2 SISTEMAS LINEARES - UTFPR

Preview:

Citation preview

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

2 SISTEMAS LINEARES

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCOCoordenação do Curso das Engenharias e Tecnologia

Índice de tabelasTabela 1- Matéria Prima e Produtos..........................................................................................................................6

Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 11a edição CN24NB ii

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCOCoordenação do Curso das Engenharias e Tecnologia

SumárioCAPITULO 2............................................................................................................................................................42 METODOS DIRETOS PARA A SOLUÇÃO DE SISTEMAS LINEARES.........................................................4

TRANFORMAÇÕES ELEMENTARES............................................................................................................52.1 ELIMINAÇÃO DE GAUSS...............................................................................................................................6

2.1.1 EXERCÍCIOS.............................................................................................................................................62.2 PIVOTAMENTO PARCIAL.......................................................................................................................13

2.2.1 Estratégias De Pivotamento................................................................................................................132.2.1.1 Pivotação parcial..............................................................................................................................132.3.1 Exercicios............................................................................................................................................15

2.3 PIVOTAMENTO TOTAL OU COMPLETO..............................................................................................172.4 FATORIZAÇÃO LU....................................................................................................................................20

2.4.1 EXERCICIOS.....................................................................................................................................232.5 FATORAÇÃO DE CHOLESKY ou DECOMPOSIÇAO DE CHOLESKY...............................................28

2.5.1 Exercicios............................................................................................................................................292.6 TECNICAS ITERATIVAS PARA SOLUCIONAR SISTEMAS LINEARES............................................33

2.6.1 Metodo Iterativo de Jacobi..................................................................................................................342.6.1.1Criterio de Convergencia para o Método de Jacobi....................................................................34

2..6.2 Método Iterativo de Gauss-Seidel......................................................................................................372.6.3 Exercicios............................................................................................................................................39

2.7 NOÇÕES DE MAL CONDICIONAMENTO.............................................................................................392.7.1 Norma Matricial..................................................................................................................................40

2.7.1.1 Exercicios...................................................................................................................................41J) MATRIZ INVERSA PELA ADJUNTA.........................................................................................................44L) USANDO SOFTWARE MATEMÁTICO....................................................................................................452.8 APLICAÇÕES NA FERRAMENTA MATEMATICA...............................................................................45

2.5.2 Aplicações da Ferramenta Matematica Scilab....................................................................................472.5.3 Aplicações da Ferramenta Matematica wxmaxima............................................................................47

REFERÊNCIAS......................................................................................................................................................50

Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 11a edição CN24NB iii

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

CAPITULO 2

2 METODOS DIRETOS PARA A SOLUÇÃO DE SISTEMAS LINEARES

• Para BARROSO (1987, p.17) através de um sistema linear Sn de n equações e n

variáveis pode-se aplicar em calculo de estruturas, redes elétricas e solução de

equações diferenciais, entre outras.

• Um sistema linear Sn de n equações com n incógnitas:

S n=

a11 x1a12 x2...a1n xn=b1

a21 x1a22 x 2...a2n xn=b2

..............an1 x1an2 x 2...ann xn=bn

• Sob a forma matricial Sn pode ser escrito como Ax=b, onde A é uma matriz

aumentada quadrada de ordem n, b e x são matrizes n por 1 , e aij é chamado de

coeficiente da variável xj e os bj são chamados de termos independentes.

• A matriz A é chamada matriz dos coeficientes e a matriz aumentada ou matriz

completa do sistema.

B=[a11 a12 ... a1n b1

a21 a22 ... a2nb2

.........an1 an2 ... annbn

] = [A:b]1

Os números x1 ,  x2 , . .. , x n constituem uma solução do sistema linear e as equações

transformam em igualdades numéricas.

A solução é escrito na forma de matriz coluna:

X=[x1

x2

...x n

T

]1Concatenção de matrizes

Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 CN24NB 12 a EDIÇÃO 4

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

• Os sistemas lineares podem ser classificados quanto ao numero de soluções em

compatível, quando tem solução e incompatível não tem solução.

• Os sistemas compatíveis podem ser determinados ( uma solução) ou indeterminados

( varias soluções).

TRANFORMAÇÕES ELEMENTARESBARROSO (1987,p.17)

• trocar a ordem de duas equações do sistema

• multiplicar uma equação do sistema por uma constante não nula

• adicionar duas equações do sistema

LEON (2011, p.13) Sistemas sobredeterminados-

• há mais equações que variáveis, são geralmente inconsistentes.

LEON (2011, p.15) Sistemas Subdeterminados

• menos equações do que variáveis.

• Um sistema subdeterminado possa ser inconsistente , mas geralmente são consistentes

com um numero infinito de soluções.

Métodos diretos: estes métodos determinam a solução de um sistema linear com um numero

finito de operações. BARROSO(1987, p.17)

DALCIDIO( 1989,p.68), o método de Gauss é indicado para matrizes densas não simétricas

de ordem até 50.

Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 CN24NB 12 a EDIÇÃO 5

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

a) ELIMINAÇÃO DE GAUSS2.1 ELIMINAÇÃO DE GAUSS

2.1.1 EXERCÍCIOS

1) BOLDRINI ( 1980, p.51), resolva os sistemas lineares:a) x1+2x2-x3+3x4=1 b) x+y+z=4 c) x +y+z=4 d) x-2y+3z=0

2x+5y-2z=3 2x+5y-2z=3 2x+5y+6z=0

x+7y-7z=5

2) FRANCO (2009, p.162) aplicações práticas. Sejam x1,x2,x3,x4 o numero de quatro

produtos que podem ser produzidos no decorrer de uma semana. Para a produção de cada

unidade , precisa-se de tres tipos diferentes de matérias-primas A, B e C, conforme indicado

na tabela 1.0:

Tabela 1- Matéria Prima e Produtos

materia-prima

produtos A B C

1 1 2 4

2 2 0 1

3 4 2 3

4 3 1 2

Para produzir uma unidade de (1) precisa-se de 1 unidade de A, 2 de B e 4 de C. Se existem

disponíveis 30,20 e 40 unidades de A, B, C, respectivamente , quantas unidades de cada

produto pode ser produzido? Resolva o sistema linear pela eliminação de Gauss.

X=[6

−x4+ 82

−x4+ 8

2x4

] Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 CN24NB 12 a EDIÇÃO 6

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

3) BOLDRINI ( 1980, p.54)Faça o balanceamento das reações:

a)HF + SiO2 →SiF4+H2O ( dissolução do vidro em HF)

SOLUÇÃO :

xHF + ySiO2 →zSiF4+tH2O

equações do balanceamento da reação química

H: x =2t

F: x=4z

Si: y =z

O: 2y =t

4) LEON (2011, p.17) FLUXO DE TRÁFEGO. Em uma regiao central de certa cidade, dois

conjuntos de ruas mão única se interceptam conforme figura seguir . O volume de trafego

* em cada intersecção, o numero de automóveis entrando deve ser o mesmo que o numero

saindo.

x1+450=x2+610 ( intersecção A)

x2+520=x3+480 ( intersecção B)

x3+390=x4+600 ( intersecção C)

Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 CN24NB 12 a EDIÇÃO 7

450 310

A D610 x1 640

x4x2

520 B x3 C 600

520 x3

480 390

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

x4+640=x1+310 ( intersecção D)

• em seguida resolver o sistema linear.

