17
IC – Instituto de Computação UNICAMP – Universidade de Campinas http://www.ic.unicamp.br/~edmundo Campinas, 9 de março de 2018 Edmundo Madeira Alguns Tópicos de Pesquisa em Computação em Nuvens e Névoas, Redes Veiculares e 5G

Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

IC – Instituto de Computação

UNICAMP – Universidade de Campinas

http://www.ic.unicamp.br/~edmundo

Campinas, 9 de março de 2018

Edmundo Madeira

Alguns Tópicos de Pesquisa em Computação em Nuvens e Névoas,

Redes Veiculares e 5G

Page 2: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Arquitetura: Nuvem – Névoa – Rede Veicular

Page 3: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Orquestradores: Nuvem - Névoa

Page 4: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Projetos

• Orquestração de Serviços em Névoas Computacionais para Aplicações Hadoop/Spark/HPAT em Nuvens Híbridas

• Incerteza na largura de banda disponível entre nuvens e névoas

• Migração Proativa de Máquinas Virtuais entre Névoas Computacionais

• Virtualização de redes LTE usando SDN e NFV

• Gerência de slices em redes 5G

Page 5: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Orquestração de Serviços em Névoas Computacionais para Aplicações

Hadoop/Spark/HPAT em Nuvens Híbridas

Page 6: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

An Architecture for Orchestrating Hadoop Applications in Hybrid Cloud

HM – Hadoop Master NodeHW – Hadoop Worker Nodes

Page 7: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Incerteza na largura de banda disponível entre nuvens e névoas

Page 8: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Proposed Mechanism

SORTS September 2016 Coimbra F2F Meeting - 8

SORTS

Calculates a deflated available bandwidth to the scheduler by using a multiple linear regression technique

f(x,y) = ax + by +c- x: current predict uncertainty- y: currently available bandwidth- f(x,y): deflated available bandwidth

Page 9: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Migração Proativa de Máquinas Virtuais entre Névoas Computacionais

Page 10: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Virtual Machine Migration Scenario

Page 11: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

An adaptive mechanism for LTE P-GW virtualization using SDN and NFV

Page 12: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

P-GW user-plane virtualization

• OpenFlow switches• Hardware: high

processing capacity but small tables

• Software: large tables but slow processing capacity

User plane

Control plane

S1-U S5/S8 SGi

S11

S6a

Gx

X2

Uu

Uu

Internet

PCRFHSS

eNBu

eNBc

eNBu

eNBc

UE

UE

X2

MME

S-GWu Backhaul P-GWu S5/S8

EPC controller

P-GWcS-GWc

S1-MME

User traffic

Control signalling

OpenFlow protocol

Fig. 2. The adopted Software Defined Mobile Networking (SDMN) architecture.

user plane [19]. A network operator may face performance

limitations when implementing these functions in software,

especially because transferring packets between kernel and

userspace is a costly operation [16]. This constraint motivated

the decision to implement S/P-GWu using OpenFlow switches

rather than generic VNF in software. On the S/P-GWu,

OpenFlow logical ports are used to de/encapsulate the GTP

traffic so that the gateways can match and perform required

action on top of encapsulated IP user packets. On this SDMN

architecture, all S/P-GWu operations are implemented using

standard OpenFlow instructions, actively supported by the set-

field action and by the OpenFlow eXtensible Match (OXM)

metadata field carried between logical ports.

With this approach, the gateways can still be modeled as

VNFs running on top of virtual OpenFlow switches (like

the Open vSwitch, which offers an optimized implementation

for packet forwarding in kernel space [21]). However, as an

alternative, it is possible to deploy this same architecture using

hardware OpenFlow switches, which are designed to ensure

packet processing at line rate. On the other hand, hardware

switches have limited number of entries in its internal pipeline

tables. This restriction is usually associated with higher

costs for implementing Ternary Content-Addressable Memory

(TCAM) on hardware. So, selecting among a hardware of

software switch platform is a trade-off that depends on the

network requirements and available infrastructure.

Particularly, the central point of this paper is the adaptive

mechanism for P-GWu virtualization that can meet different

traffic load requirements while overcoming previously dis-

cussed limitations, regardless of using software or hardware

OpenFlow switches.

V. P-GW USER PLANE VIRTUALIZATION

On the user plane, the heaviest P-GW task is the filtering of

downlink user IP packets into the different QoS-based bearers

using TFTs. The TFTs use L3 and L4 header fields to filter

packets so that each one can be sent down to the individual

bearers. When using OpenFlow protocol to implement TFT

filtering, at least one flow entry must be installed at the

P-GWu for each active bearer. Considering that a UE can

have some dedicated bearers other than the default bearer,

and considering that each bearer can convey the traffic from

different applications, the total number of flow entries on the

P-GWu is prone to grow quickly. Despite the flexibility offered

by the adopted SDMN architecture, implementing the P-GWu

with a single OpenFlow switch is not realistic. Therefore, the

P-GWu virtualization employs the elastic computing concept,

so computing resources can be scaled up and down easily

whenever required.

A. The P-GWu internal design

Fig. 3 shows the P-GWu internal design. No matter whether

using hardware or software platform, a pool of OpenFlow TFT

switches is required to accommodate all flow entries. When

using software-based TFT switches (Fig. 3a), the table size

may not be the problem, but asingle virtual appliance probably

will not be able to handle all the traffic load. When using

hardware-based TFT switches (Fig. 3b), individual flow tables

will get full soon, even when there is available processing

capacity for use.

