38
A 2a. Lei da Termodinâmica Até este ponto foi enfatizado o uso dos princípios de conservação da massa e da energia, juntamente com as relações entre propriedades para a análise termodinâmica. Os princípios de conservação nem sempre são suficientes e muitas vezes a aplicação da 2a. lei é também necessária para a análise termodinâmica. Introdução Objetivo é motivar sobre a necessidade e utilidade da 2a. lei. Direção dos Processos Os processos espontâneos possuem uma direção definida. Corpo quente - esfriamento - equilíbrio Vaso pressurizado vazamento - equilíbrio Queda de um corpo repouso Todos esses casos podem ser revertidos, mas não de modo espontâneo. Nem todos os processos que satisfazem a 1a. lei podem ocorrer. Em geral, um balanço de energia não indica a direção em que o processo irá ocorrer, nem permite distinguir um processo possível de um impossível. Para os processos simples a direção é evidente, mas para os casos mais complexos, ou aqueles sobre os quais haja incertezas, um princípio que serve de guia é muito útil.

Para os processos simples a direção é evidente, mas …sistemas.eel.usp.br/docentes/arquivos/5817066/LOQ... · Todos os ciclos reversíveis de potência, operando entre os dois

  • Upload
    hakhanh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

A 2a. Lei da Termodinâmica Até este ponto foi enfatizado o uso dos princípios de conservação da massa e da energia, juntamente com as relações entre propriedades para a análise termodinâmica. Os princípios de conservação nem sempre são suficientes e muitas vezes a aplicação da 2a. lei é também necessária para a análise termodinâmica. Introdução Objetivo é motivar sobre a necessidade e utilidade da 2a. lei. Direção dos Processos Os processos espontâneos possuem uma direção definida.

Corpo quente - esfriamento - equilíbrio Vaso pressurizado vazamento - equilíbrio Queda de um corpo repouso

Todos esses casos podem ser revertidos, mas não de modo espontâneo. Nem todos os processos que satisfazem a 1a. lei podem ocorrer. Em geral, um balanço de energia não indica a direção em que o processo irá ocorrer, nem permite distinguir um processo possível de um impossível. Para os processos simples a direção é evidente, mas para os casos mais complexos, ou aqueles sobre os quais haja incertezas, um princípio que serve de guia é muito útil.

Oportunidade para desenvolver trabalho Toda vez que existir um desequilíbrio entre 2 sistemas haverá a oportunidade de realização de trabalho. Se for permitido que os 2 sistemas atinjam o equilíbrio de forma não controlada, a oportunidade de realizar trabalho estará irremediavelmente perdida.

Qual é o limite teórico para a realização do máximo trabalho? Quais são os fatores que impedem que esse máximo seja atingido?

A 2a. lei da Termodinâmica propicia os meios para a determinação desse máximo teórico, e a avaliação quantitativa dos fatores que impedem que esse máximo seja alcançado.

Máquina Térmica Refrigeração

Aspectos da 2a. lei A 2a. lei e suas deduções propiciam meios para:

1. predizer a direção dos processos 2. estabelecer condições de equilíbrio 3. determinar qual o melhor desempenho teórico dos ciclos, motores e

outros dispositivos 4. avaliar quantitativamente os fatores que impedem que esse melhor

desempenho seja atingido Uma utilização adicional da 2a. lei inclui suas regras:

5. na definição de uma escala de temperatura que é independente das

propriedades de qualquer substância 6. no desenvolvimento de meios para avaliar as propriedades, como u e h

em termos de outras propriedades que são mais facilmente obtidas experimentalmente.

Esses seis pontos devem ser pensados como aspectos da 2a. lei e não como idéias independentes e não relacionadas. A 2a. lei tem sido utilizada também em áreas bem distantes da engenharia, como a economia e a filosofia. Dada essa complexidade de utilização, existem muitas definições para a 2a. lei e neste texto, como ponto de partida serão apresentadas duas formulações. A 2a. lei tem sido verificada experimentalmente em todas as experiências realizadas.

Enunciados da 2a. lei da Termodinâmica

Enunciados de Clausius e de Kelvin-Pank Clausius: É impossível um sistema operar de modo que o único efeito resultante seja a transferência de energia na forma de calor, de um corpo frio para um corpo quente. Reservatório Térmico: Classe especial de sistema fechado que mantém constante sua temperatura mesmo que energia esteja sendo recebida ou fornecida pelo sistema (RT). Ex.: Atmosfera, Grandes massas de água: oceanos, lagos Grande bloco de cobre (relativo) Kelvin-Planck: É impossível para qualquer sistema operar em um ciclo termodinâmico e fornecer trabalho líquido para sua vizinhança trocando energia na forma de calor com um único reservatório térmico.