• RESPOSTA: [k+330;k+170;k+210;k]T

5) LEON (2011, p.24) FLUXO DE TRÁFEGO.Em uma regiao central de certa cidade, dois

conjuntos de ruas mao única se interceptam conforme figura seguir . O volume de tráfego:

resposta: x1=280 x2=230 x3=350 x4=590

LEIS DE KIRCHHOF

LEON(2011, p.18)

1. em qualquer nó , a soma das correntes entrando é igual a soma das correntes saindo.

2. Ao longo de qualquer malha fechada, a soma algebrica de todos os ganhos de tensão deve

ser igual a soma algebrica de todas as quedas de tensão.

Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 CN24NB 12 a EDIÇÃO 8

380 x4

430 A x1 D 450

x2420

400540 B x3 C

420 470

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

6)LEON(2011, p.18)

As quedas de tensao E cada resistor são dadas pela lei de Ohm, E=iR onde i representa a

corrente em ampéres e R a resistencia em ohms.

Solução : primeira lei i1+i3=i2 ( nó A)

i2=i1+i3 ( nó B)

segunda lei 4i1 +2i2=8 malha superior

2i2 +(2+3)i3=9 malha inferior

resposta: i1=1 i2=2 i3=1

Prof .Jorge Roberto Grobe 30/03/2015 09:25:48 CN24NB 12 a EDIÇÃO 9

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

7) LEON( 2011, p.25)

a) solução : (nó A) i1+i3=i2

( nó B) i2=i1+i3

2i1 +2i2=16

2i2 +3i3=0 resposta:[ 5;3;-2]

b) solução ( no A) i2=i1+i3

( no B) i2=i1+i3

2i1+ 4i2=20

4i2+2i3=20

Prof .Jorge Roberto Grobe 30/03/2015 09:25:50 CN24NB 12 a EDIÇÃO 10

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

c) solução : (nó A) i1+i3==i2

( nó B) i1+i4=i2

( nó C) i3+i6=i5

( nó D) i5=i4+i6

malha superior 2i2+4i1=8

malha 2i2+4i5=0

malha inferior 4i5 +5i6=10

resposta: (2,0,-2,-2,0,2)

8) BARROSO(1987, p.37), determinar o vetor solução dos sistemas lineares através do

método de Eliminação de Gauss: 4 casas

a)

2x13x2x3−x4=6,9−x1 x2−4x3x4=−6,6

x1 x2x3x4=10,24x1−5x2x3−2x4=−12,3

solução exata do sistema

[−1 1 −4 1 −6,62 3 1 −1 6,91 1 1 1 10,24 −5 1 −2 −12,3

] pivo:-1 operações: 2L1+L2 ; 1*L1+L3 ; 4L1+ L4

[−1 1 −4 1 −6,60 5 −7 1 −6,30 2 −3 2 3,60 −1 −15 2 −38,7

] permutando L2 e L4

[−1 1 −4 1 −6,60 −1 −15 2 −38,70 2 −3 2 3,60 5 −7 1 −6,3

] pivo: -1 operações: 2L2+L3 ; 5*L2+L4

Prof .Jorge Roberto Grobe 30/03/2015 09:25:50 CN24NB 12 a EDIÇÃO 11

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

[−1 1 −4 1 −6,60 −1 −15 2 −38,70 0 −33 6 −73,80 0 −82 11 −199,8

] pivo : -33 -2,4848*L3+ L4

[−1 1 −4 1 −6,60 −1 −15 2 −38,70 0 −33 6 −73,80 0 0 −3,9088 −16,4218

]x4=4,2012 x3=3,0002 x2=2,0994 x1=0,8998

b̃=[6,8968−6,6

10,2006−12,3

] resíduo=[0,0032

0−0,0006

0]

* todos os resíduos menores que 10-2

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 12

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

b) PIVOTAMENTO PARCIAL

2.2 PIVOTAMENTO PARCIAL

2.2.1 Estratégias De Pivotamento

2.2.1.1 Pivotação parcial

▪ CLAUDIO(1989, p.76-79) , é o mesmo que algoritmo de Gauss, com um troca

de linhas sistemáticas, de modo a minimizar os erros de arredondamento.

▪ A escolha dos pivôs é feita da seguinte maneira:

1. é o elemento de maior valor absoluto na coluna 1

2. é o elemento de maior valor absoluto na coluna 2 da matriz-resto.

* outra variante técnica do pivotamento parcial é tornar os pivos unitários visando diminuir o

erro de arredondamento.

2.2.1.2 GILAT ( 2008, p. 124) Potenciais dificuldades encontradas com a aplicação do método

de eliminação de Gaus

a) o elemento pivo é igual a zero

• se o valor do pivo for igual a zero pode ser corrigido com a mudança da ordem das

linhas ( outro pivo diferente de zero) chamado de pivotação.

b)o elemento pivo é pequeno em relação aos demais termos da linha pivo.

• Ocorre erros de arredondamento significativos.

9) Seja o sistema linear SPF( 10,4,-10,10) :

0,0003x1 + 12,34x2=12,343

0,4321x1 +x2=5,321

soluçao exata: X=[101 ]

solução: [0,0003 12,34 12,3430,4321 1 5,321 ]

* usando notação de ponto flutuante o numero 12,343= 0,12343*102= 0,1234*102=12,34

[0,0003 12,34 12,340,4321 1 5,321]

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 13

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

usando a eliminação de Gauss.

m1=-0,4321/0,0003=-1440,3333=0,14403333*104 =-1440 ( SPF(10,4,-10,10)

• -1440*12,34+1=-17768,6=-0,177686*105=0,1777*105=-17770

• -1440*12,34+5,321=-17764,279=-0,1776*105=-17760

[0,0003 12,34 12,340 −17770 −17760] x2=0,9994

operação realizada :m1*L1+L2

primeira linha

0,0003*x1+12,34*x2=12,34

0,0003*x1+12,34*0,9994=12,34

0,0003*x1+12,33=12,34

x1=33,33

Aplicando o pivotamento parcial

[0,4321 1 5,3210,0003 12,34 12,34] m1=0,0003/0,4321=0,0006943=0,6943*10-3

[0,4321 1 5,3210 12,34 12,34]

x2=1 x1=10

10) FRANCO( 2009, p.146-147) Através do método de eliminação de Gauss, resolver o

sistema linear:

0,0001x1+ x2=1

x1+x2=2

usando em todas as operações com tres digitos significativos.

X=[0;1]

solução :

[0,0001 1 11 1 2]

[0,0001 1 10 −9999 −9998] m1=-10000

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 14

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

x2=1 e x1=0

11) Resolver pelo pivoteamento parcial

resposta: x=[1;1]

[ 1 1 20,0001 1 1] m1=-0,0001 [1 1 2

0 1 1] x1=1 x2=1

2.3.1 Exercicios

12) CLAUDIO (1987, p.89) Resolva o sistema linear com pivoteamento parcial usando 5

casas após a virgula:

2,4759 x1 +1,6235x2+4,6231x3=0,0647

1,4725 x1+ 0,9589x2-1,3253x3=1,0473

2,6951x1+2,8965x2-1,4794x3=-0,6789

[2,6951 2,8965 −1,4794 −0,67890 −0,62363 −0,51702 1,418220 −1,03743 5,98218 0,68839 ]

m1=-0,54636 m2=-0,91867

m1*L1+L2

m2*L1+L3

[2,6951 2,8965 −1,4794 −0,67890 −1,03743 5,98218 0,688390 0 −4,11309 1,00441 ]

m3=-0,60113

m3*L2+L3

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 15

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

X=[ 1,84056−2,07169−0,24420] b̃=[

0,064691,04732−0,67889] b−b̃=resíduo=r=[

0,00001−0,00002−0,00001]

para calcular b̃ faz-se a substituição do X no sistema de equações.

