15
A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo exerce um força de cisalhamento retardante sobre o escoamento; assim a velocidade do fluido nas proximidades da parede é reduzida. O efeito da superfície sólida é sentido cada vez mais para dentro do escoamento. Suficientemente longe da entrada do tubo a camada limite em desenvolvimento atinge a linha de centro do mesmo e o escoamento torna-se inteiramente viscoso. Quando isto acontece e a forma do perfil de velocidades não se altera com o avanço do escoamento diz-se que o mesmo encontra-se completamente desenvolvido. A distância a jusante, a partir da entrada, até o local em que o escoamento torna-se completamente desenvolvido é chamada de comprimento de entrada. Para o escoamento laminar,o comprimento de entrada é uma função do número de Reynolds: Como no escoamento laminar admite-se número de Reynolds de até 2300, o comprimento de entrada pode atingir distâncias tão grandes como: Se o escoamento for turbulento, a mistura intensa entre camadas do fluido causa o crescimento mais rápido da camada limite e experiências mostram que o comprimento de entrada se reduz para distâncias entre 25 e 40 diâmetros do tubo. Escoamento completamente desenvolvido Mecânica dos Fluidos - Professor Eduardo Loureiro VD D L 06 , 0 D D D L 138 2300 06 , 0 Re 06 , 0

Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

  • Upload
    vokhue

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se

ao longo das paredes do duto. A superfície do tubo exerce um força de cisalhamento retardante sobre o

escoamento; assim a velocidade do fluido nas proximidades da parede é reduzida. O efeito da superfície sólida é

sentido cada vez mais para dentro do escoamento. Suficientemente longe da entrada do tubo a camada limite em

desenvolvimento atinge a linha de centro do mesmo e o escoamento torna-se inteiramente viscoso. Quando isto

acontece e a forma do perfil de velocidades não se altera com o avanço do escoamento diz-se que o mesmo

encontra-se completamente desenvolvido. A distância a jusante, a partir da entrada, até o local em que o

escoamento torna-se completamente desenvolvido é chamada de comprimento de entrada.

Para o escoamento laminar, o comprimento de entrada é uma função do número de Reynolds:

Como no escoamento laminar admite-se número de Reynolds de até 2300, o comprimento de entrada pode atingir

distâncias tão grandes como:

Se o escoamento for turbulento, a mistura intensa entre camadas do fluido causa o crescimento mais rápido da

camada limite e experiências mostram que o comprimento de entrada se reduz para distâncias entre 25 e 40

diâmetros do tubo.

Escoamento completamente desenvolvido

Mecânica dos Fluidos - Professor Eduardo Loureiro

VD

D

L06,0

DDDL 138230006,0Re06,0

Page 2: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo, o escoamento é dito estacionário ou

permanente. Então, cada partícula que passa por um determinado ponto o faz sempre com a mesma velocidade. Em

um outro ponto, as partículas podem passar com outra velocidade, mas aí, também, a velocidade é sempre a mesma.

Consideremos, agora, o escoamento de um fluido viscoso através de um tubo cilíndrico, com uma velocidade não

muito grande, de modo que o escoamento é laminar e estacionário. A camada mais externa adere à parede e tem

velocidade nula. A parede exerce sobre esta camada uma força de sentido contrário ao movimento do fluido e ela,

por sua vez, exerce uma força de mesmo sentido sobre a camada seguinte, e assim por diante. A camada central tem

a velocidade máxima. O escoamento do fluido é como o movimento de vários tubos encaixados, cada qual

deslizando com velocidade maior que o vizinho externo.

Integrando esta expressão desde um r genérico, para o qual a correspondente camada de fluido tem uma velocidade

v, até r = R, para o qual a correspondente camada de fluido tem v = 0, obtemos:

Lei de Poiseuille

Mecânica dos Fluidos - Professor Eduardo Loureiro

Consideremos um elemento cilíndrico de fluido, de raio r e

comprimento L, coaxial com o tubo, que se escoa por efeito de uma

diferença de pressão. A força que impulsiona o fluido tem módulo

. Esta força deve estar em equilíbrio com a força de

viscosidade que atua na superfície do elemento cilíndrico considerado,

com área , de modo que:

221 rPFFF

rL2A

dr

dvrLrP )2(2

dy

dv

A

F rdrLPdv )2/(

22)/(4

1)( rRLPrv

Page 3: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Assim, a velocidade de uma dada camada cilíndrica do fluido é diretamente proporcional ao gradiente de pressão e

inversamente proporcional ao coeficiente de viscosidade. Ainda, a velocidade das partículas do fluido é máxima em

r = 0 (no centro do tubo), diminuindo até zero em r = R (junto às paredes).