Equivalência entre os enunciados de Clausius e Kelvin-Planck. A equivalência entre os enunciados de Clausius e de Kelvin-Planck pode ser demonstrada mostrando que a violação de um enunciado implica na violação de outro enunciado.

Se A transfere calor do reservatório frio para o reservatório quente, sem nenhum outro efeito, viola o enunciado de Claussius. B opera em ciclo, recebendo Qh do TR quente, produzindo um trabalho W e rejeitando Qc para o RT frio. Como A recebe Qc do RT frio e B fornece Qc para o mesmo RT, podemos imaginar um dispositivo constituído por A , B e RT frio, que estaria trabalhando em ciclo, recebendo Qh de RT quente, produzindo um trabalho líquido Wc = Qh - Qc e rejeitando Qc para o mesmo RT quente. Essa situação viola o enunciado de Clausius.

Processos Reversíveis e Irreversíveis Processos Irreversíveis Um processo é irreversível quando o sistema e todas as partes de sua vizinhança não conseguem voltar ao estado inicial. Um sistema que passa por um processo irreversível não está impedido de retornar ao seu estado inicial. No entanto se o sistema retornar ao estado inicial não será possível fazer o mesmo com sua vizinhança. Alguns efeitos que tornam os processos irreversíveis.

Transferência de calor com diferença finita de temperatura. Expansão não resistida de um gás ou líquido para pressões mais baixas. Reações químicas espontâneas. Misturas espontâneas de matéria em diferentes composições ou estados. Atrito - por escorregamento ou de fluidos. Magnetização ou Polarização com histerese. Deformação não elástica.

Embora esta lista não seja exaustiva ela sugere que todos os processos reais são irreversíveis. As irreversibilidades ocorrem dentro do sistema e na vizinhança e podem ser mais pronunciadas em um ou no outro. Nesse sentido as irreversibilidades podem ser classificadas como internas ou externas.

Como a definição da fronteira é arbitrária, a classificação das irreversibilidades como internas (relacionadas com o sistema) ou externas (relacionadas com a vizinhança) depende da localização da fronteira. Os engenheiros precisam ter habilidade para reconhecer as irreversibilidades, avaliar sua influência e desenvolver os mecanismos adequados para reduzi-las. Alguns processos, como a frenagem, necessitam do efeito da irreversibilidade em suas operações. Taxas elevadas de transferência de calor, aceleração rápida, taxas de produção elevadas, etc., invariavelmente implicam em irreversibilidade significativas. Irreversibilidades são toleradas em vários graus, para qualquer processo porque as mudanças no projeto e operação necessárias para reduzi-las, implicam em elevados custos. Assim, embora a melhoria do desempenho termodinâmico possa acompanhar a redução das irreversibilidades, o fator custo é um impedimento importante.

Processos Reversíveis Um processo é dito reversível se o sistema e todas as partes da sua vizinhança puderem retornar exatamente ao estado inicial. Todos os processos são irreversíveis, e processos reversíveis não podem ocorrer. No entanto, alguns processos, como o escoamento através de um bocal apropriadamente projetado é aproximadamente reversível.

Processos internamente reversíveis. Em um processo irreversível, as irreversibilidades estão presentes dentro do sistema, na vizinhança ou em ambos. Um sistema experimenta um processo internamente reversível quando todas as irreversibilidades estiverem na vizinhança. Não há irreversibilidades internas. O conceito de "processos internamente reversíveis" em termodinâmica é equivalente aos conceitos de: localização da massa de um sistema em um ponto; polias sem atrito; viga rígida; corpo inelástico, etc, muito utilizadas em mecânica. Esse conceito é muito útil para tratamento de problemas complexos, e para determinar qual o melhor desempenho termodinâmico do sistema. Para definição de Reservatório Térmico, todos os processos que ocorrem nos RT serão processos internamente irreversíveis.

Forma anal ítica do enunciado de Kelvin - Planck

O princípio da conservação da energia (1a. lei) para um ciclo é: W ciclo = Q ciclo

O enunciado de Kelvin - Planck estabelece que em sistema operando em ciclo não pode trocar calor com um único reservatório térmico e fornecer um

trabalho líquido (+) para a vizinhança. Não impede que o ciclo receba o trabalho da vizinhança.