13) BARROSO (1987, p.37) ,determinar o vetor solução dos sistemas lineares através do

método da Pivotação parcial. * 4 casas após a virgula

a)

2x13x2x3−x4=6,9−x1 x2−4x3x4=−6,6

x1 x2x3x4=10,24x1−5x2x3−2x4=−12,3

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 16

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

c) PIVOTAMENTO TOTAL OU COMPLETO

2.3 PIVOTAMENTO TOTAL OU COMPLETO

• Em sistema linear escolhe o elemento de maior módulo e não pertencente à coluna dos

termos independentes.

• Quando ocorre um pivo nulo deve-se efetuar uma troca de linhas para escolher um

pivo não nulo.

• Outra maneira de se evitar o pivo nulo é usar o método da pivotação completa.

• Esta pivotação minimiza a ampliação dos erros de arredondamento durante as

eliminação, sendo recomendado na resolução de sistemas lineares de maior porte.

BARROSO(1987, p.40).

14) BARROSO (1987, p.37) ,determinar o vetor solução dos sistemas lineares através do

método da Pivotação Completa : 4 casas após a virgula

a)

2x1+3x2+ x3− x4=6,9−x1+x2−4x3+ x4=−6,6

x1+ x2+ x3+x4=10,24x1−5x2+ x3−2x4=−12,3

SOLUÇAO:

permutou a L1 com L4

4 −5 1 −2 −12,3−1 1 −4 1 −6,61 1 1 1 10,22 3 1 −1 6,9

pivo: -5

0,2*L1+L2

0,2*L1+L3

0,6*L1+L4

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 17

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

4 −5 1 −2 −12,3−0,2 0 −3,8 0,6 −9,061,8 0 1,2 0,6 7,744,4 0 1,6 −2,2 −0,48

pivo: 4,4

permutou a L4 com L2

4 −5 1 −2 −12,34,4 0 1,6 −2,2 −0,481,8 0 1,2 0,6 7,74−0,2 0 −3,8 0,6 −9,06

operações L2 ~ L3 ; L2~L4

-0,4091*L2+L3 0,0455*L2+L4

4 −5 1 −2 −12,34,4 0 1,6 −2,2 −0,480 0 0,5454 1,5 7,93640 0 −3,7272 0,5 −9,0818

pivo: -3,7272 0,1463*L3+L4

permutar L4 ~L3

1,5731 x4=6,6077

VETOR SOLUÇAO: X=[0,9002

2,13

4,2004]

b̃=[6,9

−6,599810,2005−12,3

] resíduo=[0

−0,0002−0,0005

0]

* todos os resíduos menores que 10-3

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 18

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

b)

4x13x22x3 x4=10x12x23x34x4=5x1−x2−x3−x4=−1x1x2x3 x4=3

4 3 2 1 10

0 1,25 2,5 3,75 2,5

0 -1,75 -1,5 -1,25 -3,5

0 0,25 0,5 0,75 0,5Pivo: 4

4 3 2 1 10

0 1,25 2,5 3,75 2,5

0 -1,3333 -0,6667 0 -2,6667

0 0 0 0 0Pivo:3,75 Pivo: -0,6667

primeira equação :

4*x1+3*x2+2*x3+1*x4=10

isolando a variável do pivo

x1=10−x4−2∗x3−3∗x2

4

segunda equação

1,25*x2+2,5*x3+3,75*x4=2,5

isolando a variável do pivo

x 4=2,5−1,25∗x 2−2,5∗x3

3,75

terceira equação

-1,3333*x2-0,6667*x3=-2,6667

isolando a variável do pivo

x2=−2,6667+0,6667∗x 3

−1,3333

quarta equação

0x3=0 (variável livre- aparece em todas as equações)

x3=λ

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 19

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

15) BARROSO( 1987, p.41) Resolver o sistema linear , usando 5 casas após a vírgula:

0,8754 x1+3,0081 x2+0,9358 x3+1,1083 x4=0,84722,4579 x1−0,8758 x2+1,1516 x3−4,5148 x4=1,12215,2350 x1−0,8473 x2−2,3582 x3+1,1419 x4=2,5078

2,1015 x1+8,1083 x2−1,3232 x3+2,1548 x4=−6,4984

resposta: X=[1;-1;2;1]T

i) pivotamento total ii) pivotamento parcial iii) eliminação de Gauss

d) FATORIZAÇÃO LU

2.4 FATORIZAÇÃO LU

• Para KOLMAN (1999, p.443), uma matriz é decomposta como um produto de uma

matriz triangular inferior com uma matriz triangular superior.

• Esta decomposição leva o algoritmo para resolver um sistema linear Ax=b.

• A popularidade deste método faz com que forneça uma maneira mais “ barata” de

resolver um sistema linear quando se faz uma mudança no vetor b de Ax=b.

• A decomposição para resolver o sistema linear , onde U e´ a matriz triangular superior

e L e´ uma matriz triangular inferior.

• A matriz U e´ resolvida sem colocar a matriz aumentada [ U: b], e possuem todos os

elementos diagonais diferentes de zero.

• A solução é obtida de baixo para cima. Para a construção da matriz L, coloca-se na

diagonal principal iguais a 1.

• Colocar na primeira coluna L1 , respectiva os multiplicadores com sinal trocado e

assim por diante.

• Suponha que uma matriz A n x n pode ser escrita com um produto de uma matriz

triangular inferior L com uma matriz triangular superior U, ou seja : A=LU.

• Entåo diz-se que A tem uma fatorização LU ou decomposição LU.

• Substituindo A=LU, no sistema Ax=b, escreve-se (LU)x=b. Fazendo Ux=z , então essa

equação matricial fica escrita Lz=b.

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 20

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

Segundo BURDEN (2003, p.339-341), esta fatoração e´ chamada de método de Doolitle e

requer que valores iguais a 1 estejam na diagonal de L.

Então as matrizes L e U podem ser escritas:

Para LAY (1999, p.125) , existem matrizes unidades triangulares inferiores E1...Ep tais que:

E p ... E1∗A=U

A=(E p... E3 .E 2. E1)−1∗U ou L=E1

−1∗E2−1∗E3

−1 ... EP−1

A=L*U

O método de Crout requer valores iguais a 1 estejam na diagonal de U Seja Ax=b

fonte:http://www.monografias.com/trabajos92/factorizacion-matrices/image023.png

• A=Lc*Uc

• A matriz Lc (matriz triangular inferior) possui diagonal principal diferente de zero e

diferente de 1 e é obtida da seguinte maneira:

• Lc=L*D ( as matrizes L e D são obtidas da fatoração LU, onde D é matriz diagonal

da matriz U) , esta matriz Lc é triangular inferior.

• Para obter a matriz triangular superior UC do método de Crout , divide cada linha

matriz U ( fatoração LU ) pelos elementos da diagonal principal.

• Então pode- se escrever :A=Lc*Uc

• ou a matriz pode ser fatorada na forma de:

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 21

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

• A=L*D*Uc= Lc*UC

• L= matriz triangular inferior com diagonal igual a 1 da fatoração LU

• D= matriz diagonal de U

• UC= matriz triangular superior com diagonal principal igual a 1.

O esforço computacional

CUNHA(2009, p.34) , em um sistema triangular requer n2 operações.

