95
UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia Agrícola MARIANA NAGLE DOS REIS ASSOCIAÇÃO DE MÉTODOS NÃO DESTRUTIVOS PARA INSPEÇÃO DE ÁRVORES. ASSOCIATION OF NONDESTRUCTIVE METHODS FOR TREE INSPECTION CAMPINAS 2017

ASSOCIAÇÃO DE MÉTODOS NÃO DESTRUTIVOS PARA INSPEÇÃO DE ... · PD Instrumentos pelo auxílio e equipamento utilizado nos ensaios de resistência a perfuração. ... do ponto

Embed Size (px)

Citation preview

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Agrícola

MARIANA NAGLE DOS REIS

ASSOCIAÇÃO DE MÉTODOS NÃO DESTRUTIVOS PARA

INSPEÇÃO DE ÁRVORES.

ASSOCIATION OF NONDESTRUCTIVE METHODS FOR

TREE INSPECTION

CAMPINAS

2017

MARIANA NAGLE DOS REIS

ASSOCIAÇÃO DE MÉTODOS NÃO DESTRUTIVOS PARA

INSPEÇÃO DE ÁRVORES.

Dissertação apresentada à Faculdade de

Engenharia Agrícola da Universidade Estadual de

Campinas como parte dos requisitos exigidos para a

obtenção do título de Mestra em Engenharia

Agrícola, na área de Concentração Construções

Rurais e Ambiência.

Orientadora: Profa. Dra. Raquel Gonçalves

Co-orientador: Dr. Alex Julio Trinca

CAMPINAS

2017

AGRADECIMENTOS

Agradeço a professora Raquel pela dedicação, empenho e carinho, aos amigos do LabEnd por

toda ajuda nos experimentos e à minha família pelo apoio incondicional. Agradeço também

ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPQ pela bolsa de

estudos e à FAPESP (Proc. 2015/05692-3) pelo financiamento da pesquisa. Agradeço a

Diretoria de Meio Ambiente da UNICAMP pela doação das toras utilizadas nos ensaios e à

PD Instrumentos pelo auxílio e equipamento utilizado nos ensaios de resistência a perfuração.

RESUMO

A arborização é importante para propiciar equilíbrio ao ambiente, liberar oxigênio e

absorver gás carbônico, melhorar a qualidade do ar, ofertar sombra, absorver ruídos, fornecer

proteção térmica, quebrar a monotonia da paisagem, abrigar e alimentar a fauna e propiciar

bem-estar às pessoas. No entanto, as árvores que se localizam nas proximidades de

habitações, equipamentos urbanos ou estruturas agrícolas, podem representar riscos humanos

e financeiros quando seu estado fitossanitário está comprometido. Detectar o estado

fitossanitário de uma árvore nem sempre é possível utilizando-se somente de análises visuais

ou sinais externos de enfermidades ou ataques de fungos e organismos xilófagos, tornando as

técnicas de inspeção fundamentais. Essa pesquisa teve como objetivo avaliar a tomografia

ultrassônica e a resistência a perfuração, de forma isolada e associada, na detecção dos níveis,

das dimensões e da localização de deteriorações. Os ensaios foram realizados em toretes de 6

espécies de árvores, com diferentes tipos e níveis de deterioração. No caso da tomografia a

avaliação foi feita com base nas variações de velocidade fornecidas pela imagem tomográfica

e para a resistência a perfuração com base no gráfico de amplitude de resistência. Os

resultados permitiram concluir que a resistência a perfuração foi eficiente na detecção e na

obtenção da dimensão aproximada de ocos, uma vez que a amplitude nestes casos é zero. As

amplitudes em regiões deterioradas são inferiores (média em torno de 4%) às de zonas de

madeira sã, permitindo inferir a localização destas zonas. No entanto, a identificação do nível

da deterioração não é evidente, já que a amplitude varia entre cerne alterado e alburno e,

também, entre espécies. A resistência a perfuração é um ensaio pontual e, assim, sua

eficiência depende da localização adequada para ser executado. No caso da tomografia, as

zonas ocadas apresentam redução de velocidades superiores a 70%, enquanto as zonas

deterioradas por fungos começam a ser destacadas com reduções de 30% na velocidade. No

caso de fendas ou galerias o detalhamento da imagem depende da relação entre o

comprimento de onda e a dimensão destes defeitos. De maneira geral as imagens de

tomografia ultrassônica não permitem a obtenção do formato e da localização exata da área

deteriorada, mas permite aportar informações gerais da condição da madeira inspecionada. A

associação dos métodos é eficaz, pois a resistência a perfuração permite detalhar a condição

da madeira nas zonas destacadas pela tomografia como suspeitas.

Palavras-chave: tomografia ultrassônica, resistência à perfuração, sanidade de árvores

ABSTRACT

The urban forestation is important to balance the environment, release oxygen and

absorb carbon dioxide, improve air quality, provide shade, absorb noise, provide thermal

protection, break the monotony of the landscape, as shelter and food to the fauna and provide

wellness to people. However, trees that are located near housing, urban equipment or

agricultural structures may pose human and financial risks when their sanity is compromised.

Detecting the health status of a tree is not always possible using only visual analyzes or

external signs of diseases or attacks of fungi and xylophage organisms, making very

important the improvement of inspection techniques. The aim of this research was to evaluate

ultrasound and drilling resistance, isolated and associated, in the detection of levels,

dimensions and location of decays. The tests were carried out on 6 tree species, with different

types and levels of deterioration. In the case of ultrasound tomography, the evaluation was

made based on the velocity variations provided by the tomographic image and for the drilling

resistance based on the graph of resistance amplitude. The results allowed concluding that the

drilling resistance was efficient in detecting and obtaining the approximate size of hollows,

since the amplitude in these cases is zero. The amplitudes in deteriorated regions are inferior

(average around 4%) to those of healthy wood zones, allowing to infer the location of these

zones. However, the identification of the level of decay is not evident, since the amplitude

varies between modified core and sapwood and also between species. The drilling resistance

is a punctual test and its efficiency depends on the proper location to be executed. In the case

of tomography, the hollow zones present reduction of velocities greater than 70%, while the

zones deteriorated by fungi begin to be highlighted with 30% velocities reductions. In the case

of cracks or galleries the image detailing depends on the relationship between the wavelength

and the size of these defects. In general, the ultrasonic tomography images do not show the

format and the exact location of the decayed area, but it provides general information of the

condition of the inspected wood. The association of the methods is effective, because the

drilling resistance allows detailing the condition of the wood in the areas highlighted as

suspect by the tomography.

Key words: ultrasonic tomography, drilling resistance, tree sanity.

Sumário

INTRODUÇÃO GERAL ..................................................................................................... 9

ARTIGO 1: DRILLING RESISTANCE AMPLITUDE IN DIFFERENT TYPES OF

DETERIORATED LOGS OF TREES................................................................................. 12

ARTIGO 2: ULTRASONIC TOMOGRAPHY IN LOGS OF TREES WITH DIFFERENT

TYPES OF DETERIORATION ......................................................................................... 26

ARTIGO 3: ASSOCIATION OF NONDESTRUCTIVE TOOLS FOR TREE INSPECTION ... 42

DISCUSSÃO GERAL ....................................................................................................... 59

Resistência a perfuração ............................................................................................................ 59

Tomografia ultrassônica ............................................................................................................ 61

Associação da tomografia ultrassônica e resistência a perfuração ............................................ 63

CONCLUSÃO GERAL ..................................................................................................... 65

ANEXO I ......................................................................................................................... 66

Gráficos de Resistência à Perfuração em todas as rotas de medição dos toretes ensaiados ...... 66

ANEXO II ....................................................................................................................... 85

Tabelas de dados utilizados para geração das imagens de tomografia ultrassônica .................. 85

ANEXO III ...................................................................................................................... 92

Imagens Tomográficas dos toretes ensaiados ............................................................................ 92

9

INTRODUÇÃO GERAL

A importância da existência de arborização é indiscutível, sendo, portanto, um tema de

grande interesse e atualidade. Políticas de manutenção de áreas verdes têm grande relevância

social, estética, cultural e educacional, além de desempenharem significativo papel do ponto

de vista climático e ambiental.

A falta de planejamento da arborização urbana no passado e as atuais mudanças

climáticas podem provocar declínio nas árvores, com alterações de dimensão, de formato e de

posição em relação ao eixo, tornando estas árvores mais propícias a problemas patológicos e

posteriormente à queda. Adicionalmente, as árvores são seres vivos e, como tal, têm um ciclo

de vida que envolve o início do crescimento, a fase juvenil, a fase adulta e a morte, mesmo

sem nenhum agente externo causador.

Assim, a manutenção de áreas verdes requer ações políticas, administrativas e técnicas

e, do ponto de vista da coexistência das árvores com as estruturas que envolvam riscos

humanos ou financeiros, devem ser estabelecidos critérios que permitam a aplicação de novas

metodologias que minimizem os problemas.

A inspeção visual dirigida à poda, já praticada, muitas vezes não contempla a

identificação de anomalias que sejam indicativas de fragilidades ou instabilidades internas. A

alternativa vislumbrada nesse projeto é o uso de tecnologias que, associadas à inspeção visual,

permitam monitorar a condição interna da árvore, de forma a ser possível, em uma fase

posterior, ligar esse conhecimento ao risco de queda desse indivíduo arbóreo.

Na madeira, diferentes tipos de deteriorações provocam, como consequência,

alterações em sua estrutura. Por outro lado, a propagação de ondas mecânicas em meios

materiais é afetada, por diferenças de propriedades elásticas, por diferenças de impedância

entre os meios e por alterações de percurso. Por essa razão, existe a viabilidade de se utilizar

variações na velocidade de propagação de ondas como parâmetros de inferência de

modificações estruturais na madeira (alterações na rigidez ou na estrutura anatômica e zona

ocadas).

A tomografia utilizando métodos sônicos tem sido adotada com frequência para

avaliação da condição interna de árvores em diversos países, principalmente como ferramenta

auxiliar na avaliação do risco de queda. Existem no mercado vários equipamentos comerciais

10

de tomografia acústica, utilizando, principalmente, propagação de ondas de tensão

(denominados tomógrafos sônicos), mas ainda tem havido muita pesquisa na área, fruto da

necessidade de melhor entendimento do significado da imagem gerada, bem como de seu

alcance em termos de precisão.

Da mesma forma, a resistência a perfuração tem sido reconhecida como técnica que

apresenta bons resultados em inspeções de árvores e de estruturas, embora de forma muito

localizada. Considerando que o equipamento mede a resistência que a madeira oferece à

perfuração, é esperado, também, que seus resultados possam ser correlacionados com perdas

de resistência devidas a deteriorações. Assim, tem havido vários estudos que visam avaliar as

correlações entre a amplitude da resistência a perfuração, obtida pelo equipamento, e a

resistência da madeira ou sua eficácia na detecção de deteriorações em estruturas, toras ou

árvores.

Considerando os aspectos mencionados o objetivo geral desta pesquisa foi avaliar a

tomografia ultrassônica e a resistência a perfuração, de forma isolada e associada, na detecção

dos níveis, das dimensões e da localização de deteriorações. No caso da tomografia

ultrassônica é importante salientar que os ensaios foram realizados com equipamento e

software desenvolvidos no grupo de pesquisa da Faculdade de Engenharia Agrícola

(FEAGRI) da Universidade Estadual de Campinas (UNICAMP).

A dissertação foi redigida em formato alternativo previsto pela Intuição, no qual após

o capítulo de Introdução Geral da pesquisa são apresentados os artigos submetidos à

publicação, o capítulo de Discussão Geral, que aglutina os resultados dos artigos, e o capítulo

de Conclusões Gerais, que estabelece o vínculo dos artigos com a hipótese e objetivo

principal da pesquisa.

Os dois objetivos específicos compuseram os temas dos dois primeiros artigos, que

tratam, isoladamente, da avaliação da resistência à perfuração e da tomografia ultrassônica,

respectivamente. O terceiro artigo trata da associação destes métodos não destrutivos para a

avaliação interna de árvores. Artigos possuem lógica e formatação específicas, exigindo

apresentação resumida e focada de resultados, sendo assim, foram inseridos em anexos os

resultados completos obtidos durante a pesquisa.

No Anexo I são apresentados todos os gráficos de resistência à perfuração obtidos nos

ensaios com resistógrafo, os quais foram a base das análises envolvidas nos artigos 1 e 3.

11

No Anexo II são apresentadas as tabelas de dados utilizados para geração das imagens

de tomografia ultrassônica, utilizadas para a elaboração dos artigos 2 e 3.

No Anexo III apresentam-se as imagens de tomografia ultrassônica utilizadas como

base para a elaboração dos artigos 2 e 3.

12

ARTIGO 1: DRILLING RESISTANCE AMPLITUDE IN DIFFERENT TYPES OF

DETERIORATED LOGS OF TREES

Submetido ao periódico: Arboriculture and Urban Forestry

13

Drilling resistance amplitude in different types of deteriorated logs of trees.

Authors and Afilliations:

Mariana Reis (1), Raquel Gonçalves (2), Gustavo Garcia (3), Leandro Manes (4)

(1) (3) Master Student, School of Agricultural Engineering, Nondestructive Testing Laboratory, University of Campinas,

Campinas, SP, Brasil

(2) Professor, School of Agricultural Engineering, Nondestructive Testing Laboratory, University of Campinas, Campinas,

SP, Brasil. E-mail: [email protected]

(4) Undergraduate Student, School of Agricultural Engineering, Nondestructive Testing Laboratory, University of Campinas,

Campinas, SP, Brasil

Author Contribution Statement:

(1) This paper is part of her Master degree research. Worked in the tests, in discussions of results and in text

writing.

(2) Supervisor of the Master student (1). Responsible for the research idea. Worked supervising the developing

of the research, discussing the methodology and results and on the final correction of the text.

(3) Part of the research group, collaborated in the tests, prepared the images and participated on discussions of

the results.

(4) This paper is part of his Undergraduate research. Collaborated with author (1) during the tests and also

participated of the discussion of the results.

Key Message

This paper contributes, with theoretical bases discussion and statistical analysis, for interpretation of drilling

technology results that, although widely used, has no the directly interpretation released by manufacturers.

Abstract

The drilling resistance test has been widely used in tree inspections and structures. As the needle pierces the

wood, the equipment registers, in amplitude graphs (%), the resistance to drilling offered by the wood. So, it´s

expected that in the presence of a hollow, the amplitude obtained in the graph is zero, allowing its detection.

However, when the wood doesn´t have a hollow, the results of the amplitude doesn´t have an obvious

interpretation and can be influenced by different factors. The objective of this research was to use discs, from

different tree species and with different types of deterioration, to study the behavior of the amplitude of the

drilling resistance. In this research, the amplitude ranged from 0% to 40%, with the 0% sections corresponding

to hollows, allowing the confirmation that this tool is adequate for the detection of the location and approximate

size of hollows. In the heartwood, the values of amplitudes were superior and statistically different from those

obtained in the sapwood. There were statistical differences between drilling amplitude among the studied

species. The variance analysis showed that the amplitude in deteriorated regions was always lower (average

around 4%), except in the wood attacked by Coleoptera, whose deterioration was not captured by the equipment.

