40
Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes em Magnetismo e Supercondutividade Universidade de Campinas Instituto de Física "Gleb Wataghin" 20-31 Julho 2015

Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Minicurso de Supercondutividade Experimental

Nicholas Curro , UC Davis Dept of Physics

IFGW Escola de Inverso 2015: Fenômenos emergentes em Magnetismo e Supercondutividade

Universidade de Campinas

Instituto de Física "Gleb Wataghin" 20-31 Julho 2015

Page 2: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Photoemission Spectroscopy

Page 3: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Photoemission Photoelectric effect: A metal can absorb a photon and eject an electron. If we can measure the KE of the ejected electron, then we can probe the density of states.

Can use this effect to probe the energy gap. However, this requires exceptionally high precision to measure energy gaps on the order of meV Photons are on the order of several eV

Page 4: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Angle Resolved Photoemission If measure the momentum of the ejected photon, then can get the actual energy dispersion in the material. Modern synchrotrons and photoemission equipment can now directly probe the k-dependence of the energy gap!

Page 5: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Dispersion

Na3Bi (3D Dirac semi-metal); Liu et al, Science (2014)

Page 6: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Energy Gap

SC gap in k-space of Ba(Fe,Co)2As2 H. Ding (2008), Nature Phys.

Page 7: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Introduction to unconventional superconductivity

Page 8: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Unconventional Superconductivity

L

S1 S2

The angular momentum of the Cooper pairs may be non-zero. (L = 0,1,2,…) corresponding to s, p, d-wave pairing. The symmetry of the order parameter is reflected in the k-dependence of the energy gap and in the spin of the pairs

Page 9: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Superconductor families

Heavy fermions Tc ~ 2 K 1979

Organics Tc ~ 10 K 1990

Cuprates Tc ~ 100 K 1987

Iron Arsenides Tc ~ 40 K 2008

Unconventional superconductor families:

Page 10: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Pairing symmetry Cooper pairs:

Spin part Spatial part

Ψ must be antisymmetrical under particle exchange

Singlet (antisymmetrical)

Triplet (symmetrical)

L = 0, 2, 4, … singlet pairing (s-, d-wave) L = 1, 3, … triplet pairing (p-wave)

Page 11: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Pairing Mechanism?

Superfluid He-3 is also a triplet p-wave condensate. The order parameter is no longer a scalar, and multiple types of symmetries are present. In this case, the pairing arises not from the electron-phonon interaction, but rather the spin-spin interaction between the He-3 nuclei.

The pairing interaction in many of the unconventional superconductors is also believed to arise from spin-spin interactions.

Page 12: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Superconductivity and Antiferromagnetism

Electron doping

Iron Arsenides 30 25 20 15 10 5 0 5

0

2

4

6

x(%) SnCd

Tc

TN

SC

AFM

CeCoIn5

T (K

)

CeCo(In1-xMx)5

Heavy Fermions

Cuprates

Many superconductors appear to emerge at the “edge of antiferromagnetism” – this suggests that the coupling is magnetic in origin (spin-fluctuations).

Page 13: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Triplet Pairing and Ferromagnetism

Superconductivity can sometimes emerge when a ferromagnetic transition is suppressed to zero at a quantum critical point. In this case, the superconductivity lives within the ferromagnetic phase. The ferromagnetism cannot coexist with singlets, therefore the Cooper pairs must be in a triplet state and the pairing must be p-wave.

This is still an active area of research and the pairing nature in these systems is not well understood.

Page 14: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Triplet Pairing

Sr2RuO4

Knight shift in the superconducting state indicates that χspin remains finite – p or f-wave pairing

Fermi surface PuCoGa5

Page 15: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

NMR in unconventional superconductors

Page 16: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Nuclear Spin Dynamics | Iz= +½>

| Iz= -½>

By applying rf pulses, we can perturb the equilibrium Boltzmann distribution, and then watch as the system relaxes to a finite spin temperature

time

T1 is the characteristic relaxation time

Page 17: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Hyperfine Interactions in Metals Nuclear spins relax by spin-flip scattering from electrons:

nuclear spin electron spin

Scattering process for Bogoliubons requires taking into account the coherent superposition of spin-up and spin-down electrons!

Page 18: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Spin Lattice Relaxation

kx

ky

In metals, T1T ~ N2(EF); a sensitive probe of the spin-flip scattering by electrons at the Fermi surface. (Korringa relaxation)

E

f(E)

1-f(E)

kBT

Initial state Final state

Page 19: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Gap Function The fundamental parameter of a superconductor is the gap ∆(k)

kx

ky

Fermi surface

s-wave: isotropic gap

T1-1 ~ e -∆/kBT

kx

ky

Fermi surface

+

- -

+

d-wave: nodes in k-space where gap vanishes

T1-1 ~ T3

Page 20: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Spin lattice relaxation – unconventional pairing

CeCoIn5

YBa2Cu3O7 In the presence of line nodes, 1/T1 ~ T3

kx

ky

Fermi surface

+

- -

+

Page 21: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Measuring the Phase

Corner dc SQUID Van Harlingen et al., PRL (1993)

Josephson Pi Junction – change of phase of the d-wave order parameter gives rise to a 180 degree shift of the SQUID response. First direct confirmation of d-wave phase change in YBCO

Page 22: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Doppler shift

G. Volovik Ek

k 1/T1local ~ N2(0) ~ vs2

Page 23: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

T1 in vortex lattice

YBa2Cu3O7 - Curro and Slichter (2000) YBa2Cu3O7 - Mitrovic and Halperin (2001) Tl2BaCu2O6 - Kumagai (2003)

Tl2BaCu2O6

Page 24: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

T1 in vortex cores Very different temperature dependence of T1 in vortex cores versus outside the cores

Suggestive of other relaxation mechanisms in core

Localized states?

