    ++

    = tata

    tatF

    The nitrogen (11) and argon (3) standard adsorption isotherms, at 77.14K and 87.14K respectively,published by Jaroniec & Kruk on LiChrosphere 1000, a reference silica with practically nomesopore, were then fitted to this function. The results are presented in Figure 1 and the parametersobtained are listed in Table 1.As demonstrated in Figure 1A and B, the fittings are excellent at both the high and low pressureranges. Furthermore, Figure 1C is the typical plot one used to do a fractal analysis. We see that at

    large thickness, )2/1(2)( tatF . According to Pfeifer et al. (12) the surface fractal dimension D is

    )1(3 =D when van der Waals attraction dominates the adsorption. However, the surface fractaldimension will be = 3D when capillary force sets in, as that derived by Avnir and Jaroniec(13).In the present case, capillary should not play an important role, and the fractal dimension calculated

    Table 1: Parameters fitted from the standard isotherms of Jaroniec andKrukSystem A0 a1 1/1 a2 1/2 3(12 )

    N2

    @77K 12.0052 0.0204 1.3612 4.0384e-4 3.7735 2.21Ar @ 87K 7.5205 0.0697 1.0131 9.9321E-4 3.6378 2.17

  • 7/22/2019 20o.EBA

    34/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    16

    0.0 0.1 0.2 0.3

    Porediameter[nm

    ]

    1.0

    1.5

    2.0

    2.5

    3.0

    x

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    3

    4

    5

    6

    7

    8

    9

    20

    30

    40

    10

    Figure 3 Comparison of the DBdB theory andNLDFT for Arcondensation in cylindrical poresat 87K.

    Figure 4: Comparison of the DBdB theory andNLDFT for N2condensation in spherical poresat 77K.

    x

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    4

    5

    6

    7

    89

    20

    30

    40

    50

    10

    0.0 0.1 0.2

    Porediameter[n

    m]

    1

    2

    3

    4

    5

    from the first relation suggests that thereference silica used by Jaroniec & Krukhad a surface fractal dimension of about2.2, which is not exactly a flat surface.

    COMPARISON OF DBdB THEORYWITH NLDFT

    Assuming that the slightroughness of the surface do not affectthe F(t) function much, we can thensubstitute the obtained relations into theDBdB theory and calculate theequilibrium and spinodal pressure forcylindrical pore of different sizes. In

    doing so, we take =8.88, 12.5 mNm ,VL=34.68, 28.68 cm

    3mole for nitrogenand argon respectively (7), and theresults are compared with the NLDFT

    predictions in Figures 2 and 3. We foundthat the equilibrium pressure obtainedwas practically the same as that

    predicted by NLDFT, but the matchingof the spinodal pressure is still off forsmall pores.

    However, it is known that thespinodal pressure predicted by NLDFTdoes not correspond to the observedadsorption pressure, at least for x

  • 7/22/2019 20o.EBA

    35/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    17

    fitting of standard isotherm to a correct functional form. Consequently, the original BJH pore sizealgorithm can be used to find the pore size distribution from the measured isotherm of a unknownmaterial. This is a more flexible approach for the pore size analysis since the same algorithm can beapplied to any porous material as long as a standard isotherm can be obtained on similar material.There is no need to go through the molecular simulation with interaction parameters specific to the

    materials involved.

    CONCLUSION

    The gap between the prediction of density function theory and that of the classical DBdBtheory has been reconciled by the introduction of a thermodynamic consistent functional form forthe thickness correlation. This correlation correctly describes the approach to Henrys law at lowloading and the approach to fractal exponent at high loading. Excellent fit can be made to thereported standard isotherm of macroporous solids. When the correct film thickness is substitutedinto the classical DBdB theory, the capillary equilibrium pressure predicted for both N2 and Ar incylindrical or spherical pores were almost identical to that of the NLDFT prediction. The

    calculation of the macroscopic DBdB theory, on the other hand, is much easier than the densityfunction simulation, and can be employed in routine pore size analysis with minimum effort.

    REFERENCES

    1. Lukens, W.; Patrick Schmidt-Winkel; Dongyuan Zhao; Jianglin Feng; Stucky, G. D.Langmuir1999, 15, 5403-5408.

    2. Kruk, M.; Jaroniec, M.; Sayari, A.Langmuir1997, 13(23), 6267-6273.3. Kruk, M.; Jaroniec, M. Chem. Mater. 2000, 12(1), 222-230.4. Ravikovitch, P. I.; ODomhnaill, S. C.; Neimark, A. V.; Schuth, F.; Unger, K. K. Langmuir

    1995, 11(12), 4765-4772.