In some discs, there were peaks of amplitude of the drilling resistance, probably associated to

compartmentalization zones promoted in the tree tissues to protect themselves from the advance of the

deteriorated zone. This behavior may affect the interpretation of the inspection.

Key words: Tree Risk assessment, urban arborization, deterioration in trees.

14

Introduction

The drilling resistance is a semi-destructive test in which a drilling needle is inserted in the wood under

inspection. The needle must be very thin to capture tangential density differences and minimize material damage

and, on the other hand, can´t be so thin that could suffer from resonance or buckling problems (Tannert et al.,

2013). In general, the needle has a 3 mm diameter tip where the cutting edges are located, and 1.5 mm diameter

shaft (Nutto & Biechele 2015, Tannert et al. 2013). With the rotation, the needle cuts the wood and perforates the

material as it advances (Nutto & Biechele 2015, Botelho 2006). Some equipment allows the variation of the

advance speed of the needle (cm / min) as it´s rotation speed (turns / min), and it´s already known that this

adjustment must be done according to the hardness or the density of the wood (Nutto & Biechele 2015). Besides

the velocities, sharpening of the needle tip is also very important to reduce friction, which is one of the

responsible for interpretation problems of this technique´s results, especially in dense woods (Nutto & Biechele

2015, Tannert et al. 2013). While drilling, the needed energy is measures depending on the drilling depth of the

needle, and registers this parameter in a percent-amplitude graph. The more resistance the wood offers to

drilling, the greater the energy required. Some manufacturers offer new versions featuring two amplitude curves,

one representing the resistance of the drill to the rotation and another that represents the resistance to drilling,

this last one less affected by friction.

It is expected that in the presence of a hollow, the amplitude obtained in the drilling resistance graph is zero or

close to zero, allowing its detection. However, when the wood doesn´t have a hollow, the meaning of the

amplitude of drilling resistance has no obvious interpretation.

Considering that the equipment measures the resistance offered by the wood to drilling, it´s also expected that its

results can be correlated with resistance losses due to deterioration. So, there has been several studies aiming the

evaluation of the correlations between the amplitude of the drilling resistance obtained by the equipment and the

wood resistance (Botelho Jr., 2006) or its effectiveness in detecting deteriorations in wood structures (Brashaw et

al. 2011; Tannert et al. 2013, Rinn 2012), logs (Wang et al. 2005 apud Nutto & Biechele 2015) or trees

(Johnstone et al. 2010; Kubus 2009, Johnstone et al. 2007, Wang et al. 2008).

In order to contribute with information that would allow the interpretation of the drilling resistance test, the

objective of this work was to use real images of wood discs of different species and with different types of

deterioration to study the behavior of the drilling resistance amplitude.

Methodology

Sampling was composed of logs collected from six tree species: Centrolobium sp., Tabebuia ochracea,

Liquidambar styraciflua, Platanus sp., Poencianella pluviosa and Copaifera sp., widely spread in the urban

arborization of São Paulo State, Brazil. From these logs were removed 6 discs approximately 200 mm high.

Eight equidistant points were marked on each discs perimeter for measurements with the drilling resistance

15

equipment (IML F400, Germany) - Figure 1. The measurements were performed in the perpendicular direction

to the grain in the 8 marked points (measurement routes), obtaining 48 graphs of amplitude of drilling resistance.

To help with the test, the discs were fixed to a concrete table with sergeants (Fig 1).

Fig 1 Drilling Resistance Test in discs

The species used in the research had different densities and deterioration conditions (Table 1). The model of

equipment used allows the choice of different levels of feed speed (from 15cm / min to 200cm / min) and needle

rotation (1500 revolutions per minute at 5000 rotations / minute). This adjustment is usually made according to

the density of the wood. In light woods the feeding speed must be higher to allow sufficient amplitude so that the

curve variations can be seen. In denser woods the feed speed must be reduced and the rotation increased so

drilling is possible. Considering these aspects of the equipment, feeding and rotation velocities were adopted

according to the wood density, and it was also necessary to consider the deterioration condition of the disc,

avoiding that it would break with the needle entry (Table 1).

The wood condition influenced the choice of feed velocity, although the species Liquidambar and Platanus has

practically the same density, the feed velocity used in the Liquidambar was lower than in the Platanus (Table 1).

The feed speed used in the Copaifera sample could also be 100 cm / min, but it was necessary to reduce it and

increase the rotation so that the drill inlet did not break the disc (Table 1).

Table 1 Values of basic density (bas), feed velocity (VA) and rotation speed (VR) adopted for each species

Species bas

kg.m-3

VA

cm/min

VR

rot/min

Liquidambar styraciflua 490* 100 2500

Platanus sp. 500** 150 2500

Copaifera sp. 575*** 50 3500

Centrolobium sp. 660**** 100 2500

Tabebuia ochracea 840*** 100 2500

Poencianella pluviosa 890**** 50 3500

*Lima et al. 2015;

**Freitas 2012;

***IPT http://www.ipt.br/informacoes_madeiras3.php?madeira=38;

****Remade http://www.remade.com.br/madeiras-exoticas/116/madeiras-brasileiras-e-exoticas/arariba

16

After the drilling resistance tests were completed, the discs were cut to the exact position of the drill travel on the

different routes. These sections were detailed through photographic record in order to compare the amplitude

plots of drilling resistance with the different zones of the wood through which the drilling occurred. The

equipment model used in this research provides two amplitude curves, one representative of the power supply

(power needed for drilling) and the other for the drilling resistance. However, older models provide only the feed

curve. Nutto and Biechele (2015) observed that in high density wood the feed amplitude tends to increase with

the drilling depth due to friction. This increase in amplitude may cause wrong interpretation of the results, since

it can camouflage the amplitude drop that would be caused by deterioration.

The discs were macroscopically analyzed to identify the heartwood, sapwood and deteriorated areas.

Descriptions of the species were obtained in the literature (Lima et al., 2015, Freitas 2012 and IPT and Remade

sites) as well as experienced person support in visual assessment. For the species in which it was possible to

distinguish the heartwood and sapwood regions, the average amplitude of drilling resistance obtained separately

in the bark, heartwood, sapwood and deterioration zones was determined.

For all discs, the drilling resistance graphs obtained on each route were compared with the photographic images,

by image overlay. In the case of discs with heart and sapwood zones, the average amplitudes of drilling

resistance were statistically analyzed using multivariate variance analysis. In this research, only the amplitude

plots of drilling resistance were used because the use of the two graphs (power amplitude and resistance to

drilling) made the image overlay very loaded with information.

Results and Discussion

In the Centrolobium, Platanus, Poencianella and Copaífera discs, it was possible to define the heartwood and

sapwood zones from coloring distinction (Fig 2), whereas at the Tabebuia and Liquidambar species this

distinction was not possible (Fig 3). The characteristics of the heartwood and sapwood differentiation as a

function of color differentiation were similar to those proposed in the literature (Chudnoff 1980; Lima et al.,

2015, Freitas 2012 and IPT and Remade sites). Not all of the discs contained hollowed areas and all differed in

types and levels of deterioration (Table 2).

Fig 2 Images of the Cetrolobium sp. (a), Platanus sp. (b), Poencianella pluviosa (c) and Copaifera sp. (d) discs

with color distinction between heartwood and sapwood

17

Fig 3 Images of the discs of the species Tabebuia ochracea (a) and Liquidambar styraciflua (b), without

distinction of color between heartwood and sapwood

Table 2 Short description of disc deterioration

Species Description

Centrolobium sp. Hollow caused by termites

Tabebuia ochracea Coleopterans attack

Liquidambar styraciflua Near the pith there is a small area with an early stage of fungal decay and lateral

cracking from the pith to the bark

Platanus sp. Most of the wood shows signs of fungi attack and there are some hollowed areas

caused by termites

Poencianella pluviosa Fungi attack at the center of the disc

Copaifera sp. Hollow caused by termites and fungi deterioration around them

Considering the methodology, it was possible to obtain 8 graphics of drilling resistance amplitude from each

disc, corresponding to the 8 measurement routes, which were overlaid with the photographic images (Example in

Fig 4). The same result observed in the example of Fig 4 was obtained for the six-species studied (48 overlapped

images).

18

Fig 4 Superposition of the amplitude graph of drilling resistance to the photographic image obtained from the

disc, in the position of the needle passage of the resistograph. Species: Centrolobium sp.

The detailed analysis of the 48 superimposed images allowed to verify the existence of a pattern of behavior of

the amplitude of drilling resistance against the different zones of the wood (healthy and with deterioration)

traveled by the needle during the drilling.

For all studied species, the amplitude ranged from 0% to 40%, with the 0% sections corresponding to the

hollows, as expected. This result confirms that this tool is adequate to detect the location and the approximate

size of hollows. The same result was highlighted by Kubus (2009) when analyzing the condition of a large

monumental tree in Poland. The author presents records of 10 graphs of resistance to drilling, obtained in

different positions of the tree, in which there are several zones with amplitudes close to zero (probably hollowed

zones) and, in the other regions, average amplitudes of resistance to perforation of 16%. In the bark area the

average amplitudes were 6%. Brashaw et al (2011) obtained drilling resistance varying from 0 to 25% in zones

with different levels of wood degradation.

In this research, in the species in which it was possible to define the heartwood and sapwood regions, there was

amplitude variation in these regions (Examples in Fig 4). In the two species in which it was not possible to

visualize the distinction between heartwood and sapwood (Tabebuia ochracea and Liquidambar styraciflua), the

amplitude of the drilling resistance graph also does not show variations (Ex: Fig 5). Similar graphs, without

heartwood and sapwood visual distinction, were obtained by Kubus (2009).

19

Fig 5 Superposition of the amplitude graph of drilling resistance to the photographic image obtained from the

disc, in the position of the needle passage of the resistograph. Species: Liquidambar styraciflua

In the heartwood, the values of amplitudes were higher than those obtained in the sapwood. For the four species

in which it was possible to define the heartwood and sapwood regions (Fig 2) this result was statistically

demonstrated (Fig 6). The analysis of variance showed that amplitudes in deteriorated regions (with or without

hollows) were always lower (average around 4%), always higher in the heartwood regions (average around 22%)

and sapwood region (average around 15%) and of bark (average around 14%) intermediate and statistically

equivalent (Fig 6).

20

Fig 6 Representative graph of the average values and the variability of amplitude obtained in the different zones

of the disc

Considering only the heartwood and sapwood regions without apparent deterioration, there was a differentiation

between species. The amplitudes of drilling resistance were higher (about 25%) and statistically different for

Platanus sp. and the same (about 11%) for the other species. This result is not expected, since the Platanus sp.

has the lowest density (Table 1) and the drilling resistance, in general, has a positive correlation with density

(Couto et al., 2013, Costelo & Quarles 1999). However, it is important to note that the amplitude of drilling

resistance can be affected by the advance velocity, which for Platanus sp. was higher (Table 1) and that, in order

to properly interpret as well as to compare amplitude results obtained in the resistance test, it´s necessary to

know, in advance, the profiles obtained in the whole condition (Martinez 2016, Matheny et al., 1999). For the

Poencianella pluviosa hearthwood, denser wood (Table 1), was statistically different from the others, with a

drilling resistance of about 30% compared to 22% of the others.

For the Tabebuia ochracea, with beetle insect attack (Fig 3), the amplitude of drilling resistance did not show

variations that allowed, in an inspection, to visualize the wood state (Example in Fig 7).

Zone (1 = bark; 2 = sapwood; 3 = heartwood; 4 = decay wood

Am

plitu

de o

f D

rilli

ng

resis

tan

ce (

%)

1 2 3 4

0

4

8

12

16

20

21

Fig 7 Superposition of the amplitude graph of drilling resistance to the photographic image obtained from the

disc, in the position of the needle passage of the resistograph. Species: Tabebuia ochracea. Deterioration caused

by Coleoptera insects

In the Liquidambar styraciflua disc there was a significant crack (Fig 3) that was not identified in any drilling

resistance amplitude graph, because no needle route passed through the crack site (Fig 5). This result stands out

the fact that this type of inspection is punctual, and it is important to know where it should be applied. Botelho

(2006) and Tannert et al (2014) had the same conclusion.

It was possible to observe that in some discs there was, in the contour of the fungi deteriorated zone, a darker

colored region. In these cases, an increase peak in the amplitude of the drilling resistance was observed (Fig 8).

Similar result was obtained by Rinn (1996) and was explained by the compartmentalization process promoted in

the trees tissue to protect them from the advance of the deteriorated zone. In this process the tree develops a

thicker cell wall tissue, in addition to obstruct cell voids, causing this tissue to act as a deterioration barrier

(Fraedrich 1999, Shigo 1977, Shortle 1979). The darker color is due to the antimicrobial substances produced

(Shigo1977, Shortle 1979). The Platanus sp. disc was the only one that presented these peaks in the sapwood

zone, which may have influenced the average value of amplitude of drilling resistance, making this species,

although with lower density, present the highest values of amplitude.

22

Fig 8 Details of amplitude peak observed in zones close to fungal decay a) Centrolobium sp., b) Platanus sp., c)

Poencianella pluviosa, d) Copaifera sp

Rinn (1996) observed that differentiated patterns of behavior of the drilling resistance plot may help the

inspection interpretation. The authors point out that in fungi deteriorated wood, the amplitudes are low and

approximately homogeneous, while in termite deteriorated areas or with cracks present the graph is more

variable, with higher amplitudes (surrounding wood in good condition) followed by amplitude values much

smaller and localized. In the Platanus sp. and Poencianella pluviosa discs, in which there was a large fungus

deteriorated zone (Fig 2 and Table 2), the drilling resistance graph shows a continuous segment of low

amplitudes (Fig 9a and b), according to the behavior indicated by Rinn (1996).

Fig 9 Superposition of the amplitude graph of drilling resistance to the photographic image obtained from the

disc, in the position of the needle passage of the resistograph. Species: a) Platanus sp.., b) Poencianella pluviosa

23

Conclusion

For all studied species, the amplitude ranged from 0% to 40%, with the 0% sections corresponding to the

hollows, as expected, allowing confirming that this tool is adequate for the detection of the location and the

approximate size of hollows. In the heartwood, the values of amplitudes were superior and statistically different

from those obtained in the sapwood. There were also statistical differences between species. The variance

analysis showed that the amplitude in deteriorated regions (with or without hollows) was always lower (average

around 4%), except in the Coleoptera attacked wood, whose deterioration was not captured by the equipment. In

some discs, amplitude increase peaks were observed on the drilling resistance graph, probably associated to

compartmentalization zones promoted in the tree tissue to protect themselves from the advancement of the

deteriorated zone. This behavior, also observed by other researchers, can affect the inspection interpretation,

hiding, for example deterioration.

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPQ) for

the scholarships and Sao Paulo Research Foundation (FAPESP) - Proc. 2015/05692-3 - for the research funding.