• Para eliminação de Gauss requer 2n3

3+

3n2

2−

7n6

e para n grande 2n3

3• Na fatoração LU tem dois sistemas triangulares portanto requer 2n2 operações.

ALGORITMO DA FATORIZAÇÃO LU DOOLITLE

Os elementos da matriz L são os aij e os de U são os uij .

fonte: http://MetodosNumericoseEstatisticos/MNEaula04.ppt

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 22

2;,,1

1

,,2

2;,,

,,1

1

1

11

11

1

1

11

knkj

uau

nju

a

jnjkuau

nkau

k

iikjijk

kkjk

jj

j

iikjijkjk

kk

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

2.4.1 EXERCICIOS

16)BURDEN( 2003, p.340), seja o sistema linear

x1 x23x4=42x1x2− x3x 4=1

3x1−x2−x32x4=−3−x12x23x3−x 4=4

U=[1 1 0 30 −1 −1 −50 0 3 130 0 0 −13

] L=[1 0 0 02 1 0 03 4 1 0−1 −3 0 1

]RESPOSTA: [ -1;2;0;1]T

17) BURDEN (2003, p.345) Resolver o seguinte sistema linear pelas seguintes fatorações:

2x1−x2+ x3=−13x1+ 3x2+ 9x3=03x1+ 3x2+ 5x3=0

i) Doolitle

solução 1:

passo1: eliminação de Gauss

A=[2 −1 13 3 93 3 5 ] U=[2 −1 1

0 4,5 7,50 4,5 3,5] U=[2 −1 1

0 4,5 7,50 0 −4 ] L=[ 1 0 0

1,5 1 01,5 1 1 ]

operações

m1=-3/2=-1,5 m1*L1+L2

m2=-3/2=-1,5 m2*L1+L3

m3=-4,5/4,5=-1 m3*L2+L3

passo 2: Ux=z e Lz=b

resposta: Z=[-1;1,5;0] X=[-1/3;1/3;0]

solução 2:

Prof .Jorge Roberto Grobe 30/03/2015 09:25:51 CN24NB 12 a EDIÇÃO 23

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

L=[1 0 0

L21 1 0L31 L32 1 ] U=[

u11 u12 u13

0 u22 u23

0 0 u33] A=[2 −1 1

3 3 93 3 5]

ii) Crout

A=LDLc

a matriz Lc é obtida atraves da matriz U=[2 −1 10 4,5 7,50 0 −4 ] , dividindo cada linha pelo

elemento de cada diagonal, U c=[22

−12

12

04,54,5

7,54,5

0 0−4−4

] U c=[1 −0,5 0,50 1 5/30 0 1 ]

AC=[ 1 0 01,5 1 01,5 1 1 ][

2 0 00 4,5 00 0 −4] [

1 −0,5 0,50 1 5 /30 0 1 ]

L*D= L=[ 1 0 01,5 1 01,5 1 1 ][

2 0 00 4,5 00 0 −4]

= A=[2 0 03 4,5 03 4.5 −4] [

1 −0,5 0,50 1 5 /30 0 1 ]

A=(L*D) *Uc

iii) solução pela fatoração LU

Lz=b e Ux=z

resposta: Z=[-0,5;1/3;0] X=[-1/3;1/3;0]

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 24

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

18) KOLMANN (1999, p.448) , resolver os sistemas lineares Ax=b pelas seguinte fatorações:

i) Doolitle ii) Crout

a) A=[ 2 3 4;4 5 10;4 8 2] b=[6;16;2]

solução

i) fatoração LU - doolitle

U=[2 3 40 −1 20 0 −2] L=[1 0 0

2 1 02 −2 1]

ii) crout

L=[1 0 02 1 02 −2 1] D=[2 0 0

0 −1 00 0 −2]

Lc=L∗D=[2 0 04 −1 04 2 −2]

• Na matriz Uc é obtida atraves da matriz U e para obter a diagonal principal 1 é preciso

dividir cada linha pelo elemento da diagonal principal.

U c=[22

32

42

0−1−1

2−1

0 0−2−2

] U c=[132

2

0 1 −20 0 1

] , então matriz A pode ser fatorada da seguinte

maneira:

Lc=L∗D=[2 0 04 −1 04 2 −2] U c=[1

32

2

0 1 −20 0 1

] , A=Lc*Uc ou pode ser decomposta na

forma : A=L*D* Uc

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 25

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

L=[1 0 02 1 02 −2 1] D=[2 0 0

0 −1 00 0 −2] U c=[1

32

2

0 1 −20 0 1

]iii) solução do sistema linear pela fatoração LU.

• Lz=b

L=[1 0 02 1 02 −2 1] b=[

6162 ]

resposta : z=[ 64−2]

Ux=z

U=[2 3 40 −1 20 0 −2] z=[ 6

4−2]

x=[ 4−21 ]

iv) solução do sistema pelo método de Crout

• Lc*z=b

Lc=[2 0 04 −1 04 2 −2] b=[ 6

162 ]

resposta: Z=[ 3−41 ]

• Uc=Z

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 26

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

U c=[132

2

0 1 −20 0 1

] Z=[ 3−41 ]

resposta: X=[ 4−21 ]

b) A=[ 2 8 0;2 2 -3;1 2 7] b=[18;3;12]

c)A=[ -3 1 -2;-12 10 -6; 15 13 12] b=[15;82;-5]

19)FRANCO (2009, p.128) Aplicando-se a fatoração LU A=[... ... 3 ...4 −1 10 8... −3 12 110 −2 −5 10

] obteve-se

as matrizes L=[... ... ... ...2 ... ... ...3 0 ... ..... ... 1 ...

] U=[... −1 ... 50 1 ... −2... 0 3 −40 ... 0 10

] . Preencher os espaços

pontilhados, usando o método de Doolitle.

Respostas: A=[ a11=2 a12=-1 a13=5 a31=6 ] L= diagonal principal igual a 1 , L31=0

L32=-2 ] U= [ u11=2 u12 =-1 u13=3 u23=4 ]

KOLMAN(1998, p.244) diagonalização de matrizes: B=P−1∗A∗P

A= matriz primitiva

P=autovetores

B=resulta na diagonal os autovalores

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 27

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

e) FATORAÇÃO DE CHOLESKY ou DECOMPOSIÇAO DE CHOLESKY

2.5 FATORAÇÃO DE CHOLESKY ou DECOMPOSIÇAO DE CHOLESKY

• Em BURDEN (2003, p.349), o método de Cholesky, que requer que lii =uii para cada i.

• A matriz definida positiva é chamada definida positiva simétrica.

• Em PERESSINI (1988), a fatoração LLT resolve um sistema linear Ax=b onde U= LT

é uma matriz triangular superior com os elementos da diagonal positivos.

• Condição para uma matriz ser definida positiva de tamanho n xn:

• a) aii>0 para cada i=1,2,...,n

• b) xTAx>0 para todo vetor n-dimensional.

• c)determinante matrizes condutoras ou submatrizes são positivas.

• d) na eliminação de Gauss sem intercambio de linhas todos os pivôs positivos.

• Matriz nxn A e chamada de estritamente em diagonal quando

• é valido para cada i=1,2,...,n BURDEN (2003, p.346).

• KOLMANN(1998, p.399) uma matriz simétrica A é positica definida se e somente se

todos os autovalores são posítivos.

• A matriz L na fatorizaçao de Cholesky da matriz definida positiva pode ser calculada

pela seguinte matriz equação A=LLT.