    5. Ravikovitch, P. I.; Wei, D.; Chueh, W. T.; Haller, G. L.; Neimark, A. V. J. Phys. Chem. B1997, 101(19), 3671-3679.

    6. Neimark, A. V.; Ravikovitch, P. I.; Vishnyakov, A.Phys. Rev. E2000, 62(2), 1493-1496.7. Neimark, A. V.; Ravikovitch, P. I.Micropor. Mesopor. Mater. 2001, 44 697-707.8. Neimark, A. V.; Ravikovitch, P. I.; Vishnyakov, A. Journal of Physics-Condensed Matter

    2003, 15(3), 347-365.9. Broekhoff J.C.P.; de Boer J.H.J. Catal. 1967, 9, 8.10. Derjaguin B.V.; Churaev N.V.J. Colloid Interface Sci. 1976, 54 157.11. Jaroniec, M.; Kruk, M.; Olivier, J. P.Langmuir1999, 15(16), 5410-5413.12. Pfeifer, P.; Krim, J.; Wu, Y. J.; Cole, M. W.Phys. Rev. Lett. 1989, 62(17), 1997-2000.13. Avnir, D.; Jaroniec, M.Langmuir1989, 5(6), 1431-1433.14. Ravikovitch, P. I.; Neimark, A. V.Langmuir2002, 18(5), 1550-1560.

  • 7/22/2019 20o.EBA

    36/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    18

    Parte 1

    FUNDAMENTOS DE ADSORO

  • 7/22/2019 20o.EBA

    37/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    19

    SIMULATION OF THE SEPARATION OF A TERNARY MIXTURE IN A SIMULATEDMOVING BED USING A HYBRID SOLUTION

    Axel Starquit, Marco A.Cremasco

    School of Chemical Engineering, State University of CampinasE-mail: [email protected] Box 6066, 13083-970, Campinas, SP, Brazil

    INTRODUCTION

    In the classical scheme, a simulated moving bed (SMB) is divided into four zones by twoinlet (feed and solvent) and two outlet (raffinate and extract) ports, as shown on Figure 1.Periodically (tswitch), the inlets and outlets streams are moved by one column in the solvent flowdirection what creates an apparent countercurrent solid movement.

    Figure 1: Four zones in an SMB system

    In the present work, the separation of a mixture of three amino acids, in a four columnsSMB, is simulated using a hybrid method (Cremasco et al., 2003).

    THEORY

    We use a general rate model to represent the mass transfer phenomena that are occurring ineach individual column of the SMB, for each solute. The hypotheses used to obtain the differentialmass balances are: constant flow rate in each column, negligible radial dispersion, constant

    transversal cross section for all columns, negligible external mass transfer resistance, sphericalparticles of uniform diameter, isotherms considered as linear, and intra-particle transport describedby the pore diffusion model. To solve the model, a hybrid method (Cremasco et al., 2003) is used.An analytic solution is utilized for the intra-particle concentration, and correlated to the liquid bedconcentration (Cb) by Duhamels theorem. Consequently, the liquid phase mass balance reduces to:

    ( ) ( )[ ]

    +

    =

    =

    tji

    t

    j

    i

    ipp

    jij

    jij

    i

    ji dzCb

    d

    d

    tKp

    z

    Cbv

    z

    CbEb

    t

    Cb

    02

    2

    ).,(.)(

    1.1int

    (1)

    With[ ]

    ).

    .).1(

    ..exp(.1

    .6

    )(2

    2

    1

    222

    R

    Dp

    Kpn

    n

    i

    ipp

    p

    n

    j

    i

    +=

    =

    (2)

    Those sets of equations are then solved by a fast, and stable, finite differences scheme.

  • 7/22/2019 20o.EBA

    38/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    20

    RESULTS

    Figures 2 present the simulations results, and their comparison with experimental ones fromCremasco et all (2004). All necessary parameters are encountered in this last.

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0,3

    0,35

    0 100 200 300 400 500 600 700Time (min)

    C(g/L)

    Phe-simul Phe-expTyr-simul Tyr-expTr -simul Tr -ex

    (a) Raffinate port

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    0,14

    0 100 200 300 400 500 600 700Time (min)

    C(g/L)

    Phe-simul Phe-expTyr-simul Tyr-expTrp-simul Trp-exp

    (b) Extract port

    Figure 2: Comparison between simulated and experimental results

    CONCLUSIONS

    Simulations results are in good agreement with experimental ones, what demonstrates theapplicability of the model and of the hybrid solution proposed.