They also thank the Environment Department of UNICAMP for donating the logs used in the tests and to PD

Instruments Company for lending the equipment used in tests of drilling resistance.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

BOTELHO JR, J.A. (2006) Avaliação não destrutiva da capacidade resistente de estruturas de madeira de

edifícios antigos. Thesis, Universidade do Porto, Portugal

BRASHAW, B. K.; VATALARO, R.; ROSS, R. J.; WANG, X.; SCHMIEDING, S.; OKSTAD, W. (2011)

Historic Log Cabin structural condition assessment and rehabilitation – A case study. In: International

nondestructive testing and evaluation of wood symposium, 17, Hungria. Anais... Hungria: University of West

Hungary, v.2, p. 505-512

COSTELO L.R. QUARLES, S.L. (1999) Detection of wood decay in Blue Gum and Elm: an evaluation of the

resistograph and the portable drill. Journal of Arboriculture, EUA, 25(6), p. 311 – 318

24

COUTO AL, TRUGILHO RF, NEVES TA, PROTÁSIO TP, Sá VA. (2013) Modeling of basic density of wood

from Eucalyptus grandis and Eucalyptus urophylla using nondestructive methods. Cerne, v.19, n.1, p.27-34

FRAEDRICH, B. R. (1999) Compartmentalization of decay in trees, TR-18, Technical Report, Bartlett Tree

Research Laboratories, Charlotte, NC

FREITAS, T. (2012) Caracterização tecnológica da madeira de Platanus sp. Monografia, Departamento de

Ciências Florestais e da Madeira, Universidade do Espirito Santo, ES

INSTITUTO DE PESQUISAS TECNOLÓGICAS, IPT. Informações sobre Madeiras. Disponível em

<http://www.ipt.br/informacoes_madeiras/31.htm> Acessed 04 November 2016

JOHNSTONE, D. M.; ADES, P. K.; MOORE, G. M.; SMITH, I. W. (2007) Predicting Wood Decay in

Eucalypts Using an Expert System and the IML- Resistograph Drill. Arboriculture & Urban Forestry, 33(2),

p. 76-82

JOHNSTONE, D.; MOORE, G.; TAUSZ, M.; NICOLAS, M. (2010) The Measurement of Wood Decay in

Landscape Trees, Arboriculture & Urban Forestry, 36(3), p. 121-127

KUBUS, M. (2009) The Evaluation of Using Resistograph when Specifying the Health Condition of a

Monumental Tree. Notuale Botanicae Horti Agrobotanici Cluj-Napoca, v. 37, n. 1, p. 157–164

MARTÍNEZ, R. et al. (2015) NDT to identify biological damage in wood. In: International nondestructive

testing and evaluation of wood symposium, 19, Brasil, Anais…Brasil: Rio de Janeiro, p. 453-461.

MARTÍNEZ, R. (2016) Métodos no destructivos de estimación de la densidad de la madera. Thesis, 210p.

Universidad de Santiago de Compostela, Espanha

MATHENY, N.P.; CLARK, J.R., ATTEWELL, D. (1999) Assessment of fracture moment and fracture angle in

25 tree species in the United States using fractometer. Journal of Arboriculture, v.25-1, p.18 – 23

NUTTO, L.; Biechele, T. (2015) Drilling resistance measurement and the effect of shaft friction – using feed

force information for improving decay identification on hard tropical wood. In: International nondestructive

testing and evaluation of wood symposium, 19 Anais… Brasil, Rio de Janeiro, p. 156-160

RINN, F. (1996) Resistographic visualization of tree-ring density variations. Radiocarbon, p. 871-878

25

RINN, F. (2012) Basics of Typical Resistance-Drilling for Timber Inspection. Holztechnologie, 53, p. 24-29

SHIGO, A.L.; MARX, H. (1977) Compartimentalization of decay in trees. (CODIT). Inf. Bull. U.S. Dep. Agric.,

405, 73p

SHORTLE, W.C. (1979) Mechanisms of Compartimentalization of Decay in living trees. Symposium on wood

decay, v.69, n.10, p.1147-1151

TANNERT, T.; ANTHONY, R.W.; KASAL, B.; KLOIBER, M.; PIAZZA, M.; RIGGIO, M.; RINN, F.;

WIDMANN, R.; YAMAGUCHI, N. (2013): In situ assessment of structural timber using semi-destructive

techniques. Materials and Structures DOI 10.1617/s11527-013-0094-5. July 2013

WANG, X.; ALLISON, R.B. (2008) Decay Detection in Red Oak Trees Using a Combination of Visual

Inspection, Acoustic Testing, and Resistance Microdrilling. Arboriculture & Urban Forestry, 34(1), p. 1-4

WILCOX, W.W. (1978) Review of literature on the effects of early stages of decay on wood strength, Wood

and Fiber, p. 252-257

26

ARTIGO 2: ULTRASONIC TOMOGRAPHY IN LOGS OF TREES

WITH DIFFERENT TYPES OF DETERIORATION

Submetido ao periódico: Revista Árvore

27

Ultrasonic tomography in logs of trees with different types of deterioration

Authors and Affiliations:

Mariana Reis (1), Raquel Gonçalves (2), Stella Stopa Assis Palma (3), Danilo Profeta Ziller (4)

(1) (3) Master Student, School of Agricultural Engineering, Nondestructive Testing Laboratory, University of Campinas, Campinas, SP, Brasil

(2) Professor, School of Agricultural Engineering, Nondestructive Testing Laboratory, University of Campinas, Campinas, SP, Brasil. E-mail: [email protected]

(4) Undergraduate Student, School of Agricultural Engineering, Nondestructive Testing Laboratory, University of Campinas,

Campinas, SP, Brasil

Author Contribution Statement:

(1) This paper is part of her Master degree research. Worked in the tests, in discussions of results and in text

writing.

(2) Supervisor of the Master student (1). Responsible by the research idea. Worked supervising the developing of

the research, discussing the methodology and results and on the final correction of the text.

(3) Part of the research group, collaborated on discussions of the results and in text writing.

(4) This paper is part of his Undergraduate research. Collaborated with author (1) during the tests and also

participated of the discussion of the results.

Key Message

This paper contributes, with theoretical bases discussion and statistical analysis, for interpretation of ultrasonic

tomography technique that, although widely used, needs improvement to be more useful and safe for tree risk

assessment.

Abstract

The mechanical wave propagation is affected by elastic properties differences and impedance differences on

propagation medium. Deviations in the wave routes also affect propagation, and therefore velocity. The

deteriorated wood will have its properties of strength and stiffness affected, therefore, causing variations in

velocity of wave propagation when compared with sound wood. Hollows in the wood will cause changes in the

wave path, which seek the material medium, also affecting the velocity by the change of course. To facilitate

visualization, speed variations can be associated with color and, through interpolation software, images are

constructed. This procedure, which can have different levels of sophistication, is called acoustic tomography,

which the greatest limitation is the interpretation of the image produced. Considering the mentioned aspects, the

objective of this research was to evaluate, qualitative and quantitatively, results of ultrasound tomography in face

of different types and levels of deterioration. The tests were performed on logs of 6 tree species. Hollowed areas

presented reduction of velocities greater than 70%, while zones deteriorated by fungi begin to be highlighted on

the tomographic imagens with reductions of 30% in speed. In the case of cracks or galleries the image detailing

depends on the relationship between the wavelength and the size of these defects. In general, the images of

ultrasound tomography are adequate to provide important information for the tree risk assessment.

Keywords: velocity variation, acoustic tomography, fungal decay, hollowed wood, tree risk assessment

28

Introduction

Different types of decay can cause changes in the wood structure, affecting the wave propagation

(Bucur 2006) and these changes can be used to detect the wood internal defects (Wang 2013, Brancherian et al.

2012, Wessels et al. 2011).

In case of fungi attack, the wood becomes less resistant and less rigid. Brazolin et al. (2014)

demonstrated statistical differences between modulus of rupture and elasticity in bending in sound and in wood

deteriorated by fungi. The reductions of strength and stiffness obtained by Brazolin et al. (2014) varied from

about 70% in the wood with incipient deterioration to about 90% in wood severe decayed. The same result was

obtained by Trevisan et al. (2007), with statistically significant strength differences in sound and wood decayed

by fungus reached 42% in compression and in 52% in bending. Such reductions in strength and stiffness produce

reductions in wave propagation velocity (USDA 2014, Deflorio et al., 2007, Ross et al. 1998).

In the case of wood decayed by termites or other xylophage’s insects, the wood presents galleries in its

interior, but the surrounding material is generally sound. Weiler et al. (2013) showed statistically significant

variations of modulus of elasticity (MOE) and rupture (MOR) when termite deterioration was between 20% and

100%.

The association of fungal attack, followed by termites may be responsible for the existence of hollowed

areas in trees. In these cases (galleries and hollows), the wave propagation will suffer deviations, and consequent

velocity reduction. Deviations occur because mechanical waves seek the material medium to propagate (Weiller

et al. 2013, Secco et al. 2012, Najafi et al. 2009, Lin et al. 2008, Bucur 2006, Wang et al. 2007, Wang et al.

2004). Thus, if deteriorations or cavities in the wood reduce the velocity of wave propagation, the variations can

be used as identifiers of changes in the material.

In order to obtain a scan in the inspected element, a measurement mesh (Divos and Szalai, 2002), called

diffraction (Example in Fig. 1a) is used. Through this mesh it is possible to obtain measurement routes, whose

quantity depends on the number of sensors used. To facilitate visualization, velocities ranges are associated with

colors and, through interpolation software (Du et al., Feng et al., 2014, Zeng et al., 2013), images are constructed

(Example in Fig. 1b). This procedure, which may have varying degrees of sophistication, is called acoustic

tomography. The quality of the image is affected by the interpolation process used, but the accuracy of the

results, also suffers interference from the power of the equipment and the quality of the data obtained in the field.

Fig. 1 Example of measurement mesh (a) and tomography image generated (b)

29

There are several commercial acoustic tomography equipment on the market, mainly using stress wave

propagation (called sonic tomography), but there is still a lot of research in the area (Balázs & Divós 2015,

Yamashita et al 2015, Trinca et al. 2015 a e b, Arciniegas et al. 2014, Trinca et al. 2013 a,b e c, Van Dijk et al.

2013, Turpening 2011, Secco et al. 2012, Sanabria et al. 2011, Gonçalves et al. 2011, Secco et al. 2011a e b,

Secco et al. 2010, Kim et al. 2009, Batista et al. 2009, Brancheriau et al. 2008, Lin et al. 2008, Secco et al. 2004,

Bucur 2002, Comino et al. 2000), proof of the need for a better understanding of the meaning of the generated

image, as well as its reach in terms of accuracy. Pereira et al. (2007) summarizes this understanding by

concluding that acoustic tomography is a developing technique and, therefore, lacking in studies. The same

conclusion was presented by the USDA (2014), which discusses acoustic tomography in one of its chapters,

presenting examples of tomographic images produced using commercial tomographs, but indicating that the

greatest limitation of the method is still the interpretation of the tomographic image. Du et al (2015) also point

out that the quality of reconstructed imagens by acoustic tomography can be improved.

Considering the aspects mentioned, the objective of this research was to evaluate, qualitative and

quantitatively, the results of ultrasound tomography in face of different types and levels of deteriorations.

Methods

The wood samples used in this study were taken from trunks of trees of the species: Centrolobium sp.,

Tabebuia ochracea, Liquidambar styraciflua, Platanus sp., Poencianella pluviosa and Copaifera sp. In order to

carry out the ultrasonic tests, discs with a minimum of 200 mm height were cut from those trunks.

The ultrasound tests were performed using the diffraction mesh (Fig. 1a) in which 8 measurement

points were adopted for all species. The measuring points were approximately equidistant and positioned at the

middle height of the disc. As used in the standing tree tests, at each measurement point, 3 mm holes were drilled

for the introduction of the transducer tip, to ensure coupling of the transducer to the wood and not to the bark.

The tests performed on each diffraction mesh measurement route (Fig. 1a) were done using

conventional ultrasound equipment developed by the research group in partnership with a technology-based

company (USLab, Agricef, Brazil) and 45 kHz-frequency dry tips longitudinal transducers (Fig. 2). To obtain the

tomography image we used software (ImageWood 2.0) also developed in the research group.

30

Fig. 2 Centrolobium sp. disc being tested by ultrasound

After the ultrasound tests, the discs were cut at the height where the measurements were taken and the

surface was polished to be analyzed and photographed in detail. The species presented different conditions of

deterioration and the decayed zones were recognized only macroscopically through a detailed visual analysis of

its surfaces. The generated pictures were used to obtain representative mask of the deteriorated zone, using the

free software ImageJ. This mask was used to calculate the percentage of deteriorated area.

The tomographic images were generated in two ways. In the first one, 6 velocity bands were used, based

on the percentage of the maximum velocity obtained on discs (red up to 20%, orange 20% to 30%, yellow 30%

to 50%, green 50% to 70%, blue 70% to 80% and black from 80% to 100%). According to a USDA publication

(2014), a 50% reduction in velocity means that the region presents severe deterioration, so the second form of

image generation was done considering only two colors: brown for zones with speeds above 50% of the

maximum velocity obtained on discs and yellow for zones with speeds below 50% of maximum speed,

considering as areas with severe deterioration. These two-color images were used to determine the percentage of

impaired area inferred by tomography, also using the free ImageJ software. The images generated in different

colors by the ultrasound tomography were visually compared with the pictures obtained from the surface. In

addition to this visual analysis, the percentage of deteriorated area, inferred by tomographic images with two

colors, was compared with the percentage of deteriorated area obtained from the mask created by the picture of

the discs surface.

Results and Discussion

The visual analysis of the treated surfaces allowed detailing the deteriorated zones in the discs of the

different species (Table 1)

31

Table 1. Summary description of the visual analysis of the deteriorations in the discs

Species Description

Centrolobium sp. Large hollow caused by termite attack

Tabebuia ochraceae Numerous galleries caused by Coleoptera attack

Liquidambar

styraciflua Lateral crack from the pith to the bark caused by drying process

Platanus sp. Most of the wood shows signs of attack by fungi and there are some hollowed

areas caused by termites

Poencianella pluviosa Fungus attack in the center of the disc

Copaifera sp Large hollow caused by termites. In the surroundings of these hollows there is

deterioration by fungi

The images of Centrolobium sp. and Copaifera sp.discs (Fig.3a, 3f) are those were the red and orange

colors appear, which represent zones with velocities lower than 30% of the maximum velocity (or velocity loss

greater than 70%). These discs are the ones that have great hollowed regions. Thus, although the image does not

represent the exact shape or size of the decayed region, it was efficient to assess the falling risk of these two logs.

The images identified advanced deterioration inside the logs, which would be enough to indicate the risk

involved. Differences in image precision can be obtained using different algorithmic to interpolate velocities in

acoustic tomography (Du et al. 2015) but, in spite of these differences, none tomographic imagens constructed

using interpolation methods proposed by Du et al. 2015, Feng et al. 2014, Zeng et al. 2013, showed precisely the

shape or the dimension of the internal hollows. On the other hand, in the same way as discussed here, the

representation was enough to indicate the degree and the extension of the decay. The use of more complete

algorithmic or other data manipulation, as compensate radial/tangential velocities, can improve the correctly

detection of healthy areas (Du et al. 2015), minimizing the overestimation of decayed areas mentioned by Wang

et al. (2009) or the worse quality of the image near the sensor (Gilbert and Smiley 2004).

