298
Instructor's M a n u a l to accompany  A P P L IE D FLUID ME CHANICS Six th Edition Robert L . Mott University o f  Dayton PEARSON Upper   Saddle River, N e w Jersey Columbus,  Ohio

Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

  • Upload
    moquete

  • View
    1.969

  • Download
    222

Embed Size (px)

Citation preview

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    1/298

    I n s t r u c t o r ' s M a n u a l

    to accompany

    A P P L I E D F L U I D M E C H A N I C S

    Sixth Edition

    RobertL .MottU n i v e r s i t y o f D ay t on

    PEARSON

    Upper Saddle River,NewJersey

    Columbus, Ohio

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    2/298

    Thisworkisprotectedby UnitedStatescopyrightlawsandisprovdedsolelyfo rtheuseofinstructorsnteachingtheircoursesandassessing

    studentlearning. Disseminationorsaleofanypartofthiswork(inciud-

    ing onthe World Wide Web)wl ldestroytheintegrityo ftheworkandisnotpermitted.The workand materialsfromit shouldneverbemadeavailabletostudents exceptbyinstruc tors usingtheaccom-

    panyingtextin theirclasses.AHrecipientsofthisworkareexpectedtoabideby theserestrictionsand tohonortheintendedpedaggica!pur-posesandtheneedsofother instructorswhorelyonthesematerials .

    Copyright 2006 byPearsonEducation, Inc., Upper SaddleRiver, NewJersey07458.Pearson Prentice Hall. A l lrights reserved. Printed in the UnitedStateso fAmerica.This publication is protected byCopyrightand permission should be obtained fromthe publisher prior to any prohibited reproduction,storagein aretrieval system, or transmission in anyformor by anymeans,electronic, mechanical, photocopying, recording, orlikewise.For information regarding permission(s),writeto: Rights and Permissions Department.

    Pearson Prentice Hall is a trademark ofPearsonEducation, Inc.Pearsonis a registered trademark ofPearsonpiePrentice Hallis a registered trademark ofPearsonEducation, Inc.

    Instructors ofclassesusingMott,Applied Fluid Mechantes, SixthEdition, may reproduce material from theinstructor's manual for classroom use.

    10 9 8 7 6 5 4 3 2 1

    PEARSON

    ISBN 0-13-172355-3

    http://classes.ah/http://classes.ah/http://classes.ah/
  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    3/298

    O n l i n e I M t o A c c o m p a n y

    APPLIED FLUIDMECHANICS

    S i x t h E d i t i o n

    Robert L.MottU n i v e r s i t y o f D a y t o n

    PEARSON

    Upper Saddle River, New JerseyColumbus, Ohio

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    4/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    5/298

    CHAPTER FIFTEEN

    FLOW MEASU REMEN T 23 5

    CHAPTER SIXTEEN

    FORCES DUE TO FLUIDS IN MO TI ON 2 4 0

    CHAPTER SEVENTEENDRAG AN D LIFT 25 1

    CHAPTER EIGHTEEN

    FANS , BLOW ERS, COMP RESSO RS, AN D THE FLOW OF GASES 26 0

    CHAPTER NINETEEN

    FL OW OF AIR IN DU CT S 2 69

    SPREADSHEETS 273

    iv

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    6/298

    CONTENTS

    CHAPTER ONE

    THE NAT URE OF FLUIDS AN D THE ST UDY OF FLUID ME CHA NI CS 1

    CHAPTER TWO

    VIS COS ITY OF FLUIDS 12

    CHAPTER THREE

    PRESSURE ME AS UR EM EN T 19

    CHAPTER FOUR

    FORCES DUE TO ST ATI C FLUIDS 25

    CHAPTER FIVE

    BUO YANC Y AN D STABILITY 4 4

    CHAPTER SIX

    FL OW OF FLUIDS 61

    CHAPTER SEVEN

    GENERAL ENERGY EQ UAT ION 81

    CHAPTER EIGHT

    REYNOLDS NUMBER, LAMINAR FLOW, AND TURBULENT FLOW

    A ND ENERGY LOSS ES DUE TO FRICT ION 9 4

    CHAPTER NINE

    VELOCITY PROFILES FOR CIRCULAR SECTIONS AND

    FLOW FOR NONCI RCULA R SECTIONS 113

    CHAPTER TEN

    MIN OR LOSSES 129

    CHAPTER ELEVEN

    SERIES PIPE LINE SY ST EM S 141

    CHAPTER TWELVE

    PAR ALL EL PIPE LINE SY ST EM S 187

    CHAPTER THIRTEEN

    PUMP SELECTION AN D APPLI CATIO N 21 3

    CHAPTER FOURTEEN

    OPEN CHA NNEL FLOW 218

    i i i

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    7/298

    A P P L I E D F L U I D M E C H A N I C SS i x t h E d i t i o n

    R o b e r t L . Mott

    P r e n t i c e - Ha l l P u b l i s h i n g C o m p a n y

    D e s c r i p t i o n o f S p r e a d s h e e t s I n c l u d e d o n th e C D in t h e B o o k

    I n t r o d u c t i o n

    This book includes a CD-ROM that contains ten computat ional aids that are keyed to thebook. The files are written as Microsoft Excel spreadsheets using Versin 2002 on WindowsXP.

    The ten spreadsheets are al l included in one workbook cal led Series Pipe Systems-Master.The ames of each spreadsheet described below are on the tabs at the bottom of the

    workbook when i t is opened. You must choose which is appropriate for a given problem.Most ames start with either /, //, or /// indicating whether the spreadsheet is for a Class /,Class II, or Class /// pipe line system as defined in Chapter 11 of the text.

    The spreadsheets are designed to faci l tate the numerous calculat ions required to solve thevariety of problems in Chapter 11 Series Pipeline Systems. Many of the spreadsheetsappear in the text. Others were prepared to produce solutions for the Solutions Manual. Thegiven spreadsheets include data and results from certain figures in the text, from exampleproblems, or in problems from the end of Chapters 8,11, and 13 containing the analysis anddesign procedures featured in the programs.

    The following sections give brief descriptions of each spreadsheet. Many are discussed in

    the text in more extensive detail. It is expected that you will verify all of the elements of eachspreadsheet before using them for solut ions to specif ic problems.

    U s i n g t h e S p r e a d s h e e t s : It is recommended that the given spreadsheets be

    maintained as they initially appear on the CD. To use them for solving other

    problems, cali up the master workbook in Excel and use the "Save as" command to

    ame it something different. That versin can then be used for a variety of problems

    ofyour o w n c h o i c e . Be careful that you do not modify the contents of critical cells

    containing complex equations. However, you are encouraged to add additional

    features to the spreadsheets to enhance their utility.

    Th e principies involved in the sprea dshee ts com e from Chapters 6 - 1 1 and you shouldstudy the concepts and the solution techniques for each type of problem before using thegiven spreadsheets. It is highly recommended that you work sample problems by hand first.Then enter the appropriate data into the spreadsheet to verify the solution. In mostspreadsheets, the data that need to be entered are identif ied by gray-shaded reas and byitalic type. Results are typically shown in bold type.

    v

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    8/298

    /Power SI: The objective of problems of this type is to compute the amount of powerrequired to drive a pump to deliver a given amount of f luid through a given system. Energyiosses are considered. All data must be in the listed SI units. The solution procedure is for aClass I series pipe line system. The following is a summary of the steps you must complete.

    1. Ente r the pr ob lem identif icat ion informat ion first. Th e give n data in the spr ead she et ar e

    for example Problem 11.1 for the system shown in Figure 11.2.

    2. Describe two appropr iate referenc e points for complet i ng the analysis of the gener alenergy equat ion.

    3. Specify the required volume flow rate, Q, in m 3 /s.

    4. Ente r the press ure s (in kPa ), velociti es (in m/s), and elevatio ns (in m) at the refer encepoints in the System Data: at th e top of the shee t. If the veloci ty at eith er ref ere nce poin tis in a pipe, you may use a computed velocity from v = Q/A that is included in the datacells for the two pipes. In such cases, you enter the Excel command "=B20" for thevelocity in pipe 1 and "=E20" for the velocity in pipe 2.

    5. Enter the fluid prop ertie s of specific weig ht (in kN /m 3 ) and kinematic viscosity (in m 2 /s).

    6. Enter pipe data, includi ng flow dia met er D (in m), pipe wall roug hne ss a (in m fro m Tabl e8.2), and length L (in m). Other pipe-related data are computed by the spreadsheet.Equation 8-7 is used to compute the friction factor.

    7. Enter ene rg y loss coeffic ients, K, for all loss-producing elements in both pipes. SeeChapters 8, 10, and 11 for the proper form for K for each element and for necessarydata. The valu for Kfor pipe friction is com pu ted automat icall y fr om known data in the"Pipe" sect ion . Spec ify the num ber of l ike ele men ts in the "Qty. "column. Enter briefdescriptions of each element so your printout is keyed to the given problem and so you

    can observe the energy loss contribution of each element. Space is given for up to eightdifferent kinds of energy loss elements. Enter zero for the valu of the K factor for thosenot needed.

    8. The Results: sect ion at the bo tto m of the spr ead she et includes the total ene rgy loss h < 1 0 l g

    2 (2.25 m/ s) 2 m N s 2 -N kg

    , . 3 0 . ] ? m . felSN^lkgj^

    w V 12 k g N

    2 C h a p t e r 1

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    17/298

    1.31 o= j 3 g g > 2 ( 2 1 2 m N . m ) x i r ^ x l ^ x l j ^ m

    V m \ 175 g m N kg s 2 - N

    , . 3 2 ^ ^ , ( l B l u g ) ( 4 f l / s ) - x l l l v s V f t = 8 0 0 ] b . f t

    2 2 slug

    fflu2 _ w u 2 _ (80001b)(10mi)2 1 h 2 ( 5280f t ) 2

    1.3J JViS ~ "~ ~ ~X X2 2 g (2)(32.2ft /s 2 )(h) 2 (3600s ) 2 m i 2

    ?000)(10)2(5280;

    (2)(32.2)(3600)2^ - < 8 0 0 0 > < ' > ' < 5 2 8 0 > ' 1 b . f t - M 7 M I . - *

    , .34 K E - ! ! * - L - < - * ea

    *1

    ?

    2 2 g (2)(32.2ft/s2 )

    2(E) 2(15 Ib - f t ) , A

    l b - s1.35 m = - = v , = 6 . 2 0 = 6 .20slugs

    v2 ( 2 . 2 f t / s 2 ) 2 ft

    2

    136 w_ 2 g ( X g ) _ 2 ( 3 2 . 2 f t ) (3 8 . 6 I b - f t ) (h2 ) x 1 m i

    2

    x ( 3 6 0 0 s )2

    ^ ( 2 ) ( 3 2 .2 ) ( 3 8 .6 ) ( 3 6 0 0 ) [ b

    (19.5)2(5280) 2

    s 2 (19 .5mi) 2 (5280f t ) 2 h 2

    2

    , . 3 7 , I g g g a )2Q2.2^ X 10 l b - a) ^ . 6 3 f t / sw V 30 Ib

    1.38 o= / M ^ ) ^ 2 ( 3 2 - 2 f t / s 2 ) ( 3 0 o z . 1 n ) x i f l _

    w V 6.0 oz 12 in

    1 cr>A 39runs 9innings1.39 E R A = x = 2.49 runs /game

    141innings game

    , 3.12runs lgame1.40 x x 150 mnings = 52 runs

    game 9innings

    , ^ lgame 9innings1.41 40 runsxs x 2 - = 129 inn ing s

    2.79 runs game

    , , 49 runs 9 innings1.42 E R A = x 5_ = 3.59 runs/ game

    123 innings game

    T h e Nature o f F l u i d s 3

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    18/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    19/298

    1.53

    1.54

    F = pA_P[7tD

    2}

    4

    _ 500 lb(7 T)( Din)

    i n 2 4

    D(in) D\in2) F(lb)

    1.00 1.00 393

    2.00 4.00 1571

    3.00 9.00 3534

    4.00 16.00 6283

    5.00 25.00 9817

    6.00 36.00 14137

    7.00 49.00 19242

    8.00 64.00 25133

    F F 4F 4(5000 Ib)P ~ A = TT> 2/4 7tD2 TV(Di n ) 2

    D(in) Z> 2(in2) p(psi)

    1.00 1.00 6366

    2.00 4.00 1592

    3.00 9.00 707

    4.00 16.00 398

    5.00 25.00 255

    6.00 36.00 177

    7.00 49.00 130

    8.00 64.00 99

    392.7Dl Ib

    3025

    20

    Forc 15(toxIOOO) 1 0

    5

    0

    psi

    Pressure(psO

    6000

    4000

    2000

    O

    4 5

    0 1 2 3 4 5 8

    Diametw(ri)

    7 8

    1.55 (Variable Answers) Example: w= 160 Ib (4.448N/lb) =712 N

    F 712N (103 m m ) 2

    P A 7 r (20mm) 2 /4

    p = 2.27 x 10 6Pa (1 psi/6895 Pa) =329 psi

    = 2.77 x 10 6Pa = 2.27MPam

    1.56 (Vari able Answers) us ingp =2.27 MPa

    F=pA = (2.27 x 106N / m 2 )W0.250 m) 2 /4) = 111 x 10 3N = 111k N

    F= 111 k N (1 lb/4.448 N) =25050 Ib

    T h e Na tu re o f F l u i d s 5

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    20/298

    Bulk modulus

    1.57 Ap =-E(AV/V) = -1300 00psi(-O.Ol)= 1300psi

    Ap = -896 MPa(-O.Ol) =8.96 MPa

    1.58 Ap =-E(AV/V) = -3 .59 x 10 6psi(-O.Ol) =35900psi

    Ap = -24750MPa(-O.Ol)=247.5MP a

    1.59 Ap =-E(AV/V) = -18900 0psi(-O.Ol)=1890psi

    Ap = -1303 MPa(-O.Ol) =13.03MP a

    1.60 AVIV = - 0 . 0 1 ; AV = 0.01V= 0.01 A LAssume rea o fcylinder does not change.A F= ,4(AZ,)= 0.01 A LThen AL= 0.01 L = 0.01(12.00 in) =0.120i n

    1.61AV _~p _ -3000 psi

    V ~ E ~~189000 psi

    = -0.0159 = -1 .59%

    1.62AV _ -20.0 MPa

    V ~ 1303 MP a= -0.0153 =-1 .53%

    1.63 Stiffness = Force/Change in Leng th = F/AL

    B u l k Modulus= E = P = ~pV

    AVIV AV

    Butp = FIA; V=AL; AV = -A(AL)

    -F AL FL

    (AL)

    E =-A -A(AL) A(AL)

    EA 189000 Ib -(0.5 i n ) 2

    L " i n 2 (42 in)4884 lb/in

    1.64F _EA _ 189000 Ib g(0 .5 i n ) 2

    _ _ _ _ _ m 2 ( i o . O in)(4)3711 lb/in 4.2 times higher

    1.65F EA 189000 Ib (2 .00 i n ) 2

    (AL) in 2 (42.0in)(4)14137 lb/in 16 times higher

    1.66 Use large diameter cyl ind ers and short strokes.

    Forc and mass

    w 6 1 0 N l k g - m / s 2 . . . .1.67 m = = r - x " =62.2kg

    g 9.81 m/ s 2 N

    6 C h a p t e r 1

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    21/298

    w 1 . 3 5 x l 0 3N l k g - m / s 2

    1.68 w = = x - = 13 8k gg 9.81 m/ s 2 N

    1.69 w = mg = 825 kg x 9.81 m/s 2 = 8093kg-m/s 2 = 8093 N

    1.70 w = = 450 g x - ^ - x 9.81 m/s2

    = 4.41kg-m/s2

    = 4.41 N10 3 g

    , - , w 7.81b - , - l b - s 2 . ,1.71 w = = - =0.242 = 0.242 slugs

    g 32.2 ft/s 2 ft

    w 42.01b ,1.72 w = = =1 .3 04 slugs

    g 32.2 ft /s 2

    1 /fl-1.73 w = mg = 1.58 slugs x 32.2 ft/s 2 x ' =5 0. 9 Ib

    slug

    1.74 w= mg =0.258slugs x 32.2 ft/s 2 x 1 l b " s / f t =8. 31 Ib

    slug

    , w 1601b . ,1.75 w = = ^ =4 .9 7 slugs

    g 32.2 ft/ s 2

    w = 160 lb x4.448N/lb = 712 N

    m = 4.97 slugs x 14.59 kg/slug= 72.5 kg

    1.76 iw = = L Q Q l b

    =0. 031 1 slugsg 32.2 ft/s 2

    m = 0.0311 slugs x 14.59 kg/slug = 0.453 kg

    w = 1.00 lb x 4.448N/lb = 4.448 N

    1.77 F = w = mg = 1000 k g x 9.81 m/s 2 = 9810 kg-m/s2 = 9810 N

    1.78 F = 9 8 1 0 N x 1.0lb/4.448N = 22051b

    1.79 (Variable Answers) See problem 1.75 for method.