    REFERENCE

    Cremasco, M.A., Guirardello, R. and Wang, N.-H.L. (2003), Adsorption of AromaticAmino Acids in a Fixed Bed Column, Brazilian J. Chem. Eng., vol. 20, no. 3, pp. 327-334.Cremasco, M.A, Hritzko B.J. and Wang, N.-H.L. (2003), An Experimental Study on TernarySeparation of Aromatic Amino Acids in Simulated Moving Bed. .(Paper submitted to 5th BrazilianAdsorption Meeting).

    ACKNOWLEDGMENT

    The authors acknowledge the financial support obtained from the Sao Paulo State ResearchFoundation (FAPESP n. 01/08101) for this research project.

  • 7/22/2019 20o.EBA

    39/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    21

    ADSORPTION OF PHENOLIC COMPOUNDS FROM WATER ON ACTIVATEDCARBON: PREDICTION OF MULTICOMPONENT EQUILIBRIUM ISOTHERMSUSING SINGLE-COMPONENT DATA

    Anabela Leito*, Rosalina Serro

    LESRA, Faculty of Engineering, Agostinho Neto University, P.O. Box 5532, Luanda Angola

    INTRODUCTION

    Increasing stringent legislation on the purity of drinking water has created a growing interestin the decontamination of water, waste-water and polluted effluents by adsorption processes.

    The treatment of waste-waters by activated carbon sometimes involves a multitude oforganic pollutants, like phenolic compounds, competing for available adsorption sites on the carbonsurface. For multicomponent systems experimental equilibrium data are difficult to obtain.

    Frequently, the practical way of estimating multicomponent adsorption equilibria is to predictmixture isotherms solely on the basis of single component isotherms. Several methods have been

    proposed elsewhere [1-7].In our investigation phenol and m-cresol have been used to determine the adsorption

    isotherms for single and bisolute systems from dilute aqueous solutions on activated carbon. Theobjective of the present work is to test the predictive performance of three systems of equations:those of Butler and Ockrent [1], Jain and Snoeyink [2] and the Ideal Adsorbed Solution (IAS)theory originally derived by Myers and Prausnitz [3] and herein applied to adsorption in liquid

    phase [7].

    EXPERIMENTAL

    Batch-type experiments were carried out to obtain adsorption equilibrium data for single andbisolute systems.

    The adsorbent was activated carbon Nuchar WA (apparent density 0.27 g/cm3, porosity 0.85and BET surface area 800 m2/g) [8]. This carbon was subjected to contact with boiling water undervacuum prior to use.

    Purity grades of phenol and m-cresol (BDH) were 99.5% and 98% respectively. A 500 ppmstock solution of each solute was prepared every 2 weeks from which working solutions were then

    prepared by dilution with distilled water. 100 cm3 of equal solutions, with the desired phenol and m-cresol concentrations, were fed to 250 cm3 jacketed narrow neck bottles, with stoppers, kept atconstant temperature (20 or 40 C) and placed in a shaker. Different amounts of activated carbon18/20 (mesh size) were then dropped to each bottle. After 15 days, phenol and m-cresol liquidequilibrium concentrations in each bottle were measured by HPLC with a UV absorption detector.Before analysis by HPLC, each sample was filtered with a 0.2 m membrane filter after previousfiltration with standard filter paper to remove the activated carbon powder.

    RESULTS AND DISCUSSION

    Single solute systems at 20 and 40 C were tested for Langmuir, Freundlich and Tothadsorption isotherms in the range of concentrations up to 200 ppm. Two different fitting criteriawere used to find the best values of the unknown parameters of those equations: the minimization of

    the sum of squares of deviations (SQD) and the minimization of the average relative error (ERM)

  • 7/22/2019 20o.EBA

    40/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    22

    between experimental and calculated values of the solid equilibrium concentrations. Although thethree isotherm equations represent reasonably well the experimental equilibrium data for phenol andm-cresol at the two temperatures, it can be seen that Freundlich equation follows the experimentaldata more closely than the other two ones. The single solute isotherms reveal that carbon affinity ishigher for m-cresol.

