215
Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 2 Parte 2 Matemática Básica 1

Humberto José Bortolossi · Demonstração por absurdo Nesta técnica, para demonstrar que a sentença “se A, então B” é verdadeira, supomos inicialmente que ela seja falsa

Embed Size (px)

Citation preview

Matemática Básica

Humberto José Bortolossi

Departamento de Matemática Aplicada

Universidade Federal Fluminense

Parte 2

Parte 2 Matemática Básica 1

Se A, então B: notações

Parte 2 Matemática Básica 2

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 3

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 4

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 5

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 6

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 7

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 8

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 9

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 10

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Parte 2 Matemática Básica 11

Demonstrações: direta e por absurdo

Parte 2 Matemática Básica 12

Demonstração direta

Mostra-se que todas as situações que satisfazem a hipótese A tambémsatisfazem a tese B. Feito isto, segue-se que a sentença “se A, então B” éverdadeira, pois ela não possui contraexemplos.

Demonstração direta

Parte 2 Matemática Básica 13

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 14

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 15

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 16

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 17

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 18

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 19

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 20

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 21

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 22

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 23

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 24

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Parte 2 Matemática Básica 25

Demonstração por absurdo

Nesta técnica, para demonstrar que a sentença “se A, então B” é verdadeira,supomos inicialmente que ela seja falsa. A seguir, a partir desse pressuposto,usando argumentos válidos, deve-se chegar a dois fatos contraditórios (porexemplo, que um número inteiro é par e ímpar ao mesmo tempo ou queuma sentença é verdadeira ou falsa ao mesmo tempo). Feito isto, comoem uma teoria consistente não podem existir contradições, concluímos quenosso pressuposto da sentença “se A, então B” ser falsa está errado e, assim,a sentença “se A, então B” deve ser verdadeira.

Demonstração por absurdo

Parte 2 Matemática Básica 26

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 27

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 28

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 29

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 30

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 31

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 32

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 33

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 34

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 35

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 36

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 37

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 38

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 39

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 40

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 41

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 42

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 43

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Parte 2 Matemática Básica 44

A se, e somente se, B

Parte 2 Matemática Básica 45

A se, e somente se, B

Dizemos que uma sentença

A se, e somente se, B

é verdadeira quando as sentenças

“se A, então B” e “se B, então A”

são simultaneamente verdadeiras.

Regras do Jogo

Parte 2 Matemática Básica 46

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Parte 2 Matemática Básica 47

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Parte 2 Matemática Básica 48

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Parte 2 Matemática Básica 49

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Parte 2 Matemática Básica 50

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Parte 2 Matemática Básica 51

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Parte 2 Matemática Básica 52

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 53

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 54

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 55

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 56

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 57

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 58

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 59

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Parte 2 Matemática Básica 60

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Parte 2 Matemática Básica 61

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Parte 2 Matemática Básica 62

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Parte 2 Matemática Básica 63

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Parte 2 Matemática Básica 64

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Parte 2 Matemática Básica 65

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Parte 2 Matemática Básica 66

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Parte 2 Matemática Básica 67

Quatro observações

Parte 2 Matemática Básica 68

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Parte 2 Matemática Básica 69

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Parte 2 Matemática Básica 70

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Parte 2 Matemática Básica 71

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Parte 2 Matemática Básica 72

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Parte 2 Matemática Básica 73

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Parte 2 Matemática Básica 74

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Parte 2 Matemática Básica 75

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = 1/7.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Parte 2 Matemática Básica 76

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = 1/7.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Parte 2 Matemática Básica 77

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = 1/7.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Parte 2 Matemática Básica 78

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = 1/7.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Parte 2 Matemática Básica 79

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = 1/7.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Parte 2 Matemática Básica 80

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 − 5 · x + 6 = 0, então x = 2 ou x = 3 ou x = 5.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 2 e x = 3) também satisfazem a tese.

Parte 2 Matemática Básica 81

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 − 5 · x + 6 = 0, então x = 2 ou x = 3 ou x = 5.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 2 e x = 3) também satisfazem a tese.

Parte 2 Matemática Básica 82

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 − 5 · x + 6 = 0, então x = 2 ou x = 3 ou x = 5.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 2 e x = 3) também satisfazem a tese.