Considerando agora uma camada cilíndrica de fluido, com raio interno r e raio externo r + dr, que se move com

velocidade de módulo v. No intervalo de tempo dt, o volume de fluido que atravessa uma seção reta do tubo

é , onde . Portanto, levando em conta a expressão acima, temos:

A vazão, ou seja, o volume de fluido que passa através de uma seção reta do tubo por unidade de tempo,

é dada por:

Lei de Poiseuille

Mecânica dos Fluidos - Professor Eduardo Loureiro

O volume de fluido que escoa através de toda seção reta do tubo de

raio R durante o intervalo de tempo dt é obtido pela integração em r,

desde r = 0 até r = R :

22)/(4

1)( rRLPrv

)dA)(vdt(dV

dtrdrrRLPdV )2)()(/(4

1 22

dtPL

RdtrdrrRLPdV

R

8)/(

2

4

0

22

dtdVQ

L

PD

L

PRQ

1288

44

Esta equação é conhecida como a equação de Poiseuille.

Page 4: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Carga total, de pressão de velocidade e potencial

Ao observar o que acontece com o exemplo de um reservatório que abastece um duto, podemos

verificar a relação entre estas cargas.

Para analisar o escoamento no tubo nós aplicamos a equação de Bernoulli ao longo de uma linha de

corrente do ponto 1 na superfície do reservatório até o ponto 2 na saída do tubo. E nós sabemos

que a energia total por unidade de peso ou a carga total não varia - ela é constante - ao longo de uma

linha de corrente. Mas, qual o valor desta constante?

Nós podemos calcular a carga total H (ou altura total, já que H é a soma de parcelas que podem ser

expressas em unidades de altura de uma coluna de liquido).

No reservatório, p1 = 0 pois p1 é a pressão atmosférica e a pressão manométrica atmosférica é

zero. Se o reservatório for muito grande a velocidade no ponto 1 pode ser considerada desprezível

se comparada com a velocidade no tubo. Portanto v1 = 0, então, no reservatório, a altura total = H

= z1 que é a elevação do reservatório.

Mecânica dos Fluidos - Professor Eduardo Loureiro

2

2

221

2

11

22z

g

v

g

pHz

g

v

g

p

Page 5: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Carga total, de pressão de velocidade e potencial

No gráfico abaixo a linha de altura total é mostrada. Se nós conectarmos piezômetros (tubos verticais

abertos, preenchidos com o mesmo líquido cuja pressão desejamos medir) em diferentes pontos ao longo

do tubo, quais os níveis mostrados quando o tubo estiver fechado na extremidade?

Como podemos ver, com velocidade zero, os piezômetros apresentam um mesmo nível que corresponde a

linha de altura (ou carga) total.

Em cada ponto da linha, quando v = 0.

a altura de cada piezômetro corresponde à carga (ou altura) de pressão e seu valor é dado por .

Mecânica dos Fluidos - Professor Eduardo Loureiro

Hzg

p

g

p

Page 6: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Carga total, de pressão de velocidade e potencial

O que aconteceria com as alturas mostradas nos piezômetros se o fluido apresentar uma

velocidade v 0?

Nós já sabemos que quando a velocidade aumenta a pressão diminui.

Na figura acima, os níveis foram reduzidos por uma quantidade igual à carga de velocidade, .

Como o tubo tem diâmetro constante, nós podemos ver que a altura de velocidade é constante e

está representada pela segunda linha tracejada horizontal.

Mecânica dos Fluidos - Professor Eduardo Loureiro

g

v

2

2

Page 7: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Carga total, de pressão de velocidade e potencial

O que aconteceria se o tubo não fosse de diâmetro constante? Vejamos na figura abaixo onde o

tubo anterior foi substituído por outro com três diâmetros diferentes e com a seção intermediária

de diâmetro maior.

A altura de velocidade em cada ponto é diferente agora. Isto porque a velocidade é diferente em

cada ponto.

Mecânica dos Fluidos - Professor Eduardo Loureiro

Page 8: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Perdas devido ao atrito

Em um tubo real há perdas de energia devido ao atrito, que devem ser levadas em conta quando

forem significantes. Como se comportarão as cargas de pressão e de velocidade com o atrito? Se

considerarmos novamente o tubo com diâmetro constante, nós teremos uma situação como a

mostrada abaixo:

A perda de energia devido ao atrito, cujo símbolo é ht, também pode ser escrita como uma altura

de coluna de líquido.

Mecânica dos Fluidos - Professor Eduardo Loureiro

thzg

v

g

pz

g

v

g

p 2

2

221

2

11

22

Page 9: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Na equação, os termos entre parêntesis representam a energia mecânica por unidade de massa em uma seção. Otermo hT, igual à diferença em energia mecânica por unidade de massa entre as duas seções (1) e (2), representa aconversão (irreversível) de energia mecânica em energia térmica indesejada e perda de energia através detransferência de calor. hT é o que chamamos de perda de carga total.