Antiferromagnetism?

Vortex lattice vibrations?

Page 25: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Effect of Impurities

s-wave

clean d-wave

dirty d-wave

PuCoGa5 (Tc = 18.5K) is a d-wave superconductor Self-irradiation strongly affects low temperature properties

1/T1 ~ T, χs (T=0) > 0

s-wave dirty d-wave

Page 26: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Pair Breaking and Aging • Tc is reduced with age because of impurity

scattering

• Impurity scattering rate Γ probably arises from Frenkel pairs (0.086 displacements per month per Pu atom)* (potential/magnetic scattering center)

• NMR measurements: dΓ/dt ~ 0.25K/month

• Abrikosov-Gor’kov: ∆Tc = π/4 ∆Γ ~ 0.2K/month

• Estimate Tc0 ~ 19.1K for pristine, defect free

PuCoGa5 Y. Bang, et al., PRB 69, 014505 (2004)

N. J. Curro et al., Nature (2005)

*In 10 years, each Pu atom will be displaced once

Page 27: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Comparing HF and High-Tc Superconductivity

T1T scales with T/Tc :

Suggests AF fluctuations are responsible for d-wave SC

•s-wave: T1T ~ constant (Fermi liquid)

•d-wave: T1T ~ 1/ξ ~ (T + T0)β (Antiferromagnetic fluctuations)

Curro et al., Nature 434, 622 (2005)

Page 28: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Unconventional Scaling

For all the known d-wave superconductors, Tc scales roughly with T0 ~ J, the characteristic spin fluctuation temperature

10 100 1000 100000.1

1

10

100

1000

HgBa2Ca2Cu3O8+δ

Tl2Ba2Ca2Cu3O10

YBa2Cu3O6+x

La1.85Sr0.15CuO4

PuCoGa5

U6Fe

URu2Si2 UPd2Al3

UNi2Al3

CeCoIn5

CeCu2Si2

UBe13

UPt3

CeRhIn5

CeIrIn5

T c (K

)

T0 (K)

Tc ~ J e-1/λN(0)

Moriya & Ueda, Rep. Prog. Phys. (2003) Curro et al., Nature 434, 622 (2005)

CeCoIn5

Drosophila melanogaster

Page 29: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

The Kondo lattice J

J

J

Sf

Sc

AFM

FL

nFL

JN(EF)

T

Localized f-spins

Delocalized conduction electrons JN(EF) < 1 ordered local moments

JRKKY

S. Doniach, Valence Instabilities and Related Narrow Band Phenomena, p. 169 (Plenum, 1977},

Page 30: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

The Kondo lattice J

J

J

Sf

Sc

AFM

FL

nFL

JN(EF)

T

Localized f-spins

Delocalized conduction electrons

JN(EF) > 1 spin singlets – no long range order

Page 31: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

The Kondo lattice J

J

J

Sf

Sc

AFM

FL

nFL

JN(EF)

T

Localized f-spins

Delocalized conduction electrons JN(EF) ~ 1 quantum phase transition

Competition between RKKY and Kondo interactions

SC

Page 32: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

CeRhIn5 Phase Diagram

Field induced magnetism for 1.7 GPa < P < 2.3 GPa

T. Park et al. Nature (2006, 2008)

M.J. Graf et al, SciDAC 10, 32 (2008)

Page 33: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

A new phase

CeCoIn5 Specific heat map

A

B

Bianchi et al., PRL 91, 187004 (2003)

↑ ↓ EZeeman ~ χH2

k↑ k↓+ q

q-1 ~ H

Page 34: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

NMR in CeMIn5

In(2) (I=9/2)

In(1) (I=9/2)

Ce or La (I=0 or 7/2) Splitting controlled by EFG

νcc

K

Relative frequency controlled by Knight shift

Page 35: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

NMR Spectra I ■ ■

•In(1) shifts to lower frequencies (Knight shift)

•Co broadens slightly

•In(2) broadens by > 2MHz

B. L. Young et al., Phys. Rev. Lett. 98 36402 (2007)

Page 36: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

NMR Spectra II ■ ■

•In(2) sees a broad, incommensurate

distribution of fields in B phase

• λFFLO ~ 10 ξ >> a (34 nm >> 0.46 nm)

•Local moment magnetism?

B. L. Young et al., Phys. Rev. Lett. 98 36402 (2007)

Page 37: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Temperature Dependence

In(2) has large hyperfine field, and is wiped out by T2 effects – motional narrowing

Fast fluctuations

Slow fluctuations

B. L. Young et al., Phys. Rev. Lett. 98 36402 (2007)

Page 38: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Possible magnetic NMR structures

In(2a)

In(2b)

Qi || [010] Qi || [110]

µCe ~ 0.07µB

Curro et al. J. Low T Phys. (2009)

Ce

H0

Hyperfine fields at In(2a) and In(2b) sites:

Not an FFLO phase but rather an incommensurate antiferromagnet!

Page 39: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Magnetic neutron diffraction M. Kenzelmann et al., Science 2008

Field H0 || [1-10] Ce moment S || [001] Wavevector Q || [111] H0

S0

Qi

Neutron Scattering confirms

NMR

Page 40: Minicurso de Supercondutividade Experimental · Minicurso de Supercondutividade Experimental Nicholas Curro , UC Davis Dept of Physics IFGW Escola de Inverso 2015: Fenômenos emergentes

Future Prospects and Open Questions

Very rich physics associated with unconventional superconductors, with many different variations

Towards room temperature?

Understanding the “Normal State”

There is no “magic” technique – best approach is a suite of different techniques