[l11 ....

l 21l 22 ........

ln1 ln2 ... l nn] [

l11l 21 ... ln1

... l22 ... l n2

........l nn

] =A=L*LT

Para resolver o sistema Ax=b faz-se:

Lz=b e Lty=z

ou pode ser fatorada a matriz simétrica definida positiva conforme RUGGIERO ( 1996,p.147)

• A=GGT

• A=LU

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 28

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

• A=LDLT

• U=DLT

D=√D diagonal da matriz U

A=(L∗D)∗(D∗LT) sendo G=L∗D A=GGT

2.5.1 Exercicios

20)BURDEN (2003, p.352-357)

a) Fatores a matriz A=(4 −1 1−1 4,25 2,751 2,75 3,5 ) pelos seguintes métodos :

i) doolitle ii) crout iii) cholesky

solução 1: doolitle

L=(1 0 0

−0,25 1 00,25 0,75 1) U=(

4 −1 10 4 30 0 1)

a diagonal principal :4.4,1 são autovalores da matriz U

solução 2: crout

Lc=L*D Uc= dividir cada linha pelo elemento da diagonal principal

(1 0 0

−0,25 1 00,25 0,75 1)(

4 0 00 4 00 0 1)(

4 /4 −1/4 1/40 4/ 4 3/40 0 1/1)

Lcrout=[4 0 0−1 4 01 3 1] U crout=[

1 −1 /4 1/40 1 3/40 0 1 ]

* Lcrout=U doolitle * matriz simétrica

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 29

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

solução 3: cholesky

A matriz LDLT:

(1 0 0

−0,25 1 00,25 0,75 1)(

4 0 00 4 00 0 1)(

1 −0,25 0,250 1 0,750 0 1 )

* calcular a raiz quadrada da diagonal principal da matriz U ( doolitle)

(1 0 0

−0,25 1 00,25 0,75 1)(

√4 0 00 √4 00 0 √1)(

1 −0,25 0,250 1 0,750 0 1 )

(1 0 0

−0,25 1 00,25 0,75 1)(

√4 0 00 √4 00 0 √1)

G=(2 0 0

−0,5 1 00,5 1,5 1)

conclusão:

G=(2 0 0

−0,5 2 00,5 1,5 1) Gt

=(2 −0,5 0,50 2 1,50 0 1 ) A=(

4 −1 1−1 4,25 2,751 2,75 3,5 )

produto :G*Gt =A

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 30

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

b) Mostrar que a matriz simétrica é definida positiva.

A=(2 −1 0−1 2 −10 −1 2 )

Dica: calcular os determinantes das submatrizes

c) Considere as matrizes A=

7 2 03 5 −10 5 −6

eB=

6 4 −34 −2 0−3 0 1

, mostre que é possível ou

não fatorar pela decomposição de Cholesky.

21) Resolva os sistemas lineares pela fatorações

i) doolitle ii) crout iii) cholesky

a) 2x1 –x2 =3

-x1 +2x2 –x3=-3

-x2 +2x3=1

b)

4x1 +x2 +x3+x4=0,65

x1 +3x2 –x3 +x4=0,05

x1- x2 +2x3 =0

x1+x2 + 2x4 =0,5

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 31

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

22) FRANCO (2009,p.145) Aplicando-se o processo de Cholesky a matriz A, obteve-se :

A=[... 2 ... ...... 8 10 −83 10 14 −5... −8 ... 29

] =L*Lt onde L=[

1 ... ... ...2 ... ... ...... 2 1 ...0 −4 ... 2

] Preencher os espaços

pontilhados com valores adequados.

23) FRANCO (2009,p.159) Relacione os sistemas lineares :

I ) 3x2+ 2x3=5

x1+ 4x2+ x3=62x2+ 5x3=7

resposta: X=[111]

II) −2x1+ 2x2=−1x1+ 3x2− x3=3−x 2+ 2x3=1

resposta: X=[ 1,3570,85720,9286]

III) x1+ 2x2+ x3=4

2x1+ 6x2=8x1+ 4x3=5

resposta: Z=[401 ] X=[

111]

e resolva pela eliminação de Gauss ou decomposição de Cholesky.

24) Dada a matriz A=[2 1 −11 10 2−1 2 4 ] calcular A-1 utilizando o processo de Cholesky.

25) BURDEN( 2003,p.358) Encontre α de modo que A=[ α 1 −11 2 1−1 1 4 ] seja definida

positiva.

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 32

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

f) MÉTODOS ITERATIVOS

2.6 TECNICAS ITERATIVAS PARA SOLUCIONAR SISTEMAS LINEARES

• Para BURDEN (2003, p.381), os métodos iterativos de Jacobi e de Gauss-Seidel

surgiram no final do século XVIII.

• Estas técnicas são raramente utilizadas para solucionar sistemas lineares de pequenas

dimensões.

• Em sistemas grandes, com uma grande porcentagem de entradas zero, essas técnicas

são eficientes em termos tanto de calculo como de armazenamento.

• São sistemas que surgem na analise de circuitos e na solução numérica de problemas

de valor limite e equações diferenciais parciais.

• Esta técnica iterativa para resolver sistemas linear nxn Ax=b começa com um

aproximação inicial x(o) para a solução x e gera uma seqüência de vetores xK para k

=0 até ꝏ(infinito) , que converge para x.

• O sistema Ax=b e convertido em um sistema equivalente na forma x=Tx+c para

alguma matriz T e algum vetor c fixos.

• Quando o vetor inicial xo ter sido selecionado, a seqüência de vetores para aproximar

a solução ‘e gerada calculando-se:

xk=Txk−1

c para cada k=1,2,3...

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 33

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

g) MÉTODO DE JACOBI

2.6.1 Metodo Iterativo de Jacobi

BURDEN(2003, p.383)

• A equação Ax=b ou (D-L-U)x=b , é transformada em Dx=(L+U)x+b, isolando x,

tem-se :

x=D−1LU xD−1 b para D matriz não singular.

• Resulta na forma matricial da técnica iterativa de Jacobi:

xk+1=D−1

(L+U ) x(k)+D−1 b para k=0,1,2,...

Introduzindo a notação T j=D−1LU e c j=D−1 b , então a técnica iterativa de Jacobi

passa a ter a forma xk+1=Txk+c

Critério de interrupção de Passo:

∥x k−xk−1∥∥xk∥

tol ( tol=tolerância)

Para BARROSO (1987, p.52), continua-se a gerar aproximações até que um dos critérios seja

satisfeito:

max∣xk1− xk∣tol

ou k>M , M=numero maximo de iterações.

Nota: a tolerância (Epsílon) fixa o grau de precisão das soluções.

2.6.1.1Criterio de Convergencia para o Método de Jacobi

a) BARRROSO (1989,p.67) Criterio das Linhas: é condição suficiente para que a iteração

convirja, que:

∣a ii∣> ∑j=1 e j≠i

n

∣aij∣ para i=1,2,..n

b) Criterio das colunas:é condição suficiente para que a iteração convirja, que:

∣a jj∣> ∑i=1ei≠ j

n

∣aij∣

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 34

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

Na pratica são usados criterios de suficiencia de convergência tanto para o metodo de Jacobi

e Gauss-Seidel.

Este Criterio de convergência para o metodo de Jacobi converge testanto se a matriz dos

coeficientes é estritamente diagonalmente dominante.FRANCO (2009, p.173)

26)O Sistema linear Ax=b dado por

10x1 –x2 +2x3=6

-x1 +11x2 –x3+3x4=25

2x1-x2+10x3-x4=-11

3x2-x3+8x4=15

resolva pelo método de Jacobi.