In the Liquidambar styraciflua disc (Fig. 3c) there´s also a small region with the orange color located at

the edge, representing reduction of 70% to 80% of the velocity. This region corresponds to the zone of greater

opening of the crack in the disc. The rest of the image is mostly black (velocity losses below 20%) with a zone

with velocity loss between 30% and 50% (green), which is on the same side of the crack. The tomographic

image analysis would not adequately identify the size and position of the defect (crack). The ability to detect

defects using wave propagation is associated with the relationship between wavelength () and defect size

(Bucur 2006). In general, the detection sensitivity is of /2 order (Bucur 2006). In the case of the Liquidambar

styraciflua specimen, the maximum speed (integral area) was 2000 m/s, so 44 mm. Thus, defect detection

from 22 mm is expected to be possible. The largest aperture of the crack, located at the edge of the disc and

detected by the tomographic image (Fig. 3c) is 25 mm, consistent with the theoretical aspects of this test.

The image of the Tabebuia ochracea (Fig. 3b) specimen has only colors green and yellow. There are

many yellow cords within the green zone. Since the cords are representative of interferences caused by the

interpolation system used by the software (Trinca et al., 2015, Trinca et al., 2013 a, bc, Van Dijk et al., 2013,

Secco et al. 2012, Secco et al. 2011a e b, Secco et al. 2010, Batista et al. 2009), the interpretation of this image

would consider that, in the internal part of the piece, the loss of velocity would be between 30% and 50% which,

32

according to USDA (2014) would indicate strength loss about 50%. At the edges of the piece there are large

areas in yellow, indicating speed losses between 50% and 70% that, according to USDA (2014), represent severe

deterioration. The visual analysis shows that the piece is completely taken by cavities and at its extremities there

is a more severe Coleoptera attack. Therefore, in this case, the diagnosis of the inspection would lead to consider

the piece with considerable loss of resistance, although it is not possible to visualize the cavities in the image.

The non-visualization of the cavities in the image was already expected since, in this case, the velocity in the

sound wood is also about 2000 m / s ( 44 mm) and the cavities size are way below 22 mm (/2).

The image of Platanus sp. disc (Fig. 3d) indicates severe deterioration in practically the entire inspected

area, as there is a large area in yellow (velocity loss between 50% and 70%) interspersed with green (velocity

loss between 30% and 50%). This result was compatible with the real state of surface of the disc, detailed in

visual analysis. The Poencianella pluviosa disc (Fig. 3e) also indicated, in visual analysis, a central region with

fungal decay. However, the visual inspection show that the degree of deterioration was inferior to the one

observed in the Platanus sp. (Fig. 3d) in which the wood was much more softened. This pattern was consistent

with the images generated in these two discs, because in the case of the Poencianella pluviosa (Fig 3e) the

velocity loss was up to 30% (blue and black colors) while in Platanus sp. (Fig. 3d) between 30% and 50%. It is

much more difficult the identification of decayed zones filled (not hollowed), as the case of decayed by fungi,

because the transmission velocity differences between sound and deteriorated wood is weaken (Du et al. 2015).

In a sample with hollow filled with clay, Du et al. (2015) showed that their proposed interpolation method

indicated, not exactly but more accurately than Feng et al. (2014) and Zeng et al. (2013), the position of the

defect. The interpolation method proposed by Feng et al. (2014) showed the entire disc with red color

(deteriorated) and so, no identification of the clay filled hollow. The method proposed by Zeng et al. (2013)

indicated the location of the defect approximately, but, showed sound areas as decayed.

33

Fig. 3 Pictures of the surfaces of the discs from the different species and images of its ultrasonic tomography

Legend: percentages of maximum speed: red up to 20%, orange 20% to 30%, yellow from 30% to 50%, green

from 50% to 70%, blue from 70% to 80% and black from 80% to 100% %

For the Centrolobium sp. and Copaifera sp. discs, the percentage of decayed area (Table 2) obtained by

the representative mask of zones with deterioration (Fig. 4) was approximately 30% lower than the decayed

percentage area infered using the two colors tomographic image (Table 2). Wang et al. (2009) concluded that an

internal defect in the tree trunk tends to be overestimated in it size using acoustic tomografy. Areas with hollows

show loses in velocities superior to 70% (Fig. 3), but the two colors tomographic images adopted as reference

the one proposed by the USDA (2014), corresponding to velocity loss around 50% (zones in yellow in Fig. 4).

So, the area of this zone (yellow) also covered regions not affected by the hollow, explaining the differences

between percentage of decayed areas (Table 2). Trinca et al. (2015) also obtained loses of velocity superior to

70% in holow zones.

On the other hand, in discs with zones deteriorated by fungi (Platanus sp. and Poencianella pluviosa)

the tomographic image underestimated the real area deteriorated (Table 2). This can be explained because the

34

reduction of velocity is associated by the strength and stiffness loss which, in turn, depends on the level of the

decay (Trinca et al., 2015) and the level of the decay was not considerated for mask creation. The mask (Figure

3) was constructed based only on size and not based on the deterioration level. The results of Trinca et al. (2015)

indicate that for insipient decay in wood attacked by fungi the vlocity loss is only around 10%, reaching about

80% in wood with severe decay. As the Poencianella pluviosa disc show, in visual analysis, an insipient to

moderate fungal decay, the velocity loss will be not represented in two colors tomography because it is less than

50%.

In the case of the Tabebuia ochracea specimen it was not possible to obtain a mask due to the difficulty

in obtaining the sum of the areas of the numerous of small galleries, which were also superficial.

Table 2. Percentage of deteriorated area using the photograph of the discs surfaces and the image of ultrasound

tomography and difference between these two percentages

Deteriorated area (%)

Species Mask obtaine in

Surface picture

Tomographic image* Difference

(%)

Centrolobium sp. 48,09 78,34 -30,25

Copaifera sp 43,46 73,70 -30,24

Platanus sp. 66,60 53,64 12,96

Liquidambar styraciflua 1,83 2,29 -0,46

Tabebuia ochracea** - 32,14 -

Poencianella pluviosa 24,87 0 24,87

* Areas of the image with more than 50% of velocity loss; ** It was not possible to calculate because it was

composed of numerous small and superficial cavities

Applying the expected ultrasonic velocity variations to zones with hollows and with deterioration

caused by fungi (Trinca et al., 2015), new two colors tomographic images were constructed (Fig. 4). For the

discs with hollows (Centrolobium sp. and Copaifera sp), yellow represents areas with 70% velocity loss (Fig. 4a,

4f) and for disc deteriorated by fungi, the zone in yellow was considered to have 30% velocity loss (Fig. 4c, 4d,

4e). Of course, this discussion has no practical motivation, as it was considered from the knowledge of the actual

condition of the discs.The purpose of this discussion was to analyse the ranges of velocity losses associated with

hollows and zones decayed by fungi attack.

Using the same procedure to calculate deteriorated areas (mask and tomographic image), we can see

that the hollowed areas (Centrolobium sp. and Copaifera sp.species) provided by the ultrasonic tomography are

now closer to the actually affected areas (Table 3) than the first analysis (Table 2). In the case of the Platanus sp,

the area deteriorated by fungi inferred by tomography, which was previously underestimated, surpassed the

highlighted area by the mask in about 15%. In the Poencianella pluviosa specimen, whose deterioration by fungi

seems to be in the initial phase, the use of 30% of speed loss begins to highlight some deterioration, but still

inferior to that highlighted by the mask (Table 3).

35

Table 3 Percentage of deteriorated area using the photograph of the discs surfaces and the image of ultrasonic

tomography, and difference between these two percentages

Deteriorated area (%)

Species Surface photograph Tomographic image Difference

(%)

Centrolobium sp. 48,09 38,74* 9,35

Copaifera sp 43,46 45,50* -2,04

Platanus sp. 66,60 82,15** -15,55

Tabebuia ochracea*** - 32,14 -

Poencianella pluviosa 24,87 8,10** 16,77

* Areas of the image representing speed losses exceeding 70%; ** image areas representing speed losses of more

than 30%; *** It was not possible to calculate because it was composed of innumerable small and superficial

cavities

36

Fig. 4 Masks representative of the deteriorated zones based on the surface pictures (A1, B1, C1, D1 and E1) and

ultrasonic tomography images considering two situations. Situation 1: yellow: velocity losses greater than 50%

and brown: velocity losses less than 50% (A2, B2, C2, D2, E2). Situation 2: discs with hollow - yellow: velocity

losses greater than 70% and brown: velocity losses of less than 70% (A3, E3) and discs with presence of zones

deteriorated by fungi - yellow: velocity losses greater than 30% and brown: velocity losses of less than 30% (C3,

D3)

The tomography image generated with different colors (Fig. 3) is a little more confusing for a layman,

but conceptually allows better differentiation of velocity variation levels, and consequently the location of the

zones with greatest loss of wood stiffness, regardless of the level of the decay.

Using the USDA recommendation (2014) to construct images with two colors (above and below 50%

loss of velocity) the hollowed region shown is amplified (Fig. 2 and Table 2) and zones with deterioration by

fungi will only be identified when this deterioration is not in its initial stage. However, despite having

deficiencies to localize and to give the exact size of deteriorated areas, the ultrasonic tomography show to be an

important tool for falling tree risk assessment purposes, since it allows inferring the existence of zones with loss

of stiffness.

Conclusions

In this paper we evaluate, qualitative and quantitatively, the results of ultrasound tomography facing

different decay condition in wood.

37

Considering as hollowed areas those with 70% of velocity loss, the percentage of decayed area predict

by the tomography is closer to the actual condition. If 50% of velocity loss are considering as hollowed areas the

image interpretation tends to overestimated the hollowed areas.

In zones with moderate to severe decayed by fungi the velocity loss is greater than 50% whereas

velocity loss around 20% and 30% are associated with insipient to low decay.

The identification of cracks depends on the relationship between their size and the wave length, which

in turn depends on the transducers frequency. In areas with great number of small and superficial holes (as in

case of Coleoptera attack), although ultrasound tomography is not capable to identify the holes, the velocity loss

(30% to 50%) in the whole disc is an adequate result to the actual situation, since despite the attack being

superficial, it was numerous, so it is expected wood stiffness loss.

Ultrasound tomography images are adequate to provide important information for falling tree risk

assessment.

Acknowledgments

The authors would like to thank the National Council for Scientific and Technological Development (CNPQ) for

the scholarships and Sao Paulo Research Foundation (FAPESP) - Proc. 2015/05692-3 - for the research funding.

They also thank the Environment Department of UNICAMP for donating the logs used in the tests.

Conflict of interest:

The authors declare that they have no conflict of interest

References

ARCINIEGAS, A.; PRIETO, F; BRANCHERIAU, L.; LASAYGUES, P. (2014) Literature review of acoustic

and ultrasonic tomography in standing trees. Trees. 28(6): 1559-1567

BALAZS, M.; DIVOS, F., (2015) Glue laminated timber structure evaluation by acoustic tomography. In:

International Nondestructive testing and evaluation of wood symposium, Anais…, v.19. p.462 – 466

BATISTA, F.; GONÇALVES, R.; CERRI, D.G.P.; SECCO, C.B., (2010) Reprodução da condição interna de

peças de madeira através de imagens representativas da propagação de ondas, 06/2010, Científico Internacional,

XXVIII Congresso Nacional de Ensaios Não Destrutivos e Inspeção - 14a. Conferencia Internacional sobre

Evaluacion de Integridad y Extension de Vida de Equipos Industriales, Vol. 1, pp.1-12, Santos, SP, BRASIL

38

BATISTA, F.A.F; GONÇALVES, R.; CERRI, D.G.P.; SECCO, C.B. (2009) Reprodução da condição interna de

peças de madeira através de imagens representativas da propagação de ondas. Madeira: Arquitetura e

Engenharia, v.10 (25), p 23-32

BRANCHERIAU L., LASAYGUES P., DEBIEU E., LEFEBVRE JP. (2008) "Ultrasonic tomography of green

wood using a non-parametric imaging algorithm with reflected waves".Annals of Forest Science, 65(7):712-718

BRAZOLIN, S.; TOMAZELLO FILHO, M.; YOJO, T.; NETO, M.A.O.; ALBUQUERQUE, A.R.; JUNIOR,

C.R.S; (2014) Propriedades físico-mecânicas do lenho deteriorado por fungos apodrecedores de árvores de

tipuana tipu, Cerne, Lavras, v. 20, n. 2, p. 183-190

BUCUR, V. (2002) High resolution Imaging of Wood Structure. In: International Symposium on Nondestructive

Testing of Wood. Berkeley, California

BUCUR, V. (2005) Ultrasonic techniques for nondestructive testing of standing trees. Ultrasonics. 43:237-239

BUCUR, V. (2006) Acoustics of wood. 2nd ed. New York: Springer-Verlag, 393p

COMINO E, MARTINIS R, NICOLOTTI G (2000) Low current tomography for tree stability assessment, 278,

In: Backhaus G F, H Balder, and E ldczak (Eds). International symposium on plant health in urban horticulture,

Braunschweig, Germany, 22-25

DEFLORIO, G; FINK, S; SCHWARZE, F.W.M.R.; (2007) Detection of incipient decay in tree stems with sonic

tomography after wounding and fungal inoculation. Wood Sci Technol. 42:117-132.

DIVOS, F.; SZALAI, L. (2002) Tree evaluation by acoustic tomography. In: Proceedings of the 13th

International symposium on nondestructive testing of wood; 2002 August 19. 21; Berkeley, CA. Madison, WI:

Forest Products Society: 251.256

DU, X. et al. (2015) Stress Wave Tomography of Wood Internal Defects using Ellipse-Based Spatial

Interpolation and Velocity Compensation. BioResources, v. 10, n. 3, p. 3948-3962

FENG, H. et al. (2014) Tomographic image reconstruction using an interpolation method for tree decay

detection. BioResources, v. 9, n. 2, p. 3248-3263

GILBERT E, SMILEY E (2004). Picus sonic tomography for the quantification of decay in white oak (Quercus

alba) and hickory (Carya sp.). Journal of the Arboriculture 30(5), 277-281.

39

GONÇALVES, R.; BERTOLDO, C.; MASSAK, M. V.; BATISTA, F.; SECCO, C. B.; (2011) Velocity of

ultrasonic waves in live trees and freshly-felled logs, 02/2011, Blacksburg, Estados Unidos da America, Wood

and Fiber Science, Vol. 43, N 2, pp.232-235.

GONÇALVES, R.; SECCO, C. B.; CERRI, D.G.P.; BATISTA, F. (2011) Behavior of ultrasonic wave

propagation in presence of holes on Pequiá wood, In: 17th International Nondestructive Testing and evaluation

of wood symposium WoodNDT, Vol. 1, pp.1-3, Sopron, HUNGRIA

KIM, B. N., LEE, H. W., AND KIM, K. M. (2009a) The development of image processing system using area

camera for feeding lumber. Journal of the Korean Wood Science and Technology, 37(1),37-47.