Assim

W ciclo ≥ 0 (só um reservatório)

1a. lei W ciclo = -Q ciclo

2a. lei W ciclo ≥ 0 \ Q ciclo 0

Essas duas desigualdades podem ser tomadas como expressões

analíticas da 2a. lei da termodinâmica

O sinal = 0 é para processos reversíveis

O sinal < 0 é para processos irreversíveis

Para o caso W ciclo > 0, serão tratados inicialmente os processos onde as irreversibilidades ocorrem dentro do sistema.

Os reservatórios térmicos estão livres de irreversibilidades. Assim nenhuma mudança é notada na vizinhança ou no sistema, pois

+ W a - W b = 0 Trabalho do ciclo + Q a - Q b = 0 Calor trocado

Processo reversível

Corolários da 2a. lei para ciclos termodinâmicos.

Corolário de Carnot. Limitações da 2a. lei para ciclos de potência. Corolário 1 A eficiência térmica de um ciclo irreversível é sempre menor que a eficiência térmica de um ciclo reversível entre os dois mesmos Reservatórios Térmicos. Corolário 2 Todos os ciclos reversíveis de potência operando entre os mesmos 2 Reservatórios Térmicos apresentam a mesma eficiência térmica. Um ciclo é considerado reversível quando não há irreversibilidades dentro do sistema quando ele percorre o ciclo e as trocas de calor entre o sistema e os reservatórios térmicos ocorrem de modo reversível.

Ciclo de Carnot – Maior rendimento térmico possível

Como o ciclo R é reversível ele pode operar com um ciclo de refrigeração, retirando Qc do Reservatório frio e fornecendo Qh para o Reservatório quente, enquanto recebe um trabalho Wr. Assim podemos imaginar um ciclo constituído por RT(h), (R) e (I), trocando calor apenas com o RT frio Como o ciclo combinado é um ciclo irreversível e troca calor com um único reservatório, Wciclo < 0.

Wciclo Wi Wr

negativo pois recebido pelo sistema

positivo pois realizado pelo sistema

Wi Wri r

0

,

Limitações de 2a. lei para os ciclos de Refrigeração e Bomba de calor.

Ciclo de refrigeração

Coeficiente de desempenho

Qc

Wciclo

Qc

Qh Qc

Ciclo de bomba de calor

Coeficiente de desempenho

Qh

Wciclo

Qh

Qh Qc

Se o trabalho do ciclo, tende a zero tende ao infinito.

No limite, com Wciclo = 0 Qh = Qc e isso viola a 2a. lei. Isso significa que o coeficiente de desempenho precisa ter um valor finito. O valor máximo teórico para o coeficiente de desempenho será visto após a discussão sobre a Escala Termodinâmica de Temperatura. Os ciclos de refrigeração irreversíveis apresentam sempre um coeficiente de desempenho menor que os ciclos reversíveis.

Escala Kelvin de Temperatura Carnot. Corolário 2 Todos os ciclos reversíveis de potência, operando entre os dois mesmos Reservatórios Térmicos apresentam a mesma eficiência térmica. Como esta igualdade na eficiência térmica não depende da substância, nem do arranjado ciclo, os únicos fatores que influenciam são as temperaturas dos Reservatórios Térmicos.

W

Qh

Qh Qc

Qh

Qc

Qh1

1Qc

Qh

Tomando as temperaturas dos Reservatórios Térmicos quente h e frio c e como a eficiência depende somente das temperaturas pode-se escrever.

c h

c hQc

Qh

Qc

Qhc h

,

,

,

1

1

Para os ciclos reversíveis, a eficiência é a mesma.

Qc

Qhc h

ciclo rev

.

,

Escolhendo c hTc

Th,

Qc

Qh

Tc

ThCiclo rev

O significado dessa expressão é que a razão entre as temperaturas absolutas é a mesma que a razão entre os fluxos de calor recebido e rejeitado pelo ciclo reversível que opera entre esses dois reservatórios. Se um ciclo reversível operar em direção oposta como um ciclo de refrigeração ou bomba de calor, a magnitude da energia transferida Qc e Qh permanecerão as mesmas. Adotando um ponto fixo para temperatura, como o ponto triplo da água em 273,16 a temperatura de um outro reservatório qualquer pode ser obtida pela relação

TQ

QTP

27316,

CicloReversível

com QTP e Q sendo os fluxos de calor entre o ciclo e os reservatórios a 273,16

K e a temperatura T respectivamente.