X o [0000] , e o critério de parada ϵ<10−3

solução:

isolar cada variável x1,x2,x3,x4 e encontrar as equações e compor a matriz T com

a diagonal igual a zero.

xk=Txk−1

c

Construir uma tabela para x1,x2,x3 e x4

Usar o vetor inicial nulo.

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 35

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

Sintaxe: E(ABS(C5-C4)<10^-3;ABS(D5-D4)<10^-3;ABS(E5-E4)<10^-3;ABS(F5-F4)<10^-3)

2.6.1.2 Exercicios

27) Obtenha as 4 primeiras iterações do método de Jacobi para os seguintes sistemas lineares,

usando xo=0.

a)3x1-x2+x3=1

3x1+6x2+2x3=0

3x1+3x2+7x3=4

28) Resolva o seguinte sistema linear :

a) [1 0 02 1 0−1 0 1 ][

2 3 −10 −2 10 0 3 ] [

x1x2x3]=[

2−11 ]

Prof .Jorge Roberto Grobe 30/03/2015 09:25:52 CN24NB 12 a EDIÇÃO 36

k x1 x2 x3 x40 0 0 0 01 0,6000 2,2727 -1,1000 1,8750 FALSO2 1,0473 1,7159 -0,8052 0,8852 FALSO3 0,9326 2,0533 -1,0493 1,1309 FALSO4 1,0152 1,9537 -0,9681 0,9738 FALSO5 0,9890 2,0114 -1,0103 1,0214 FALSO6 1,0032 1,9922 -0,9945 0,9944 FALSO7 0,9981 2,0023 -1,0020 1,0036 FALSO8 1,0006 1,9987 -0,9990 0,9989 FALSO9 0,9997 2,0004 -1,0004 1,0006 FALSO

10 1,0001 1,9998 -0,9998 0,9998 VERDADEIRO

criterio de parada

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

h) MÉTODO DE GAUSS-SEIDEL

2..6.2 Método Iterativo de Gauss-Seidel

• A forma matricial do método de Gauss-Seidel é:

(D-L)xk=Uxk-1+b

Isolando xk tem-se:

xk= (D-L)-1Uxk-1+(D-L)-1b

• Em LAY (1999),uma matriz A, nxn é chamada de estritamente dominante se o modulo

de cada elemento da diagonal principal é maior que a soma dos módulos dos outros

elementos da sua linha.

• A velocidade de convergência depende do quanto os elementos da diagonal principal

dominam as somas de linhas correspondentes.

2.6.2.1 Criterio de Convergência para o Método de Gauss-Seidel.

FRANCO ( 2009,p.177-178) , o metodo de Gauss-Seidel converge se :

a) criterio de Sassenfeld for satisfeito :

max1in

i1 onde os Βi=αs são calculados por recorrencia através de :

Prof .Jorge Roberto Grobe 30/03/2015 09:25:53 CN24NB 12 a EDIÇÃO 37

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

fonte:http://www.ctec.ufal.br/professor/enl/metnum/condicao_para_convergencia.htm

nn - ordem do sistema linear que se deseja resolver

aij - coeficientes das equações do sistema

Este critério garante que o método de Gauss-Seidel convergirá para um dado SEL se a

quantidade M, definida por:

M= max1≤i≤n

βi for menor que 11 (M<1M<1).

29) O sistema linear dado

10x1 –x2 +2x3=6

-x1 +11x2 –x3+3x4=25

2x1-x2+10x3-x4=-11

3x2-x3+8x4=15

resolva pelo metodo de Gauss-Seidel.

Solução:

30)Mostre que o método de Gauss-Seidel gera uma seqüência que converge para a solução do

seguinte sistema, desde que as equações estejam devidamente arrumadas:

x1-3x2+x3=-2

-6x1+4x2+11x3=1

5x1-2x2-2x3=9

Prof .Jorge Roberto Grobe 30/03/2015 09:25:53 CN24NB 12 a EDIÇÃO 38

k x1 x2 x3 x4 criterio de parada0 0 0 0 01 0,6000 2,3273 -0,9873 0,8789 FALSO2 1,0302 2,0369 -1,0145 0,9843 FALSO3 1,0066 2,0036 -1,0025 0,9984 FALSO4 1,0009 2,0003 -1,0003 0,9998 FALSO5 1,0001 2,0001 -1,0002 0,9998 VERDADEIRO

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

2.6.3 Exercicios

31) FRANCO (2008, p.194) Considere cada um dos seguintes sistemas lineares :

I)3x1−3x27x3=18

x16x2− x3=1010x1−2x27x3=27

II)x12x25x3=20x13x2x3=10

4x1x22x3=12

a) sem rearranjar as equações, tente achar as soluções iterativamente, usando os métodos de

Jacobi e Gauss-Seidel, começando com xo=1,001 ,2,01,3 ,01t .

b) rearranje as equações de tal modo que satisfaçam os critérios de convergência e repita o

que foi feito no item (a).

c)verifique suas soluções nas equações originais.

i) NOÇÕES DE MAL CONDICIONAMENTO

2.7 NOÇÕES DE MAL CONDICIONAMENTO

• BARROSO ( 1987, p.74), para avaliar a precisão da solução x do sistema Ax=b, o

resíduo r=b−A∗x̂ , onde x̂ é a solução computada.

• Se x for uma boa aproximação para x , é esperado que as componentes de r seja

valores pequenos.

• Valores pequenos para as componentes do resíduo podem não indicar que x seja

uma boa aproximação para x.

Prof .Jorge Roberto Grobe 30/03/2015 09:25:53 CN24NB 12 a EDIÇÃO 39

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

32) a) Seja o sistema linear

x1+ 1,001x2=2,001

0,999x1+ x2=1,999

• a solução exata do sistema [ 1;1] r=[0;0]

• para x =[2; 0,001] o resíduo r=[-0,00001; 0]

b)x1+ 1,001x2=2

0,999x1+ x2=1,999

solução: [-999;1000] resíduo=[0;0]

*o sistema é mal condicionado

c) Seja o sistema linear:

0,992x + 0,873y=0,119

0,481x+0,421y=0,060 solução :[1,-1]T

d) 0,992 x +0,873y=0,12 ( valor perturbado)

0,481x+0,421y=0,060

solução:[0,8154 ; -0,7891]

e) Uma matriz mal condicionada é a matriz de Hilbert.

Aij=1

i j−1

Um modo de se detetar o mal condicionamento é através do determinante normalizado da

matriz dos coeficientes do sistema dado; se o determinante normalizado for sensivelmente

menor que a unidade, o sistema será mal condicionado.

Se A é uma matriz de ordem n , seu determinante normalizado, denotado por det(Norm A) é

dado por :

det norm A=det A12 ...n

onde =i ,12i ,2

2i ,n

2

2.7.1 Norma Matricial

Segundo FRANCO (2008, p.16-17) , seja A uma matriz (nxn) . Define-se:

Prof .Jorge Roberto Grobe 30/03/2015 09:25:53 CN24NB 12 a EDIÇÃO 40

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

∥A∥∞ = máx1in∑j=1

n

∣aij∣ ( norma linha)

2.7.1.1 Exercicios

33) Considere as matrizes A=[2 13 2] , B=[

3 2 12 2 13 3 2] C=[

2 1 3 −14 3 8 26 7 10 13 −1 0 1

] , calcule

∥A∥∞ ∥B∥∞ ∥C∥∞ .