LIN, C.J.; KAO, Y.; LIN, T et al (2008) Application of ultrasonic tomographic technique for detecting defects in

standing trees. International Biodeterioration & Biodegradation, 62, p.434-441

LINO, A.C.; TRINCA, A.J.; SILVA, M.V.G.; GONÇALVES, R. (2013) Use of Laser to determine profile of

trees. In: Nondestructive Testing and Evaluation of Wood Symposium, Madison

MARTINIS, R.; SOCCO, L.; SAMBUELLI, L.; NICOLOTTI, G.; SCHMITT, O.; BUCUR, V. (2004)

Tomographie ultrasonore pour les arbres sur pied. Annals of Forest Science, Springer Verlag (Germany), 61 (2),

pp.157-162.

NAJAFI, S. K.; SHALBAFAN, A.; EBRAHIMI, G. (2009) Internal decay assessment in standing beech trees

using ultrasonic velocity measurement, Eur. J. Forest Res. 128, 345-350

PEREIRA, L.C., SILVA FILHO, D.F, TOMAZELLO FILHO, M., COUTO, H.T.Z., MOREIRA, J.M.M.A.P.,

POLIZEL, J.L. (2007) Tomografia de impulso para avaliação do interior do lenho de árvores. Revista da

sociedade brasileira de arborização urbana, Volume 2, Número 2

SANABRIA, S. J., FURRER R., NEUENSCHWANDER J., NIEMZ P., SENNHAUSER U. (2011) Air-coupled

ultrasound inspection of glued laminated timber. Holzforschung 65,377-387

SECCO, C. B. ; CERRI, D. G. ; GONÇALVES, R. ; BATISTA, F. ; VASQUES, E.C. (2011) Metodologia de

inspeção da condição interna de toras de madeira por ultrassom. In: Congresso Ibero-Latino-Americano da

Madeira na Construção, Coimbra. Anais do CIMAD. Coimbra

SECCO, C. B. ; GONÇALVES, R. ; CERRI, D. G. ; VASQUES, E.C. ; BATISTA, F. (2011) Tree holes

detecting by ultrasound. In: Efficient and safe production processes in sustainable agriculture and forestry,

Viena. XXXIV CIOSTA CIGR V Proceedings. Viena

40

SECCO, C. B.; GONÇALVES, R.; CERRI, D. G.; VASQUES, E.C.; BATISTA, F. (2012) Behavior of

ultrasonic wave propagation in presence of holes on wood. Cerne (UFLA), v. 18, p. 12-16

SECCO, C. B.; Gonçalves, Raquel ; CERRI, D. G. ; BATISTA, F. (2010) Avaliação de dois tipos de medição na

detecção da condição interna da madeira por ultrassom. In: Congreso Latinoamericano y del Caribe de Ingeniería

Agrícola, Vitória.

SECCO, C.B.; GONÇALVES, R.; CERRI, D.G.P.; BATISTA, F.A.B. (2010) Avaliação de dois tipos de

medição na detecção da condição interna da madeira por ultrassom. Madeira: Arquitetura e Engenharia,

v.11(27), p.1-5

SOCCO, L.V., SAMBUELLI, L. MARTINIS, R., COMINO, E., AND NICOLOTTI, G. (2004) Feasibility of

ultrasonic tomography for nondestructive testing of decay on living trees. Research in Nondestructive

Evaluation, 15, 31-54

STANGERLIN, D.M., CORASSSA, J.N., GATTO, D.A., PEREIRA, R.L. (2015) Caracterização mecânica de

madeiras deterioradas em campo por meio de ultrassom e flexão estática, Comunicata Scientiae 6(3): 365-372

TREVISAN H.; TIEPPO, F.M.M.; CARVALHO, A.G.; LELIS, R.C.C. (2007) Avaliação de propriedades físicas

e mecânicas da madeira de cinco espécies florestais em função da deterioração em dois ambientes, Árvore,

Viçosa-MG, v.31, n.1, p.93-101

TRINCA, A. J.; GONÇALVES, R. (2009) Efeito da dimensão e da frequência sobre a determinação da

velocidade de propagação de ondas de ultrassom na madeira. Revista Árvore, v. 33 (1), p. 177-184

TRINCA, A.J., GUERRA, M.R., GONÇALVES, R. (2015) Velocity variation in wood as a function of defects,

In: International Nondestructive Testing and Evaluation of Wood Symposium, v.19. Rio de Janeiro, Brasil, p.

593 – 599

TRINCA, A.J.; GONÇALVES, R.; LINHARES, C.S.F. (2013) Ultrasonic tomography in detecting knots. In:

Nondestructive Testing and Evaluation of Wood Symposium. Madison

TRINCA, A.J.; GONÇALVES, R.; VAN DIJK, R.; AGUSTINHO, D.M. (2013) Interference of pith in

ultrasonic tomography. In: Nondestructive Testing and Evaluation of Wood Symposium. Madison

TURPENING, R. (2011) Acoustic imaging of Sandalwood (santalum albu) logs. In: Nondestructive Testing and

Evaluation of Wood Symposium. Sopron, Hungary

41

UNITED STATES DEPARTMENT OF AGRICULTURE (USDA), (2014) Wood and Timber Assessment

Manual. Forest Products Laboratory, Madison, WI, 2ed. 94p.

VAN DJIK R. (2013) Associação de métodos não destrutivos para inspeção de estruturas de madeira,

Dissertation, Universidade Estadual de Campinas, Campinas, SP, 2013.

WANG, X.; CARTER, P.; ROSS, R.J.; BRASHAW, B.K.. (2007) Acoustic assessment of wood quality of raw

forest materials – a path to increased profitability. Forest Products Journal, Madison, v.57, n.5, p.6-14

WANG, X; ROSS, R. J.; BRASHAW, B. K.; VERHEY, S. A.; FORSMAN, J. W.; ERICKSON, J. R. (2004)

Flexural properties of laminated veneer lumber manufactured from ultrasonically rated red maple veneer.

USDA/FS/FPL Research Note FPL-RN-0288. 5p

WANG X, WIEDENBECK J, LIANG S (2009). Acoustic tomograph for decay detection in black cherry trees.

Wood and Fiber Science 41(2), 127-137.

WEILER, M.; MISSIO, A.L.; GATTO, D.A.; GUTHS, W.G. (2013) Nondestructive Evaluation of Wood

Decayed by Xylophagous Organisms, Materials Research: 16(5): 1203-1208

YAMASHITA, K.; YAMADA, T.; OTA, Y.; YONEZAWA, H.; TOKUE, I. (2015) Detecting defects in

standing trees by an acoustic wave tomography with pseudorandom binary sequence code: simulation of

defects using artificial cavity. In: International Nondestructive Testing and Evaluation of Wood

Symposium. Rio de Janeiro, Brasil, v.19, p. 542- 546

ZENG, L. et al. (2013) Interference resisting design for guided wave tomography. Smart Materials and

Structures, v. 22, n. 5, p. 055017

42

ARTIGO 3: ASSOCIATION OF NONDESTRUCTIVE TOOLS FOR

TREE INSPECTION

Artigo a ser submetido ao periódico: Arboriculture & Urban Forestry

Obs: O artigo está sendo discutido com outros pesquisadores do Brasil e da Espanha que, de

acordo com suas contribuições, serão incorporados como autores na versão final.

43

Association of nondestructive tools for tree inspection

Mariana Nagle dos Reis

Master student, Laboratory of Nondestructive Testing – LabEND, College of Agricultural Engineering -

FEAGRI - University of Campinas - UNICAMP, Brazil – E-mail: [email protected]

Raquel Gonçalves

Professor, Coordinator of the Laboratory of Nondestructive Testing – LabEND, College of Agricultural

Engineering - FEAGRI - University of Campinas - UNICAMP, Brazil – E-mail: [email protected]

Stella Stopa Assis Palma

Master student, Laboratory of Nondestructive Testing – LabEND, College of Agricultural Engineering -

FEAGRI - University of Campinas - UNICAMP, Brazil – E-mail:[email protected]

Luiz Eduardo Marchiore Libanio

Undergraduate student, Laboratory of Nondestructive Testing – LabEND, College of Agricultural Engineering -

FEAGRI - University of Campinas - UNICAMP, Brazil – E-mail:[email protected]

Abstract

The visual inspection, practiced in several parts of the world for the tree risk assessment, is a very important tool,

because it allows the identification of pathologies with low cost. On the other hand, besides being highly

dependent on the inspector's experience, it may not identify internal decays on the tree. In many cases, it is

necessary to complement this information with technologies capable to infer and to monitor the internal

condition of the tree to help with the falling tree risk assessment. Both tomography and drilling resistance have

shown great potential to be used in tree inspections, but both have limitations inherent to any technology.

Therefore, the objective of this research was to evaluate the association of the nondestructive tools - ultrasound

tomography and drilling resistance – to identify internal conditions of trees. The results showed that the

tomography is sufficient to predict the condition of a region with severe and extensive deterioration. However,

when it is necessary to have more precise information about the size and the location of the deteriorated zone,

the association with drilling resistance becomes essential to ensure a precise and safe diagnosis. The drilling

resistance gives very efficient diagnoses of areas with hollows. However, in specimens with different levels of

deterioration, the numerical value of the amplitude does not allow to indicate the degree of deterioration.

Amplitude graphs of drilling resistance without large variations are indicative of sound wood, which associated

with velocity range obtained in the tomography, can assure more secure diagnosis.

Keywords: ultrasonic tomography, drilling resistance, deterioration of wood, tree risk assessment

44

Introduction

The urban forestry has great social, aesthetic, cultural and educational relevance, as well as significant

climatic and environmental aspects. However, lack of urban forest planning and environmental conditions can

lead to the declining of trees, with significant changes in size, shape and position relative to the axis. These

conditions make trees more susceptible to pathological problems that can lead to its fall. In addition, trees are

living organisms and as such have a life cycle that involves the onset of growth, juvenile stage, adulthood and

natural death. Therefore, its correct maintenance is extremely important for the safety of the population and

integrity of urban equipment and public goods. All these aspects bring the necessity of more studies involving

the subsidies for the use of effective methodologies and economically feasible inspection tools (Martinez and

Diaz 2016, Rollo et al. 2013).

Visual inspection, already practiced in several parts of the world, is a very important tool, since it

allows the identification of pathologies with low cost and is very useful to be the starting point of the tree

evaluation (Wang and Allison 2008, Mattheck 2007, Kennard et al. 1996). On the other hand, besides being

highly dependent on the inspector's experience, it may not include the identification of internal anomalies

indicative of fragility or instabilities of the trunk (Martinez and Diaz 2016, Rollo et al. 2013). In many cases it is

necessary, to infer tree risk, associate visual analysis with technologies capable of inferring and monitoring the

internal condition of the tree.

Tomography using sonic methods has been used to evaluate the internal condition of trees in several

countries, mainly as an auxiliary tool to the falling tree risk assessment. There are several commercial acoustic

tomography equipments on the market, mainly using propagation of stress waves (called sonic tomographs).

Other techniques are also used to generate tomographic imagens with adequate results (Nicolotti et al. 2003).

Due to the need for a better understanding of the meaning of the generated image, as well as its reach in terms of

accuracy, there is still a lot of research in the area (Balázs & Divós 2015, Yamashita et al 2015, Trinca et al.

2015 a e b, Arciniegas et al. 2014, Rollo et al. 2013, Trinca et al. 2013 a,b e c, Van Dijk et al. 2013, Turpening

2011, Secco et al. 2012, Sanabria et al. 2011, Gonçalves et al. 2011, Secco et al. 2011a e b, Secco et al. 2010,

Kim et al. 2009, Batista et al. 2009, Brancheriau et al. 2008, Lin et al. 2008, Gilbert and Smiley 2004, Socco et

al. 2004, Bucur 2002, Comino et al. 2000). Thus, there are still lack of knowledge (Pereira 2007) and space to

scientific contribution, highlighting the image interpretation (USDA 2014) and improvements in algorithmic of

interpolation to image construction (Du et al. 2015).

Likewise, drilling resistance has been recognized as a technique that shows good results in inspections

of trees and structures, although in a much-localized way (Rollo et al. 2013). Considering that the equipment

measures the resistance offering to drilling, it is also expected that its results can be correlated with material

strength losses due to deterioration. Studies have been developed to evaluate the correlation between the

amplitude of the drilling resistance obtained by the equipment and the strength of the wood (Botelho Jr., 2006)

or its effectiveness in detection of decay in timber members (Brashaw et al. 2011; Tannert et al. 2013, Rinn

45

2012), on trunks (Wang et al. 2005 apud Nutto & Biechele 2015) or on trees (Johnstone et al. 2010; Kubus 2009,

Johnstone et al. 2007, Wang et al. 2008).

Both tomography and drilling resistance have shown great potential to be used in tree inspections, but

both have limitations, which is inherent in any technology. Rollo et al. (2013) obtained very good correlations

between results from impulse tomography and drilling resistance using trunks from sound wood. For decayed

wood Wang & Allison (2008) analyzed the results of a trunk inspection combining visual, single-path stress

wave testing, sonic tomography and drilling resistance using a trunk of red oak (Quercus rubra).

The objective of this research was to evaluate the association of ultrasonic tomography and drilling

resistance to inspect the internal conditions of trunks with different types of decay.

Methodology

The sampling used in this research was composed of trunks collected from the trees specimens:

Centrolobium sp., Tabebuia ochracea, Liquidambar styraciflua, Platanus sp., Poencianella pluviosa and

Copaifera sp. These species are widely found in the urban forestry from São Paulo state, Brazil. From these

trunks were removed 6 discs approximately 200 mm thick.

Ultrasound tests were performed using the diffraction mesh proposed by Divos and Szalai (2002).

At the mean height of each disc, 8 equidistant points were marked in the perimeter, in which 3 mm

holes were drilled through the bark region, to coupling the exponential faces of the 45 kHz-frequency

longitudinal transducers. The tests were performed with conventional ultrasound equipment (UsLab, Agricef,

Brazil), developed by the research group in partnership with a spin-off company (Figure 1). In the diffraction

mesh, each of the points is connected to the other 7, configuring 28 measurement paths, in which are obtained

the wave propagation times. In order to obtain the tomography image, we used a software (ImageWood 2.0) also

developed in the research group. The images were generated using 6 velocity ranges, adopted according to the

maximum velocity obtained in each disc (red up to 20%, orange from 20% to 30%, yellow from 30% to 50%,

green from 50% to 70% blue from 70% to 80% and black from 80% to 100%) (Example in Figure 1b).

a b Figure 1. Example of a ultrasound test on the Tabebuia ochracea disc (a) and the tomographic image of

Centrolobium sp. with its different velocity ranges (b).