Se consideramos um ciclo reversível operando entre 273,16 K e outro reservatório em temperatura menor podemos observar que quanto menor Q, menor será T. Como Q não poderá ser negativo, T deverá sempre ser um número positivo, ou nulo.

Máximo desempenho para ciclos operando entre dois reservatórios Ciclos de Potência. A eficiência máxima de um ciclo de potência operando entre dois RT pode ser determinada por.

H

L

H

L

H

LH

H T

T

Q

Q

Q

QQ

Q

W

11

Adotando TL = 298 K = 25ºC, como a temperatura de rejeição de calor para o ambiente (atmosfera, mar, rio) a curva da eficiência em função de TH fica.

Notar que um aumento na temperatura do RTH no trecho a - b representa

um significativo aumento na eficiência do ciclo. Os sistemas térmicos usuais de potência apresentam eficiência da ordem de 40%. Tomando um sistema que receba calor de RTH 745 K e rejeite calor a RTL

a 298 K, sua eficiência máxima teórica seria 60%. Observar que os 40% reais obtidos, não está distante dos 60% teóricos.

Ciclos de Refrigeração. Bomba de calor.

Ciclo de Refrigeração Reversível

LH

LL

QQ

Q

Wrev

Q

LH

L

TT

T

.max

Bomba de calor

LH

H

rev

H

QQ

Q

W

Q

max

Th

Th Tc.

EXEMPLO: Um inventor afirma ter desenvolvido um ciclo de potência que fornece um trabalho líquido de 410 kJ a partir de 1000 kJ que recebe por transferência de calor. O sistema operando em ciclo recebe calor de gases quentes à temperatura de 500 K e rejeita parte do calor para a atmosfera a 300 K. Avaliar a afirmação. Hipóteses: 1) Os gases quentes e a atmosfera são considerados Reservatórios Térmicos.

W

Qh

410

10000 41,

A eficiência máxima de qualquer ciclo operando entre 500 e 300 K será

max

Tc

Th 1 1

300

5000 40,

Assim, o ciclo proposto não é possível pois teria um rendimento maior que um ciclo reversível operando entre os dois reservatórios. NOTA => Usar sempre temperaturas absolutas. K ou ºR

O Ciclo de CARNOT Em um ciclo de Carnot, o sistema que executa o ciclo, passa por uma série de quatro processos internamente reversíveis: dois processos adiabáticos, alternados com dois processos isotérmicos. A Figura mostra os quatro processos, para um ciclo de potência de Carnot, executado por um gás.

Processo 1 - 2 : O gás é comprimido adiabaticamente, do estado 1 até o estado

2, onde a temperatura é TH. Processo 2 - 3: O conjunto é colocado em contato com um Reservatório à TH.

O gás se expande isotermicamente enquanto recebe energia QH do reservatório quente, por transferência de calor.

Processo 3 - 4: O conjunto é colocado novamente sobre uma base isolante e o gás continua se expandindo adiabaticamente até que sua temperatura caia até TC.

Processo 4 - 1: O conjunto é colocado em contato com um reservatório térmico à TC. O gás é comprimido isotermicamente até seu estado inicial enquanto perde energia QC para o reservatório frio, por transferência de calor.

ENTROPIA

Energia e Entropia são conceitos abstratos. O conceito de energia á mais familiar e

de uso diário, enquanto o conceito de Entropia raramente aparece em publicações diárias

e menos ainda nos aspectos quantitativos.

Inequação de Clausius. (Desigualdade de Clausius).

A desigualdade de Clausius é aplicada a qualquer ciclo, independente do corpo ou

dos corpos dos quais o ciclo recebe ou rejeita calor.

A desigualdade de Clausius fornece as bases para a introdução de duas idéias

instrumentais para a avaliação quantitativa de sistemas fechados ou volumes de controle,

de uma perspectiva da 2a. lei da termodinâmica: a propriedade ENTROPIA e o conceito

de PRODUÇÃO DE ENTROPIA.

A desigualdade de Clausius estabelece que

Q

Tb

0

onde Q representa o calor transferido em uma parte da fronteira (boundary) do sistema,

durante uma porção do ciclo e T é a temperatura absoluta daquela parte da fronteira.