Parte 2 Matemática Básica 83

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 − 5 · x + 6 = 0, então x = 2 ou x = 3 ou x = 5.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 2 e x = 3) também satisfazem a tese.

Parte 2 Matemática Básica 84

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 − 5 · x + 6 = 0, então x = 2 ou x = 3 ou x = 5.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 2 e x = 3) também satisfazem a tese.

Parte 2 Matemática Básica 85

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importânciacentral no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração de umaoutra proposição.

Um corolário é uma proposição que é consequência imediata de uma ou-tra proposição.

Parte 2 Matemática Básica 86

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importânciacentral no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração de umaoutra proposição.

Um corolário é uma proposição que é consequência imediata de uma ou-tra proposição.

Parte 2 Matemática Básica 87

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importânciacentral no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração de umaoutra proposição.

Um corolário é uma proposição que é consequência imediata de uma ou-tra proposição.

Parte 2 Matemática Básica 88

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importânciacentral no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração de umaoutra proposição.

Um corolário é uma proposição que é consequência imediata de uma ou-tra proposição.

Parte 2 Matemática Básica 89

Uma demonstração por absurdo famosa

Parte 2 Matemática Básica 90

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 91

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 92

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 93

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 94

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 95

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 96

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 97

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 98

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 99

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 100

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 101

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 102

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 103

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 104

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 105

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 106

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 107

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Parte 2 Matemática Básica 108

Seção de Exercícios

Parte 2 Matemática Básica 109

Implicações e Teoria dos Conjuntos

Parte 2 Matemática Básica 110

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 111

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 112

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 113

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 114

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 115

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 116

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 117

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 118

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 119

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 120

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x · x = x ⇒ x = 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = 0 é um contraexemplo! De fato: x = 0 satisfaza hipótese (pois 02 = 0), mas x não satisfaz a tese (pois 0 6= 1).

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {1}

Note que H 6⊂ T !

Parte 2 Matemática Básica 121

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 122

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 123

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 124

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 125

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 126

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 127

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 128

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 129

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 130

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 131

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 1 ⇒ x · x = x(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 1 satisfaz a hipótese), também satisfaza tese (pois 1 · 1 = 1).

H = {x | x satisfaz a hipótese} = {1}

T = {x | x satisfaz a tese } = {0,1}

Note que H ⊂ T !

Parte 2 Matemática Básica 132

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 133

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 134

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 135

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 136

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 137

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 138

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 139

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 140

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 141

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 142

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x2 = 4 ⇒ x = 2(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −2 é um contraexemplo! De fato: x = −2satisfaz a hipótese (pois (−2)2 = 4), mas x não satisfaz a tese (pois −2 6= 2).

H = {x | x satisfaz a hipótese} = {−2,2}

T = {x | x satisfaz a tese } = {2}

Note que H 6⊂ T !

Parte 2 Matemática Básica 143

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 144

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 145

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 146

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 147

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 148

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 149

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 150

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 151

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 152

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 153

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x = 2 ⇒ x2 = 4(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 2 satisfaz a hipótese), também satisfaza tese (pois (2)2 = 4).

H = {x | x satisfaz a hipótese} = {2}

T = {x | x satisfaz a tese } = {−2,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 154

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 155

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 156

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 157

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 158

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 159

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 160

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 161

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 162

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 163

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 164

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

1 > 1/x ⇒ x > 1(aqui x representa um número real)

Resposta: a sentença é falsa, pois x = −1 é um contraexemplo! De fato: x = −1satisfaz a hipótese (pois 1 > −1 = 1/(−1)), mas x não satisfaz a tese (pois −1 < 1).

H = {x | x satisfaz a hipótese} = ]−∞,0[ ∪ ]1,+∞[

T = {x | x satisfaz a tese } = ]1,+∞[

Note que H 6⊂ T !

Parte 2 Matemática Básica 165

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 166

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 167

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 168

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 169

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 170

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 171

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 172

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 173

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 174

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 175

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x (x2 − 2 x + 1) = 0 ⇒ x = 0 ou x = 1 ou x = 2(aqui x representa um número real)

Resposta: a sentença é verdadeira, pois não existem contraexemplos! De fato: todo xque satisfaz a hipótese (no caso, apenas x = 0 e x = 1 satisfazem a hipótese), tambémsatisfaz a tese.