    Density, specific weight, and specific gravity

    1.80 yB = (sg)Byw = (0.876)(9.81kN/m3 ) = 8.59 kN/m 3

    p B = (sgVw = (0.876)(1000 kg/m3 ) = 876 k g / m 3

    , y 12.02N s2 1kg-m/s 2 31.81 P- = x x = 1.225 kg /m

    g m3 9.81 m N

    T h e Nature of F l u i d s 7

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    22/298

    1.82 7 = /?g = l - 9 6 4 k g / m3 x 9 . 8 1 m / s 2 x = 19.27 N/ m 3

    1kg m/s

    8 .860kN/m

    yW@4C 9 .81kN/m1.83 sg = ^ = = 0.903 a t5 C

    y = 8.483k N / m3

    = 0 . 8 6 5 a t 50C

    yW@4C 9.81 kN / m3

    1.84 ^ = ; F = = 2 I 2 5 _ k N _ = 0 0 1 7 3 M 3

    V y 130.4 kN /m 3

    1.85 V= AL = KD2LIA =w(0.150 m) 2(0.100 m)/4 = 1.767 x 10"3 m 3

    m 1.56 kg , , 3p = = V ~ T = 8 8 3 k g / m J

    ^ F 1.767 x l O ^ m 3

    y = M = 883 kg /m 3 x 9.81 m/s 2 x - = 8.66x1 5 _ =8.66 ^

    1 kg m/s n i3

    m

    3

    sg = />//> @ 4C = 883 kg/m 3/1000 kg/m 3 = 0.883

    1.86 y = (sg)(yw @ 4C) = 1.258(9.81kN/m3 ) = 12.34 kN/m 3 = wlV

    w = yF = (12.34kN/m 3 )(0.50 m 3 ) = 6.17 k N

    w 6 .17kN 10 3N 1 kg -m/s 2

    ?H= = x x = 629 kgg 9.81 m/s 2 k N N

    1.87 w = yV= (sg)(yw)(V) = (0.68)(9.81 kN/m3)(0.095 m 3 ) = 0.634k N = 634 N

    1.88 ^ =/ ?g = (1200 kg /m3

    ) (9 .81 m/s2

    )

    f I N ^

    kg m/s22J

    3

    11.77 kN/m3

    , . 1200 kg /m _

    / ? W @ 4 C 1000 kg/m3

    _ _ w 2 2 . 0 N l k N , _ 3 31.89 F = = r ~ x ; = 2 . 7 2 x l 0 3 m 3

    y (0.826)(9.81kN/m 3 ) 10 3 N

    , 1080kg 9 .81m I N l k N 31.90 Y~Pg~ - x x - x - =10.59 kN /m

    r F * m 3 s2 1kg -m/s 2 103 N

    . 1080 kg /m

    3

    Sg = /?//? = 2 r- =1.08S ^ ^ W 1000 kg /m 3

    1.91 p = (sg)(pw) =(0.789)(1000 kg/m3 ) = 789 kg/m 3

    7 = (sg)Ov) = (0.789)(9.81kN/m 3 ) = 7.74 kN/m 3

    8 Chapter 1

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    23/298

    1.92 w0 = 35.4 N - 2.25 N = 33.15 N

    Va = Ad = (nD2IA)(d) = (.1 50 m) 2(.20 m)/4 = 3.53 x 10~3 m 3

    W= 33 .15N = g x 1 Q 3 N / M 3 _ 9 < 3 g k N / m ^

    ' V 3 . 5 3 x l O " 3 m 3

    ^ = 9.38 kN / m3

    C i - v r > - i - v T / 3

    y 9.81 kN /m

    3

    1.93 K =A d = (nLflAXd) = (10m) 2(6.75 m)/4 = 530.1 m 3

    w = yV= (0.68)(9.81 kN/m 3X530.1 m 3 ) = 3.536 x 10 3 k N = 3.536 M N

    m = pV= (0.68)(1000kg/m 3 X530.1 m 3 ) = 360.5 x 10 3 kg = 360.5 Mg

    1.94 wcastor o i = yco Vco = (9.42 kN/m3)(0.02 m 3 ) = 0.1884 k N

    w 0.18 84kN . . i n_3 3y = = =1 . 4 2 x1 0 m

    ym (13.54X9.81 k N / m3 )

    1.95 W =yF=(2.32)(9.81 kN/m 3 )(1.42x 10~ 4 m 3) = 3.23 x 10~ 3 kN = 3.23N

    1.96 y = (sg)(y) = 0.876(62.4 lb / 3 ) =54.7 lb/ft 3

    p = (sg)Oow)= 0.876(1.94slugs/ft3) = 1.70 slugs/ft 3

    y 0.0765lb/ft 3 lslu g . i n_3 ,1.97 p = - = x f = 2.38 x 10 slugs/ ft

    g 32.2 ft/s 2 l lb s 2/ft

    1.98 x = p g = 0.0 0381 slu g/f t 3 (32.2ft /s 2 ) 1 l b " S = 0.1227 lb /f t 3

    slug

    1.99 sg = yj(yw @ 4 C) = 56.4 lb/f t3/62.4 lb/f t 3 =0.904 at 40F

    sg = yJYw @ 4C) = 54.0 lb/ft3/62.4 lb/ft

    3

    =0.865 at 120F

    1.100 V= wly = 500 lb/834 lb/ft 3 = 0.600 ft 3

    1.101 r ^ l ^ x I ^ =56.1 lb / f t3

    V lg al ft3

    y 56.1l b / f t 3 , _ lb -s 2 . , ,

    y . , 5 . 6 1 1 b / f t ^ 0 W 9

    yW@4C 62.4 l b / f t3

    ^ ( 5 0 g a l ) i ^ lf t 3 '7. 48 gal

    1.102 w = = ( 1 . 2 5 8 ) ^ = ^ ( 5 0 g a l ) ^ ^ = 5251b

    1 .103 w^yV = p g V = l 3 2 X h ' s 2 x = = ^ x 2 5 . 0 g a l x 1 ' = 142 lbr f t 4 s2 7.48 gal

    T h e Nature of F l u i d s 9

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    24/298

    1.104 S g = = ^ x - ^ x l ^ x l ^ = 1 . 2 0pw cm

    3 1000 kg 10 3 g m 3

    p =(sg)(pw) = 1.20(1.94slugs/ft3) =2.33slugs/ft 3

    7= (sg)(7w) = (1.20)(62.4 lb/f t 3 ) = 74.9lb / f t 3

    i

    i_ r,

    w

    5.01b ft

    3

    0.0283m

    3

    (1 0

    2

    cm)

    3

    _ , _ 3

    1.105 V = = x x-i ' = 2 7 4 5 c m 3y (0.826)62.4 lb f t 3 3m

    1.106 y= (sg)(yw) = (1.08X62.4 lb/f t3 ) =67.4lb / f t 3

    1.107 p = (0.79)(1.94 slugs/ft3) =1.53 slugs/ft 3;p = 0.79g/cm 3

    U 0 8 _ ( 7 . 9 5 - 0 . 5 0 ) , y}inW_ . ^ ^

    " V ( ; r ( 6 .0 in ) 2 /4)(8.0in) f t

    sg =7olyw= 56.9 lb/ft3/62.4lb/f t 3 =0.912

    1.109 V = A d = d = ) x 22 ft = 15550 ft 3 x 7.48 gal/ft 3 = 1.16x 10 sgal

    w^yV= (0.68)(62.4 lb/f t 3)( 15550 ft 3 ) =6.60x10 slb

    1.110 wco =yc0V= (59.69 lb/ft3)( 5 ga l )( l ft 3/7.48 gal) =39.90 lb

    w 39.90 lb f t 3 7.48 gal _ _ ,Vm = = x r ~ =0.353gal

    y_ 13.54(62.4 lb ) ft3

    L U I w = y V = ( 2 . 3 2 )( 6 2 - 4 1 b ) ( 8 . 6 4 i n 3 ) 0 ft3), = 0.724 lb

    ft3 1728in 3

    10 C h a p te r 1

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    25/298

    CURVE FIT FOR THE PROPERTIES OF WATER VS. TEMPERATURE

    TABLE A.1Computed Computed

    Temp. Sp Wt Density Sp Wt % Diff Density %Diff

    0 9.81 1000 9.811 0.002 1000.2 0.020

    5 9.81 1000 9.812 0.018 1000.2 0.017

    10 9.81 1000 9.809 0.012 999.8 -0.015

    15 9.81 1000 9.803 -0.017 999.2 -0.075

    20 9.79 998 9.794 0.045 998.4 0.03925 9.78 997 9.783 0.028 997.3 0.029

    30 9.77 996 9.769 -0.015 996.0 -0.002

    35 9.75 994 9.752 0.022 994.5 0.047

    40 9.73 992 9.734 0.037 992.8 0.077

    45 9.71 990 9.713 0.032 990.9 0.090

    50 9.69 988 9.691 0.007 988.9 0.088

    55 9.67 986 9.667 -0.035 986.7 0.072

    60 9.65 984 9.641 -0.096 984.4 0.04265 9.62 981 9.613 -0.070 982.0 0.10370 9.59 978 9.584 -0.061 979.5 0.15475 9.56 975 9.553 -0.069 976.9 0.19580 9.53 971 9.521 -0.097 974.2 0.33185 9.50 968 9.486 -0.144 971.5 0.357

    90 9.47 965 9.450 -0.211 968.6 0.376

    95 9.44 962 9.411 -0.302 965.7 0.388

    100 9.40 958 9.371 -0.312 962.8 0.500

    Specific Wt v s .Temperatura forWater

    1= -1 E -09X 4j>4 E-07X3-7E-06X2+ 0 . 0 0 0 3X = 3.669m2

    Fy = yAw = (9.81)(3.669)(1.50) = 54.0 kNx, = 1.20/2 = 0.60 m

    x2 - 0.22347?= 0.268m [Machinery's Handbook]

    _ = AX) + A2x2 _ (3.36X0.60) + (0.309)(0.268)X A 3.669

    x = 0.572 mhc = h + s/2 = 2.80 + 0.60 = 3.40 m

    FH = yswhc = (9.81)( 1.20)(1 .50)(3.40) = 60.0 kN

    hp = h c + = 3.40 + 1.202

    3.435 mI2he 12(3.40)

    FR = 4FV+FH =V5 4 .0 2+60 .0 2 =80.7kN

    = t a n ^ = 4 2 . 0 60.0

    1.20

    1

    h = 2.80 m

    FOTOMsrnwntctfcigonsurfaoa.

    40C h a p t e r 4

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    55/298

    4.54

    4.55

    4.57

    A = TT> 2/8 = = yAw = (0.79)(62.4)(3.534)(5.0) = 871 lbx = 0.212D = 0.212(36i n) = 7.63 inhc = h + s/2 = 48 + 36/2 = 66.0 in = 5.50 ft

    F =yswhc = (0.79)(62.4)(3.0)(5.0)(5.50)

    F =40671b

    h - 4 8 l n

    h= hc =\2h

    = 66 + 362

    12(66)67.64 in

    FR= 4F + F2

    H =V8712 + 4067 2 = 41591b

    , _ i - ' 8 ^ 1

    = tanF

    tan4067

    12.1

    Foroshownactjngon fl uid.

    (See Prob. 4.47)

    r , p 7.5 k N / m2

    n , rEq . Depth = ha = = =0.765 m

    y 9.81 k N / m 3

    h u = hi + / * a = 1.85 +0.765 = 2.615 m;hce = hXe + s/2 = 2.615 + 0.75/2= 2.990 m

    Ax = (0.75)(2.615) = 1.961 m2 ;A2 =0.442m

    2 ;AT =2.403 m2

    Fv = yAw = (9.81X2.403)(2.000) = 47.15 kN_ i X , + A2x2 (1.961X0.375) + (0.442)(0.318) =

    2.403

    FH =yswhce = (9 .81X0.75X2.00X2.99) = 44.00 kN

    0.365 m

    h - h =0.752

    'pe = 0.016 m = 16 mm\2hce 12(2.99)

    FR= 4FV+FH = V47.15 2 + 44.00 2 =64.49 kN

    ^ = t a n " ' 5 L tan47.15

    44.0047.0

    4.56 (See Prob. 4.48)

    Eq . Depth = ha = =4.65 kN/ m 2

    = 0.574 my (0.826)(9.81kN/m 3)

    hu = hi + ha = Q.62m +0.574m = 1.194 m

    A = (1.194X1.25) + 7t(1.25)2/8 = 2.106 m 2

    Fv=yAw = (0.826X9.81 kN/m3)(2.106 m 2)(2.50 m) =42.66kN = FR

    Ne t hori zontal forc = 0

    From Section 4.11, net verticalforc equals the weight of the displaced fluid acting upwardand the weight of the cylinder acting downward.

    W/= yfVd = (62A lb/ft3)(0.164 ft3) = 10.2 lb

    Vd = A-L-TTD2

    L =*(6.00 in) 2

    10.0 in = 282.7 i n 3xft3

    4 4 1728 i n 3

    wc = JcV= (0.284 lb/i n3)(282.7 in 3 ) = 80.3 lb

    Ne t forc on bottom =wc - Wj=80.3 - 10.2 = 70.1 lb down

    0.164 ft 3

    4.58 See Prob . 4.57 . wf= 10.2 lb

    wc =y cV= (0.100 lb/ in3)(282.7 in 3 ) =28.27 lb

    i V , = wc- wf= 28.27- 10.2 = 18.07 lb down

    F o r c e s Due to S t a t i c F l u i d s 41

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    56/298

    4.59 See Prob . 4.57. wf= 10.2 lb

    wc =ycV= (30.0 lb/ft3)(0.164 ft 3 ) = 4.92 Ib

    Fnet= wc- w / = 4.92 - 10.2= 5.28 Ib up

    Bu t this indicates that the cylinde rwould float, as expected. Then, the forc exerted by thecylinderon the bottom of the tank iszero.

    4.60 The specific wei ght o f the cyli nder must be lessthan or equal to that of the fluid i fno forc isto be exerted on the tank bottom.

    4.61 (See Prob. 4.57 .) Because the depth of the fluid doesnot affect the result, Fnet = 70.1 Ibdown. Th is is true as lo ng as the fluid depth isgreater than or equal to the diameter of thecylinder.

    4.62 (See Prob. 4.57. ) wc = 80.3 lbForc (downward) on upper part of cylinder =wt. of volume ofcross-hatchedvolume. Forc(upward) on lowe r part o f cylinder = wt. ofentire displaced volumeplus that ofcross-

    hatched volume. Then net forc is wt. o fdisplaced vo lume (upward).

    wf=yfVd = y4dL

    Ad= + - (2 x) (2 .0 ) =Ai+A24 360 2 V A '

    = g ( 6 . 0 i n )2

    263.6' 4 360

    + (2.236)(2.0) = 25.18 in2

    wf= y4dL =62.4 lb/f t3 25.18 i n 2 10.0 i n

    Fnet= wc- w / = 80.3 - 9.09 = 71.21 Ib down

    l f t 3

    e-$m-(2.0/3.0)-41.8*x- fleo a - 3.0 co ax -238 lnB -180* +2 -283.8*

    1728 in 3= 9.09 lb

    42 C h a p t e r 4

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    57/298

    4.63 (See Prob . 4.57) For any depth > 6.00 in , F n c t = 70.1 lb down

    Methodof Prob. 4.62 used forh 3.00 in. For any depth < 3.00 in, use figurebe lo w.