O subscrito “b” serve para lembrar que o integrado é avaliado na fronteira (boundary)

do sistema que executa o ciclo.

O símbolo significa que a integral precisa ser avaliada em toda a fronteira e no

ciclo completo.

A igualdade se aplica quando não há irreversibilidades internas e a desigualdade

quando há irreversibilidades internas.

S I S T E M A

F r o n t e i r a d o S i s t e m a

C i c l o I n t e r m e d i á r i o

R e s e r v a t ó r i o a

F r o n t e i r a d o S i s t e m a + C i c l o

T

Q '

Q

W '

W

Ilustração usada para mostrar a desigualdade de Clausius.

Sistema recebe Q em uma fronteira a T e realiza um trabalho W.

Para garantir que o calor recebido do Reservatório Térmico não está associado a

irreversibilidades, supor um ciclo reversível entre o sistema e o reservatório térmico.

Este Ciclo recebe Q1 do reservatório térmico e fornece Q ao sistema realizando um

trabalho W1.

Pela definição da escala Kelvin de Temperatura temos

Q

T

Q

TRES b

1

Um balanço de energia para o sistema combinado (sistema + ciclo) mostrado pela

linha pontilhada fornece:

dEc Q W W

Wc TQ

TdEc

Wc

s

b

1 1

Re

Para o sistema combinado realizando um ciclo e o sistema intermediário um ou mais

ciclos tem-se

Wc TQ

TdEc T

Q

TRES

b

RES

b

Como o sistema combinado troca calor com um único reservatório térmico

Wciclo 0 (troca de calor com um simples RT)

TQ

TRES

b

0

Esta desigualdade pode ser escrita como

Q

Tb

ciclo

onde ciclo representa o tamanho da desigualdade, sendo que:

ciclo = 0 não há irreversibilidades dentro do sistema

ciclo > 0 irreversibilidades presentes dentro do sistema

ciclo < 0 impossível.

Assim, ciclo é uma medida das irreversibilidades que ocorrem dentro do sistema

quando este passa por um ciclo. É a Entropia produzida pelas irreversibilidades.

Definição da Variação de Entropia

Uma quantidade é uma propriedade se sua variação entre dois estados for

independente do processo. 2

1

C

B

A

Dois ciclos executados por um

sistema fechado estão

representados na figura.

ciclos AC e BC

Para o ciclo AC

Q

T

Q

Tciclo

A C

1

2

2

1

Para o ciclo BC

Q

T

Q

Tciclo

B C

1

2

2

1

ciclo = 0 para ambos os ciclos, pois são reversíveis.

Assim, Q

T

Q

TA B

1

2

1

2

Como os valores de Q

T

são os mesmos para os dois ciclos, serão iguais para

quaisquer outros ciclos reversíveis operando entre os estados 1 e 2.

Conclui-se que os valores de Q

T

dependem apenas dos estados 1 e 2 e representam

uma propriedade (pela própria definição de propriedade).

Esta propriedade é chamada de Entropia e é usualmente representada pela letra (S).

Dessa forma, a variação de Entropia entre os estados 1 e 2, para um ciclo

internamente reversível pode ser obtida por:

S SQ

T2 11

2

Se tivermos um sistema executando um ciclo irreversível entre os estados 1 e 2, a

variação da Entropia entre 1 e 2 será a mesma pois a Entropia é uma propriedade e

portanto função do estado, apenas.

Entretanto a variação da Entropia não poderá ser calculada por S SQ

T2 11

2

irreversível .

Entropia de uma substância, pura, compressível simples.

A equação S SQ

T ernamentereversível

2 11

2

int serve como base para a construção de tabelas e

diagramas para a avaliação da Entropia.

S SQ

Ty xx

y

internamente reversível

Sx é a Entropia do estado de referência, arbitrariamente escolhido.

A utilização dos valores de Entropia relativos a um estado de referência arbitrário

para cálculo de variações de Entropia é satisfatória porque o valor de referência

desaparece.

Quando ocorrem reações químicas é necessário trabalhar em termos de valores

absolutos de Entropia que são determinados da 3a. lei da Termodinâmica que será vista

no capítulo 13.

Tabelas de Entropia

As tabelas de Entropia são similares às de h, u, v e os valores de Entropia são

listados nas mesmas tabelas.

Os procedimentos para determinação dos valores da Entropia são os mesmos

empregados para determinação das outras propriedades.