H = {x | x satisfaz a hipótese} = {0,1}

T = {x | x satisfaz a tese } = {0,1,2}

Note que H ⊂ T !

Parte 2 Matemática Básica 176

Moral

Verdadeira ou falsa?

Se A, então B.

Sejam:

H = {x | x satisfaz a hipótese A},

T = {x | x satisfaz a tese B}.

Relação entre Implicações e Teoria dos Conjuntos:A sentença “se A, então B” é verdadeira se, e somente se, H ⊂ T .

Parte 2 Matemática Básica 177

Moral

Verdadeira ou falsa?

Se A, então B.

Sejam:

H = {x | x satisfaz a hipótese A},

T = {x | x satisfaz a tese B}.

Relação entre Implicações e Teoria dos Conjuntos:A sentença “se A, então B” é verdadeira se, e somente se, H ⊂ T .

Parte 2 Matemática Básica 178

Moral

Verdadeira ou falsa?

Se A, então B.

Sejam:

H = {x | x satisfaz a hipótese A},

T = {x | x satisfaz a tese B}.

Relação entre Implicações e Teoria dos Conjuntos:A sentença “se A, então B” é verdadeira se, e somente se, H ⊂ T .

Parte 2 Matemática Básica 179

Moral

Verdadeira ou falsa?

Se A, então B.

Sejam:

H = {x | x satisfaz a hipótese A},

T = {x | x satisfaz a tese B}.

Relação entre Implicações e Teoria dos Conjuntos:A sentença “se A, então B” é verdadeira se, e somente se, H ⊂ T .

Parte 2 Matemática Básica 180

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x ∈ R e x2 < 0 ⇒ x = 1/7

H = {x | x satisfaz a hipótese} = ∅

T = {x | x satisfaz a tese } = {1/7}

Como o conjunto vazio está contido em qualquer outro conjunto, segue-se que H ⊂ Te, portanto, a sentença é verdadeira!

Por que o conjunto vazio está contido em qualquer outro conjunto? Alguém sabedemonstrar esse fato?

Parte 2 Matemática Básica 181

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x ∈ R e x2 < 0 ⇒ x = 1/7

H = {x | x satisfaz a hipótese} = ∅

T = {x | x satisfaz a tese } = {1/7}

Como o conjunto vazio está contido em qualquer outro conjunto, segue-se que H ⊂ Te, portanto, a sentença é verdadeira!

Por que o conjunto vazio está contido em qualquer outro conjunto? Alguém sabedemonstrar esse fato?

Parte 2 Matemática Básica 182

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x ∈ R e x2 < 0 ⇒ x = 1/7

H = {x | x satisfaz a hipótese} = ∅

T = {x | x satisfaz a tese } = {1/7}

Como o conjunto vazio está contido em qualquer outro conjunto, segue-se que H ⊂ Te, portanto, a sentença é verdadeira!

Por que o conjunto vazio está contido em qualquer outro conjunto? Alguém sabedemonstrar esse fato?

Parte 2 Matemática Básica 183

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x ∈ R e x2 < 0 ⇒ x = 1/7

H = {x | x satisfaz a hipótese} = ∅

T = {x | x satisfaz a tese } = {1/7}

Como o conjunto vazio está contido em qualquer outro conjunto, segue-se que H ⊂ Te, portanto, a sentença é verdadeira!

Por que o conjunto vazio está contido em qualquer outro conjunto? Alguém sabedemonstrar esse fato?

Parte 2 Matemática Básica 184

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x ∈ R e x2 < 0 ⇒ x = 1/7

H = {x | x satisfaz a hipótese} = ∅

T = {x | x satisfaz a tese } = {1/7}

Como o conjunto vazio está contido em qualquer outro conjunto, segue-se que H ⊂ Te, portanto, a sentença é verdadeira!

Por que o conjunto vazio está contido em qualquer outro conjunto? Alguém sabedemonstrar esse fato?