46

After the ultrasonic tests, the measurements of drilling resistance (IML F400 Resistograph, Germany)

were carried out in the perpendicular to the grain direction, on the same radial measurement routes used for the

ultrasonic tests. For the tests the discs were fixed to a concrete table with the help of sergeants (Figure 2a). The

drilling resistance equipment used in the tests allows the choice of different feed rates (from 15 cm / min to 200

cm / min) and needle rotation (1500 rpm to 5000 rpm). These adjustments are usually made in function of

density of the wood as well as its level of deterioration. Therefore, speeds used in each species took these aspects

into consideration (Table 1). From the tests, 48 drilling resistance amplitude graphs were obtained (Example in

Figure 2b) according to the different routes.

a b Figure 2: Example of the drilling resistance test on the Tabebuia ochracea disc (a) and drilling resistance

amplitude graphics in Tabebuia ochracea disc on route 1-5 (b).

After the ultrasonic and drilling resistance tests, the discs were sawn at the exact height where the

measurements were taken and the surface of the new discs obtained was sanded to be macroscopically analyzed

and digitally photographed. From the macroscopic visual analysis it was verified that the discs presented

different conditions and degrees of deterioration (Table 1).

Table 1: Values of basic density (bas), feed velocity (VA), rotation speed (VR) and type of deterioration verified

in visual analysis

Specie bas VA VR Disc diameter

Type of deterioration observed kg.m

-3 cm/min rot/min cm

Centrolobium

sp. 660**** 100 2500 30,8 Hollow caused by termites

Tabebuia

ochracea 840*** 100 2500 28,2 Coleoptera attack

Liquidambar

styraciflua 490* 100 2500 37,3 Lateral longitudinal crack

Platanus sp. 500** 150 2500 39,6 Attack by fungi and some hollowed areas

caused by termites

Poencianella

pluviosa 890**** 50 3500 37,9 Fungus attack in the center of the disc

Copaifera sp. 575*** 50 3500 22 Hollow caused by termites with fungal

decay around them

*Lima et al. 2015; **Freitas 2012; ***IPT http://www.ipt.br/informacoes_madeiras3.php?madeira=38;

****Remade http://www.remade.com.br/madeiras-exoticas/116/madeiras-brasileiras-e-exoticas/arariba

47

Initially, the tomographic images were analyzed to verify the feasibility of a diagnosis using this tool.

Then, the amplitude of drilling resistance graphs were associated with the images generated by the ultrasound

tomography, in order to evaluate if there was diagnoses improvement. Finally, the diagnostic result using both

technologies was compared with the digital pictures of the discs as well as with the macroscopic visual analysis.

Results and Discussion

In the preliminary analysis of the ultrasonic tomography, the Centrolobium sp. and Copaifera sp.discs

present on its images the colors red and orange, representing zones with velocities lower than 30% of the

maximum velocity obtained in these discs. Previous studies by the research group (Trinca & Gonçalves 2015,

Trinca et al. 2015, Trinca et al. 2013 a,b e c, Van Dijk et al. 2013, Secco et al. 2012, Secco et al. 2011a e b,

Secco et al. 2010, Batista et al. 2009.) allowed to conclude that images as arrow forms represent interferences

produced by the interpolation algorithm used by ImageWood 2.0 software. Therefore, these areas (with arrow

forms) should not be considered in the interpretation of the tomographic images. So, the conclusion regarding

these discs would be that the entire areas highlighted in gray (Figure 3) would be seriously compromised

(velocity losses greater than 70%). For both discs (Centrolobium sp. and Copaifera sp), there is also a seriously

compromised contour area, with velocity losses between 50% and 70% (yellow zones in Figure 3).

Considering the results of previous researches (Trinca & Gonçalves 2015, USDA 2014, Secco et al.,

2011), the level of velocity reduction in these two discs would be indicative of the hollowed region (gray zones

of Figure 3) and severely compromised in terms of stiffness in the surrounding area (yellow zone of Figure 3),

leading to the conclusion, in the case of an inspection, that practically the entire disc would be decayed. This

result would already be sufficient to indicate the falling tree risk.

a b

Figure 3. Interpretation of the ultrasonic tomography image in the discs of the species Centrolobium sp. (a) and

Copaifera sp.(b)

In the case of the Centrolobium sp. disc, the use of the drilling resistance equipment made it possible to

verify that the area delimited by velocities with less than 30% of the maximum velocity obtained on disc was

48

effectively a hollow, once the amplitude was zero in that region in all measurement routes (Example in Figure

4a). The zones in yellow presented amplitudes around 20%. Note that in the vicinity of the zone with more

severe deterioration, represented by zero amplitude, there is an amplitude increase to 40% (Figure 4a). Thus, for

this disc, the association of drilling resistance to the tomographic image allowed us to identify and delimit, more

precisely, the hollow dimension (regions with zero amplitude). In the case of a tree inspection, this result,

repeated in different highs would assist in a decision making for the suppression.

In the case of Copaifera sp.the tomographic image (Figure 3b) shows a hollow of much larger

proportions than indicated by the drilling resistance and by the actual condition (Figure 4b). Wang & Allison

(2008) analyzed the association of inspection methods using two red oak (Quercus rubra) trees (4 discs). The

results obtained by Wang & Allison (2008) shows that the acoustic tomography provided strong evidence of

structural defect in both trees and these evidences showed strong correspondence with the actual condition of the

discs. However, the potential decayed zones indicating by tomography were larger than the true decayed areas.

Wang & Allison (2008) impute this behavior to the numerous internal cracks which cut off linear propagation of

the waves diverting them to a much longer travel path, reducing the velocity. Wang & Allison (2008) concluded

that, in these cases, the use of drilling resistance can sort out the real decay from the crack-induced shadows

produced by the tomography. In this research, the drilling resistance indicates amplitudes around 20 to 30% in

the zones represented in green in the tomographic image, around 10% in the zones in yellow and zero in the zone

actually hollowed. In this case, the association of the methods would allow to infer that the zone delimited in

gray (Figure 3b - from interpretation of the tomography) is not entirely a hollow area, as also described by Wang

and Allison (2008). Considering the route indicated in Figure 4b, the result of drilling resistance would indicate

that the right part of the disc would be quite deteriorated with a hollow of about 30 mm (points 13 to 17 of

Figure 4b) and the remaining of the disc with low amplitudes (10%) when compared to the left side (around

30%). The USDA (2014) indicate drilling resistance from 5% to 15% as moderate decay level but, in the same

manual, author highlight to the influence of the wood density in this amplitude. The association of the both

information (tomography and drilling resistance) would allow a more adequate interpretation of the areas that

effectively present hollows, although, in fact, the loss of stiffness indicated in the tomography adequately

represents the actually condition of the disc, even in the regions without the presence of hollow.

Centrolobium sp. (a)

49

Copaifera sp.(b)

Figure 4. Comparative images of the digital pictures of the discs and the superposition of the ultrasound

tomographic images to the drilling resistance amplitude graphics

Legend: percentages of maximum velocity: red up to 20%, orange 20% to 30%, yellow from 30% to 50%, green

from 50% to 70%, blue from 70% to 80% and black from 80% to 100% %

In the Liquidambar styraciflua disc the crack is apparent and can, therefore, be detected visually. This

disc is being used in this discussion to simulate the situation of a defect of smaller proportions than the two

previously analyzed. In addition, in the previous situation, mainly for the Copaifera sp, the wood around the

hollow was also deteriorated, while in the Liquidambar styraciflua disc the wood is sound. In the tomographic

image of the Liquidambar styraciflua disc appears a small region, located in the upper right border, represented

by orange color (Figure 5), indicative of reduction of 70% to 80% of the velocity. This region corresponds to the

zone of greater opening of the crack in the disc. Thus, the tomographic image did not allow seeing the depth of

the crack, indicating only reduction of speed in the border. Eliminating from the analysis the images in arrows

form (interferences) the interpretation of the tomography would be that the disc has only a stiffness loss in the

upper right border (zones in orange and uninterrupted green in Figure 5). This behavior of the tomographic

image is related to the limitation given by the relation between the wavelength and the size of the defect

evaluated (Bucur, 2006). Since the wavelength is affected by the frequency of the transducer used in the test and

by the propagation velocity of the wave in the medium, the defects visible for the test conditions of this research

would be around 20 mm.

The drilling resistance test in Liquidambar styraciflua disc did not identified the crack, since no

measurement route passed through it. This result is a good example of a localized test problem, such as the

drilling resistance test. The average amplitude of the drilling resistance in different measurement routes was

around 20%. Considering that the wood is sound, it is verified that the numerical value of the percentage of

drilling resistance cannot be used directly or alone to interpret the condition of strength or stiffness, since, for

example, amplitudes of 20% in Centrolobium sp. disc were obtained in deteriorated areas. The Liquidambar

styraciflua has a lower density than Centrolobium sp. (Table 1) affecting the drilling resistance. So, more

important than the level of drilling resistance amplitude is the homogeneity of the graphic (example in Figure 5),

indicating sound wood.

50

Figure 5. Comparative images of the digital pictures of the Liquidambar styraciflua disc and the superposition of

the ultrasound tomographic images to the drilling resistance amplitude graphic

Legend: percentages of maximum velocity: orange 20% to 30%, green from 50% to 70%, blue from 70% to 80%

and black from 80% to 100% %

The image of the Tabebuia ochracea disc (Figure 6) shows, for the most part, ranges of velocities in

green and yellow, indicating velocities reductions from 30% to 50% (green zone) and from 50% to 70% (yellow

zone). Eliminating from the image the yellow arrow forms within the green zone, the interpretation of the

tomography would be that a large part of the disc has velocity losses from 30% to 50%, which, according to the

USDA (2014), indicates zones with more than 50% loss in strength. Large yellow areas are observed at the edges

of this image (Figure 6), indicating a reduction in velocity superior to 50% that, according to the USDA (2014),

with severe deterioration. As there are no red or orange areas in the image, the interpretation of the tomography

would not lead to infer the existence of hollowed areas.

The association of the tomography with the drilling resistance test in Tabebuia ochracea disc would

confirm the absence of hollows, since there was no zero-amplitude registered in any of the graphic routes

(Example in Figure 6). The average amplitude of drilling resistance on the different routes was 20%, therefore

equal to the one obtained in Liquidambar styraciflua disc. Again, it can be verified that the numerical value of

the amplitude cannot be used for the direct interpretation of the stiffness nor for a direct comparison of the

velocity on tomography. The Liquidambar styraciflua disc presented velocity losses from 0 to 20%, while for

Tabebuia ochracea between 30% and 50%. The amplitude graph in this disc was not as regular as in the

Liquidambar styraciflua disc, but the interpretation of this isolated result would be not evident, indicating the

importance of the two methods association. Once more the high density of Tabebuia ochracea play a very

important hole in the drilling resistance amplitude. Isolated, the drilling resistance test would indicate that the

disc is in good condition; however, the diagnosis of the ultrasound inspection infers a considerable loss of

velocity, evidencing, in the case of a tree inspection, a possible risk. The visual analysis shows that the piece is

almost completely taken up of cavities and that, at the extremities, more severe attack of the Coleoptera insects,

compatible with the loss of velocity shown in the tomographic image.

51

Figure 6. Comparative images of the Tabebuia ochracea digital picture and the superposition of the drilling

resistance amplitude graph to the ultrasound tomography images.

Legend: percentages of maximum velocity: yellow from 30% to 50%, green from 50% to 70%, blue from 70%

to 80% and black from 80% to 100 %

The image generated by ultrasonic tomography of Platanus sp. (Fig. 7) indicates severe deterioration in

practically all its extension, since it shows a large area in yellow (velocity reduction between 50% and 70%).

The green strings would be eliminated from the interpretation, because it is considered as interpolation

interferences. The absence of red and orange areas in the image would lead to infer that the piece had no areas

with holes. The association of the drilling resistance amplitude would indicate the loss of stiffness inside of the

disc, once the graphic is quite irregular, with large and continuous zones with very low amplitudes (5 to 10%).

According to USDA (2014) drilling resistance from 5 to 15% indicate moderate decay level but, in this case, the

graph irregularity would indicate wood more decayed. The drilling resistance test also did not show any

hollowed areas. So, the interpretation of the inspection using the association of both methods would allow to

infer that the wood, although without any hole, present moderate to severe decay, therefore subject to risk.

Figure 7. Comparative images of the Platanus sp. disc digital pictures and the superposition of the drilling

resistance amplitude graph to the ultrasound tomography image.

Legend: percentages of maximum velocity: yellow from 30% to 50%, green from 50% to 70%, blue from 70%

to 80% and black from 80% to 100% %

52

The image generated in the Poencianella pluviosa disc, excluding the strings forms (interference in the

interpolation system), shows blue (velocity losses between 20% and 30%) and black colors (velocity losses of

0% a 20%) - Figure 8. The interpretation of this image would lead to infer that the wood has slightly to insipient

deterioration in some areas (USDA 2014). The result of the drilling resistance shows graphics (Figure 9) with

no zero amplitude, but very irregular and with a drop at the central part reaching 10% (moderate decay level

according to USDA 2014). In this case, the association of methods would allow better interpretation of the actual

state of the disc than using only one of the techniques. As the blue zones are scattered (Figure 8), the

tomography would not indicate the existence of a central decayed region. On the other hand, the drilling

resistance would indicate a central region with decayed, but as previously seen; the numerical value of the

amplitude percentage cannot be directly related to the degree of loss of stiffness.

The range of velocity loss obtained on the ultrasound tomography indicate that Platanus sp. disc would

have greater level of decay than the Poencianella pluviosa disc. This result is compatible with the macroscopic

visual analysis of these two discs. Both have fungi deteriorated areas, however, the decay on central zone of the

Poencianella pluviosa disc (Figure 8) is more insipient than the deterioration of Platanus sp. disc. This decay

level can be felt touching the discs, because Platanus sp. disc has a decay region much more soft than the disc of

Poencianella pluviosa

Figure 8. Comparative images of the Poencianella pluviosa disc digital picture and the superposition of

the drilling resistance amplitude graph to the ultrasound tomography image.

Legend: percentages of maximum velocity: green from 50% to 70%, blue from 70% to 80% and black

from 80% to 100%

53

Figure 9. Different measurement routes of the drilling resistance amplitude graphs superposed on the ultrasound

tomography images of the Poencianella pluviosa disc.

Conclusions

The association of two inspection tools was discussed in this paper, using discs from different tree

species and with different types and level of deterioration, inferred by macroscopic visual inspection.

The results shows that the association of ultrasound tomography and drilling resistance allows

improving the quality of the diagnosis, since both techniques are suitable for inspection, but both have

limitations.

Ultrasound tomography allows a global analysis of velocity variation, which is related to the deterioration and

wood stiffness loss. Since the drilling resistance is a very punctual test, the use of tomography can be used to

target the locations where the diagnosis of drilling resistance is necessary, increasing the accuracy of diagnosis.

Ultrasound tomography shows clearly results in wood severely and extensively decayed. In these cases,

diagnosis using only this tool would already indicate the high risk. However, in zones with moderately or with

insipient decay the ultrasound tomography can generate important doubts. So, in these cases, the association with

the drilling resistance is essential to ensure the safety of the diagnosis, showing more precisely the size and the

location of the decayed zones.