Besides, the P-GWu design also requires a pair of uplink

(UL) and downlink (DL) OpenFlow switches with the single

purpose of redirecting the traffic of each UE to the proper TFT

switch. Ensuring that all the traffic of a single UE is processed

at the same TFT switch allows the P-GWc to query for traffic

P-GWu

DL HW

switch

UL HW

switch

TFT SW pool

S5/S8 SGi

(a) Software-based TFT switches.

P-GWu

DL HW

switch

UL HW

switch

TFT HW pool

S5/S8 SGi

(b) Hardware-based TFT switches.

Fig. 3. The P-GWu internal design.

Page 13: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Simulationscenario

S-GWu

S-GWu

S-GWu

S-GWu

S-GWu

EPC controller

P-GWcS-GWc

Internet

P-GWu

OpenFlowbackhaul network

ns-3 simulator + OFSwitch13 OpenFlow 1.3 module for ns-3 (developed at Unicamp)

Ring network, 5 cell sites, 100 to 500 UEs, 4 apps with different QoS.

TF

T a

vg

. lo

ad

(%

)0

20

40

60

80

100

Block none Block GBR Block all

GBR bearers

Non-GBR bearers

(a) P-GWu traffic load.

Blo

ck r

atio (

%)

0

20

40

60

80

100

Block none Block GBR Block all

(b) P-GWu overloaded block ratio.

Pa

cke

t d

rop

s (

%)

0

20

40

60

80

100

Block none Block GBR Block all

(c) P-GWu overloaded packet drops.

Fig. 4. Simulation results for three different blocking strategies.

VI. P-GWU PERFORMANCE EVALUATION

A. Simulation scenario

The simulation scenario was implemented in the Network

Simulator 3 (ns-3) using the OFSwi t ch13 module1. Due

to CPU and memory limitations for performing large-scale

LTE simulations on ns-3, a reduced simulation scenario was

adopted, as illustrated in Fig. 5. The backhaul network is

composed of 6 OpenFlow switches in a ring topology, con-

nected by Gigabit Ethernet full-duplex links. The ring was

chosen as most of the legacy backhaul networks have a ring

access topology, and it is one of the most efficient approaches

regarding protection and costs. The P-GWu and 5 LTE sites

are connected to the ring switches. Each site has three eNBs

and its own S-GWu. The eNBs are laid out on a hexagonal

grid with an inter-site distance of 500 meters. Fig. 6 shows the

Radio Environment Map (REM), which represents the Signal-

to-Interference-plus-Noise Ratio (SINR) in the downlink with

respect to the eNB that has the strongest signal at each point.

The UEs, ranging from 100 to 400 on this scenario, are

randomly scattered over all the coverage area.

As LTE networks focus on Voice over IP (VoIP) and

multimedia applications, four applications are used during the

1This module enhances the ns-3 with OpenFlow 1.3 technology. It wasdeveloped by the authors of this paper and it is described in [22].

S-GWu

S-GWu

S-GWu

S-GWu

S-GWu

EPC controller

P-GWcS-GWc

Internet

P-GWu

OpenFlow

backhaul network

Fig. 5. The simulation scenario topology.

simulations to provide five different types of traffic flows with

different QoS requirements. They are: a HyperText Transfer

Protocol (HTTP) application for web page access mapped

to QoS Class Identifier (QCI) 9; a VoIP conversation with

call length expected to 100 seconds over UDP protocol and

mapped to QCI 1; a live MPEG-4 video streaming over

UDP protocol and mapped to QCIs 2 or 7; and a buffered

MPEG-4 video streaming over TCP protocol and mapped

to QCI 6 (videos with expected length to 90 seconds). UEs

can request for randomly dedicated bearer context activations,

with individual requests following a Poisson Process with rate

λ = 0.3̄ requests per minute.

Table I shows theP-GWu parameter values used for the sim-

ulations, adjusted to reflect the proportionality of the scenario.

The P-GWu was modeled considering both software and hard-

ware OpenFlow platforms. Hence, simulations use different

flow table size and traffic processing capacity values for each

TABLE IPARAMETERS FOR P-GWU OPENFLOW SWITCH MODELLING.

Parameter Hardware Software

Flow table size 1200 4096Processing capacity 1Gbps 100MbpsTFT switches 1, 2 or 4Split threshold 90%Join threshold 30%

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400

y-c

oo

rdin

ate

(m

)

x-coordinate (m)

-5

0

5

10

15

20

SIN

R (

dB

)

1

1,2 ,3 4,5 ,6

7,8 ,9 10,11,12 13,14,15

Fig. 6. The REM for the simulation scenario.

Page 14: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Gerência de slices em redes 5G

Page 15: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

Slicing em 5G

Page 16: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

• Video Transmission over VANETs

• QoE Optimization for Video streaming over 5G slices

• Video Streaming in Large-Scale Heterogeneous 5G Networks in Smart Cities

Page 17: Alguns Tópicos de Pesquisa em Computação em Nuvens e ...tomasz/seminarios_2018s1/...Redes Veiculares e 5G Arquitetura: Nuvem –Névoa –Rede Veicular Orquestradores: Nuvem - Névoa

[email protected]

http://lrc.ic.unicamp.br

Edmundo Madeira

Obrigado!