34)BURDEN (2003, p.372),seja a a matriz A=[1 2 1;0 3 -1;5 -1 1] calcule a ∥A∥∞ .

35)Seja o sistema linear x1+2x2+3x3=1

2x1+3x2 +4x3=-1

3x1+4x2+6x3=2

sendo dado X=[0 ;−7 ;5]T solução geral e X=[−0,33 ;−7,9 ;5,8]T solução aproximada

calcule : ∥X− X∥∞e∥A X−b∥∞ Respostas: 0,9 e 0,27.

• Para CLAUDIO (1989, p.79-84), seja um sistema sistema linear Ax=y e os vetores

soluções x1 e x2 duas aproximações exata para x.

• Qual das aproximações é melhor?

• Uma forma trivial seria calcular os resíduos dados por r1=y-Ax1 e r2=y-Ax2.

36)Seja o sistema linear:

0,24x+0,36y+,12z=0,84

0,12x+0,16y+0,24z=0,52

0,15x+0,21y+0,25z=0,64

e sejam x1=[25,-14,-1]T e x2=[-3,4,0]T

Os resíduos são :

[ 0 0 0,08] e [0,12 0,24 0,25]

Prof .Jorge Roberto Grobe 30/03/2015 09:25:53 CN24NB 12 a EDIÇÃO 41

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

A solução exata : [-3,4,1]T , embora modulo r1 < modulo de r2, a solução de x2 é melhor que

x1.

Conclusão:

Nem sempre a aproximação de menor resíduo é a melhor ou mais exata.

Um problema é dito mal condicionado se pequenas alterações nos dados de entrada

ocasionam grandes erros no resultado final.

Quando o sistema linear é 2x2 é fácil de verificar ( construção das retas) , mas quando

aumenta o tamanho do sistema é preciso um meio de medir este condicionamento.

Seja o sistema linear Ax=b e o sistema linear com alguma perturbação Ax=b’ . Então a

solução Ax=b’ é x’ .

Qual é a modificação em x , sabendo que b foi alterado para b’ .

Ax=b

A(x-x’)=b-b’

(x-x’)=A-1(b-b’)

Aplicando a norma de vetores, indicada por uma barra e a norma de matrizes indicada por

duas barras ∥.∥∞ .

Aplicando uma propriedade de norma de matrizes:

∣x−x '∣≤∥A−1∥∣b−b '∣ (1)

Divindo por |x|:

∣x−x '∣∣x∣

≤∥A−1

∣x∣∣b−b '∣

Pode-se escrever :

∥x∥≤∥A−1∥∥b∥

Prof .Jorge Roberto Grobe 30/03/2015 09:25:53 CN24NB 12 a EDIÇÃO 42

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

1∥x∥

≤∥A∥∣b∣

(2)

Multiplicando as equações (1) e (2) ambos os membros.

∣x−x '∣∣x∣

≤∥A−1∥∥A∥∣b−b '∣∣b∣

valor relativo provocado pela alteração

dos sistema linear de b para b’

fator de

ampliação

valor relativo de perturbação

feita no sistema Ax=b

A definição de condicionamento é dado por:

cond (A)= ||A||* ||A-1||

FRANCO (2008, p.153) o cond (A) será considerado grande quando valer por volta de 10000

ou mais. Então o sistema será mal condicionado.

37)Sejam os sistemas lineares

a) x1+ 1,001x2=2,001

0,999x1+ x2=1,999

b)0,992x + 0,873y=0,119

0,481x+0,421y=0,060

calcule cond (A)= ||A||* ||A-1|| e verifique se os sistemas são mal ou bem condicionado.

38) ARENALES (2008, p.49) Considere o sistema linear :

a) [1 11 1.00001][ x1

x2]=[ 2

2.00001] b) [1 11 1.00001][ x1

x 2]=[ 2

1.9999]resolva-os e calcule o condicionamento das matrizes e escreva se é mal ou bem condicionado.

39) BURDEN ( 2003, p.402) O seguintes sistemas lineares Ax=b tem x como solução real e

x̃ como soluçaõ aproximada. Calcule ∥x− x̃∥∞ ; K (A)∞ ; ∥b−A x̃∥∥A∥∞

a) [3,9 1,66,8 2,9][ x1

x2]=[5,5

9,7] X=[11] X̃=[0,981,1 ]

Prof .Jorge Roberto Grobe 30/03/2015 09:25:53 CN24NB 12 a EDIÇÃO 43

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

b) x1 +2x2 =3

1,0001 x1 +2x2=3,0001

X=[11] X̃=[0,961,02]

J) MATRIZ INVERSA PELA ADJUNTA

. Cálculo da matriz C dos cofatores de A. Seja A, a matriz , então a matriz C dos cofatores

de A é

Cofator Ai,j do elemento a11 (1):

Cofator Ai,j do elemento a12 (3):

Cofator Ai,j do elemento a21 (2):

Cofator Ai,j do elemento a22 (0):

De posse dos valores dos cofatores escrevemos a matriz C dos

cofatores:

Prof .Jorge Roberto Grobe 30/03/2015 09:25:59 CN24NB 12 a EDIÇÃO 44

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

3. Cálculo da matriz Adjunta de A.A matriz adjunta A é a transposta da matriz C dos cofatores, isto

é:

A = Ct

Portanto temos:

4. Cálculo da inversa A-1, pelo teorema

encontrados anteriormente no teorema temos:

Multiplicando pelos elementos da matriz A, obtemos enfim a inversa de A.

fonte:http://www.infoescola.com/matematica/matriz-inversa-inversao-por-matriz-adjunta/

L) USANDO SOFTWARE MATEMÁTICO

2.8 APLICAÇÕES NA FERRAMENTA MATEMATICA

• SOLUÇAO NO WXMAXIMA PELO COMANDO TRIANGULARIZE

• INFORMA A MATRIZ MATRIZ AMPLIhADA DO SISTEMA.

(%i4) Matrix([2,3,1,-1,6.9],[-1,1,-4,1,6.6],[1,1,1,1,10.2],[4,-5,1,-2,-12.3])

• LINHA DE COMANDO: triangularize(%i4);

(%o9)matrix([20,30,10,-10,69],[0,-2200,-200,0,-5220],[0,0,-6000,-16500,-87300 [0,0,0,-

322500,-1750500])

*a matriz fica tela em forma de matriz escalonada ou triangularizada.

Prof .Jorge Roberto Grobe 30/03/2015 09:26:00 CN24NB 12 a EDIÇÃO 45

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

* para resolver este sistema linear utilizando o comando TRIANGULARIZE , neste caso

precisa-se de uma calculadora.

EXERCICIO NUMERO 10

SOLUÇÃO 1:WXMÁXIMA

(%i2) algsys([x=2*t, x=4*z, y=z, 2*y=t], [x,y,z,t]);

(%o2) [[x=%r1,y=%r1/4, z=%r1/4,t=%r1/2]]

%r( variável livre que pode ser atribuida como w

t=w/2 z=w/4 y=w/4 x=w

SOLUÇÃO 2 : SCILAB

A=[1 0 0 -2;1 0 -4 0;0 1 -1 0; 0 2 0 -1]

b=[0;0;0;0]

X8=linsolve(A,-b)

* encontra apenas solução nula

disp('comando RREF ')

disp('matriz ampliada do sistema')

Ab8=[A8,b8]

disp('forma escada ')

X81=rref(Ab8)

[1 0 0 −2 00 1 0 −0,5 00 0 1 −0,5 00 0 0 0 0

]* a partir desta matriz na forma escada tem que resolver a mão este sistema linear.