54

The drilling resistance allows very efficient diagnostics of areas with hollows. However, in wood with

different level of deterioration, the numerical value of the amplitude does not allow its indication by itself, since

the amplitude value depends on the species (density) and parameters (speed of advance and rotation) adopted in

the test. The homogeneity of the graph is also an indicative parameter of the disc condition. Amplitude graphs

without large variations (peaks and valleys) are indicative of sound wood, which associated with the velocity

range obtained in the tomography can point to a safer diagnosis.

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPQ) for

the scholarships and Sao Paulo Research Foundation (FAPESP) - Proc. 2015/05692-3 - for the research funding.

They also thank the Environment Department of UNICAMP for donating the trunks used in the tests and to PD

Instruments Company for lending the equipment used in tests of drilling resistance.

Literature Cited

ARCINIEGAS, A.; PRIETO, F; BRANCHERIAU, L.; LASAYGUES, P. (2014) Literature review of acoustic

and ultrasonic tomography in standing trees. Trees. 28(6): 1559-1567

BALAZS, M.; DIVOS, F., (2015) Glue laminated timber structure evaluation by acoustic tomography. In:

International Nondestructive testing and evaluation of wood symposium, Anais…, v.19. p.462 – 466

BATISTA, F.A.F; GONÇALVES, R.; CERRI, D.G.P.; SECCO, C.B. (2009) Reprodução da condição interna de

peças de madeira através de imagens representativas da propagação de ondas. Madeira: Arquitetura e

Engenharia, v.10 (25), p 23-32

BOTELHO JR, J.A. (2006) Avaliação não destrutiva da capacidade resistente de estruturas de madeira de

edifícios antigos. Thesis, Universidade do Porto, Portugal

BRANCHERIAU L., LASAYGUES P., DEBIEU E., LEFEBVRE JP. (2008) "Ultrasonic tomography of green

wood using a non-parametric imaging algorithm with reflected waves". Annals of Forest Science, 65(7):712-718

BRASHAW, B. K.; VATALARO, R.; ROSS, R. J.; WANG, X.; SCHMIEDING, S.; OKSTAD, W. (2011)

Historic Log Cabin structural condition assessment and rehabilitation – A case study. In: International

nondestructive testing and evaluation of wood symposium, 17, Hungria. Anais... Hungria: University of West

Hungary, v.2, p. 505-512

55

BUCUR, V. (2002) High resolution Imaging of Wood Structure. In: International Symposium on Nondestructive

Testing of Wood. Berkeley, California

BUCUR, V. (2006) Acoustics of wood. 2nd ed. New York: Springer-Verlag, 393p

COMINO E, MARTINIS R, NICOLOTTI G, et al. (2000) Low current tomography for tree stability assessment,

278, In: Backhaus G F, H Balder, and E ldczak (Eds). International symposium on plant health in urban

horticulture, Braunschweig, Germany, 22-25

DIVOS, F.; SZALAI, L. (2002) Tree evaluation by acoustic tomography. In: Proceedings of the 13th

International symposium on nondestructive testing of wood; 2002 August 19. 21; Berkeley, CA. Madison, WI:

Forest Products Society: 251.256

DU, X. et al. (2015) Stress Wave Tomography of Wood Internal Defects using Ellipse-Based Spatial

Interpolation and Velocity Compensation. BioResources, v. 10, n. 3, p. 3948-3962

FREITAS, T. (2012) Caracterização tecnológica da madeira de Platanus sp. Monografia, Departamento de

Ciências Florestais e da Madeira, Universidade do Espirito Santo, ES

GILBERT, E. A.; SMILEY, T. Picus Sonic tomography for the quantification of decay in white oak (Quercus

alba) and hickory (Carya sp.). Journal of Arboriculture, Champaign, v. 30, n. 5, p. 277-281, Sept. 2004.

GONÇALVES, R.; BERTOLDO, C.; MASSAK, M. V.; BATISTA, F.; SECCO, C. B.; (2011) Velocity of

ultrasonic waves in live trees and freshly-felled logs, 02/2011, Blacksburg, Estados Unidos da America, Wood

and Fiber Science, Vol. 43, N 2, pp.232-235

GONÇALVES, R.; SECCO, C. B.; CERRI, D.G.P.; BATISTA, F. (2011) Behavior of ultrasonic wave

propagation in presence of holes on Pequiá wood, In: 17th International Nondestructive Testing and evaluation

of wood symposium WoodNDT, Vol. 1, pp.1-3, Sopron, HUNGRIA

INSTITUTO DE PESQUISAS TECNOLÓGICAS, IPT. Informações sobre Madeiras. Disponível em

<http://www.ipt.br/informacoes_madeiras/31.htm> Acessed 04 November 2016

JOHNSTONE, D. M.; ADES, P. K.; MOORE, G. M.; SMITH, I. W. (2007) Predicting Wood Decay in

Eucalypts Using an Expert System and the IML- Resistograph Drill. Arboriculture & Urban Forestry, 33(2), p.

76-82

56

JOHNSTONE, D.; MOORE, G.; TAUSZ, M.; NICOLAS, M. (2010) The Measurement of Wood Decay in

Landscape Trees, Arboriculture & Urban Forestry, 36(3), p. 121-127

KENARD D K, PUTZ F E, NIEDERHOFER M. (1996). The predictability of tree decay based on visual

assessments. Journal of Arboriculture: 27(2), pp.249-254.

KIM, B. N., LEE, H. W., AND KIM, K. M. (2009a) "The development of image processing system using area

camera for feeding lumber." Journal ofthe Korean Wood Science and Technology, 37(1),37-47

KUBUS, M. (2009) The Evaluation of Using Resistograph when Specifying the Health Condition of a

Monumental Tree. Notuale Botanicae Horti Agrobotanici Cluj-Napoca, v. 37, n. 1, p. 157–164

LIN, C.J.; KAO, Y.; LIN, T et al (2008) Application of ultrasonic tomographic technique for detecting defects in

standing trees. International Biodeterioration & Biodegradation, 62, p.434-441

MARTÍNEZ P C, DÍAZ M I I (2016). El riesgo del Arbolado Urbano – Contexto, concepto y evaluación.

Ediciones Mundi-Prensa, Madrid, Espanha, 465p.

MATTHECK C. (2007). Field Guide for Visual Tree Assessment. Forschungzentrum Karlsruhe GmbH.

Alemanha, 170p.

NICOLOTTI, G.; SOCCO, L. V.; MARTINIS, R.; GODIO, A.; SAMBUELLI, L. (2003) Application and

comparison of three tomographic tecniques for detection of decay in trees. Journal of Arboriculture, Champaign,

v. 29, n. 2, p. 66-78

NUTTO, L.; BIECHELE, T. (2015) Drilling resistance measurement and the effect of shaft friction – using feed

force information for improving decay identification on hard tropical wood. In: International nondestructive

testing and evaluation of wood symposium, 19 Anais… Brasil, Rio de Janeiro, p. 156-160

PEREIRA, L.C., SILVA FILHO, D.F., TOMAZELLO FILHO, M., COUTO, H.T.Z., MOREIRA, J.M.M.A.P.,

POLIZEL, J.L. (2007) Tomografia de impulso para avaliação do interior do lenho de árvores. Revista da

sociedade brasileira de arborização urbana, Volume 2, Número 2

REMADE. Disponível em <http://www.remade.com.br/madeiras-exoticas/116/madeiras-brasileiras-e-

exoticas/arariba> Acesso em 4.Nov.2016.

RINN, F. (2012) Basics of Typical Resistance-Drilling for Timber Inspection. Holztechnologie, 53, p. 24-29

57

ROLLO, F.M.A; SOAVE JUNIOR, M.A..; Viana, S.M.; ROLLO, L.C.P..; COUTO, H.T.Z.; SILVA FILHO,

D.F. Comparação entre leituras de resistógrafo e imagens tomográficas na avaliação interna de troncos de

árvores. CERNE, vol. 19, n. 2, abril-junho, pp. 331-337, 2013, Universidade Federal de Lavras. Lavras, Brasil

SANABRIA, S. J., FURRER R., NEUENSCHWANDER J., NIEMZ P., SENNHAUSER U. (2011) Air-coupled

ultrasound inspection of glued laminated timber. Holzforschung 65,377-387

SECCO, C. B. ; CERRI, D. G. ; GONÇALVES, R. ; BATISTA, F. ; VASQUES, E.C. (2011) Metodologia de

inspeção da condição interna de toras de madeira por ultrassom. In: Congresso Ibero-Latino-Americano da

Madeira na Construção, Coimbra. Anais do CIMAD. Coimbra

SECCO, C. B. ; GONÇALVES, R. ; CERRI, D. G. ; VASQUES, E.C. ; BATISTA, F. (2011) Tree holes

detecting by ultrasound. In: Efficient and safe production processes in sustainable agriculture and forestry,

Viena. XXXIV CIOSTA CIGR V Proceedings. Viena

SECCO, C. B.; GONÇALVES, R.; CERRI, D. G.; VASQUES, E.C.; BATISTA, F. (2012) Behavior of

ultrasonic wave propagation in presence of holes on wood. Cerne (UFLA), v. 18, p. 12-16

SECCO, C.B.; GONÇALVES, R.; CERRI, D.G.P.; BATISTA, F.A.B. (2010) Avaliação de dois tipos de

medição na detecção da condição interna da madeira por ultrassom. Madeira: Arquitetura e Engenharia,

v.11(27), p.1-5

SOCCO, L.V., SAMBUELLI, L. MARTINIS, R., COMINO, E., AND NICOLOTTI, G. (2004) Feasibility of

ultrasonic tomography for nondestructive testing of decay on living trees. Research in Nondestructive

Evaluation, 15, 31-54

TANNERT, T.; ANTHONY, R.W.; KASAL, B.; KLOIBER, M.; PIAZZA, M.; RIGGIO, M.; RINN, F.;

WIDMANN, R.; YAMAGUCHI, N. (2013): In situ assessment of structural timber using semi-destructive

techniques. Materials and Structures DOI 10.1617/s11527-013-0094-5. July 2013

TRINCA, A.J., GUERRA, M.R., GONÇALVES, R. (2015) Velocity variation in wood as a function of defects,

In: International Nondestructive Testing and Evaluation of Wood Symposium, v.19. Rio de Janeiro, Brasil, p.

593 – 599

TRINCA, A.J.; GONÇALVES, R.; LINHARES, C.S.F. (2013) Ultrasonic tomography in detecting knots. In:

Nondestructive Testing and Evaluation of Wood Symposium. Madison

58

TRINCA, A.J.; GONÇALVES, R.; VAN DIJK, R.; AGUSTINHO, D.M. (2013) Interference of pith in

ultrasonic tomography. In: Nondestructive Testing and Evaluation of Wood Symposium. Madison

TURPENING, R. (2011) Acoustic imaging of Sandalwood (santalum albu) logs. In: Nondestructive Testing and

Evaluation of Wood Symposium. Sopron, Hungary

UNITED STATES DEPARTMENT OF AGRICULTURE (USDA), (2014) Wood and Timber Assessment

Manual. Forest Products Laboratory, Madison, WI, 2ed. 94p

VAN DJIK R. (2013) Associação de métodos não destrutivos para inspeção de estruturas de madeira,

Dissertation, Universidade Estadual de Campinas, Campinas, SP, 2013

WANG, X.; ALLISON, R.B. (2008) Decay Detection in Red Oak Trees Using a Combination of Visual

Inspection, Acoustic Testing, and Resistance Microdrilling. Arboriculture & Urban Forestry, 34(1), p. 1-4

YAMASHITA, K.; YAMADA, T.; OTA, Y.; YONEZAWA, H.; TOKUE, I. (2015) Detecting defects in

standing trees by an acoustic wave tomography with pseudorandom binary sequence code: simulation of defects

using artificial cavity. In: International Nondestructive Testing and Evaluation of Wood Symposium. Rio de

Janeiro, Brasil, v.19, p. 542- 546

59

DISCUSSÃO GERAL

Resistência a perfuração

O primeiro artigo teve como objetivo avaliar a resistência a perfuração, de forma

isolada, na detecção dos níveis, das dimensões e da localização de deteriorações. Dos

resultados foi possível tecer os comentários gerais que a seguir são apresentados e discutidos

com base em literatura pertinente.

Da análise do gráfico de amplitude de resistência a perfuração superposto à fotografia

da superfície real dos toretes verificou-se haver um padrão de comportamento da amplitude

frente à diferentes zonas da madeira (sadia e com deterioração) percorridas pela agulha

durante a perfuração.

Para todas as espécies analisadas a amplitude variou de 0% a 40% sendo os trechos de

0% correspondentes aos ocos, como esperado. Esse resultado confirma que essa ferramenta é

adequada para a detecção da localização e da dimensão aproximada de ocos. O mesmo

resultado foi destacado por Kubus (2009) ao analisar a condição de uma árvore monumental

de grandes dimensões na Polônia. O autor apresenta registros de 10 gráficos de resistência a

perfuração, obtidos em diferentes posições da árvore, nos quais se verificam várias zonas com

amplitudes próximas de zero (provavelmente zonas ocadas) e, nas demais regiões, amplitudes

médias de resistência a perfuração de 16%. Na zona de casca as amplitudes médias foram de

6%. Brashaw et al (2011) obtiveram resistências a perfuração variando de 0 a 25% em zonas

com diferentes níveis de degradação da madeira.

Nesta pesquisa, nas espécies nas quais foi possível definir as regiões de cerne alterado

e de alburno, verificou-se variação na amplitude nessas regiões. Nas duas espécies nas quais

não foi possível visualizar a distinção entre cerne e alburno (Ipê e Liquidambar) o gráfico de

amplitude de resistência a perfuração também não apresenta variações. Gráficos semelhantes,

sem distinção de cerne e de alburno, foram obtidos por Kubus (2009).

Em geral, na madeira de cerne os valores de amplitudes foram superiores aos obtidos

na madeira de alburno. Para as quatro espécies nas quais foi possível definir as regiões de

cerne alterado e alburno esse resultado ficou estatisticamente demonstrado. A análise de

variância mostrou que as amplitudes em regiões deterioradas (com ou sem ocos) foram

sempre inferiores (média em torno de 4%), regiões de cerne sempre superiores (média em

60

torno de 22%) e região de alburno (média em torno de 15%) e de casca (média em torno de

14%) intermediárias e estatisticamente equivalentes (Figura 6).

Considerando apenas as regiões de cerne alterado e de alburno sem deterioração

aparente, houve diferenciação entre espécies. No entanto as amplitudes de resistência a

perfuração não seguiram o padrão esperado, de aumento com a densidade da espécie (Couto

et al. 2013, Costelo & Quarles 1999). No entanto, é importante destacar que a amplitude de

resistência a perfuração pode ser afetada pela velocidade de avanço e que, para poder

interpretar adequadamente bem como comparar resultados de amplitude obtidos no ensaio de

resistência a perfuração é necessário conhecer, previamente, os perfis obtidos na condição

íntegra (Martínez 2016, Matheny et al. 1999).