Parte 2 Matemática Básica 185

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x ∈ R e x2 < 0 ⇒ x = 1/7

H = {x | x satisfaz a hipótese} = ∅

T = {x | x satisfaz a tese } = {1/7}

Como o conjunto vazio está contido em qualquer outro conjunto, segue-se que H ⊂ Te, portanto, a sentença é verdadeira!

Por que o conjunto vazio está contido em qualquer outro conjunto? Alguém sabedemonstrar esse fato?

Parte 2 Matemática Básica 186

Exemplo

Verdadeira ou falsa? Justifique sua resposta!

x ∈ R e x2 < 0 ⇒ x = 1/7

H = {x | x satisfaz a hipótese} = ∅

T = {x | x satisfaz a tese } = {1/7}

Como o conjunto vazio está contido em qualquer outro conjunto, segue-se que H ⊂ Te, portanto, a sentença é verdadeira!

Por que o conjunto vazio está contido em qualquer outro conjunto? Alguém sabedemonstrar esse fato?

Parte 2 Matemática Básica 187

Conectivos Lógicos

Parte 2 Matemática Básica 188

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

Resposta: x = 1 (satisfaz p), x = −2 (satisfaz q) e x = 2 (satisfaz q).

Parte 2 Matemática Básica 189

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

Resposta: x = 1 (satisfaz p), x = −2 (satisfaz q) e x = 2 (satisfaz q).

Parte 2 Matemática Básica 190

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

x + 1 = 2 ou x2 = 4 .

Resposta: x = 1 (satisfaz p), x = −2 (satisfaz q) e x = 2 (satisfaz q).

Parte 2 Matemática Básica 191

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

x + 1 = 2︸ ︷︷ ︸p

ou x2 = 4︸ ︷︷ ︸q

.

Resposta: x = 1 (satisfaz p), x = −2 (satisfaz q) e x = 2 (satisfaz q).

Parte 2 Matemática Básica 192

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∨ q} = A ∪ B.

Parte 2 Matemática Básica 193

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∨ q} = A ∪ B.

Parte 2 Matemática Básica 194

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∨ q} = A ∪ B.

Parte 2 Matemática Básica 195

Conectivo “ou” (∨)

Dizemos um objeto matemático x satisfaz o predicado

p ou q

(a disjunção entre p e q) se x satisfaz pelo menos um dos predicadosp e q. Notação para o conectivo “ou”: ∨.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∨ q} = A ∪ B.

Parte 2 Matemática Básica 196

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

Resposta: x = 1 (satisfaz p e q). Note que x = −1 satisfaz q mas nãosatisfaz p.

Parte 2 Matemática Básica 197

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

Resposta: x = 1 (satisfaz p e q). Note que x = −1 satisfaz q mas nãosatisfaz p.

Parte 2 Matemática Básica 198

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

x + 1 = 2 e x2 = 1 .

Resposta: x = 1 (satisfaz p e q). Note que x = −1 satisfaz q mas nãosatisfaz p.

Parte 2 Matemática Básica 199

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

x + 1 = 2︸ ︷︷ ︸p

e x2 = 1︸ ︷︷ ︸q

.

Resposta: x = 1 (satisfaz p e q). Note que x = −1 satisfaz q mas nãosatisfaz p.

Parte 2 Matemática Básica 200

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Quais são todos os valores de x ∈ R que satisfazem o predicadoabaixo?

x + 1 = 2︸ ︷︷ ︸p

e x2 = 1︸ ︷︷ ︸q

.

Resposta: x = 1 (satisfaz p e q). Note que x = −1 satisfaz q mas nãosatisfaz p.

Parte 2 Matemática Básica 201

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∧ q} = A ∩ B.

Parte 2 Matemática Básica 202

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∧ q} = A ∩ B.

Parte 2 Matemática Básica 203

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∧ q} = A ∩ B.

Parte 2 Matemática Básica 204

Conectivo “e” (∧)

Dizemos um objeto matemático x satisfaz o predicado

p e q

(a conjunção entre p e q) se x satisfaz simultaneamente os dois pre-dicados p e q. Notação para o conectivo “e”: ∧.

Regras do Jogo

Relação com a Teoria dos Conjuntos: se

A = {x | x satisfaz p} e B = {x | x satisfaz q},

então{x | x satisfaz p ∧ q} = A ∩ B.