    3 4 5 6 7 8

    RutiDepth ,/>0n)

    4.64 Centroid:y = 0.212 D= 0.212(36 in ) = (7.63 in ) ( l ft/12 in) = 0.636 ft

    x= (20 in)/sin 25 = 47.32 in

    L c = 60 in+ x - y = 60 + 47.32 - 7.632 = (99.69 in ) ( l ft/12 in) = 8.308f thc =L csin 25 = (8.308 ft)(sin 25 ) = 3.511 ft

    A = TTD2/8 =7i(3.0 ft ) 2/8 = 3.534 ft 2

    FR yhcA= (1.06)(62.4lb/ft3)(3.511 ft)(3.534 ft 2 ) = 820 lb = FR

    1= 6.86 x 10 _ 3 D 4 = 6.86 x 10~3(3.00 ft ) 4= 0.556 ft4

    Lp-Lc =I/[LcA] = (0.556 ft4)/[(8.308 ft)(3.534f t 2 )] = 0.0189 ft

    L P =L C+0.0189 ft =8.308ft + 0.0189 ft =8.327 ft =L p

    F o r c e s Du e to S t a t i c F l u i d s43

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    58/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    59/298

    5.8 w - Fb - FSP = O= W-y0Vd - FSP

    FSP = w- y0Vd = 14.6 lb - (0.90)(62.4 lb/ft3)(40 in 3 )

    FSP= 13.3 lb

    1 ft3

    1728 in 3

    5.9 ~LFV = O= wF + ws - Fb - Fbs

    Fbs =ywVs = 9.81 kN / m3 x (0.100 m) 3

    0 = y F J ^ + 8 0 N - y w F / ? - 9 . 8 1 N

    0 = Vp(yF - y w ) + 70.19 N

    y = -70-19N _ - 7 0 . 1 9 NF rF~rw ( 4 7 0 - 9 8 1 0 ) N / m

    3

    = 7.515 x 1( T 3 m 3

    9.81 N

    5.10 wc

    + wA

    =Fb

    = yw

    Vc

    = 62A lb/ft

    .3

    3 tf = 588.1 lb

    wA =Fb-wc =588.1 - 3 0 = 558.1 lb = y / F / load - F^ - F^ - 0

    w d r u m s = 4(30 l b) = 120 lb (Prob. 5.31)

    = 57.4 in

    2

    See Prob. 4.63 for method

    o f computing As.

    w w 0 0 d = 178.5 lb (Prob. 5.32)

    Fbn =1 801 lb (Prob. 5.31)

    FK = ywVw = 62.4 lb/ft3 x 4.464 f t 3 =278.6 lb (Prob. 5.32)

    Wioad= Fh + Fb -wD-ww= 1801 + 2 7 8 . 6 - 12 0- 178.5 = 1781 1b

    B u o y a n c y and S tab i l i t y49

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    64/298

    5.35 Given: yF = 12.00 lb/f t3 , yc = 150 lb/f t

    3 , wc = 600 lb

    Find: Tens in in cable

    Floatonly: Z f > = 0 =wF + T- Fbp

    T= Fbr ~wF

    Bu t wF = yFVF = 12.0 lb/f t3 x 9.0 ft 3= 108 lb

    (18 .0 in)2

    (48in)VF =1728 i n 3 / f t 3

    = 9.00 ft3

    Fbp =ywVd = (64.0 lb/ ft3)(6.375 ft 3 ) = 408 lb

    ( 1 8 . 0 , n ) ' ( 3 4 , n ) ^ 3 7 5 f t ,

    1728 i n 3 / f t 3

    T= 4 0 8 - 108 = 3001b

    Check concrete block: F n c t = w c - Fb j^unstable

    w= Fb = yswAX

    v _ w 130lb(12 m/ft)

    YSWA (64.01b/ft3 )(3ft)(4ft)

    = 2.03 in

    ych=X/2 = 1.016 in

    ycs = 12 in + 34 in = 46.0in

    / = (48)(36) 3in 4/12 = 1.866 x 105i n 4

    Vd = (48)(36)(2.03)in3= 3510 in 3

    MB=I/Vd= 53.17 in

    j -c= ^cb + M B = 1.016+ 53.17

    = 54.18 in >ycgstable

    X-7S0

    46

    34

    i

    /g

    _ L

    8.0

    7 "2f tx4ft rectanc>

    me

    t54.1B

    Inx48Inrectangle

    B u o y a n c y an dS tab i l i t y 55

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    70/298

    5.56 w - Fb = 0 =ywVtot -y0Vd =ywAH- yoAX

    ywAH _ ywH = (32 lb /f t3 ) (6 in)

    y0 0.90(62.4 l b / f t3 )

    /Rwaangfc6irix12ln

    = 3.419 iny c b =XI2= 1.709 iny c g = H/2 = 6.00/2 = 3.00 in/ = 12(6) 3/12 = 2 1 6 i n 4

    Vd =(12)(6)(3.419)= 246.2 i n3

    MB=I/Vd =0.877 in

    Jmc= yCb + M B = 1.709 + 0.877 = 2.586 in< j c gunstable

    IX-3-419

    I *_ i 1

    t3.00

    I

    m c - 5 rn c -51

    c b / 1-708

    r

    6.00

    ZS80

    5.57

    5.58

    w-Fb =ywVd = y^AY

    w 2100001b

    ywA (62.4 lb / f t3)(60 ft)(20 ft)

    y c b =J72= 1.402 ft ;y c g = 1.50 ft given

    / (60)(20) 3 /12

    = 2.804 ft

    ' S I

    M B =

    (60)(20)(2.804)

    = 11.888 ft

    Jme=y* + M B = 1.402 + 11.888 ft = 13.290 ft> j c gs table

    Wtotai= 210000 + 240000 = 450000 lb

    w 4500001b= 6.010 ft (See Prob. 5.57)

    = 5.547 ft

    ywA (62.4)(60)(20)

    ycb = X/2 =3.005 ft

    M B - 7 - ( 6 ) ( 2 0 ) 3 / 1 2

    Vd (60)(20)(6.010)

    Jmc=ya>+ M B = 3.005 + 5.547 =8.552ftabove barge

    cg is within bargestable

    More complete solution:w

    c

    7ADepth of coal = dc

    240000lb= 4.444 ft

    (45lb/f t 3 )(60ft)(20ft)

    y c =dJ2 = 2.222 ft from bot tom to cg of coalw

    c y c+ w

    B y B _ (240000)(2.222)+ (210000X1.50)

    r~1&29

    "cb

    4500001.885 ft

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    71/298

    5.59 w = Fb = yrVd = yrAdL

    w = ycAtotL

    1= - (.600)(.300)(1.20)(2.36)kN

    = 0.255 k N

    Ad

    = GX+2 vovo

    (B-2X)(X) + X20 - 0 0 0 mm(fl-OJSOm)

    407

    Equate

    Ad =BX-2X2 +X2 =BX-X2 = 6 0 0 X - X 2

    Ad =w 0.255k N

    yTL (0.87)(9.81kN/m3)(1.20m)

    Ad =0.02489m2 x ( 1 ^ " ) =2.489x 1 0 4 mm 2

    m

    6 0 0 X - X 2 =2.489 x 10 4

    X2 - 600X+2.489 x 10 4 = 0;X= 44.8 mm by Quadratic Eq.

    G = B- 2X= 600 -2 (4 4. 8) = 510 mm

    7=G 3 Z,/12 = (510)3(1200)/12 = 1.329 x 10 1 0 mm 4

    Vd= AdL = [600(44.8) - 44.82](1200) =2.985 x 1 0 7 mm 3

    M B = / / K r f = 445 mm

    v X(G + 2B) A A O 44.8( 510 + 1200) _ycb=X ^ - =44.8 - =2 1. 8m m

    3(G +B) 3(510 + 600)

    -ycb + MB = 21.8 + 445 = 467 mm

    1>>cg= - (3 00 )= 100 mm ycg = SI2

    ymc

    X

    x i x=^ c b + M B = + = +-12(5 2 )(X)

    + J L = ^ o r X2 + ^ -sx=o

    2 \2X 2 6X2 - SX+ S2^ = 0

    x=Sy/S2-4S2/6 S S r rTr

    _ = V l - 2 / 3

    = S - - ( 0 . 5 7 7 4 )2 2

    2 2

    = 0.7885' or 0.21 \S

    SquanS x S

    X> 0.7885"orX

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    72/298

    5.61 Entirehull:

    i

    = (.72)(.40) +(2. 88)(1 .2)

    3.60

    ycg

    = 1.040 mSubmerged Volume:

    _ (.72)(0.4) + (2.16)(1.05)yCb

    2.88

    4?S3m

    = 0.8875 m

    F= (2.88)(5.5)= 15.84 m 3

    7=5.5(2.4) 3 /12 = 6.336 m 4

    y =ycb+ I/Vd = 0.8875 + 0.40 = 1.2875m >ycgstable

    5.62 a) wc =Fb;ycVc = ywVd

    _ 3 0 1 b ; r( .5ft) 2 (1.0ft)wc--

    f t

    3

    V d ^

    12

    1.9631b

    1.963 lb

    yw 62.4 lb / f t3

    = 0.03147 ft 3

    3\/1 TOO , 3 , l

    X= 3

    _ (0.03147 ft')(1728 in') _ 3

    ft3

    _ 7v(Dxf(X) _ 7V(X/2)2X _TCX3

    12 12 48

    K

    3X

    4SVD _ 48(54.37) _9.40 in

    71

    0.75(9.40) = 7.05 in

    _ nD\ _ -(9.40/2) 4 _= 23.95 in 4

    64 64

    M B =I/Vd =23.95/54.37 = 0.441 in

    y =ycb+ M B = 7.05 + 0.441 = 7.491 in3H

    y

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    73/298

    nDx _ - ( ! ! .51/2)4

    / = 64 ~ 64 = 53.77i n 4

    / 53 77M B = = r l l = 0.539 i n

    VA 99.69

    y c b = 0.75X= 0.75(11.51)= 8.633i n

    y m c =yCb + M B = 8.633+0.539= 9.172 inycs = 9.00 in 3/12 = (1.50 m) 3/12 = 0.8836 m 3

    ^cyi-d= n&hJA = (1. 50 m) 2(0.35 m)/4 =0.6185 m 3

    Then Vd = Vhs + Vcyld = 0.8836+0.6185= 1.502 m3

    Fb = yfVd = (1.16)(9.81 kN/m3)(1.502 m 3 ) = 17.09 k N = Wc + Wv (Answer)

    (b) Find yv = Specific weight ofvessel material = WJVvT', Given Wc = 5.0 k N

    From part (a), 17.09 k N = Wc + Wv; Then Wv = 17.09 -Wv= 17.09 - 5.0 = 12.09 k N

    VVT Total volume ofvessel= Vhs + Vcyi.T

    Vcyi-T= (Di-D2)(Q.6Q m)/4 = [(1 .50 m) 2 - (1.40 m) 2](0.60 m)/4 = 0.1367 m 3

    VvT= Vhs + V^ =0.8836m3 + 0.1367m 3 = 1.020 m 3

    yv = Specific weight ofvessel material = WJVvf, = (12.09 kN)/( 1.020 m3 )

    = 11.85 k N / m 3= / v

    1500

    1400

    350 Fluid Surface

    Fb

    B u o y a n c y and S tab i l i t y 59

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    74/298

    (c) Evalate stability.Find metacenter, ymc. See figure for key dimensions.Given:ycg = 0.75 + 0.60 - 0.40 = 0.950 m from bot tom o f vessel.We must find: ymc =ycb +MB =ycb +II Vd

    1= 7tD4/64 = (1.50 m) 4 /64 = 0.2485 m 4For circularcrosssection at fluid surface.Vd = 1.502 m

    3 Fr om part (a).MB =(0.2548 m 4)/(1.502 m 3 ) = 0.1654 m

    The center of buoyancy is at the centroid of the displaced volume. The displacedvolumeis a composite of a cylinder and a hemisphere. The position of its centroid must

    be co mput ed from theprincipie o f composite volumes.Measure all y vales frombottom of vessel.

    (ycbWd) =(y hs)(Vhs) + (ycyuWcyi-d)yc = (ys)(Vhs) + (ycyl.d)(Vcy,d)]/Vd

    We know from part (a): Vd =1.502 m3; Vhs = 0.8836 m

    3 ;VcyU = 0.6185 m3

    yhs = D/2 -y = D/2 - 3D/16 = (1.50 m)/2 - 3(1.50 m)/1 6 = 0.4688 mycyt-d= D/2 + (0.35 m) /2 = (1.50 m)/ 2 + 0.175 m = 0.925 m

    Then ycb = [(0.4688 m)(0 .8836 m3 ) + (0.925 m)(0.6185m 3 ) ] / ( l.502 m 3 ) = 0.657 m

    Now, ymc = ycb + MB =0.657 m + 0.1654 m = 0.822 m From bottom of vessel.Because ymc

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    75/298

    CHAPTER SIX

    FLOW OF FLUIDS

    Conversin factors

    6.1 0 = 3.0 gal/min x 6.309 x 10~5m 3/s/1.0gal/min = 1.89 x 10"4 m 3/s

    6.2 0 = 459 gal/min x 6.309 x 10"5 m 3/s/1.0gal/min = 2.90 x 10~2 m3/s

    6.3 0 = 8720 gal/min x 6.309 x 10"5 m 3/s/1.0gal/min =0.550 m3/s

    6.4 0 = 84.3 gal/min x 6.309 x 10~5m 3/s/1.0 gal/min = 5.32 x 10 3 m 3/s

    6.5 0 = 125 L /m in x 1.0 m3/s/60000L /m in = 2.08 x 10~3 m3/s

    6.6 0 = 4500 L /m in x 1.0 m3/s/60000 L /min = 7.50 x 10~2 m 3/s

    6.7 0 = 15000L /m in x 1.0 m3/s/60000L /m in =0.250 m3/s

    6.8 0 = 459 gal/min x3.785L/min/1.0 gal/min = 1737 L/min

    6.9 0 = 8720 gal/min x 3.785L/min/1.0 gal/min = 3.30 x 104 L/min

    6.10 0 = 23.5 cm3/s x m3/(100 cm) 3 = 2.35 x 10~5 m3/s

    6.11 0 = 0.296 cm3/s x 1 m3/(100 cm) 3 = 2.96 x 10~7 m3/s

    6.12 Q = 0.105 m3/s x 60000L/min/1.0 m3/s = 6300 L/min

    6.13 0 = 3.58 x 10~3m3/s x 60000L/min/1.0 m3/s = 215 L/min

    6.14 0 = 5.26 x 10~6m3/s x 60000L/min/1.0 m3/s = 0.316 L/min

    6.15 0 = 459 gal/min x 1.0 ft3/s/449 gal/min = 1.02 ft 3/s

    6.16 0 = 20 gal/min x 1.0 ft3/s/449 gal/min = 4.45 x 10~2 ft 3/s

    6.17 Q = 2500 gal/min x 1.0 ft

    3

    /s/449 gal/min = 5.57 ft3

    /s

    6.18 0 = 2.50 gal/min x 1.0 ft2/s/449 gal/min = 5.57 x 10~3 ft 3/s

    6.19 0 = 1.25 ft3/s x 449 gal/min/1.0 ft 3/s = 561 gal/min

    6.20 0 = 0.06 ft3/s x 449 gal/min/1.0 ft3/s = 26.9 gal/min

    6.21 0 = 7.50 ft3/s x 449 gal/min/1.0 ft 3/s =3368 gal/min

    F l o w o f F l u i d s 61

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    76/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    77/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    78/298

    xx, ^ t 60.61b rtrt,-2 4.50 ft 3600s _ _ , l S ,6.43 0^= y g =y,4u= 5x 0.2006 ft 2x x = 1.97 x 10 5lb/h

    ft s hr

    6.44 v = = 19.7L /min x -- ^ x =0.856 m/sA 60000L /m in 3.835 x l 0 ~ 4 m 2

    6.45 g = 30gal/min x 1.0 ft 3/s/449gal/min= 0.0668 ft 3/s

    g 0.0668f t3/s 1 r t - 3 2= = = 8.35 x 10 3 f t 2max.

    v{ 8.0 ft/s1 1/4 x 0.065 tube - > , = 6.842 x 10" 3f t 2

    Actual Dj = g / ^ = (0.0668ft3/s)/(6.842 x 10" 3f t 2 ) = 9.77 ft/s

    g 0.0668 ft3/s 1 r t_3 . 2 ^ = = = 2.67x 10 ft mi n.u2 25.0 ft/s

    7/8 x 0.065 tube - > 2 = 3.027 x 10~3ft 2

    Actual D 2 =Q/A2 = (0.0668 ft3/s)/(3.027 x 10~3f t 2 ) = 22.07 ft/s

    g 0.0668f t 3/s n - 2 ^ 26.46 AX = = = 3.34x 10 ft max .