Gráficos de Entropia

São úteis para a solução de problemas e são apresentados com a Entropia na abcissa

e temperatura ou entalpia na ordenada.

(T-s) ou (h-s)

Diagrama Temperatura x Entropia (Txs)

s

T

h c o n s t

P c o n t

v c o n t

P c o n s t

v c o n s t

.P . C .

L .S .

vs

Diagrama Entalpia x Entropia

.P . C .

V .S .

x = 0 , 9 6

x = 0 , 9 0

P c o n t

t = c o n s t

h

s

Equações TdS

As variações de Entropia entre 2 estados podem ser obtidos através da equação

Sy SxQ

Tx

y

internamente reversível

ou através das relações TdS.

A importância das relações TdS é entretanto maior que a simples determinação dos

valores de Entropia.

Será visto posteriormente que elas são o ponto de partida para a derivação de

importantes propriedades para substâncias puras, compressíveis simples, incluindo meios

para a obtenção das tabelas que fornecem u, h e s.

Considere um sistema constituído por uma substância pura, compressível simples,

que passa por um processo internamente reversível. A equação da 1ª lei para esse sistema

é

dE = Q - W

Considerando KE e PE = 0 , dE = dU

Q dU W

W pdV

dSQ

TQ TdS

Assim

TdS dU pdV

H U pV dH dU PdV VdP

dU pdV dH VdP

TdS dH VdP

INTREV

INTREV

INTREV

INTREV

rev

\

int

Por unidade de massa essas relações ficam

Tds = du + pdv

Tds = dh - vdp

ou em base molar

Tds du pdv

Tds dh vdp

Uma vez que a Entropia é uma propriedade, ela depende somente dos estados. Assim,

embora essas expressões tenham sido obtidas a partir da hipótese de processo

internamente reversível elas podem ser utilizadas para calcular as variações de Entropia

entre dois estados, qualquer que tenha sido o processo ligando esses dois estados.

Como exercício considere a mudança de fase de líquido saturado para vapor saturado,

em um processo onde a pressão e temperatura sejam constantes

Tds dh vdp vdp pcons te

dsdh

Tsg sl

hg hl

TT cons te

considere R a C

Tab A hg hlkJ

kg

sg slkJ

kgK

sg slkJ

kgK

0

0

7 151 48

0 6965 0 1420 0 5545

151 48

273150 5546

12

, tan

tan

. . ,

, , ,

,

,,

Variação de Entropia nos processos internamente reversíveis

Nesta seção a relação entre variação de Entropia e transferência de calor é

considerada.

Inicialmente será tratado o caso de Sistema Fechado, e posteriormente o caso de

Volume e Controle.

Quando um sistema passa por um processo internamente reversível, sua Entropia

pode diminuir, aumentar ou permanecer constante.

dSQ

T INTREV

Q TdSINTREV

Se o sistema recebe calor sua Entropia aumenta, se perde calor, sua Entropia diminui.

Se o processo é adiabático (e internamente reversível), não ocorrerá variação na Entropia

do sistema.

Transferência de calor Transferência de Entropia

possuem a mesma direção e sentido

Processo adiabático Calor transferido = 0

Entropia transferida = 0

Se o processo for também internamente reversível ele é dito isoentrópico.

Para um processo entre dois estados 1 e 2

Q TdSINTREV

12

Em um diagrama T x S o calor

transferido será a Área sob a curva.

Notar que isso é válido

SOMENTE PARA PROCESSOS

REVERSÍVEIS

T

S

TdS

1

2

Q TdS

1

2

Á R E A =

Observar que a temperatura deve ser a temperatura absoluta e que a Área não

representa o calor para os processos irreversíveis.

Ilustração para o Ciclo de CARNOT

O ciclo de CARNOT é composto por 4 processos , sendo 2 ISOTÉRMICOS e 2

ADIABÁTICOS.