[1]

A perda de energia tem dimensões de energia por unidade de massa [FL/M], equivalente a [L2/t2]. Se dividirmos cadatermo da equação [I] pela aceleração da gravidade, g, as dimensões resultantes de hT serão [(L2/t2)(t2/L)] = [L], oualtura de uma coluna do líquido em escoamento.

A equação [I] pode ser usada para calcular a diferença de pressão entre quaisquer dois pontos num sistema detubos, desde que a perda de carga possa ser determinada.

Contribuindo para a perda de carga total teremos:

A soma das perdas distribuídas, hd, devidas aos efeitos de atrito no escoamento completamentedesenvolvido em tubos de seção constante

A soma das perdas localizadas, hl, devidas a entradas, acessórios, mudanças de área, etc.

Perdas de carga em tubulações

Mecânica dos Fluidos - Professor Eduardo Loureiro

thgzvp

gzvp

2

2

221

2

11

22

Page 10: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Para o escoamento completamente desenvolvido num tubo de área constante, as perdas localizadas

não existem, hl = 0, e a equação do balanço de energia [I] reduz-se a:

Se o tubo for horizontal, então z2 = z1 e

[II]

Como a perda de carga representa a energia mecânica convertida em térmica, por efeitos de atrito,

ela depende tão somente dos detalhes do escoamento através do conduto e independe da

orientação do duto. Portanto, a perda de carga distribuída pode ser expressa como a perda de

pressão.

Perdas distribuídas

Mecânica dos Fluidos - Professor Eduardo Loureiro

thgzvp

gzvp

2

2

221

2

11

22

dhzzgpp

1221

dhppp

21

Page 11: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Para o escoamento laminar a queda de pressão pode ser calculada analiticamente e a perda de

carga distribuída é dada por:

Para o escoamento turbulento não podemos avaliar a queda de pressão analiticamente; devemos

recorrer a dados experimentais e utilizar a análise dimensional para correlacioná-los.

Perdas distribuídas

Mecânica dos Fluidos - Professor Eduardo Loureiro

dhppp

21

2Re

64 2V

D

Lhd

L

PD

L

PRQ

1288

44

D

V

D

L

D

DLV

D

LQP

32

41281284

2

4

VD

V

D

L

D

V

D

Lhd

64

232

2

Equação de Poiseuille

Page 12: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

A queda de pressão, Δp, devida ao atrito, num tubo horizontal de área constante, depende do diâmetro do tubo, D, do seucomprimento, L, da sua rugosidade, e, da velocidade média do escoamento, V, da massa específica, ρ, e da viscosidade dofluido, μ.

Da análise dimensional, os resultados formam uma correlação da forma:

Da equação [II], verificamos que:

Esta é a relação funcional que conseguimos com a análise dimensional. Experiências mostram que a perda de carga édiretamente proporcional à fração L/D. Portanto,

Uma vez que a função é ainda indeterminada dividimos por 2 o segundo membro da equação, gerando uma nova função :

A função desconhecida, , é definida como o fator de atrito, f.

E, finalmente:

Perdas distribuídas

Mecânica dos Fluidos - Professor Eduardo Loureiro

,,,,, VeLDFp

D

e

D

L

VDf

V

p,,

2

D

e

D

L

V

p,Re,

2

D

e

D

L

V

hd ,Re,2

2

1 Re, VD

e

D

Lhd

2

22

Re,V

D

e

D

Lhd

D

eRe,2

2

2V

D

Lfhd

Page 13: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

Rugosidade relativa:

Mecânica dos Fluidos - Professor Eduardo Loureiro

A rugosidade relativa pode ser obtida de gráficos ou tabelas:

Tubo Rugosidade (mm)

Aço rebitado 0,9-9

Concreto 0,3-3

Madeira 0,2-0,9

Ferro fundido 0,26

Ferro galvanizado 0,15

Ferro fundido asfaltado 0,12

Aço comercial ou ferro forjado 0,046

Tubos trefilados 0,0015

Page 14: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

O diagrama de Moody:

Mecânica dos Fluidos - Professor Eduardo Loureiro

0006,0D

e4104Re

Page 15: Escoamento completamente desenvolvido - Apresentaçãoeduloureiro.com.br/index_arquivos/mfaula9.pdf · Quando a velocidade de um fluido, em qualquer ponto, é constante no tempo,

O diâmetro hidráulico:

Mecânica dos Fluidos - Professor Eduardo Loureiro

As correlações para escoamento turbulento em tubos são estendidas para uso com geometrias

não-circulares pela introdução do diâmetro hidráulico, definido como:

Onde A é a área de seção transversal e P é o perímetro molhado, o comprimento da parede em

contato com o fluido escoando em qualquer seção transversal.

Desta forma, para um duto circular:

P

ADh

4

4

2DA

DP

DD

D

P

ADh

2

44

4