    , 2.0 ft/s2-in x0.065 is largest tube listed - >l , = 1.907 x 10~2ft 2

    Actual i) != QIAX = (0.0668 ft3/s)/(1.907 x 10~2f t 2 ) = 3.50 ft/s

    g 0.0668f t3/s . . . 1 A _ 3 - 2 .A2 = - S - = = 9.54 x 10 ft min .

    v2 7.0 ft/s

    1 1/2-in x0.083tube - > 2= 9.706 x 10~3ft 2

    Actual D 2 = g/^j = (0.0668ft3/s)/(9.706 x 10 - 3 f t 2 ) = 6.88 ft/s

    6.47 g L = 1800L /m in x = 0.030 m3/s

    60000 L/min

    A QL= 0-030 m /s = o.015 m2 minimum; 6-in Sc h 40;A = 1.864 x 10"2m 2

    ' o 2.0m/sQH = 9500/60000 = 0.1583 m

    3/sO 0 1583

    ^ H = = = 7.916 x 10~2m 2 ;14-in Sch 40;A= 8.729 x 10~2m 2

    o 2.0

    6.48 ForAL = 0.015 m 2 min; 6-in Sch 80;A = 1.682 x 10~2m 2

    ForAH = 7.916x 10~2m 2 min; 14-in Sc h 80;A = 7.916 x 10~2m 2

    r *c Q 400L/min l m /s , , - . , . - ,6.49 D = = - x = 3.075 m/s [2-inSch 40pipe]

    A 2.168x10 3m 2 60000L/mi n

    6.50 2-i n Sch 80:v = - = = 3.500 m/sA (1.905x10 )(60000)

    64 C h a p t e r 6

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    79/298

    , r . Q 400gal/min 1f t3/s , N N O ^ , VA- Ot.

    6.51 v = = & x = 10.08 ft/s [4-inSch 40]^ 0.0884 ft2 449 gal/min

    6.52 i)= ^ = = 11.16 ft/s [4-inSch 80]A (0.07986)(449)

    , r-, . Q 2.80L /m in l m 3 / s , r r ^ , , 2 .6.53 A=- = x = 1.556 x 10 4 m 2 min.

    u 0.30 m/s 60000 L/min3/4 x0.065steel tube,A = 1.948 x 10~4m 2

    Q6 95gal/min l f t3 / s ^

    6.54 D 6 _ I N = = e x = 1.055 ft/s

    4 0.2006 ft2 449 gal/min

    1 A = a , Q j a = (Q.5X95)

    4 4 (0.05132)(449)

    6.55 0 = 800gal/min(l ft 3/s/449 gal/min) = 1.782 ft 3/sSuctionpipe : 5 in Sch 40;As = 0.1390 ft

    2 ;vs = QIA= 12.82 ft/s6 in Sch 40;As = 0.2006 f t

    2 ; v, = = 8.88 ft/sDischargepipe: 3 1/2 in Sch 40;Ad = 0.06868 ft

    2 ;v=QIA= 25.94 ft/s4i n Sch 40; = 0.08840 ft 2 ;v=QIA= 20.15 ft/s

    6.56 Q= 2000 gal/min(l ft 3/s/449 gal/min)= 4.454 ft 3/sSuctionpipe: 6 in Sch 40;A,= 0.2006 ft 2 ; =QIA= 22.21 ft/s

    8 in Sch 40;As = 0.3472 ft2 ; v, =QIA= 12.83 ft/s

    Dischargepip e: 5 in Sch 40;Ad = 0.1390 ft2; v=QIA= 32.05 ft/s

    6 i n Sch 40; ^ = 0.2006 f t 2 ;vd = QIA= 22.21 ft/s

    6.57 Q= 60m3

    /h ( l h/3600 s) = 0.01667 m

    3

    /sSuctionpipe: 3 i n Sch 40;As = 4.768 x 10~3m 2 ; v, =QIA= 3.73 m/s

    3 1/2 in Sch 40;As = 6.381 x 10~3m 2 ;vs = QIA= 2.61 m/s

    Discharge pipe: 2 in Sch 40; ^ = 2.168 x 10~3m 2 ;vd = QIA= 7.69 m/s

    2 1/2 in Sch 40;Ad = 3.090 x 10~3m 2 ;vd= 04 = 5.39 m/s

    3\6.58 Q = Av = (7.538 x 10~ Jm') (3 .0 m/s) = 2.261 x 10""2m7s

    A=Q = 2 - 2 6 1 x i r 2 m V s = 1.508 x lo"3 m 2= *ti>/A 15.0m/s

    A = V 4 ^ / - = ^ 4 ( 1 . 5 0 8 x l 0 ^ 3 m 2 ) / - =4.38 x 10 " 2 m x 1 0 ^ =43.8 mmm

    6.59 7 - 5 0 V ^ = 7.98 ft/s in pipeP Af 0.9396 ft

    2

    Q 7.50ft 3/sD N = = ; = 65.0 ft/s in nozzle

    4 , -(4.60i n ) 2 l f t 2

    4 X 1 4 4 i n 2

    F l o w o f F l u i d s

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    80/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    81/298

    2 2

    6.62 Pt. A at gage;Pt. B outsid enozzl e: A - + Z A + ^A - = ^ f i - + z B + ^ - ; pB =0

    7 2g y

    565 kN2 2UA ~ U B = / _ Z X A = 3 6 5 M

    2g B A y " m 2 (9.81 k N / m 3 )

    DB

    =vA

    (AA

    /AB

    ) =vA

    (DA

    IDB

    f =D

    a

    ( 7 0 / 3 5 )

    2

    = 4u A ; u

    2

    = 16u

    2

    ;^ A - ^ B = - 1 5 ^

    2g

    =-53.94 m

    4 5 u 2 = 2g(-53.94m)

    u A =2g( 53.9 4m) 2(9.81 m/s 2)(53.94 m)

    Q = AAvA =

    15

    -(.070m ) 215

    8.40 m/s

    x 8.40 m/s =0.0323m 7s = 3.23 x 10~ 2 m 3/s

    o.6.63 Pt. A before nozzle; Pt. B outside nozzle: *- + zA+ - = - + zB + ^ - ;pB = 0, z A = zB

    PA = y2 2o-o

    2g

    60.61bf t 3

    y

    (7 52 - 4 2 . 1 9 2 ) f t 2 / s 2

    2(32.2 ft/s 2 )

    2g y

    l f t2

    3 ,

    2 g

    u B = 75 ft/s; u A = u B 75Dp

    = 75 21Vl.0y

    144 in 2

    42.19 ft/s

    25.1 psig

    6.64 Q= 10 gal /min x1 ft 3/s

    449 gal/min

    0.0223 f t 3 Q 0.0223ft 3/s 3.71 ft

    0.0060 ft 2

    u 2g _ 0.0223 _ 0.955 ft./>A + " 1 _ / > B + 7 . . 7D + ZA + + + , z A Z B

    4 , 0.02333 s yK 2g yK 2 g '

    PA-PB = JK2 2Un -O.

    2g

    501b

    f t 3(0.955 2 - 3 . 7 1 2 )f t

    2(32.2 ft/s2)

    l f t2

    144 in 2-0.0694 psi

    6.65 Pt. 1 at water surface; Pt. 2 outside nozzle .

    Pi \ V.

    y 2 g y+ z 2 + ; P l = 0,vl =0,p2 =0

    2 g

    u2 =j2g(z} -z2) =^2(9.81 m/s2)(6.0 m) = 10.85 m/s

    g = ^ 2 l ) 2= 7 r ( Q - Q 5 Q m ) 2 x 10.85 m/s = 2.13 x 1 0 2 m 3/s

    U A = Q _ 0.0213 m3

    /sAA 7 r ( .15m)

    2 / 4= 1.206 m/s; u

    2

    _ 1.1206

    2

    m

    2

    / s

    2

    2 g 2(9.81 m/ s 2 )= 0.0741 m

    P x + z x + ^ - - + zA+~- ; P i = 0,v=0y

    PA = yK

    2 g y

    ( * . - * A ) - 2 g

    2g

    9.81 k N

    m[6.0 m - 0.0741 m] =58.1 kPa

    F l o w o f F l u i d s 67

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    82/298

    6.66 Pt. 1 at o i l surface; Pt. 2 outside nozzle.

    Yo+ z . + - J - = + z 2 +-2- ; ^ , = 0,^1= 0 , ^2 = 0

    2g Yo 2g

    x>2= ^J2g(zl- z 2 ) =72(9.81m/ s2 ) (3 .0m) =7 .67 m/s

    ^ , ( .035m ) 2 7.67 m 7.38 x 10~3 m 3

    Q =A2x>2 = x4 s s-3 3iQ _ 7 . 3 8 x 1 0 - i m7s_ 0.940m oA _ oB _ 0.94

    2 m 2 / s 2

    A ( 0 . 1 0 m )2 / 4 2g 2g 2(9.81m / s 2 )

    0.0450 m

    r 2g x0 2g

    y*( z , - z A ) - - ^

    2g

    h

    =(0.85)9.81m

    [4 .0 -0 .045]m =33.0kPa

    v s y

    + z. + - = ^ B - + z B + -J L ; pt = 0, u , = 0

    2g r D

    2g

    2g

    (0.85)(9.8 1)[3.0 - 0.045] = 24.6kP a

    6.67o, + z. + = + z 2 + : Pt. 1 at water surface; Pt. 2 outside nozzle;vx = 0 ,p 2 = 0

    r 2g ^ 2g

    u 2 = y2g(p/r + - z 2 ) = 1232.2 ft

    v s y2^ , ( 3 i n ) 2 59.06 ft ft

    {?=A2v2 = x x144in 2

    201b ft 3 144 i n 2

    i n 2 62.4lb f t 2

    : 2.90 ft7s

    + 8.0 ft 59.06 ft/s

    6.68 -+ z, +-2g Y

    (z2-zl) +

    + z 2 + : Pt. 1 at water surface; Pt. 2 outside nozzle;v= 0,p2 = 0

    2g

    2g

    62.41b

    f t 3-10ft +

    (20) 2 ft2/s2

    2(32.2 ft/s 2)

    l f t 2

    144 i n 2-1.64psig

    6.69o:

    + z. + = + z 2 + : Pt. 1 at water surface; Pt. 2 outside nozzle;2g Y 2g

    P\ =Pi=0, u , = 0

    u2 =

    y

    j2g(z]

    - z2

    ) = ^2(9 .81 m/s2

    (4.6 m) =9.50 m/s

    (2= ^ 2 u 2= ? r ( ' ' Q 2 5 m ) x 9.50 m/s =4.66 x 10~3m 3/s

    68 C h a p t e r 6

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    83/298

    P\ U\ + z,+

    _ A + Z A + ^ A _ : ^ , = 0, = 0 , Z I = Z A2 g r 2 g

    4

    2g9.81kN

    m

    = v2/4 =2.375m/s

    (2 .375)

    2

    m

    2

    / s

    2

    2(9.81m/s 2 )2.82 kPa

    r

    PB= y

    z , + - ^ -= - ^ +z B + - S - ;/>,=0,i) ,= 0

    2g r 2 g

    (*1 - Z B ) -2g

    =9.81 -0.90-(2.375)2

    2(9.81)-11.65kPa

    6.70 (SeeProb. 6.69) v2 == 7 - l x l m / s = 14.46m/s

    , - r - ^2_ ( 1 4 . 4 6 ) 2 m 2 / s 2

    A, "(.025 m ) 2 / 4

    10.66 m2g [2(9.81m /s 2 ) ]

    6.71 (SeeProb. 6.69) vB = =5 - 6 x 1 Q ~ 3 m V s =2 .8 5 m/s

    4 , ; r ( .05m) 2 /4

    Mnimum pressure exists atB , highest po int in system.

    A + Z I + ^ B _ + Z B + ; / , I = 0 J 1 ) ] = 0

    y 2g y 2 g

    Z - Z _ Y~Pn l _ - ( - 1 8 k N ) ( 2 . 85 )2 m 2 / s 2 _Z

    ZX

    y 2g m2

    (9.81 k N / m3

    ) 2(9.81 m/s2

    )

    6.72 Ana lysi s for u 2 , Q,PA,PB sameas Prob. 6.69.

    1.42 m

    u 2 = ^2g(zx-z2) =72(9.81)00) = 14.01m/s

    = 2 2= ; r ( ' 2 5 ^ > x 14.01= 6.88 x 10""3m 3/s

    4

    A = l ^ = C = U b = l V 4

    A =3.502 m/s

    / A= r 02 g

    = (0.86)(9.81)-(3.502)2

    2(9.81)= (8.437)[-0.625]=-5.27 kP a

    ( z , - * , ) - - * -2g

    (8.437)[-3.0- 0.625]=-30.58kPa

    />C=/>A = -5. 27 kPa

    F l o w o f F l u i d s 69

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    84/298

    Yo

    PD= YO

    2g Yo 2g

    2g= (8.437)[10.0 - 0.625] = 79.1 kPa

    + z A + - + z B + , z A ZBr 2g / 2g

    ^ - l _ /> B- / \ _ ( 4 2 - 5 0 )l b f t3 ( 1 4 4 i n 2 )

    2g TV

    An

    i n 2 (62.41b)ft2=-18.46 ft

    - | = 0.25 uB; v{ =0.0625u2

    0.0625u2 -ul =2g( -18. 46 ft)

    -0.9375u 2 =2g( -18 .46f t )

    2(32.2 ft)(-l 8.46 ft)

    ' s2 (-0.9375) 35.6 ft/s

    PA , v , l _ P* , _ , U B . _ _ 7r Z A 4- r ZB +- , Z A Zg

    Yo 2g Yo 2g

    \ _ PB -PA _ (28 .2- 25.6 ) lb ft 3 (144 in 2 )

    2g i n2 (0.90)(62.4 lb)f t 2

    = 6.667ft

    vA = v B ^ - = oBAA v D A y

    = 2.56vB; u A = 6.55Ug

    6 . 5 5 u 2 - u 2 =2g(6.667ft)

    5.55u 2 = 2g(6.667 ft)

    2(32.2)(6.667) = , J 9 m

    5.55

    ^ , - ( 8 i n ) 2 8.79ft ft 2 , 3 ,Q =ABx>B = - i - x x = 3 .0 7f t

    3 / s4 s 144 in

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    85/298

    2g K 2g

    2g 2g

    1 6 u A - u A_ 1 5 u A

    2g

    2g 2g

    Manometer:pA +ywy +yji - ymh - ywy =pB [cancel termsw i t hy]

    PA ~PB=ymh ~yji =Kym - yw) =A(13.54yH,- yw) =A(12.54yw)