SOLUÇÃO 1 : SCILAB COMANDO : linsolve

A=[ 2 -1 3;4 -3 2;1 1 1; 3 1 1]

b=[11;0;6;4]

X=linsolve(A,-b)

SOLUÇÃO 2 : SCILAB COMANDO : RREF

Prof .Jorge Roberto Grobe 30/03/2015 09:26:00 CN24NB 12 a EDIÇÃO 46

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

disp('comando RREF ')

disp('matriz ampliada do sistema')

Ab=[A,b]

disp('forma escada ')

X2=rref(Ab)

SOLUÇÃO 3 : WXMÁXIMA

COMANDOS: EQUAÇÕES/SISTEMAS LINEARES /NUMERO DE EQUAÇÕES/ DIGITAR

AS VARIÁVEIS

(%i1) linsolve([2*x-y+3*z=11, 4*x-3*y+2*z=0, x+y+z=6, 3*x+y+z=4], [x,y,z]);Dependent

equations eliminated: (4)(%o1) [x=-1,y=2,z=5]

* aqui é possível ver quando o sistema é possível e indeterminado, uma solução e impossível.

APLICAÇÕES NA FERRAMENTA MATEMATICA WXMAXIMA

• (%i10) matrix([3,2], [1,6]);

• (%o10) matrix([3,2],[1,6])

• (%i11) lu_factor (%o10);

• (%o11) [matrix([3,2],[1/3,16/3]),[1,2],generalring]

• (%i12) get_lu_factors(%o11);

• (%o12) [matrix([1,0],[0,1]),matrix([1,0],[1/3,1]),matrix([3,2],[0,16/3])]

APLICAÇÕES NA FERRAMENTA MATEMATICA SCILAB

>> A=[ 3 2;1 6]

>> [L,U,P]= lu(A) *P=matriz permutação

2.5.2 Aplicações da Ferramenta Matematica Scilab>>L =chol(A) * resultado matriz triangular superior e a matriz triangular inferior

fazer transposta: L'*L=B

2.5.3 Aplicações da Ferramenta Matematica wxmaxima • (%i12) matrix( [4,3], [3,8]);

• (%o12) matrix([4,3],[3,8])

• (%i13) cholesky (%o12);

• (%o13) matrix([2,0],[3/2,sqrt(23)/2])

Prof .Jorge Roberto Grobe 30/03/2015 09:26:00 CN24NB 12 a EDIÇÃO 47

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

40) Exemplo: Uma matriz mal condicionada é a matriz de Hilbert

USANDO O WXMAXIMA:

(%i1) h [i, j] := 1 / (i + j - 1);

1(%o1) h := --------- i, j i + j - 1(%i2) genmatrix (h, 3, 3); [ 1 1 ] [ 1 - - ] [ 2 3 ] [ ] [ 1 1 1 ](%o2) [ - - - ] [ 2 3 4 ] [ ] [ 1 1 1 ] [ - - - ] [ 3 4 5 ]

fonte: http://maxima.sourceforge.net/docs/manual/pt/maxima_25.html

Função: mat_cond (M, 1)

Função: mat_cond (M, inf)

• Retorna o número condiciona da norma de ordem p da matriz m.

• Os valores permitidos para p são 1 e inf.

• Essa função utiliza a factorização linear alta para inverter a matriz m.

• Dessa forma o tempo de execução para mat_cond é proporcional ao cubo do tamanho

da matriz;

• lu_factor determina as associações baixa e alta para o número de condição de norma

infinita em tempo proporcional ao quadrado do tamanho da matriz.

• (%i6) matrix( [1,2], [5,9]);

Prof .Jorge Roberto Grobe 30/03/2015 09:26:00 CN24NB 12 a EDIÇÃO 48

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

• (%o6) matrix([1,2],[5,9])

• (%i7) mat_cond(%o6,1);

• (%o7) 154

• (%i8) mat_cond(%o6,inf);

• (%o8) 154

• a principio esta calculando a norma infinita pelas linhas

• ou

• mat_norm(A,inf); norma infinita das linhas

APLICAÇÕES NA FERRAMENTA MATEMATICA SCILAB

-->A=[1 2; 5 9]

A =

1. 2.

5. 9.

-->cond(A)

ans = 110.99099

Prof .Jorge Roberto Grobe 30/03/2015 09:26:00 CN24NB 12 a EDIÇÃO 49

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

REFERÊNCIAS• ARENALES, Selma Helena de Vasconcelos; DAREZZO, Artur (Autor). Cálculo

numérico: aprendizagem com apoio de software. São Paulo, SP: Thomson

Learning, 2008. x, 364 p.

• KOLMAN, Bernard. Introdução à Álgebra Linear Com Aplicações. 6a edição. RJ.

Editora LTC.1999.

• BARROSO, L.C. et. al. Cálculo Numérico(com aplicações) 2.ed. SP. Editora

Harbra.1987.

• BURDEN, R.L e FAIRES, J.D. Analise Numérica. Pioneira Thomson Learning.

2003.

• LAY, D. C. Algebra Linear e suas aplicações.2a edição Editora LTC.RJ. 1999.

• PERESSINI, A. L.et .al. The Mathematics of Nonlinear Programing.USA.1988.

• CLAUDIO, D.M e MARINS, J.M.Calculo Numérico Computacional.Teoria e

Pratica.Editora Atlas.SP.1989.

• LEON, Steven J. Álgebra linear com aplicações. 8. ed. Rio de

Janeiro, RJ: LTC, 2011. xi, 451p. ISBN 85-216-1150-1.

• STEINBRUCH, A; WINTERLE, P. Álgebra Linear.2.ed. SP.McGRaw-Hill.1987.

• BOLDRINI, L. J.et.al. Algebra Linear. 3a edição. SP. Editora Harbra. 1980.

• BATSCHELET, E. Introdução A Matemática para Biocentistas. SP.Editora da

Universidade de São Paulo.1978.

• Disponivel em MetodosNumericoseEstatisticos/MNEaula04.ppt acessado em

16/02/2009.

• Disponivel em http://maxima.sourceforge.net/docs/manual/pt/maxima_25.html,

acessado em 17/09/2009.

• FRANCO, Neide Bertoldi. Cálculo numérico. São Paulo, SP: Pearson Prentice Hall,

2009. xii, 505 p. ISBN 8576050870.

• disponível em www.dsc.ufcg.edu.br/~cnum/.../CN_Sistemas_%20Parte2.ppt -,

acessado em 31/03/2011.

Prof .Jorge Roberto Grobe 30/03/2015 09:26:00 CN24NB 12 a EDIÇÃO 50

MINISTÉRIO DA EDUCAÇÃOUNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS PATO BRANCO Curso das Engenharias

• GILAT, Amos; SUBRAMANIAM, Vish. Métodos numéricos para engenheiros e

cientistas: uma introdução com aplicações usando o MATLAB . Porto Alegre:

Bookman, 2008. 479 p

• Disponível em http://www.monografias.com/trabajos92/factorizacion-

matrices/image023.png, acessado em 01/11/2013.

• fonte:http://www.infoescola.com/matematica/matriz-inversa-inversao-por-matriz-

adjunta/ , acessado em 16/04/2014.

• Disponível em

http://www.ctec.ufal.br/professor/enl/metnum/condicao_para_convergencia.htm,

acessado em 01/09/2014.

Prof .Jorge Roberto Grobe 30/03/2015 09:26:00 CN24NB 12 a EDIÇÃO 51