    Adsorption isotherms for bisolute systems at 20 C, with two different initial concentrationsof phenol and m-cresol, Co1 = 200 ppm Co2 = 200 ppm and Co1 = 100 ppm Co2 = 100 ppm, werepredicted by using the equations of Butler and Ockrent [1], Jain and Snoeyink [2] and the IAStheory for adsorption in liquid phase [7] with single solute equilibrium parameters. Experimentaland predicted isotherms are compared in Table 1 in terms of the average relative error betweenexperimental and calculated values of the solid equilibrium concentrations. We can observe thatIAS theory, based on Freundlich isotherms for pure compounds, gives the best agreement of allmodels tested. Figure 1, where experimental and calculated isotherms are depicted for phenol andm-cresol, shows that the IAS theory, without empirical parameters determined by curve fitting,approaches reasonably the experimental loading values of m-cresol, but it is not so satisfactory forthe displaced phenol at higher liquid equilibrium concentrations. However, the IAS theory, based on

    Freundlich isotherms for pure compounds, is found to be satisfactory for both components at lowerliquid equilibrium concentrations (Table 1).

    0

    20

    40

    60

    80

    100120

    140

    160

    180

    0 20 40 60 80 100 120 140 160 180 200 220C*, mg/L

    q*,mg/g

    EXP, phenolCAL, phenolEXP, m-cresolCAL, m-cresol

    Figure 1 - Adsorption isotherms for a bisolute system (Co1 = 200 ppm, Co2 = 200 ppm) at 20 C:Predictions with IAS theory based on Freundlich isotherms for pure compounds

  • 7/22/2019 20o.EBA

    41/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    23

    Table 1 - Average relative error between experimental and calculated values of the solidequilibrium concentrations for bisolute systems

    Phenol and m-cresol

    concentrations in the initialsolutionCo1 = 200 ppm, Co2 = 200 ppm

    Phenol and m-cresol

    concentrations in the initialsolutionCo1 = 100 ppm, Co2 = 100 ppm

    Model

    Phenol m-Cresol Phenol m-CresolButler and Ockrentequations

    87.5 5.5 14.6 15.9

    Jain and Snoeyinkequations

    82.4 3.7 11.6 13.4

    IAS theory basedon Langmuirisotherms for pure

    compounds

    83.5 5.4 11.5 14.6

    IAS theory basedon Freundlichisotherms for purecompounds

    62.2 5.2 6.8 4.2

    REFERENCES

    Butler, J. & Ockrent, C.,J. Phys. Chem., 34, 2841 (1930)Jain, J. & Snoeyink, V.,J. Water Poll. Contr. Fed., 45, 2463 (1973)Myers, A. & Prausnitz, J.,AIChE J., 11, 121 (1965)Seidel, A., Reschke, G., Friedrich, S. & Gelbin, D.,Adsorption Sci. & Technol., 3, 189 (1986)Srivastava, S. & Tyagi, R., Wat. Res., 29, 483 (1995)Khan, A., Al-Bahri, T. & Al-Haddad, A., Wat. Res., 31, 2102 (1997)Do, D. D.,Adsorption Analysis: Equilibria and Kinetics, Imperial College Press (1998)Leito, A.,PhD Thesis, University of Porto, Portugal (1987)

  • 7/22/2019 20o.EBA

    42/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    24

    DIFUSIVIDADE DO MERCRIO EM CARVO ATIVO ADITIVADO

    Talita F. Mendes1, Keiko Wada1, M Patricia M. P. Cardozo1, Jos M P. Ferreira2,Sara B. M. Schmidt2, Vanderli R. R. da Silva2,

    1

    Departamento de Engenharia Qumica da UFRGS, Rua Luiz Englert, s/n, Porto Alegre (RS)-Brasil2 COPESUL, BR 386 Rod Taba/Canoas, km 419, Plo Petroqumico do Sul, Triunfo (RS) -Brasil

    INTRODUO

    O petrleo cru e condensados de petrleo podem conter concentraes relativamente altas decompostos de mercrio (0,01 g.kg-1 e 10 mg.kg-1, Wilhelm e Bloom1). A concentrao total demercrio, Hg, inclui desde formas inorgnicas (Hgo, HgCl2, HgS), orgnicas (RHgR e RHgCl, ondeR = CH3, C2H5, etc) e at complexas (HgK, onde K= sulfetos orgnicos, tiol, tiofeno oumercaptano)2. A presena de Hg indesejada, pois pode, por exemplo, causar envenenamento decatalisadores nas indstrias petroqumicas, ruptura na solda de trocadores de calor de alumnio e

    danos em equipamentos criognicos, alm de ser extremamente txico para o homem e para outrosorganismos1. Para proteger os equipamentos e o meio ambiente preciso remover o Hg doscondensados e leos crus aos menores nveis possveis, lembrando a diversidade de condensadosutilizados nas plantas petroqumicas. O objetivo do presente trabalho obter a difusividade do Hgusando um sorvente comercial para utiliz-la em estudos de remoo de Hg de um condensadoargelino.