    PA -PB = 12.54/;=15u

    2g

    2 g q 2 . 5 4 ) W 2(9.81m X 1 254X0250m ) = ^ ^

    15 V s 2 ( 1 5 )

    Q = v A T) A = [TT(.050m) 2/4](2.025 m/s) = 3.98 x 10"3 m3/s

    N 2

    D,6.76 (SeeProb. 6.75)u A= u B

    AB

    \AAJ

    = 0.25u B=0.25(10)=2.50m/s

    12.54/2_ 15uA _15(2 .50)

    2 m 2 / s 2 _2^i2g 2(9.81m/s 2 )

    /i=4.778m/12.54=0.381m

    ;4.778m

    6.77^ + z A + ^= + z B + ^ -7D 2g yo 2g

    2 2

    2gPB-PA

    7o(ZB~ZA)

    AA (DA]

    2

    l 0 0 l~ O, = ^AAB AKDB) A L 50J

    u2

    = 1 6 u A

    ol - u 2 = u 2 -16u 42 = - 1 5 u 2

    Manometer: pA +y(0.35m)- y,(0.20m)- y o(0.75m)= pBPB-PA = -yw(0.20 m) - y(0.40)m

    ^ ^ = ^ ( Q - 2 Q m ) - 0 . 4 0 = - 9 - 8 1 ( 0 . 2 0 m ) _ a 4 Q m _ a 6 2 7 m

    7o 70 8.64

    z B - z A=0.60

    -\5u2

    A =2g[-0.627m +0.60 m]=2g(-0.027m)

    u A = A /2(9.81m/s2) ( -0 .027 m) /-15 =0.188m/s

    Q =AAx>A = ^a i ^ m ) x0.188 m/s=1.48x10~ 3m 3/s

    F l o w o fF l u i d s

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    86/298

    6.78

    6.79

    2g K

    z B - z A=0.25m

    + (ZB~ZA)

    V ^ y

    ( 200

    v 75 y: 7.11u 4

    vi =50.6u 2

    u 2 - u 2 = 2 - 5 0 . 6 ^ = - 4 9 . 6 u 2

    Manometer: /? A+y0>>+yo(0.60 m)- yG(0.60 m)- yay- yo(0.25 m) =pB

    PB-PA =yo(0.35 m)- y G(0.60 m)

    PB-PA -Q 35 ( l -40)(9 .81kN/m 3 )(0.60m) =

    _0 5 8 3

    y0 ' (0.90)(9.81 k N / m3 )

    m

    -49.6/J 2 =2g[-0.583 m + 0.25 m]=2g(-0.333m )

    vA = ^2(9.81 m/s2 ) ( -0.333 m)/(-49.6) =0.363m/s

    Q =AAx>A = [;r(.20 m)74](0.363 m/s)=1.14 x10~2m

    3

    /s

    ^ +zYo 2g

    = ^ B + Z B +

    r0 2g

    Le t z A- z B=

    X

    Le t y =Distance fromB to^ +zYo 2g

    = ^ B + Z B +

    r0 2gsurfaceof Mercury.

    PA -PB+ *A

    2 2

    _ _ ^ B - ^ A

    AA^ B ^ A - T ^ A

    B

    ^A

    2

    = UA 4 Y

    Yo+ *A B -

    2 g

    AA^ B ^ A - T ^ A

    B

    ^A 4 Y

    Manometer: pB + yoy + ymh-yoh-y0y-y

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    87/298

    6.81+ z A +

    2g y 2g

    PB^PA+Y2 g

    u . = = ; = 20.37 ft/sA A A ; r ( 6 i n )

    2 /4 ft2

    / \ 2

    = 4 u A =81.49 ft/s

    ?B= 60.0 psig + (0.6 7)62.4 lb

    ft3(20.37 2 - 8 1 .4 9 2 ) f t 2 / s 2

    2(32.2 ft/s2)

    l f t 2

    144 in 231.94 psig

    6.82

    ^ + zZA 2g r 2g

    ^B = AA A 0.08840 ft

    2

    n n o n

    = uA - = 3.789u AA B

    A 0.02333 ft2 A

    PA ~PB+ ZA-

    2 2

    Z - U B - ^ A = ( 3 . 7 8 9 u A )2 - u 2 = 1 3 . 3 6 u A

    Y+ ZA- B -

    2g -ZB == -24 in

    Manometer: pB +y(24in) + y 0 (6 in) +yw (8 in ) - y 0(8 in) - y c (6 in) =pAPA-PB = y 0 (16 in) + y w(8 in)

    P a ~ p = 16i n + ^ ( 8 i n ) = 16in + 6 2 A l b , ( g j n ) = 25.08 inr0 r 55.0 i b / f t

    3

    i n 25.08 in - 24.0 in = 13 .3 6u 2/2g

    ^ = ^ | 2 g ( 1 . 0 8 i n ) = ^ |2(32.2f t/s2 ) ( 1.08in) = ^ ^

    13.36

    e =^ A w A = 0.08840 ft2

    x 9

    - > - ~3

    13.36(12 in/ft)

    = 0.0582 ft7s

    F l o w o f F l u i d s

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    88/298

    6.83 Plot show n below. Data computed as follows.Pt. 1: Ta nk surface - Pt. 2: Outs ide nozzle - Ref. level at D.

    2

    ' " EL = 0 See Probl em 6.72 fordata.2g ' r

    Pt. 1: z, = 10.0 m; - - = 0;2g

    vi (3.502 m/s ) zPt. A: z A = 10.0 m;

    2 g 2(9.81 m/ s2

    )

    +0.625 m :2 2

    VE _ Uc2

    2g 2g 2g

    7

    -5.27 k N / m 2

    8.437 k N / m 3= -0.625 m =

    7

    Pt. B: z B = 13.0 m; =0.625 m2g

    7

    -30.58=-3.625 m

    8.437

    Pt. C: Same as Pt. A

    P t . D : z D = 0; ^ =0.625m; ^ = =9.375m2 g x 8.437

    P t . 2 : z 2 = 0 ; i = ^ i m = 1 0 . 0 m ; ^ = 02g 2(9.81) r

    Tota head T - Y

    10.0 m - z,

    Reference

    2ff

    2g

    R1 C O Pt2

    74 C h a p t e r 6

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    89/298

    6.84 See Prob. 6.73 for data. L et z A = z B = 0

    . pA 50.01b 144 i n2 f t 3 c t a .

    P t . A : = x x = 115.4fty i n 2 ft2 62.41b

    v\ _ (0 .25u B )2_ [(0.25)(35.6ft/s)]2 _

    2g 2g 2(32.2 f t /s 2 ) 1.23ft

    -Totalhead = 116.6 ft

    P , . B : f i L = ( ^ X 1 4 4 ) = 9 ^ f t

    Y 62.4

    o _ (35.6) 2

    2g 2(32.2)=19.7 ft

    - T o t a lhead = 116.6 ft

    TotalHead

    " 2_ - l a -

    Y Y

    (

    1 Referencelevei(Ptoecenterln e)

    F l o w o f F l u i d s

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    90/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    91/298

    6.86 W i t h Mercury at wal lof throat, h/2 = 0.30 m;h = 0.60 m

    .2 . ,2

    -+ z, + = +zt2s rw 2g

    u, -v.-~L= u.A

    r D ^ 2 f11

    25.

    P - p t _ u ,2 - u 2 _(9o)

    2-l2 80

    K 2g 2g 2g

    Manometer: pl +yw(DJ2) +yw(0.60 m) - yff l(0.60 m) - yw(D2) = pt

    P\-Pt _ rm ( 0 . 6 0 m )- - 0.60 m = 13.54(0.60) - 0.60 = 7.52 m

    _ feOS^n) 2(9.81 W . 5 2 m ) _

    V 80 \ s 2 (80)

    Q =Aix>t = 7i(0.075 m)2 /4 x 1.36 m/s = 6.00 x 10" 3 m3/s

    F l o w o f F l u i d s

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    92/298

    6.87 + Z i + i ^ = l + Z 2 + - : 0 =J2g(zl -z2) =Jgh = Veloci ty of jetY 2g Y

    2g

    (ft) u(ft/s)

    10 25.4

    8 22.7

    6 19.7

    4 16.1

    2 11.4

    1.5 9.83

    1.0 8.02

    0.5 5.67

    0 0

    25

    20

    o

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    93/298

    6.94 9.50 m=h +p/y = 1.50m + pdy9 81k N

    Pt =y[9.50 - 1.50] = " 3 x 8.0 m =78.48kPam

    Flow due to afalling head

    6 . 95 t 2 - t i =2 i A ,

    r l ^j ) ( h l l 2 - h l n ) = 2 ( 4 Q Q ) (2 .68 1 / 2 - 0 ) =296s[4min,56 s]

    A, =7r(3.00m) 2 /4 = 7.07m 2 ;Aj=TT(.15 m) 2 /4 =0.0177m 2

    AJAj =7.07/0.0177 =400

    6.96 AJAj =(D/Djf =(300/20) 2= 225

    h _ t = 2 ( 2 2 5 ) (,Q55 1/ 2 - 0 ) =23.8s

    ^ 2 ( 9 l l ) V '

    6.97 4,-= (DJDjf = (12/0.50) 2= 576

    t2 - h = , 2 ( 5 7 6 ) (15.0 ft,/2 - 0) =556s(9min, 16 s)

    ^2(32.2 ft/s 2) V 7

    6.98 ^//4 7-= (PJDjf =(22.0/0.50)2= 1936

    g= (32.2 ft/s2)(12 in/ft)= 386 in/s 2

    _ 2 ( 4 - ^ ) , , 2 ( 1 9 3 6 ) = , 1 8 5 , / 2 . n v= ^ s ^ 5 9

    V 2 g V 7 7 2 (386in/s 2 ) Vfe - fi=

    6.99 4A47-= (A/ A)2 = (2-25 m/0.05 m ) 2=2025

    2(2025) , m U 2t2 - tx =

    ^2(9.81)

    (2 .68 1 / 2 - 1 . 1 8 " 2 ) =504s (8min,24 s)

    6.100 AJAj = (A/ A) 2=(1-25 m/0.025m ) 2= 2500

    t 2 _ f l = 2 ( 2 5 Q Q > ( l .38 1 / 2 -1 .155 1 / 2 ) =113s (1 min,53 s)

    72(9.81)V ;

    6.101 SeeProb.6.98: g= 386 in/s

    \ 2

    2

    2

    =,44007 7 l 0.625in i

    2 - r, =2(14400)

    72(386)

    ( 3 8 , / 2 - 2 5 . 5 1 / 2 ) = 1155s(19min,15 s)

    6.102 At/Aj = (Dt/Dj)2 =

    r 46.5 ft V

    8.75in (l ft/12 in )J=4067

    2 _ = 2 ( 4 Q 6 7 > (23 .0172-2.0172) =3427s (57min,7 s)72(32.2 f t /s 2 )

    F l o w o f F l u i d s 79

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    94/298

    6.103 See Prob. 6.97.

    = 5 . 0 1 b f t 144 m = U 5 4 f t h = 15.0 ft + 11.54 ft = 26.54 fty i n 2 62.41b ft 2

    h2 = 11.54 ft= -Y

    2 ( 5 7 6 ) (26.54 1 / 2 - 1 1 . 5 4 1 / 2 ) = 252 s(4 min, 12 s)72(32.2)v '

    6.104 See Prob . 6.1 01.

    p 2.81b f t 3 144i n 2 . . 12 in __ . ._= = 6.46 ft x = 77.5 i nY i n 262.4 lb ft 2 ft

    A,= 38 in + 77.5 in = 115.5 in;h2 =25.5 in + 77.5 in = 100 in

    2(14400)

    72(386)

    6.105 See Prob. 6.96. .2

    t2-U = ( l l 5 . 51 / 2 - 1 0 0 1 / 2 ) = 774 s(12 mi n, 54 s)

    p 20 k N m 2

    = = 2.039 mY m 2 9.81kN

    hx =0.055m + 2.039 m = 2.094 m;h2 = 2.039 m

    2 - f , =^ S L ( 2 . 0 9 4l / 2 - 2 . 0 3 9 l / 2 ) = 1 .

    72(9.81)V '.94 s

    6.106 See Prob . 6.100.

    / ? _ 3 5 k N m 3= 3.57m

    Y m 2 9.81 k N

    A, = 1.38 + 3.57 = 4.95 m;h2

    = 1.155 m + 3.57 m = 4.722 mh - u = j g ^ l ( 4 . 9 5 ^ - 4 . 7 2 2 '

    / 2 ) =57.8s

    80 C h a p t e r 6

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    95/298

    CHAPTER SEVEN

    GENERAL ENERGY EQUATION

    7.1

    7.2

    + z,Yo 2g Yo 2g

    ; Zj= z 2 and vx = Oj

    P l - p 2 (74.6 -62.2 ) lb f t3 144 i n 2

    Yo m

    ^ + z A + i - / ^2 g 7,

    (0.83)(62.4 lb) ft234.5 lb ft/lb

    7

    PB=PA+Y,

    pB = 60 psi g

    2g

    2 2U A ~On

    2g

    = oA

    oB =1 0 ft/s

    62.4 lbf t 3

    3 0 f t +

    ( l ^ C ^ _ 2 5 f t

    2(32.2 ft/s 2 )1 f t

    2

    144 i n 2

    ' v 2

    = 40 ft/s

    52.1 psig

    7.3

    Yw

    z ] + ^ - h L ^2g 2g

    Pt. 1 at surface of water. 0\= 0Pt. 2 in stream outside nozzle. p2 = 0

    7.4

    o2= 2gY

    (z, -z2)-hL2(9.81 m) 140 k N m 3

    m 2 9.81 kN+ 2.4 m - 2.0 m

    = 17.0 m/s\2//1 . . 1-7 A _ / - - - . . 1 ( 1 - 1 _ 3 /g =A2u2 =40.05 m)74 x 17.0 m/s = 3.33 x 10

    m/s

    Pt vf r Pl 2zx+ -hL=

    i-L +z2+ 2g ' yw 2g

    Yw zg 7,

    P\=p2 = 0and Oi = 0

    hL = (z! - z 2 ) - r2 -2g

    hL= 10 m(4.56 m/s) 2

    2(9.81 m / s 1 )= 8.94 m =

    8.94 N m

    N

    Pt. 1 at water surface.Pt. 2 in stream outside pipe.

    Q 0.085 m 3/s

    A2 1 . 8 6 4 x l 0 ^2 m 2

    02= 4.56 m/s

    7.5

    EA 2gJ 4 L2g

    2 2

    o -ov2g

    o.