T

s

2 3

1

2

4

3

1

I s o t é r m i c o s

A d i a b á t i c o s

3

1

4

24

b a Processos 2 3 Sistema recebe calor Entropia aumenta

4 1 Sistema perde calor Entropia diminui

3 4 Transferência de calor nula = variação na Entropia = 0

1 2 Transferência de calor nula = variação na Entropia = 0

2 3

4 1

2 3 4 1

2 3

2 3 4 1 2

2 3 2

2

3

3 2

4

1

1 4

Q TdS TH s s

Q TcdS Tc s s

Q Q

Q

Q Q

Q

Área

Área a bc

H c

H

2 3

4 1

3

1 4

Q T s s

Q T s s

H s

c

( )

( )

s s

s s

3 4

2 1

2 3 4 1

1

3 2

3 2

3 2

Q Q T T s s

T T s s

T s s

T

T

H c

c

H c

H

c

H

( )( )

Considerando o ciclo de refrigeração teremos

4 3

21Q

c

QH

Balanço de Entropia para Sistemas Fechados

Como decorrência da desigualdade de Claussius, vimos que

Q

Tb

ciclo ciclo

INTREV

onde representa o " tamanho" da desigualdade.

processo internamente reversível

impossível

irreversibilidades presentes dentro do sistema

Esta equação, juntamente com a equação da variação da entropia

Tds = Q serão utilizadas para desenvolver o balanço de entropia para sistemas fechados.

c

c

c

0

0

0

O balanço de entropia é uma expressão da 2a. lei que é particularmente conveniente

para a análise termodinâmica.

Desenvolvimento do Balanço de Entropia

A figura mostra um ciclo executado por um sistema fechado.

2

1

R

I

O ciclo é constituído por dois processo. O processo I

no qual pode haver irreversibilidades presentes e o

processo R que é um processo internamente

reversível.

Para esse ciclo

Q

T

Q

Tb

INTREV

1

2

2

1

O subscrito “b” da 1a. integral serve para indicar que o integrando é avaliado ao

longo da fronteira do sistema.

O subscrito não é requerido para a segunda integral porque o processo sendo

internamente reversível a temperatura deve ser uniforme através do sistema, a cada estado

intermediário.

O termo refere-se somente ao processo I, pois o processo R é internamente

reversível

Para o processo R

Q

Ts s

ocessos R I

Q

Ts s

s sQ

T

INTREV

b

b

1 22

1

1 21

12

1 21

2

6 31

Pr ..

( , )

variação de entropiaentre os estados 1 e 2 Entropia

transferida

produção deentropia

Se os estados inicial e final estão fixados, a variação de entropia pode ser avaliada

independentemente dos detalhes do processo.

Os dois termos do lado direito da equação dependem explicitamente da natureza do

processo e não podem ser determinados somente a partir dos estados inicial e final.

O termo Q

Tb

1

2

representa a transferência de calor em direção e sinal.

O termo representa a entropia gerada internamente.

R e s e r v a t ó r i o

a T b

F r o n t e i r a a T b

s

Q

G a so uL i q

I s o l a m e n t o

Para o sistema constituído pelo gás ou líquido

s

como Tb = constante

s

Para o reservatório Tb

os processos nos RT são internamente Rev por definição

Tb O reservatório perde calor portanto sua entropia diminui

2

2

RES

RES

sQ

T

sQ

Tb

SQ

SQ

b

RES

11

2

1

1 2

0

A entropia do Res. diminui na mesma quantidade que a entropia do sistema aumenta

por causa do calor transferido.

No entanto, o aumento da entropia do sistema é maior que a entropia transferida pela

transferência de calor, devido as irreversibilidades internas.

0 irreversibilidades presentes dentro do sistema

= 0 sem irreversibilidades internas

A variação global da entropia do sistema pode ser

s s2 1

0

0

0

:

dependendo das magnitudes da entropia gerada internamente e das entropias

associadas ao fluxo de calor (+ ou -).

Formas do balanço de entropia para Sistema Fechado

O balanço de entropia pode ser expresso em várias formas que podem ser

convenientes para casos particulares.

Por exemplo, se a transferência de calor ocorre em várias regiões da fronteira e não

varia com o tempo ou com a posição, a equação 6.31 fica

s sQ

T

j

jj2 1

Para expressar a variação da entropia em função do tempo podemos fazer

dS

dt

Q

T

j

jj

Na forma diferencial

dSQ

Tb

Independentemente da forma da expressão para o balanço de entropia, o objetivo em

muitas aplicações é determinar o valor do termo de produção de entropia .

No caso dos sistemas, a produção de entropia de um componente isolado não possui

muita significância. É necessário efetuar os cálculos para todos os componentes e ordená-

los segundo a produção de entropia, para determinar para aquele sistema quais

componentes são mais significativos na contribuição para a ineficiência global.

Princípio do Aumento de Entropia

Nosso estudo da 2a. lei começou com a indicação da direção dos processos. No

presente desenvolvimento será mostrado que os balanços de 1a. e 2a. leis podem ser

usados conjuntamente para determinar a direção do processo.