    PARTE EXPERIMENTAL

    Foram feitos testes cinticos usando um sorvente contendo sulfeto metlico suportado emcarvo ativo e um condensado argelino com massa especfica igual a 0,7030 g.mL -1. Misturascontendo volume constante de condensado e diferentes quantidades de slido foram preparadas emantidas sob agitao, temperatura ambiente, colhendo-se amostras at a concentrao domercrio no condensado tornar-se praticamente constante3. O teor de Hg total no lquido foideterminado usando analisador de mercrio por adsoro em amlgama de ouro com deteco porfotometria (NIC) e, a partir de balano material, calculou-se o teor de Hg no slido. A difusividadede Hg no slido, Ds, foi determinada usando o modelo de difuso em slido homogneo, HSDM

    3, oqual considera o slido como uma partcula amorfa, homognea e esfrica. Considerando que aesfera est inicialmente livre de soluto e que a concentrao de soluto no lquido constante (casodo banho infinito) e que h um nico soluto a ser adsorvido, pode-se determinar Ds. Com estashipteses, para tempos pequenos, o grfico de qrelativo ( qq / ,onde q e q so a concentrao mdia

    do soluto no slido a um dado tempo e a um tempo infinito, respectivamente) em funo da raizquadrada do tempo fornece uma linha reta, de cuja inclinao a Ds determinada3. Dados dos testes

    realizados so apresentados na Tabela 1, onde se informam as razes slido/lquido utilizadas, asconcentraes iniciais (Ci) e finais (Cf) de mercrio no lquido e o valor da difusividade, Ds. Comoexemplo, na Figura 1, apresenta-se a concentrao de Hg no lquido em funo da raiz quadrada dotempo e, na Figura 2, a curva de qrelativo, ambas para a maior razo slido/lquido (2,511 % gS/mL).

  • 7/22/2019 20o.EBA

    43/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    25

    Tabela 1. Dados dos testes cinticos.

    Concentrao de Hg (g Hg.L-1)Razo % slido/lquido(gS.mL-1) Inicial final

    Difusividade(cm2/s)

    2,511 23 1,5 6,1E-8

    1,007 26,7 3,5 3,7E-80,2032 30 18,4 1,3E-80,2059 36,2 28,2 1,7E-8

    0,0

    5,0

    10,0

    15,0

    20,0

    25,0

    0 0,5 1 1,5 2 2,5 3

    Raiz quadrada do tempo, h1/2

    ConcentraodeHgnolquido

    ug/L

    2,511% gS/mL

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0 0,5 1 1,5 2 2,5 3

    Raiz quadrada do tempo, h1/2

    Hgre

    lativanoslid

    q/qinfinito

    2,511% gS/mL

    Figura 1. Concentrao de Hg no lquido em Figura 2. Concentrao relativa de Hg no slidoem funo da raiz quadrada do tempo funo da raiz quadrada do tempo

    RESULTADOS E DISCUSSO

    Observa-se, inicialmente, de acordo com a Tabela 1, que as concentraes iniciais de Hg noso constantes, embora sejam amostras do mesmo condensado. Pela Figura 1, verifica-se que a taxade remoo de mercrio rpida no incio e diminui lentamente com tempos de contato maiores doque 1,5 h1/2. Na Figura 2, observa-se a inclinao constante nos tempos iniciais do teste,

    possibilitando a determinao da difusividade. Ao compararem-se os valores de Ds obtidos, pode-sedizer que esto em uma faixa estreita e que diferenas nas condies dos testes no afetaramsignificativamente os resultados.

    BIBLIOGRAFIA

    1. Wilhelm, S. M., Bloom, N., Mercury in Petroleum.Fuel Processing Technology, 63, 1-27, 2000.2. Wilhelm, S. M., Environmetal Protection Agency Office of Research and Development. Mercuryin Petroleum and Natural Gas. EPA-600/R-01-066. U.S. September, 2001.3. Cooney, D. O., Adsorption design for wastewater treatment. Lewis Publishers, Boca Raton,Florida, 1999

  • 7/22/2019 20o.EBA

    44/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    26

    ADSORPTION OF PURE GASES AND THEIR MIXTURES ON ACTIVATED CARBON

    Ricardo Bazan, Reiner Staudt, Peter Harting

    Center for Non-Classical Chemistry, Permoserstr. 15, 04318 Leipzig, Germany

    e-mail: [email protected], http://www.uni-leipzig.de/inc

    The adsorption represents an important procedure for separation and purification processeswithin many domains of chemical industry. In the most technical processes gas mixtures areinvolved. It is necessary to know the separation factors of the adsorption systems. The compositionof the sorbate phase can be determined experimentally by using the volumetric method incombination with gas chromatography.