    Q _ 0.20 flVs

    A. 0.02333 ft 2 = 8.57 ft/s

    e L = ^ 2 o _ = 2 2 6 / s

    4 , 0.0884

    G e n e r a l E n e r g y E q u a t i o n81

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    96/298

    Manometer:pA +y w (10 in)- y m (14 in)- y w (44 in) =pB

    PA-PB _ 7 m ( 1 4 i n )+ ( 3 4 i n ) _ 1 3 . 5 4 ^ ( 1 4 i n )+ ( 3 4 i n ) = 2 2 3 6 i n x J j L

    = 18.6ft

    L - 1 M ft+ (-4.0ft)+ ~ ni2g

    ^ | + 1 0 f t - 1 . 5 4 f t - 6 f t ] - l A2

    ft3 144 in 2

    84 Chap t e r 7

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    99/298

    b) pc 21.8 psig (same as Prob. 7.14)

    c) hA = (z D - Z A ) + hh+hLo = 30 ft + 6 ft + 12 ft = 48 ft

    d) P = ^ Y w 2 = (48 ft)(62.4 lb/ft3)(20.0 ft3/s)/550 = 10.9 hp

    7.16 a)

    b)

    + Z.+-

    Yo 2g

    hA^ ^ + {z2-z,) + hL =Yo

    Yo ' 2

    S825 k N m

    m 2 (0.85)(9.81kN)

    Pt .1at lower tank surface. />, = 0

    Pt. 2 atuppertank surface. o, = o2

    + 14.5 m +4 .2 m = 117.6 m

    ^ = A ^ o e = (117.6m)(0.85)

    = 13.73 kWy

    P

    9.81kN

    m

    840L /min ( l m 3/s ) _ 13.73 k Nm

    60000 L/min

    l - i r Pi vi+ z, +-

    7 0 " 2g

    P3= 7 0

    _ (0.85)(9.81 kN )

    7 02

    2gPt. 3 at pump inlet.

    m-3.0 m -

    (4.53 m/s) 2 1.4 N - m

    2(9.81m/s 2 )

    = 6 _ 8 4 0 L/min ( lm 3 /s) 10 3 4 60000 L /min 3.090x 10~3 m 2

    N

    :4.53 m/s

    = -45.4 kPa

    7.17 - ^ + z, +A - A , = ^ ~ 2

    >7 2 g >7+ z 2 +

    2 g

    Pt.1at lower pump surface. />, = 0

    Pt. 2 outside pipe at cutter. vx = 0

    A= ( z2

    - z i ) + + AL

    =1 .2 5 m + (2

    -9 1 m / s

    ) +3 .0 m = 4.68m2g 2(9.81 m/ s 2 )

    = 6 _ 60L/ min ( l m7s) 1

    ^ ^ 60000 L /min X 3.437x l 0 ~ 4 m 22.91 m/s

    PA ~ hAjjQ (4.68m)(0.95)/ 9 . 8 1 k N V 60 m 3 A

    m 60000s

    0.0436kN-m 103 N 43 .6 N- mx=

    s k N s= 43.6W

    7.18 Tub Vol ume = (xD2/4)(d) = [ TI (0.525m) 2/4](0.25 m) = 0.0541 m 3

    Q=V/t = 0.0541 m790 s = 6.013 x 10~4

    m3

    /sn , Q 6 .013xl0"

    4 m 3 / s . .Outlet 2= = ; = 2.36 m/s

    4, ; r ( .018m)2 /4

    U 2 , , p2 v1

    -+ z, + - 1 - +A, - A, = + z, +2g 7 2g

    Pt. 1 at tub surface.Pt. 2 in outlet stream.

    P\ = Pz = 0; T>, = 0

    A= ( z 2 - z , ) + ^ + A= (1.00- 0.375)m + (2 - 3 6 m / s ) 2

    W U 2g 2(9.81 m/s 2)+ 0.22m =1.13m

    G e n e r a l E n e r g y E q u a t i o n

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    100/298

    7.19 Weight Flo wRate= W= w/t = 556 lb/10 s = 55.6 lb/s

    _ W 55.61b/s n 8 Q 1 f t 3 / Q 0.891 ft3/s 1 f t 0 1 f t /

    Q= = - = 0 . 8 9 1 ft/s: u A = - = ^ = ; = 10.21 ft/sX, 62.4 lb/f t 3 A ; r (4 /12 )

    2 / 4 f t 2

    = 10.21 ft/s/ 4 V

    v3y= 18.15 ft/s at outlet ofupperpipe (Pt. B)

    ^ + z A A + A r A l = ^ . + z B A ; A = 0 a n d ^ = 0

    ^ = ( z B _ Z A ) + ^ Z _ ^ = 2 0 f t + O 8 . 1 52 - 1 0 . 2 1 2 ) f t 2 / s 2 -2.01bft 3 144m 2

    2g y w 2(32.2 ft/s2) in 2(62.41b) ft

    ^ = 20 ft + 3.50 ft + 4.62 ft = 28.11 ft

    PA = hAW= 28.11 ft(55.6 lb/s) = l* >3 fM b/ s( lh p) = 1 M ^550 ft-lb/s

    7.20 g = 9 - 1 g a l / m i n ( l f t 3 / s > = 0.0203 ft3/s449 gal/min

    PA = hAy0Q = (257 ft)(0.90)(62.4 lb /ft3)(0.0203 ft3/s) =292.5 ft-lb/s/550 = 0.532 hp

    e M = ^ ^ * L =0.626 = 62.6%P 0.850 hp

    K 1.0 L l m7.21 0 = - = ^ x - ^ - = 2 . 5 0 x 10" 5m 3/s s~\ -

    r 40s 10 3 L i ' C > ' '

    Pi = YmA= h x (-0.15 m) = -20.0 kPa3 AV - U . U I I I ; v . v is j r a 0 , - 0m

    1 r\ > Z, 2 ~

    rs 2 Y, 2g

    .2

    X g 6.67 kN / m3

    ^ = hAjgQ = (7.50 m)(6.67 kN/m 3)(2.50 x 10~5m 3/s)(10 3 N /k N) = 1.25 N-m/s

    P 1 25WP = L= 1 !L = 2 .0 8^

    e 0.60

    x x . . stroke -(5.0i n ) 2 ( l f t 2 ) 20 in ft n ,7.22 a) Q = , C V | x = - i - -- 'x = 0.01515 ft

    3/stime 4(144in 2 ) 15 s 12 in

    b) Poyi= = 1 1 Q Q Q l b , = (560 lb / in 2 ) (144 in 2 / f t 2 ) = 80672 lb/f t 2

    Acyi ; r (5 .0)2 / (4) in 2

    86 C h a p t e r 7

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    101/298

    3 ) A + b + + i

    Yo 2g Yo 2g

    PB=PC+YO ( z c - z B ) +2 2

    T _ " D2g

    Pt. A at tank surface.

    Pt. B at pump outlet.

    Pt.Cincylinder.

    20 i n ftoc = x15s 12 in s

    (62.41b)

    n , , , , f t Q 0.01515 ft3/s=0.1111: u n =-^ - = : = 15.52 ft/s

    /> B = 560 psig + 0.90-

    = 576.1 psig

    f t 3

    A B 0.000976f t2

    i o f t + ( n i l ' - 1 5 - 5 2 3 > + 3 5 . o f t

    2(32.2)

    l f t 2

    144in 2

    o* Pt. D at pump inl et.d) EA +z + ^ - h , = ^ - + z D + ^

    2g y0 2g / > A = 0 , u A = 07.

    />D = YO2g

    Vo= B = 15.52 ft/s

    (0.90)(62.41b)PD

    f t 3

    P D = -4.98 psig

    -5.0 ft-(15.52 f t /s ) 2

    2(32.2 ft/s 2)-11.5 ft

    l f t 2

    144 in 2

    2 2

    e) A + Z a + ^ + A a - A - A = c + Z c + i ^ : ^ = 0 , ^ = 0

    X 0 2g

    A = + (z - z ) + + /! + AA X0

    A 2g h 0 ft 2(0.9)(62.41b)

    806721b-ft3 + 1 5 f t + ( . H l l )2

    2g

    + 11.5 ft + 35 ft

    7.23

    h = 1498 ft

    PA = hAyAQ == (1498 ft)(0.90)(62.4 1 ^ X 0 . 0 1 5 1 5 ftVs) = 1 2 7 5 ^ l b / s = 2 .32 hp

    2g-+ z B +

    2g

    ^ ^ - . ( z A - z l > ) + ^ - ^2g

    550

    4 , , c 1.772 x l 0 ~3 m 2

    U a = U B - -b - = 1.5 -

    A 3.835x l 0 ~ 4m 2

    u A = 6.93 m/s; assumehL = 0

    . ffj.-34)0tf)lft.- ( 6 . 9 3 ' - l . S t f > . W = 3 9 ( ) m

    0.90(9810N / m 3 ) 2(9.81 m/ s 2 )

    P= hRyQ = /IHYOABOB = (390 m)(0.90)(9.81 kN/m3)(1.772 x 10~3m 2)(1.5 m/s)

    = 9.15 k W

    G e n e r a l E n e r g y E q u a t i o n 87

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    102/298

    7.24

    H R = FAZPR. + (z A - z B ) - ^ *

    Yw 2g

    g = 3400gal/mm(lft3 /s) = ? 5 ? ft3/s

    449 gal/min

    (A7.57 ft 3/s

    0.7771f t 2

    _ 6 _ 7.57 _

    = 9.74 ft/s

    o, = - - = = 2.71 ft/s4 2.792

    _ o n ^ A _2 .0 (9 .74 ) 2_

    [ 2 1 . 4 - ( - 5 ) ] l b - f t 3 ( 1 4 4 i n 2 ) ^ o a (9.742 - 2 . 7 4 2 )

    in 2 (62 .41b) l f t 2+ 3ft

    2(32.2)

    h, =2.0 2g 2(32.2)

    ft -2 .9 5 ft = 62.3ft

    = 2.95 ft

    PR = hRJwQ = (62.3 ft)(62.4 lb/f t3)(7.57 ft3/s) =

    29454 ft-lb/s

    (550 ft-lb/s)/hp53.6 hp

    7.25 ^ + z x + ^ - h R - h L = ^ + z2+^-Yo 2g yo 2g

    Pt . 1at oilsurface. px = 0 and vx = 0

    Pt. 2 in outlet stream. p2=0

    hR = (zx -z2)- -hL= 10 m - 0.638m - 1.40 m = 7 .9 6m2g

    _ e 0.25 m3/s , ol 3.54 2 m 2 / s 2

    = 3.54 m/s: ~~ 0.638 m4 >r(0.30m)74 2g 2(9.8 l) m/ s 2

    P = = (7.96 m)(0.86) (9.81 kN/m 3)(0.25 m 3/3) = 16.79 kN-m/s = 16.79 kW

    P=PR-eM= 16.79 k W x 0.75 = 12.60 kW

    7.26

    Yf

    1 = ^

    hA =

    2g

    Pi -Pi

    Yf

    Yf

    + (z 2 - z , ) -2 2

    U2 - ,

    2g

    2g

    + hL

    Q=40 gal/min/449 =0.0891 ft 3/s

    Q 0.0891 ft 3/s

    4 0.05132f t 2

    Q _ 0.0891

    = 1.74 ft/s

    4 0.02333 = 3.82 ft/s

    5 0 . 0 - ( - 2 . 3 0 ) l l b - f t 3 1 4 4 i n 2 (3.822 - 1 .74 2 ) f t 2

    hA= i - + 25f t + - ^ . \ + 3.4ft = 154.1 ftin 2(60.01b)ft 2 2(32.2 ft/s 2 )s 2

    PA = hAyjQ = (154.1 ft)(60.0 lb/ft3)(0.0891 f t 3 / s) ( l hp/550 lb-ft/s) = 1.50 hp

    7.27 P, =PA/eM= 1.50 hp/0.75= 2.00 hp

    P\ i i/ . 8 2 g 7 2g

    Pt . 1atwatersurface. pl~0,ul=0

    Pt. 2 in outlet stream. p2 = 0

    /i = (z, - z 2 ) - ^ = 4 . 0 m - (5.14 m/s)2/2(9.81 m/s2) = 2.65 m

    02

    2g

    Q 600L/min( lm 3 /s)

    4 60000L /m in 1.945 x 10~3 m 2= 5.14 m/s

    88 C h a p t e r 7

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    103/298

    7.2977 2g x K 2g

    PB= 7K (ZI~^)r-~hL 2g

    Pt . 1at tank surface. />, = O, u, = O

    _ Q _ 0.060 m 3/s

    AB 4.768x l 0 ~3 m 2

    12.58 m/s

    /> B = (0.823)(9.81 kN/m3

    ) 17.0 m -(12.58m/s)2

    2(9.81 m/s 2 )- 4 . 6 0 m 35.0 kN/m

    2

    = 35.0 kP a

    7.301

    + Z l + . n _ _ A R - A L = - + z 2 + ~2

    2g 2g

    Pt . 1at reservoirsurface. px = 0,ux = 0

    Pt. 2 in outlet stream. p2=0

    hL = (Z ] - z 2 ) - -r2- - A*

    2g

    O 1000 gal/min l ft 3 / st>2= = 5 x = 6.41 ft/s

    A2 0.3472f t2 449 gal/ min

    h, = 165 ft

    h ~ P" -nR

    (6.41 ft/s)2

    2(32.2 ft/s 2)

    37.0 hp(550ft- lb/s)

    rw g 1hp(62.4lb/f t3)(2.227 ft 3/s)

    146.4 ft = 17.9 ft = 17.9 ftlb/lb

    = 146.4 ft

    7.31 ^ + z , + ^ - A , = ^ + z 1 +2g 2gr

    w

    g a rw

    h = (z}-zA) = P + ^ + hL

    rw 2g

    Q = 1500 gal/min x 1f t3

    /s/449 gal/min = 3.341 ft3

    /sQ _ 3.341 ft 3/s _

    Pt . 1at reservoirsurface. p = 0,m = 0

    oA =AK 0.5479f t

    2

    = 6.10 ft/s

    A = 5.01b(ft3 X144m 2 ) + (6-lOft/s) + ft = ^

    in 2 (62.41b)(ft 2 ) 2(32.2 f t /s 2)

    7.32 ^ + z . + ^ - + A - A , = ^ B - + z + ^ D -

    A,, =

    A ' ' ' " A "X N B

    2g rw 2g

    Q _ 3.341 ft 3/s

    4 0.3472f t 2

    EAZJIA. + ( z z ) + + f = ( 8 5 - 5 ) l b ( f t3 ) 1 4 4 m 2 +

    rw 2g in 2(62.41b)ft2

    + (9.622 - 6 . 1 0 2 ) f t 2 / s 2 + 2 8 f t = m 5 f t

    = 9.62 ft/s

    25 ft

    2(32.2 f t /s 2 )

    ^ = = (238.5 ft)(62.4 lb/ft 3)(3.341 ft3/s)/550 = 90.4 hp

    G e n e r a l E n e r g y E q u a t i o n

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    104/298

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    105/298

    7.36A o,

    + Z , + -= -

    r 2 8

    P2 = y

    y 2gPi =O, o, =O

    2g

    Q 0.390 ft 3/sUb= = r- = 7.59 it /s

    4 0.05132 f t 2

    J22 _ (7.59) 2= 0.896 ft

    2g 2(32.2)

    p 2 = 58 .0 3[ -4 .0 ft -0 .8 96 ft-2.80 ft]f t 3

    l f t 2

    144 in 2-3.10 psig

    7.37o:.3 .

    y 2g

    P3 = y

    y 2g

    (Z

    l - Z 3 ) - ^ + k

    A

    2g

    : pl = 0,oi=0

    lb,

    =5 8. 03 -^ -[ -4 .0 - 2.13 - 2.80 + 552.51

    '

    f t

    .f t3 L J

    1 4 4 i n2

    Pi = 219.1 psig

    7.38y

    z 3 + ^ - h L = A2g y 2g

    p4 = j P 3 _ i =2 19 .1 psig - 58.03 ^ (28.5 ft) 207.6 psig

    7.39 A + Z 5 + Ay 2g y

    o:6_.

    lb,/>5 = r[(z6-z5) + h J = 58. 03[ -1. 0 ft + 3.50 ft ]

    l f t 2

    144in 21.01 psig

    7.40 For Q= 175 gal/min, Fig. 6.2 suggestsusing either a 2 Vi-in or 3-inSchedule 40 steel pipe for

    the suction line.The given 3-in pipe is satisfactory. However, noting that the pressure at the

    inlet to the pump is -3.10 psig, a larger pipe may be warranted todecreasethe energy Iosses

    in the suction line and increase the pump inletpressure.See Chapters 9-13, especially

    Section 13.12 on net positive suctionhead(NPSH).

    Fig. 6.2 suggestseither a 2-in or 2 Vi-inpipe for the discharge line.The given 2 Vi-in pipe size

    is satisfactory.