A presente discussão será centrada em um sistema aumentado, que compreende o

sistema e a parte da vizinhança que é afetada pelo processo pelo qual passa o sistema.

Esse sistema aumentado é um sistema isolado, e para sistemas isolados, o balanço de

1a. lei fica E ISOL 0

pois não ocorre nenhuma transferência de energia através da fronteira do sistema

aumentado.

A energia de um sistema isolado permanece constante. Como a energia é uma

propriedade extensiva, seu valor para o sistema isolado é a soma da energia do sistema +

a energia da parte da vizinhança incorporada ao sistema aumentado, de modo que E ESIST VIZ. . 0

Para que um processo ocorra é necessário que a energia do sistema isolado

permaneça constante.

No entanto, nem todos os processos que atendem os preceitos da 1a. lei podem

ocorrer. É necessário que a 2a. lei também seja satisfeita

Balanço da 2a. lei

SQ

T

Q

Tsistema isolado

S

ISOL

b

ISOL

b

ISOL ISOL

1

2

1

2

0 .

Como em todos os processos reais ocorre produção de entropia, os únicos processos

que podem ocorrer são aqueles para os quais a entropia do sistema isolado aumenta.

S

S

ISOL ISOL

SIST VIZ ISOL

0

Princípio do

aumento da

entropia

Desmembrando em Sistema Isolado = Sistema + Vizinhança

S

Observar que as variações de entropia para o sistema ou para a vizinhança podem ser

individualmente positivas, negativas ou nulas, mas sua soma deverá sempre

necessariamente ser positiva para os processos reais e nula para os processos reversíveis.

Balanço de Entropia para Volumes de Controle.

A entropia é uma propriedade extensiva e portanto depende da massa e assim pode

ser transferida para dentro ou para fora do volume de controle.

Dessa forma o balanço de entropia para v.c. pode ser derivado de modo muito

similar ao usado para a obtenção do balanço de energia e massa, partindo do sistema

fechado.

Balanço de entropia para um sistema fechado, em função do tempo

dS

dt

Q

T

SvcQ

Tmisi mese v

mi si

j

jj

j

j eij

v c

.

. .

Para um volume de controle a expressão fica

d

dt

Taxa de variaçãode entropia Taxa de transferência de entropia

Taxa de produçãode entropia

Esta equação representa a forma geral para o balanço de entropia e será a mais

empregada neste capítulo.

No entanto, seus termos podem ser escritos de modo a contemplar desuniformidades

locais

S t s dV

Q

T

q

TdA

q

v c

v

v

j

j Ajb

. .

densindade local

s = entropia local

dV = elemento de volume

integral sobre todo o v.c.

= fluxo de calor

Taxa de transferência de calor por

unidade de área de superfície, onde

a temperatura instantânea é T

m s s V dA

m s s V dA

i i n

Aiii

e e n

Aeee

Fluxos de entropia

associados aos fluxos

de massa, avaliados

em cada área de

entrada e saída do v.c.

Agrupando to dos os termos tem - se

d

dt psdv

q

T dA s V dA s V dA v c

A V b

n

A i i

n

A e e

Análise do volume de controle para Regime Permanente

Conservação da massa m m i e

e i

Balanço de energia

0 2 2

2 2

Q W m h

V gZ m e h

V gZ VC VC i i

i

i i

e e e

e

Balanço de entropia

0

Q

T m s m s

j

j

i i e e VC e i j

Essas equações precisam, mui tas vezes, serem resolvidas simultaneamente, junto com as relações entre as propriedades. Massa e energia são quantidades que se conservam. Entropia, em geral, não se conserva. A taxa de entropia transferida para fora do v.c. precisa exceder a taxa de en tropia transferida para o v.c. A diferença é a taxa de produção de entropia dentro do volume de controle devido a irreversibilidades. Em muitos casos existe somente uma entrada e uma saída de massa no v.c. e expressão para o balanço de entropia assume a forma.

0

0 1

1

Q

T m s s m

m

Q

T s s

m

s s m

Q

T m

j

j

i e VC j

j

j j i e

VC

e i

j

j j

VC

Observar que s 2 só poderá ser menor que s 1 se o fluxo de entropia associado ao fluxo de calor que sai for maior que o fluxo de entropia associado ao calor que entra mais o fluxo de entropia gerado internamente (que é sempre m aior).