Parte 2 Matemática Básica 205

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x > 0 ou x < 2) e x > 1 .

Resposta: x > 1.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x > 0︸ ︷︷ ︸p

ou (x < 2︸ ︷︷ ︸q

e x > 1︸ ︷︷ ︸r

).

Resposta: x > 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 206

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x > 0︸ ︷︷ ︸p

ou x < 2︸ ︷︷ ︸q

) e x > 1︸ ︷︷ ︸r

.

Resposta: x > 1.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x > 0︸ ︷︷ ︸p

ou (x < 2︸ ︷︷ ︸q

e x > 1︸ ︷︷ ︸r

).

Resposta: x > 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 207

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x > 0︸ ︷︷ ︸p

ou x < 2︸ ︷︷ ︸q

) e x > 1︸ ︷︷ ︸r

.

Resposta: x > 1.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x > 0︸ ︷︷ ︸p

ou (x < 2︸ ︷︷ ︸q

e x > 1︸ ︷︷ ︸r

).

Resposta: x > 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 208

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x > 0︸ ︷︷ ︸p

ou x < 2︸ ︷︷ ︸q

) e x > 1︸ ︷︷ ︸r

.

Resposta: x > 1.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x > 0︸ ︷︷ ︸p

ou (x < 2︸ ︷︷ ︸q

e x > 1︸ ︷︷ ︸r

).

Resposta: x > 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 209

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x > 0︸ ︷︷ ︸p

ou x < 2︸ ︷︷ ︸q

) e x > 1︸ ︷︷ ︸r

.

Resposta: x > 1.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x > 0︸ ︷︷ ︸p

ou (x < 2︸ ︷︷ ︸q

e x > 1︸ ︷︷ ︸r

).

Resposta: x > 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 210

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x > 0︸ ︷︷ ︸p

ou x < 2︸ ︷︷ ︸q

) e x > 1︸ ︷︷ ︸r

.

Resposta: x > 1.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x > 0︸ ︷︷ ︸p

ou (x < 2︸ ︷︷ ︸q

e x > 1︸ ︷︷ ︸r

).

Resposta: x > 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 211

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x = 0︸ ︷︷ ︸p

ou x = 1︸ ︷︷ ︸q

) e 2 = 3︸ ︷︷ ︸r

.

Resposta: não existe valores de x ∈ R tais que (x = 0 ou x = 1) e 2 = 3.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x = 0︸ ︷︷ ︸p

ou (x = 1︸ ︷︷ ︸q

e 2 = 3︸ ︷︷ ︸r

).

Resposta: x = 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 212

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x = 0︸ ︷︷ ︸p

ou x = 1︸ ︷︷ ︸q

) e 2 = 3︸ ︷︷ ︸r

.

Resposta: não existe valores de x ∈ R tais que (x = 0 ou x = 1) e 2 = 3.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x = 0︸ ︷︷ ︸p

ou (x = 1︸ ︷︷ ︸q

e 2 = 3︸ ︷︷ ︸r

).

Resposta: x = 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 213

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x = 0︸ ︷︷ ︸p

ou x = 1︸ ︷︷ ︸q

) e 2 = 3︸ ︷︷ ︸r

.

Resposta: não existe valores de x ∈ R tais que (x = 0 ou x = 1) e 2 = 3.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x = 0︸ ︷︷ ︸p

ou (x = 1︸ ︷︷ ︸q

e 2 = 3︸ ︷︷ ︸r

).

Resposta: x = 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 214

Conectivos e o uso de parêntesis

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

(x = 0︸ ︷︷ ︸p

ou x = 1︸ ︷︷ ︸q

) e 2 = 3︸ ︷︷ ︸r

.

Resposta: não existe valores de x ∈ R tais que (x = 0 ou x = 1) e 2 = 3.

Quais são todos os valores de x ∈ R que satisfazem o predicado abaixo?

x = 0︸ ︷︷ ︸p

ou (x = 1︸ ︷︷ ︸q

e 2 = 3︸ ︷︷ ︸r

).

Resposta: x = 0.

Moral: os parêntesis são importantes!

Parte 2 Matemática Básica 215