    G e n e r a l E n e r g y E q u a t i o n 91

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    106/298

    7.41 P+ Z i + ^ h L = l . + Z 2 + ^ : ^ = oy 2g y 2g

    P = 7

    2 2

    2g

    Y= 0.76(62.4 lb/f t 3 ) = 47.42 lb/f t 3

    z2 - zi = -22 i n ( l ft/12 in ) = -1.8 33 ft

    f t 3

    O

    8s 7.48 gal

    _ Q

    = 0.668 ft 3/s

    0.668ft 3/s 144 i n 2

    x : = 30.64 ft/s4 ^(2.0i n ) 2 / 4 ft2

    0.668f t 3 / s 144 i n 2 _ 0 A /x = 0.378 ft/s

    A, 7z-(18.0in) 2/4

    Pi = 47.42Jb

    ft:

    />, = 5.76 psig

    (30.642 - 0 . 3 7 8 2 ) f t 2 / s 2

    -1.833 ft+ r + 4.75 ft

    2(32.2 ft/s2

    )

    l f t 2

    144 i n2

    7.42 + z, +- 1

    r 2gh, +hA = ^

    2 - + z, +

    hA = ^ + (z2-z) + hL--r

    r301b

    v\ Pt. 1at creek surface. px = 0, L>,=0

    Pt . 2 at tank surface. u, = 02g

    f t 3 144 i n 2

    i n 2 62.41b ft2+ 220 ft +15.5 ft = 304.7 ft

    r 62.41b 40gal/min (l ft 3 /s)hpP

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    107/298

    .2 . . 2

    7.44 + Z i + A _ ^ = A + Z 2 + A . : Z l = Z 2Yo 2S Y 2g

    R +

    Yo 2S

    Manometer: px + y0y +yQ(38.5 i n) - ym(38.5 in) - =p2Pi -Pi = ym(38.5 in) - y e(38.5 in)

    Px-Pi = j ^ L ( 3 8 , 5 i n ) - 3 8 . 5 i n= U M y (38.5 in ) - 38.5 i nYo Yo -9Y

    540.7 i n x - ^ _ = 45.06 ftYo 1 2 i n

    Q 135 gal/m in l f tV s 0.3007 f t 3 / su = = e x = - = 24.50 ft/s

    4 0.01227 f t 2 449gal/m in 0.01227ft 2

    Q 0.3007 ft 3/s^ = J L = : r = 10.21 fiVs

    4 0.02944 ft2

    hR = 45.06 ft + v n , 2

    = 5 2 J 6 f t(24.52

    - 10 .212

    ) f t2

    / s2

    2(32.2 ft/s 2 )

    PR =Ayg = (52.76 ft)(0.90)(62.4 lb/ft 3)(0.3007 ft3/s) = 891.0 ft-lb/s

    PR = 891.0 ft-lb/s x ^ = 1.62 hp550 ft-lb/s

    7.45 P0 =PRxeM=\ .62 hp x 0.78 = 1.26 hp

    G e n e r a l E n e r g y E q u a t i o n 93

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    108/298

    CHAPTER EIGHT

    REYNOLDS NUMBER, LAMINAR FLOW,

    TURBULENT FLOW, AND ENERGY LOSSESDUE TOFRICT ION

    U v = Q =J ^ ^ x l4 ! ^ ! =2 .2 9 ft/s;D =4.0 i n ( l ft/12 in) =0.333 ft

    A TT(4.0i n ) 2 / 4 f t 2

    oDp. (2.29)(0.333)(1.26)(1.94) _

    / / 7.5 x l O " 3

    L from Ap p. D

    5.2 LetNR =4000 = ZJ>/V: v = 4.38 x 10~6 ft 2/sApp. A;D = (2/12)ft

    = = j V = 4000(4 .38x10^) = ( U Q s ft x 0.3048m = Q ^ m

    D 2/ 12 s ft s

    5.3 Le t = 2000 = vDplp

    j V , = 2000(4.0x10 -)

    (0.10)(0.895)(1000)

    Q = i> = ^ C 0 - 1 0 " 1 ) , x 0.894 m/s = 7.02 x 10~3 m 3/s

    .4 u= Q/A = 0 , 2 5 / S 9 = 10.72 ft/s;D =0.1723 ft0.02333 f t 2

    a) NR = = < ! ^ ^ > = , . 5 3 x ,0* (v from App. A)v 1.21x10

    u D / ^ (10.72X0.1723)(1.53) t n 5

    / / 6.60 x lO"b ) A ^ = ^ = ^ ^ ^ 4 , 2 8 x l o 5 ( p ^ f r o m A p p . B )

    , A r u Z V (10.72)(0.1723)(1.86) , . . ,c) NR = ^ = i - J - '- = 253 (/>,// from App. B)

    / / 1.36 x 10 XT vDp (10.72X0.1723)(0.87)(1.94) , 4 , ,

    d) Afo= ^ = ^ '.^ '- = 3.28 x 10

    4

    (//f rom App. D)v 9.5x10

    _ oDp_QDP_ QDp 4Qp 4Qp _ 4Q1\R ; . Dmm~~ ~jU AjU 71D TTjLlD ftMNR TZNRV

    Q = 4.0 L /min x = 6.667 x 10~5m 3/s: LetNR =200060000 L/min

    94 C h a p t e r 8

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    109/298

    , _ 4(6.667 x l O " 5 ) 4.244x10" 8 4.244 x lO" 8a) - D m i n =

    L = T~ = 0.0647 m = 64.7 m m;r(2000)(v) v 6.56x10~ 7

    3-in Type K copper tubeD - 73.8 mm

    b ) > m i n = 4 2 4 4 * 1 Q " 8 ( f8 0 ) = 0.101 m;5-in tube,D = 122 mm

    2.87 x 10~4

    c) =4 , 2 4 4 *1 0 8 (J 9 Q ) = 0.0186 m; - - i n tube,D = 18.9 mm1.8 x 10~3 4

    d) = 4 - 2 4 4 * 1 0 8 f 6 ) = 3.59 x 10~4m ; - - i n t ube,D =4.57 m m1.07x10"' 8

    Smallest listed

    8.6 NR = M= = ( 2 - 9 7 ) ( Q - 7 7 4

    9 ) ( 8 9 0 ) - 4.12 x 10- Pa-s

    fi NR 5 x l 04

    Q 8.50 L /m in l m 3 / s _ .v - = r x =2.9 7 m/s

    A 4.768x l 0 " 3 m 2 60000 L/minFrom App. D ,o i lmust be heated to 10 0C for SAE 10oil .

    8.7 Auto.Hydraulic Oi l M d i u m HydraulicOi l

    i ,r oD (10X0.4011) e 1 f t 4 i u 10(0.4011) r = = - x =3.0 6 m/s

    A 1.772 x 10~3 m 2 60000 L/min

    g 9 u ^ = (0.899)(0.0243)(860)3.95x10

    O 25L /m in 1m 3/s . ___ ,u= = x =0. 899 m/s

    A 4 . 6 3 6 x l O ^ m 2 60000 L/min

    8.10 Afr = ^ = ( 1 - 7 8 ) ( - Q 1 3 74 ) = 6.62 x 10 4 Turbulent

    v 3.60 x l 0 ' 7

    Q 15.0L /m in 1 m3/s , . = = x = 1.78 m/s

    A 1.407 x 10" 4 m 60000 L/min

    R E Y N O L D S N U M B E R , L A M I NA R F L O W , T U R B U L E N T F L O W ,

    A N D E N E R G Y L O S S E S D U ET O F R I C T I O N 95

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    110/298

    ^ 8 . 5 9 X ^ 5 6 3 ) = 9 5 9 > l o 5

    v 1.40 x l O - 5

    Q 16.5 ft 3/s 0 c n A .u = = = 8.59 ft/s

    A 1.920 f t 2

    ^ G = 0 ^ x _ ^ x J h r _ x L _ = o.732 ft/s^ hr 7.48 gal 3600 s 2.029x l O - 5 f t 2

    jO g _ (0.732)(0.00508)(0.88)(1.94) _

    / / 6 . 2 x l 0 - 3

    A r (0.732)(0.00508)(0 .88)(1 .94) __ . _ .3.13 NR = - = A = 33.4 Laminar

    H 1.90 x l O - 4

    Not e: sg o foi l may be slightly lower at 160F.

    U 4 N r = P: 1 ) = ^ = ( 4 0 0 0 ) ( 4 . 0 1 X 1 0 - )

    H Dp (0.2423)(1.56)

    Q = A v =4.609 x 10~2 f t 2x0.424 ft/s = 1.96 x 10~ 2 ft 3/s

    , , .

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    111/298

    Changing from laminar flow, through criticalzone, into turbulentf low couldcauseerraticperformance. Also, L>= 14.65 ft/s is quitehigh, causing largepressuredrops through the

    system.

    n ~, > Q 500gal/min l f t3 / s n , . . . . 2 r CT ,

    8.21 A = = 5 x = 0.1114 ft 2=> 5-in Sch. 40 pipe

    o 10.0 ft/s 449 gal/minA = 0.1390 ft 2, > = 0.4026 ft

    g (500/499)f t3 /s O A i r .

    Actual L > = = - n = 8.01 ft/sA 0.1390 ft 2

    ^ = ( 8 . 0 1 ) ( 0 . 4 0 2 6 ) ( 2 . 1 3 ) = 2 1 2 > < 1 0 4j. 3.38x1o- 4

    8.22 ^ . j ^ . 2 0 0 0 ( 1 . 2 1 x 1 0 ^ ^ ) .

    D 0.0621 ft

    ForNR = 4000, = 2(0.3897 ft/s) = 0.7794 ft/s

    QI=AUY = (3.027 x 10"3 ft 2)(0.3897 ft/s)

    -3 A3/ 449 gal/ min= 1.180 x H T ftVsx1 ft3/s

    Qi =0.530gal/minLowerLimitQi = 2Qt = 1.060 gal/minUpper Limit

    8.23 (See Prob. 8.22)

    _ A V ^ ( 2 0 0 0 X 3 . 8 4 x 1 0 - ) _ _

    Z> 0.0621

    g , = = (3.027 x 10"3 ft 2)(0.1237 ft/s) x 4 4 9 ^ m " 1 = 0.1681 gal /min

    g 2 = 2gi = 0.3362 gal/min

    8.24 1.30 es x l ^ x l Q - f t V s = ^ x ^ 5 ft2/g1es

    Q = 45 gal /min x = 0.1002 f t3/s449 gal/min

    Q 0.1002 ft 3/sv - = 14.65 ft/s

    A 6.842 x l O " 3 f t 2

    ^ 1 4 . 6 5 X 0 . 0 9 3 3 ) ^ 3 ^

    v 1.40x1o-5

    8.25 v = 17.0 es x 1 0 6 m / S = 1.7 x 10" 5 m2/s1 es

    Q 215 L /m in 1 m3/s , ,u= = - x =7. 142 m/s

    A 5.017 x l O " 4m 2 60000 L/min g _ p . l 4 2 X W 3 ) _ l i 0 6 x l a ,

    1.70x10 - 5

    R E Y N O L D S N U M B E R , L A M I N A R F L O W , T U R B U L E N T F L O W ,

    A ND E N E R G Y L O S S E S D U E T O FRICTION 97

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    112/298

    8.26 v = 1.20 es x 1 0 m / S = 1.20 x 10"6 m2/sles

    Q 200 L /m in l m 3 /s .v = = x = 8.69 m/s

    ^ 3.835x l O ^ m 2 60000 L/min

    ^ (8 .69) (0 .0221) ,

    v 1.20 x 1 o- 6

    8.27 i +z = i +z 2 + - i : 0 , = ^rD 2 g 7D 2 g

    /?i - ^ 2 =To[z 2 - z , + A ]

    i r vDp (0.64)(0.0243)( 0.86)(1000) _ _ . . . 64AT = - = ^ J y , A = 787 (L am in ar ); /=

    ju 1.70 x l O - 2 TV,

    N r = ^ = V 1 " ^ v " ; " ^ ^ = 5.35 x 10 4 (turbulent)

    W i L = 0 . 0 8 1 3 x ^ x < ^ = 4 . 1 9 m > 2 g 0.0243 2(9.81)

    Pi ~Pi = (0.86)(9 .82 k N / m 3 ) [-60 m + 4.19 m] = -471 k N / m 2 = -471 kPa

    2 2

    8.28 A + Z ] +--hL= + z 2 + -?- : ot = uzi=z2: p\-pi = yJiL

    Q 12.9L /m in 1 m3/s , c ^ a ,u = -= = - x = 1.528 m/s

    A 1.407 x l 0 " 4 m 2 60000 L/min

    uD = (1 .528)( 0.0134) _ ^ ^ 1 f t 4v 3.83x10

    D/e = 0.0134/1.50 x 10~6= 8933; Th en /= 0.0205

    A i = / ^ ^ = ( 0 . 0 2 0 5 ) . - ^ . ( ^ = 8 . 1 9 mD2g 0.0134 2(9.81)

    Pi -Pi = JJIL = 9.56 k N / m 3 x 8.19 m = 78.3 k N / m 2 = 78.3 kPa

    8.29 LetNK = 2000; /= 64/Ng = 0.032; NR =

    t j_ / V j ; ^ (2000X8.3X10-4) _ 2 5 f t J s

    Dp (0.3355)(0.895)(1.94)

    hL = / - = (0.032) &*?L ft = i .20 ft = 1.20 f t l b / l b^ D2g 0.3355 2(32.2)

    98 C h a p t e r 8

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    113/298

    .30 EA + Z + ^ , - H = A + Z + ^ . : U a = U B

    Yo 2S Yo 2S

    PB=PA + JO[ZA - Z B - h L ]

    J V ^ ( 800) (4x l0~ 4 ) = Q 7 1 7 f t / s

    (0.2557X0.90X1.94)

    > 2g 800 0.2557 2(32 .2)

    pB = 50 psig + (0.90)(62.4 lb /f t3 )[-20 f t - 12.5 ft ] l , = 37.3 ps ig

    144in

    P, o2 , P-> v1 i L v2.31 + z, +-~-hL = + z2 +-

    2-: zi = z 2: L>I= v^. px -p2 =ybhL = ybfYb 2 g Yb

    2S D2g

    Q 20L /min 1 m 3/su = = ; r x =0.7 19 m/s

    4.636x l 0 ~ 4 m 2 60000 L/min

    y 8.62k N s2

    1 03

    N 1kg -m/s2

    3

    p = = x x x = 879 kg /m

    g m 3 9.81 m k N N

    (0.719X0.0243X879) = 3 8 9 x l Q 4

    H 3.95 x l O 4

    D/e = 0.0243/4.6 x 10~5 = 528; Then/= 0.027100 (719">2

    Pi-p2 =8.62 kN/m3 x 0.027 x x i - ^ >-m = 25.2 kN/m 2 = 25.2 kPa

    0.0243 2(9.81)

    .32 Fr om Prob. S.3\,px -p2 = yJiL, h-pi -p2lyw

    (1035-669)kN/m2 . L v2

    hL

    = = 37.3 m = /9.81kN/m 3 D2g

    f = ^ ^ 2 g = (37.3)(0.03388)(2)(9.81) = Q 0 4 8

    Lo2 (30)(4.16) 2

    Q 225 L /min 1m3/s A , r ,o= = - x =4 .1 6 m/s

    A 9.017 x l O ^ m 2 60000 L/min

    vD = (4.16)(0.03388) . ! . 0 8 x : Then ^ = 55 for/= 0.048v 1.3 0x1 0^ ?

    e = >/55 = 0.03388/55 = 6.16 x 10 - 4 m

    R E Y N O L D S N U M B E R , L A M I N A R F L O W , T U R B U L E N T F L O W ,

    A ND E N E R G Y L O S S E S D U E T O FRICTION

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    114/298

    8.33A + z, +

    2g

    1 Pl V2 r = + z, + -2g

    r 7 ul

    n = z, - z2nL +2S

    Q 2.50 ft 3/s . - A e : A Iv = M.= = 12.46 ft/sA 0.2006f t 2

    Pt. 1 at tank surface. px = 0, vx = 0Pt. 2 in outlet stream. p 2

    = 0

    D = 0.5054 ftA =0.2006 f t 2

    oD = (12.46X0.5054) _ B = ,05054^ . 3 3 6 9 : ^

    v 9 .1 5 x 1 0 - e 1.5xHT*

    , , L o2 o2 n m 550 (12.4 6)2 (12.46)2

    h= f + = 0.0165x x - + - =45 .7f tD 2g 2g 0.5054 2(32.2) 2(32.2)

    8.34 Fr om Prob. 8.31 ,px -p2 ~ J J I L = J W f D 2g

    Q 15.0 ftVs _ . .v

    = = = 8.49 f t /s

    A -(1.50ft) 2 /4

    uD = (8.49X1.50) _ 9 M x t f : D _ J J ^ m

    v 1 .40x10- e 4 x 1 o - 4

    , L v2 62.41b A A 1 c o 5280 ft (8. 49)2 f t 2 / s 2 l f t 2 A r .

