3
Prof a Denise Maria Varella Martinez Atividade Complementar – Derivadas: I) Utilizando a tabela de derivadas, obtenha a derivada de cada função a seguir: 1) 2 3x f(x) y = = x 6 ) x 2 ( 3 dx ) x ( d 3 ' y ) x ( ' f dx dy 2 = = = = = 2) 3 x 2 4x f(x) y 2 + + = = 2 ) x 2 ( 4 )' 3 ( )' x ( 2 )' x ( 4 ) x ( ' f 2 + = + + = R. 2 8x y' + = 3) x 3 x 2 y 3 + = ) 1 ( 3 ) x 3 ( 2 ) x ( 3 ) x ( 2 ) x ( f ' y 2 ' ' 3 ' + = + = = R. 3 6x y' 2 + = 4) 3 1 x y = 3 2 3 3 3 1 ' x 3 1 x 3 1 y - - = = R. 3 2 - x 3 1 y' = 5) ) x 3 x 2 )( x x ( ) x ( f 2 + + = dx ) x x ( d ) x 3 x 2 ( dx ) x 3 x 2 ( d ) x x ( ' y ) x ( ' f dx dy 2 2 + + + + + = = = + + + + + = = = dx dx dx ) x ( d ) x 3 x 2 ( dx dx 3 dx ) x ( d 2 ) x x ( ' y ) x ( ' f dx dy 2 2 [ ] ) 1 x 2 )( x 3 x 2 ( 3 x 1 ) x x ( 1 x 2 ) x 3 x 2 ( 3 x 2 1 . 2 ) x x ( ' y ) x ( ' f dx dy 2 2 / 1 2 + + + + + = + + + + + = = = - 6) 4 2 ) 4 x 2 ( f(x) y + = = ) 0 x 4 ( ) 4 x 2 ( 4 ) 4 x 2 ( dx d ) 4 x 2 ( 4 ) x ( f 3 2 2 3 2 ' + + = + + = R. 3 2 ) 4 x 2 ( x 16 y' + = 7) 1 x 3 f(x) y + = = 1 x 3 2 3 dx ) 1 x 3 ( d ) 1 x 3 ( 2 1 ' y ) x ( ' f dx dy 2 / 1 + + + = = = - 8) 2 / 1 2 ) x 2 x ( f(x) y - + = = ) 2 x 2 ( ) x 2 x ( 2 1 dx ) x 2 x ( d . ) x 2 x ( 2 1 y 2 3 2 2 2 2 2 1 2 ' + + - = + + - = - - - 2 3 2 ' ) x 2 x )( 1 x ( 2 2 y - + + - = R. 3 2 ) x 2 x ( ) 1 x ( y' + + - =

Unidade2_Derivada_atcomplementar

Embed Size (px)

DESCRIPTION

derivada

Citation preview

  • Profa Denise Maria Varella Martinez

    Atividade Complementar Derivadas:

    I) Utilizando a tabela de derivadas, obtenha a derivada de cada funo a seguir:

    1) 23xf(x)y == x6)x2(3dx

    )x(d3'y)x('f

    dx

    dy 2=====

    2) 3x24xf(x)y 2 ++== 2)x2(4)'3()'x(2)'x(4)x('f 2 +=++= R. 28xy' +=

    3) x3x2y 3+= )1(3)x3(2)x(3)x(2)x(f'y 2''3' +=+== R. 36xy' 2 +=

    4) 31

    xy = 32

    3

    3

    3

    1' x

    3

    1x

    3

    1y

    == R. 32-

    x3

    1y'=

    5) )x3x2)(xx()x(f 2 ++= dx

    )xx(d)x3x2(

    dx

    )x3x2(d)xx('y)x('f

    dx

    dy 22 ++++

    +===

    +++

    ++===

    dx

    dx

    dx

    )x(d)x3x2(

    dx

    dx3

    dx

    )x(d2)xx('y)x('f

    dx

    dy 22

    [ ] )1x2)(x3x2(3x

    1)xx(1x2)x3x2(3x

    2

    1.2)xx('y)x('f

    dx

    dy 22/12 +++

    ++=+++

    ++===

    6) 42 )4x2(f(x)y +== )0x4()4x2(4)4x2(dx

    d)4x2(4)x(f 32232' ++=++=

    R. 32 )4x2(x16y' +=

    7) 1x3f(x)y +== 1x32

    3

    dx

    )1x3(d)1x3(

    2

    1'y)x('f

    dx

    dy 2/1

    +

    ++===

    8) 2/12 )x2x(f(x)y +== )2x2()x2x(2

    1

    dx

    )x2x(d.)x2x(

    2

    1y 2

    32

    22

    2

    2

    12' ++=

    ++=

    2

    32' )x2x)(1x(

    2

    2y

    ++= R. 32 )x2x(

    )1x(y'

    +

    +=

  • 2

    9) 1x

    1x2f(x)y

    +==

    22

    '

    )1x(

    )1)(1x2()2)(1x(

    )1x(

    )1x(dx

    d)1x2()1x2(

    dx

    d)1x(

    y

    +=

    ++=

    R. 22 )1x(

    3

    )1x(

    1x22x2y'

    =

    =

    10) 1x

    x2f(x)y

    2

    == 22

    2

    22

    22

    )1x(

    )x2(x2)1x(2

    )1x(

    dx

    )1x(dx2

    dx

    )x2(d)1x(

    'y)x('fdx

    dy

    =

    ===

    22

    2

    22

    22

    )1x(

    x22

    )1x(

    x42x2

    dx

    dy

    =

    =

    11) )x3x5(sen)x(f 2 +=

    ++

    =++=

    )x(dx

    d3)x(

    dx

    d5)x3x5cos(

    )x3x5(dx

    d)x3x5cos()x(f

    22

    22'

    R. )x3x5cos()3x10()x('f 2 ++=

    12) 2)sen(xf(x) 2 += )2xcos(x2)'2(x 2)(xosc(x) f 222' +=++=

    13) x3ef(x) = x3x3' e3)'x3( e(x) f ==

    14) x3x33

    ef(x) += R. 3x3x23

    3)e(9x(x)f' ++=

    15) )x2x4ln(f(x) 2 += R. x2x4

    2x8)x('f

    2 +

    +=

    16) )x2(lnf(x) = x2

    1

    x2x22

    2

    dx

    )x2(d)x2(

    x2

    1

    2

    1

    dx

    )x2(d

    x2

    1(x) f 2/1

    2/1'

    ====

    17)

    =

    x

    1lnf(x) R.

    23 x

    1

    2

    1

    x2

    x1)x('f ==

    II) Obtenha a equao da reta tangente ao grfico de f nos pontos de abscissas indicados:

    1) 5xx)x(f 02

    == 10)5(2)5(fx2)x(f '' === 10m tg = e a equao da reta

    tangente dada por )xx(myy 1tg1 = , logo )5x(1025y = R. )5x(1025y = .

    2) 1xx5x)x(f 02

    == R. )1x(34y =+

    3) 1xe)x(f 0x2

    == R. 3x2y +=

  • 3

    4) ex)xln()x(f 0 == o coeficiente angular da reta tangente ao grfico de f(x) no ponto x= e

    dado por )e(f ' , assim e

    1)e(f

    x

    1)x(f '' == . A equao da reta tangente ao grfico de f no ponto

    (e,lne)=(e,1) e

    xy1

    e

    e

    e

    xy)ex(

    e

    11y =+==