    Pure component isotherm is the simplest measurement of adsorption equilibria [1, 2].Isotherm measurements for low pressures are so common that commercial push-button

    measurement systems have been available for many years. On the other hand applications ofadsorption almost always involve mixtures. Although several models can predict mixture equilibriafrom pure component information in the low pressure range, where the adsorption behavior can beassumed to be ideal. The accuracy of predictions are, in general, less than desirable to anapplication engineer, i. e. the Ideal Adsorbed Solution Theory or the Mixed-Langmuir model [3, 4].Hence, there is need for direct measurements of mixture equilibria. Most of models can predictmulticomponent equilibria with good accuracy once the binary data are available. Therefore themajority of experimental effort in mixture equilibria has been devoted to multicomponent systems.

    It is the purpose of this paper to contribute to this field by a volumetic methods to measureadsorption equilibria of pure components and mixtures in combination with gas chromatography.

    Adsorption equilibria of the gases He, CH4, N2, Ar, CO2, and H2 and some of their binarymixtures were carried out at different temperatures (10 C< T < 70 C) on activated carbon in the

    pressure range Vacuum < p < 5 MPa. The pure gas isotherms and the partial load of mixed gasadsorption equilibria were measured. The pure data can be described very well by the Langmuirisotherm. The mixed data were also analysed. Experiment and data will be shown and discussed.

    REFERENCE

    O. Talu, Needs, status, techniques and problems with binary gas adsorption experiments. Adv.Colloid Interface Sci., 76-77 (1998), p. 227-269J.U. Keller, F. Dreisbach, H. Rave, R. Staudt, M. Tomalla, Measurement and Correlation of GasMixture Adsorption Equilibria of Natural Gas Compounds on Microporous Sorbens, I.Experimental Methods. Adsorption, 5, (1999), p. 199-214A.L. Myers, J.M. Prausnitz, Thermodynamics of Mixed Gas Adsorption. AIChE Journal, 11 (1965)1, p. 121-127E.C. Markham, A.F. Benton, The Adsorption of Gas Mixtures by Silica, J. Am. Chem. Soc., 53(1931) 1, 497-507

  • 7/22/2019 20o.EBA

    45/278

    Fundamentos de Adsoro Anais do 5o EBA,A. S. Araujo e D. C. S. Azevedo (orgs.), Natal, RN, 2004

    27

    POSSIBILITIES AND LIMITS FOR THE DETERMINATION OF PARTIAL LOADS BYGAS MIXTURE ADSORPTION

    Peter Harting, Ricardo Bazan, Reiner Staudt

    Center for Non-Classical Chemistry, Permoserstr. 15, 04318 Leipzig, Germanye-mail: [email protected], http://www.uni-leipzig.de/inc

    Physisorption phenomena of gas mixtures on inert porous solids like zeolites and activatedcarbons provide the basis for a variety of gas separation processes including the purification ofexhaust air from technical processes (often hazardous compounds like VOCs, FCHCs, HCl, Cl2 etc.in view of increasing environmental regulations and requirements) ,the separation of air intonitrogen and oxygen enriched components at ambient temperature, the purification of natural gasfrom chemically aggressive or toxic components like H2S etc. and the regain and / or concentrationof valuable components of low BTU-gases like hydrogen from blast-furnace gases or methane from

    garbage deposit gases.

    Pure component isotherm is the simplest measurement of adsorption equilibria. Isothermmeasurements for low pressures are so common that commercial "push-button" measurementsystems have been available for many years. On the other hand applications of adsorption almostalways involve mixtures. Although several models can predict mixture equilibria from purecomponent information in the low pressure range, where the adsorption behavior can be assumed to

    be ideal. The accuracy of predictions are, in general, less than desirable to an application engineer,i. e. the Ideal Adsorbed Solution Theory or the Mixed-Langmuir model. Hence, there is need fordirect measurements of mixture equilibria. Most of models can predict multicomponent equilibriawith good accuracy once the binary data are available. Therefore the majority of experimental eff