    P\-Pi= Y f = rx 0.0 158 x - x =30 .5 psiyi F2 rwJ D 2 g ft3 1 5 0 f t 2(32.2 ft /s

    2) 144in 2 P

    1 -fi- /o8.35 Q= 1500 gal /min x = 3.34 ft 3/s

    449 gal/min

    Q__ 3 .34f t '/s _ , _ ( 6^ 97 / . 0 .577 f

    AA 0.5479f t2

    2g 2(32.2)

    .2 _ 2

    a) A + Z + i _ _ /, - A +Z + ^A. Pt . 1 at t ank surf ace. /7j = 0, w, = 0yw

    2s s rw 2s

    2

    z, - z A = A = + + ,

    ^ g . (6:097X0.835) _ x ^ D =_ 0 8 3 5 ^ - ; , 1 M , ; 5 ,

    v 1.21x10- e 1 .5x1o - 4

    A = / = (0.0155) x - ^ - x 0.577 ft =0.482 ft > 2 g 0.835

    ^ 5 . 0 l b - f t 3 144 i n 2 + 0 5 7 7 + Q - 4 8 2 ^ 1 2 . 6 0 f ti n 262.41b f t 2

    100 C h a p t e r 8

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    115/298

    7 2g 7 2g

    Q 3.34 ft 3/s n e .= = = 9.62 ft/s4 , 0.3472 ft2

    * _ ^ + ( z > _ Z i ) + A=A + < k , ( 8 5 - 5 ) I b l f (144 , )

    r . 2 g n'(62.41b)ft>

    + ( ^ 2 ' - 6 . 0 9 7 ' ) f t ' / s ' + _

    2(32.2 ft/s 2)

    ^ ( 9 . 6 2 X 0 . 6 6 5 ! ) tf

    * u v 1.21x 10-

    m = 0-6651 = 4 4 3 4 . Q 1 6

    1.5 x 10 - 4

    A i = / ^ = ( 0 . 0 1 6 ) x ^ l x < ^ = 8 9 . 9 f ti j D2g 0.6651 2(32.2)

    = hAywQ - 300.4 ft x *L x * L = m h pft s 550 ft-lb/s

    8.36 n2

    +z. + +h. -h, - +z0 + y 2 g r 2g

    Pt. 1 at wel l surface (p i = 0 psig).

    Pt. 2 at tank surface.

    O= 02= 0

    hA= +(z2-zi) + HL

    rwQ = & x - l A - x

    1 ft3/s = 0.0277 ft 3/sh 60 mi n 449 gal/min

    Q 0.0277 ft3

    /s , ft/

    . .u = = , = 4.61 ft/s i n pi peA 0.0060 f t 2

    ^ , ( 4 . 6 0 ( 0 . 0 8 7 4 ) _ D , _ O 0 8 M = 5 8 3 : / , 0 0 2 7 5

    \ 2 1 x l 0 - s 1.5X10 -4

    A,. f L !L = ( . 0 2 7 5 ) - ! ^ x < 2 l ft - 14.54 ftD2g 0.0874 2(32 .2)

    (401b)f t(144in ' ) + 1 2 0 + 1 4 . 5 4 = 226.8 ftin 2(62.41b)ft 2

    PA = ^ 7 2 = ( 2 2 6 . 8 ft)(62.4 lb/ft3)(0.0277 ft3/s)/550 ft-lb/s/hp = 0.713 hp

    R E Y N O L D S N U M B E R , L A M I N A R F L O W , T U R B U L E N T F L O W ,

    A ND E N E R G Y L O S S E S D U E T O FRICTION

    http://21xl0-/http://21xl0-/http://21xl0-/
  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    116/298

    8.37>1 l 7 Pl 2'+ z, + - hr = +z 2 + -

    1 -

    Pi = y

    L>2

    Pl

    2g 2g

    Pt. 1 at tank surface. vx = O

    Pt. 2 in outlet stream. p2 = 0

    (z2-zl) + -2 - + hL

    11.8 ft/s:v2 (11.8)2

    = 2.167 ft

    2g

    Q 75 gal/mi n 1f t 3/s

    A, ~ 0.01414 ft2 X 449 gal/min 2g 2(32.2)

    ^ ^ ( 1 1 . 8 ) ( 0 . 1 3 4 2 ) = 1 3 1 > < 1 Q 5 : D=_0A3^ = 8 9 5 : / = 0.0225

    v 1.21x10- s \.5x\0~4

    hL = f = (0.0225) 3 0 0 (2.167 ft) = 109.0 ft

    D 2g 0.1342

    6 2 A l b f-3 ft + 2.167 ft+ 109.0 f t l - l f t 2

    f t J ' I 4 4 i n 246.9 psi

    8.38+ z, + + h, -h, = + z, + o.

    y 2g y 2g

    Pt. 1 at tank surface. = 0; vx = 0

    Pt. 2 inhose at nozzle.Pt. 3 inhose at pump outlet.

    o%= O

    a) hA = + ( z 2 - z ^ + + h,y 2g

    95 L/min l m 3 / s

    /V=

    ^-(0.025 m ) 2 / 4 60000 L/min

    (3.23)(0.025)(1100)

    = 3.23 m/s:(3.23) 2 _

    M 2.0x10"

    2g 2(9.81)

    = 4 . 4 4 x l 0 4 : / = 0.021 (smooth)

    = 0.530 m

    hi= f = (0 .0 21 )- ^- (0 .5 30 )m = 37.86 mD2g 0.025

    140 k N / m 2+ 7.3 m +0.530+ 37.86 m = 58.67 m

    (1.10)(9.81kN/m 3)

    PA = hAyQ = (58.67 m)(1.10)(9.81 kN/m3)(95/60000)m3/s = 1.00 kN-m/s = 1.00 k W

    b) + z 3 + 3

    y 2ghL = + z 2 + -

    2 - : ^ 3 = ^ 2 + [ ( z 2 - z 3 ) + /z]yy 2g

    p3 = 140 kPa + (1.10)(9.81 kN/ m3)[ 8. 5 m + 37.86 m] = 640 kPa

    102 C h a p t e r 8

    http://.5x/0~4http://.5x/0~4http://.5x/0~4
  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    117/298

    8.39 Q = 1200 L / m i n x 1 m3/s/60000 L / m i n = 0.02 m 3/s ^ 2 3 _

    Q 0.02 m 3 /s , 1 0 n , M g t -u = = r - = 1.189 m/s Laminar Pump

    1 . 6 8 2 x l 0 " 2 m 2

    a) / >2 ~P3 = YA = Y O /D2g

    _ ^ = 1.189(0.1463)(930) _

    / / 0.15

    / >2 - / > 3 = YA = (0.93)(9.81 kN/m3 )3 / 64 Y 3200 V l - 1 8 9 ) 2 m = 8 5 3 k p a

    1079 0.1463; 2(9.81)

    ,2 .,2b) + z, + - L - + /^ -/z ='- + z3 + -^-: Pi =P3, ui = Oi,Zi = z 3

    hj - hL r - = 93.5 m

    y 2g y 2g

    853 k N / m 2

    (0.93)(9.81 k N / m 3 )

    ^ = hAyQ = (93.5 m)(0. 93)(9. 81 kN/ m3)(0.02 m3/s) = 17.1 kN-m/s = 17.1 k W

    3.40 At 100C, n = 7. 9x 10^ Pa-s

    a) W i t hpumping stations 3.2 kmapart:

    A r vDp (1.189)(0.1463)(930) n r i n 4 , ,NR = - ~ =

    v A - =2 .05 x 104 turbulentju 7.9 x lO"3

    Z>/e =0.1463 m/4.6 x 10" 3m = 3180;/= 0.026

    fc-W i ^ = ( 0 . 0 2 6 ) ^ - < ! ? ) ! m . 40.98 mZ>2g 0.1463 2(9.81)

    PA = ^ Y 2 = (40.98)(0.93)(9.81)(0.02) = 7.48 k W

    / i)2

    b) Le thL = 93.5 m (from Prob. 9.13): hL = fD 2g

    L , K D ^ _ ( 9 3 . 5 m ) ( 0 . 1 4 6 3 m ) ( 2 ) ( 9 . 8 1 m / s - )

    / u 2 (0.026)(1.189m/s)2

    R E Y N O L D S N U M B E R , L A M I N A R F L O W , T U R B U L E N T F L O W ,

    A N D E N E R G Y L O S S E S DUE TO FR IC T ION 103

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    118/298

    8 - 4 1 Px o2 , pB u

    28 7W 2g7W

    PB = 7w

    NR =

    2 8

    uD (1.99)(0.098)

    Pt. 1 at tank surface. px = 0, vx = 0

    900L /m in 1 m3/sQ

    60000 L/min

    Q_ 0.015 m3/s

    7 ~ 7.538xlO"3 m 2

    0.015 m3/s

    = 1.99 m/s

    1.30x10"= 1 .50xl0 5 : = 0 - 0 9 8 . =6 5 3 3 3 : /= 0.0165

    e 1.5x10"

    L v2 80.5 (1.99)2hL= f = (0.0165)

    D2g 0.098 2(9.8

    "12_

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    119/298

    8.44 P_

    Y 2g Y 2g

    Y 2g

    Q 0.50 ft 3/s Q 0.50

    u A = = - = 7 . 2 8 ft/s: U B = = = 15.03 ft/sA 0.06868f t 2 A 0.03326

    uBDp _ (15.03)(0.2058)( 1.026)(1.94) _

    M

    D 0.2058

    e 1.5x10"

    4.0x10"

    = 1372: / = 0.020

    1.54 x 105

    A = / A ^ = ( 0 . 0 2 0 ) - ^ - x ^ l ft = 27.28 ftD2g 0.2058 2(32.2)

    2 5 . 0 - ( - 3 . 5 0 ) l l b f t 3 1 4 4 i n 2 (15.03)2 - ( 7 .2 8 ) 2 f t 2 / s 2

    h = i ^ . + 80 ft + i } - i } + 27.28 ft = 174.1 ftin 2(1.026)(62.41b) ft 2 2(32.2 ft /s 2 )

    PA = hAyQ =(174.1 ft)(1.026)(62.4 lb/ft3

    )(0.50 ft3

    /s)/550 = 10.13 hp

    8.45 NR vDp = QDp = QDp = AQp

    i Ap. nD1 nDfiA r

    4gp

    nNRp

    4(0.90ff/s)(1.24)(l 9 4 l b . S - / f t - ) , o m ( t

    7r(300)(5.0xl0"2 l b - s / f t 2 )

    2 1/2-in Type K Copper Tube:D =0.2029ft :A = 0.03234 ft 2

    u = g = - 9 Q f t 3 / s , =2 7. 8 ft/si 0.03234 ft2

    = v D p - (27.8)(0.2029)(1.24)(1.94)

    u ~ 5.0 x l O " 2= 272

    / s L 1 ) 2 m ^ o , n 6 4 5 5 (27.8) 2 lb l f t 2P\-Pi =Y A = y / = (1.24)(62.4)- x x -v

    D2g 272 0.2029 2(32.2) ft 2 144 i n 2

    411 psi

    8.46 + z,+-Yw 2g 2g

    2g

    Pt .1at pump outlet i n pipe.

    Pt. 2 at reservoir surface. p2 = 0,u2 = 0

    _ Q _ 4.00 ft 3/s

    A 0.3472 ft

    2= 11.52 ft/s

    ^ ( 1 1 . 5 2 X 0 . 6 6 5 ! ) ^ fl=

    v 1.21x l O " 5 1.5 x1o- 4

    w A i = ( 0 . 0 1 S 5 ) . ^ . < I i ^ f t = 1 2 0 . , ftD 2g 0.6651 2(32.2)

    62.41b

    f t 32 1 0 - m ^ : + i 2 o . i

    2(32.2)

    ft-lft2

    144in 2142.1 psi

    R E Y N O L D S N U M B E R , L A M I N A R F L O W , T U R B U L E N T F L O W ,

    A N D E N E R G Y L O S S E S D U E T O FRICTION 105

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    120/298

    8.47 E+ z + ^ + h =rw 2g

    [142 .1- ( -2 .36) ]lb

    ^ yw (62.4 l b / f t3 ) ( in 2 ) ( 1 f t 2 / 1 4 4 i n 2 )

    hA =333.5 ft-lb/lb333.5f t - l b 62.41b 4.00ft 3 lhp

    Pt.Oat pump inlet.

    Pt.lat pump outlet.

    Assume z0 =z,v0 ux

    PA = hAyQ =lb ft3 550 ft-lb/s

    151 hp

    8.48 PK l y PB l + Z , + - / ! , = + Z +

    rg g 7 g

    PA=PB + Jg[(zB - zA) + hL]vDp (7.76)(0.8350)(1.32)NR =

    D

    M

    0.8350

    e 1.5x10"

    7.2x10" 6

    5567: /=0.0145

    1.19 x 10 6

    Z) 2g 0.8350 2(32.2)

    ^ A = 40.0 p si g+ ^ ^ [ 8 5 + 5 1 . 9 ] ^ ^ - =80.3 psigf t 3 ' 144in 2

    Q 4.25ft 3/s

    i4 0.5479f t 2

    Assume sg = 0.68

    / /F romApp. D .

    8.49 A 7 7 Pl u l

    2g 7o 2g70

    = ( Z 2 - Z j ) + + /

    2g

    > 0.668 f t 3/s 4

    :

    0.08840 ft2

    4.3/

    = 7.56 ft/s

    Pt . 1 at tank surface. /?, = O,ux = 0

    Pt. 2 in outlet stream from 3-in pipe.

    g = 3 0 0 g a l / m m 4 f t 3 / s = 0.668 f t 3/s

    449 gal/min

    o i l - A p p .C

    Q 0.668 f t J/s , . ,3= = - = 13.02 ft/s = i>,

    4 0.05132 f t 2 2

    U vi L A ul

    N _u 3 Z? 3 = (13.02X0.2557)

    *3 v 2.15 x l O " 3

    ^ = ^ A _ (7.56) (0.3355)

    64= 1548 (L am in ar ): / = = 0.0413

    hL =0.0413

    1.0 ft +

    2.15 x l O " 3

    75 (13.02)2

    = 1180 (Laminar):/4

    :64

    = 0.0543

    0.2557 2(32.2)+ 0.0543-

    25 (7.56) 2

    0.3355 2(32.2)35.5 ft

    (13.02) 2

    2(32.2)ft + 35.5 ft =39.1 ft

    ^ = ^ y o e = (39.1ft)(0.890)(62.41b) (0.668ft3) lhp

    ft 3 550 ft-lb/s2.64 hp

    106 C h a p t e r 8

  • 8/11/2019 Solucionario - Mecanica de fluidos - Sexta edicion - Robert L Mott(1).pdf

    121/298

    8.50v\ j P2 v\+ z + -

    [ ~ - h L = ^ +z2+-1-: o1 = o2

    2 g Yo 2gElYo S Yo

    P\-P2 = lo[{Z2-Z\)+h\

    vDp (3.65)(0.0189)(930) 64

    3.31x10"= 1938 (L ami na r): /= = 0.0330

    ^ r A i ^ o x j a S O ) ^ - ^ =20 .760,D 2g 0.0189 2(9.81)

    P ] -p2 = 9.12 kN /m3 [-1.88 m + 20.76 m] = 172 kPa

    8.51 pi-p2 =Jg[(z2 - z,) + hL] (From 9.24)

    vDp (0.701)(0.0738)(1258)NR =

    0.960

    NR = 67.8 (L am in