Para a madeira com ataque de insetos coleópteros, com presença de inúmeras galerias

superficiais, a amplitude de resistência a perfuração não apresentou variações que

permitissem, em uma inspeção, visualizar o estado da madeira. No entanto, as depressões

apresentadas no gráfico, seriam indicativos de que a madeira não está sadia.

Rachadura presente em uma das espécies avaliadas também não foi identificada em

nenhum gráfico de amplitude de resistência a perfuração, pois nenhuma rota da agulha passou

pelo local da rachadura. Esse resultado ressalta a questão de que este tipo de inspeção é

pontual, sendo importante conhecer onde deve ser aplicado. Mesma conclusão foi exarada por

Botelho (2006) e Tannert et al. (2014).

Em alguns discos foi possível observar que havia, no contorno da zona deteriorada por

fungos, uma região de cor mais escura. Nesses casos, observou-se um pico de elevação da

amplitude da resistência a perfuração. Resultado semelhante foi obtido por Rinn (1996) e foi

explicado pelo processo de compartimentalização promovido no tecido das árvores para se

protegerem do avanço da zona deteriorada. Nesse processo a árvore desenvolve um tecido

com paredes celulares mais espessas, além de obstruir os vazios celulares, fazendo com que

esse tecido aja como se fosse uma barreira para o avanço da deterioração (Fraedrich 1999,

Shigo 1977, Shortle 1979). Nessas regiões em geral é possível visualizar uma cor mais

escurecida, decorrente das substâncias antimicrobianas produzidas (Shigo1977, Shortle 1979).

Rinn (1996) observou que padrões diferenciados de comportamento do gráfico de

resistência a perfuração podem auxiliar a interpretação da inspeção. O autor destaca que na

madeira deteriorada por fungos as amplitudes são baixas e aproximadamente homogêneas,

61

enquanto em zonas deterioradas por cupins ou com presença de rachaduras o gráfico

apresenta-se mais variável, com amplitudes mais altas (madeira circundante em bom estado)

seguido de valores de amplitude bem menores e localizadas. Nesta pesquisa, nos discos nos

quais havia uma grande zona deteriorada por fungos verificou-se que o gráfico de resistência

a perfuração exibe um contínuo trecho de baixas amplitudes, conforme comportamento

indicado por Rinn (1996).

Tomografia ultrassônica

O segundo artigo teve como objetivo avaliar a tomografia ultrassônica, de forma

isolada, na detecção dos níveis, das dimensões e da localização de deteriorações. Dos

resultados foi possível tecer os comentários gerais que a seguir são apresentados e discutidos

com base em literatura pertinente.

As imagens dos toretes das espécies que possuem grandes regiões ocadas foram as

únicas a apresentar, na imagem tomográfica, as cores vermelho e laranja, as quais

representam zonas com perda de velocidade superior a 70%. A imagem gerada não

representou, de maneira exata, a forma e a dimensão da região deteriorada, no entanto, para

avaliação de risco de queda, a imagem tomográfica se mostrou eficiente, pois identificou

deterioração avançada no interior do exemplar, o que já seria suficiente para indicar risco.

No caso do torete com presença de rachadura, também aparece uma região pequena

com a cor laranja situada na borda, que representa redução de 70% a 80% na velocidade. Essa

região correspondeu a zona de maior abertura da fenda no torete. O restante da imagem deste

torete mostra uma zona com perda de velocidade entre 30% a 50% (verde), que está do

mesmo lado da fenda e grande parte da área com perdas de velocidade abaixo de 20% (preto).

A análise dessa imagem tomográfica não permitiria identificar adequadamente a dimensão e a

posição do defeito (fenda). A capacidade de detecção de defeitos utilizando propagação de

ondas está associada à relação entre o comprimento de onda () e a dimensão do defeito

(Bucur 2006). Em geral a sensibilidade de detecção é da ordem /2 (Bucur 2006). No caso da

espécie em questão, a velocidade máxima (zona íntegra) foi de 2000 m/s, de forma que 44

mm. Assim, espera-se que seja viável a detecção de defeitos da ordem de 22 mm. A maior

62

abertura da fenda, que se encontra na borda do torete e foi detectada na imagem tomográfica é

de 25 mm, condizente com os aspectos teóricos deste ensaio.

A imagem do torete da espécie com ataque de coleobrocas só apresentou as cores

verde (redução de velocidade entre 30% e 50%) e amarelo (redução de velocidade entre 50%

a 70%). A imagem apresentou a presença de muitos cordões amarelos dentro da zona em

verde. Tendo em vista que os cordões são representativos de interferências da interpolação

utilizada pelo software (Trinca et al. 2015, Trinca et al. 2013 a,b e c, Van Dijk et al. 2013,

Secco et al. 2012, Secco et al. 2011a e b, Secco et al. 2010, Batista et al. 2009), a

interpretação dessa imagem consideraria que, na parte interna da peça a perda de velocidade

estaria entre 30% a 50% que, segundo a USDA (2014) indicaria perda de resistência da ordem

de 50%. Nas bordas da peça aparecem grandes áreas em amarelo, indicando perdas de

velocidade entre 50% e 70% e, segundo a USDA (2014) deteriorações severas. A análise

visual mostra que a peça está integralmente tomada de cavidades e que, nas extremidades há

um ataque mais severo das coleobrocas. Portanto, neste caso, o diagnóstico da inspeção

levaria a considerar a peça com considerável perda de resistência, embora não seja possível

visualizar as cavidades na imagem. A não visualização das cavidades na imagem já era

esperada, já que neste caso a velocidade na madeira íntegra também é de cerca de 2000 m/s (

44 mm) e a dimensão das cavidades bem inferiores a 22 mm.

As imagens dos toretes com deterioração por fungos mostrou diferenças significativas

de redução de velocidade. Em um dos toretes foi detectado, na análise visual, deterioração

severa. A imagem tomográfica desta peça apresentou grande área em amarelo (perda de

velocidade entre 50% e 70%) entremeada de verde (perda de velocidade entre 30% e 50%),

indicando deterioração severa praticamente em toda a área inspecionada e, portanto,

compatível com o estado de deterioração apresentado na superfície em análise. Na peça com

zona em estágio inicial de deterioração por fungos a perda de velocidade foi de até 30%

(cores azul e preta), indicando, também, coerência com a condição observada visualmente.

Para realizar analise quantitativa foram comparadas as porcentagens de áreas

deterioradas reais com as porcentagens de áreas deterioradas indicadas pela imagem

tomográfica. Desta comparação verificou-se que, com o uso da proposta da USDA (2014),

que considera redução de 50% da velocidade como zonas com deterioração severa, nos toretes

com presença de ocos a porcentagem de área deteriorada real foi cerca de 30% inferior à

63

porcentagem de área deteriorada inferida com o uso da imagem tomográfica. Isso ocorre

porque nas zonas ocadas há grandes quedas na velocidade mínima (Trinca et al. 2015), que no

caso desta pesquisa foram superiores a 70%.

Por outro lado, nos toretes com zonas deterioradas por fungos a imagem tomográfica

subestimou a área real deteriorada em cerca de 13% para o torete com deterioração severa e

de cerca de 25% para o torete com deterioração em fase inicial. Isso ocorreu porque o

comprometimento da resistência e da rigidez da madeira depende do nível da deterioração

(Trinca et al. 2015), e isso não foi avaliado. A avaliação da porcentagem de deterioração real

foi feita com base apenas na dimensão e não com base no nível da deterioração.

Os resultados de Trinca et al. (2015) indicam que para deteriorações ainda insipientes

da madeira por fungos a velocidade tem queda de apenas cerca de 10%, chegando a cerca de

80% quando a degradação está em nível avançado. Assim, aplicando as variações de

velocidade esperadas para zonas ocadas e com deterioração provocada por fungos propostas

por Trinca et al. (2015), novas imagens tomográficas foram construídas. Utilizando o mesmo

procedimento de cálculo de áreas deterioradas verificou-se que a diferença entre as as áreas

deterioradas previstas pela tomografia se aproximam mais das áreas efetivamente deterioradas

(diferença máxima de cerca de 17% e mínima de cerca de 2%).

Associação da tomografia ultrassônica e resistência à perfuração

O terceiro artigo teve como objetivo avaliar a associação da tomografia ultrassônica e

da resistência a perfuração na detecção dos níveis, das dimensões e da localização de

deteriorações. Dos resultados foi possível tecer os comentários gerais que a seguir são

apresentados.

As imagens de tomografia ultrassônica e os seus respectivos gráficos de resistência à

perfuração foram sobrepostos, de modo a obter uma análise mais concreta desta correlação

com a dimensão e com o estágio da degradação visualmente detectados nos toretes. Desta

análise comparativa foi constatado que existe uma coerência entre os dois resultados.

Da tomografia ultrassônica verifica-se que existe uma faixa de velocidade onde a

degradação é mais evidente, representada pelas cores vermelha e rosa (redução de 70% a 80%

64

da velocidade) e amarela (50%). As faixas verde, laranja e preta (reduções de velocidade entre

0% a 30%) indicam regiões onde a madeira se encontra íntegra ou com deterioração inicial.

Para a resistência a perfuração, quando a amplitude atinge valores próximos ou iguais a

zero evidencia-se uma região ocada. Essa informação, associada a imagem tomográfica

permitiu definir o nível de velocidade que se espera para outras zonas ocadas na peça,

informação altamente significativa para a interpretação da imagem. Dessa associação foi

possível verificar que regiões ocadas foram mais adequadamente representadas por reduções

de velocidade superiores a 70%.

Quando há quedas acentuadas de amplitude no gráfico fornecido pelo resistógrafo,

espera-se que haja zonas deterioradas. No entanto, relacionar a amplitude do gráfico com o

nível da deterioração é complexo, uma vez que a amplitude varia entre espécies e até mesmo

com parâmetros do equipamento (velocidade de avance e de rotação). Assim, a associação do

nível de queda da amplitude com faixas de redução de velocidade, também permitem melhor

inferência do nível de deterioração do que o que pode aportar cada tecnologia de forma

isolada.

Portanto, as duas técnicas se mostram complementares e, quando associadas, permitem

a obtenção de resultados mais satisfatórios na detecção da condição interna da árvore.

65

CONCLUSÃO GERAL

Os resultados permitiram concluir que a resistência a perfuração foi eficiente na

detecção e na obtenção da dimensão aproximada de ocos, uma vez que a amplitude nestes

casos é zero. As amplitudes em regiões deterioradas são inferiores (média em torno de 4%) às

de zonas de madeira sã, permitindo inferir a localização destas zonas. No entanto, a

identificação do nível da deterioração utilizando somente o resultado da resistência a

perfuração não é evidente, já que variações na amplitude não são apenas decorrentes de

deteriorações. A amplitude varia entre cerne alterado e alburno e, também, entre espécies. A

resistência a perfuração é um ensaio pontual e, assim, sua eficiência depende da localização

adequada para ser executado. No caso da tomografia, as zonas ocadas apresentam redução de

velocidades superiores a 70%, enquanto as zonas deterioradas por fungos começam a ser

destacadas com reduções de 30% na velocidade. No caso de fendas ou galerias o

detalhamento da imagem depende da relação entre o comprimento de onda e a dimensão

destes defeitos. De maneira geral as imagens de tomografia ultrassônica não permitem a

obtenção do formato e da localização exata da área deteriorada, mas permite aportar

informações gerais da condição da madeira inspecionada. A associação dos métodos é eficaz,

pois a resistência a perfuração permite detalhar a condição da madeira nas zonas suspeitas

destacadas pela tomografia.

66

ANEXO I

Gráficos de Resistência à Perfuração em todas as rotas de medição dos toretes ensaiados

67

Figura AI.1 Gráficos de Resistência à perfuração da espécie Centrolobium sp.. (Araribá);

velocidade de alimentação: 100 cm/min; velocidade rotação agulha: 2500 r/min; Legenda: em

azul representadas as amplitudes de resistência à penetração e em verde representadas as

amplitudes de rotação da agulha do resistógrafo.

AI1.1.Rota de medição 1 - 5

AI1.2. na rota de medição 2 – 6.

AI1.3. Rota da medição: 3 - 7:

68

AI1.4. Rota da medição: 4 - 8:

AI1.5. Rota da medição: 5 - 1:

AI1.6. Rota da medição: 6 - 2

AI1.7. Rota da medição: 7 – 3

69

AI1.8. Rota da medição: 8 - 4

70

Figura AI.2 Gráficos de Resistência à perfuração da espécie Tabebuia ochraceae (Ipê

Amarelo); velocidade de alimentação: 100 cm/min; velocidade rotação agulha: 2500 r/min;

Legenda: em azul representadas as amplitudes de resistência à penetração e em verde

representadas as amplitudes de rotação da agulha do resistógrafo

AI2.1.Rota de medição 1 - 5

AI2.2. na rota de medição 2 – 6

AI2.3. Rota da medição: 3 - 7

71

AI2.4. Rota da medição: 4 - 8

AI2.5. Rota da medição: 5 - 1

AI2.6. Rota da medição: 6 - 2

AI2.7. Rota da medição: 7 – 3

72

AI2.8. Rota da medição: 8 - 4

73

Figura AI.3 Gráficos de Resistência à perfuração da espécie Liquidambar styraciflua

(Liquidambar); velocidade de alimentação: 100 cm/min; velocidade rotação agulha: 2500

r/min; Legenda: em azul representadas as amplitudes de resistência à penetração e em verde

representadas as amplitudes de rotação da agulha do resistógrafo.

AI3.1.Rota de medição 1 - 5

AI3.2. Rota de medição 2 – 6.

AI3.3. Rota da medição: 3 - 7:

74

AI3.4. Rota da medição: 4 - 8:

AI3.5. Rota da medição: 5 - 1:

AI3.6. Rota da medição: 6 - 2

AI3.7. Rota da medição: 7 – 3

75

AI3.8. Rota da medição: 8 - 4

76

Figura AI.4 Gráficos de Resistência à perfuração da espécie Platanus sp (plátano);

velocidade de alimentação: 150 cm/min; velocidade rotação agulha: 2500 r/min; Legenda: em

azul representadas as amplitudes de resistência à penetração e em verde representadas as

amplitudes de rotação da agulha do resistógrafo.

AI4.1.Rota de medição 1 - 5

AI4.2. na rota de medição 2 – 6.

AI4.3. Rota da medição: 3 - 7:

77

AI4.4. Rota da medição: 4 - 8:

AI4.5. Rota da medição: 5 - 1:

AI4.6. Rota da medição: 6 - 2

AI4.7. Rota da medição: 7 – 3

78

AI4.8. Rota da medição: 8 - 4

79

Figura AI.5 Gráficos de Resistência à perfuração da espécie Poencianella pluviosa

(sibipiruna); velocidade de alimentação: 50 cm/min; velocidade rotação agulha: 3500 r/min;

Legenda: em azul representadas as amplitudes de resistência à penetração e em verde

representadas as amplitudes de rotação da agulha do resistógrafo.

AI5.1.Rota de medição 1 - 5

AI5.2. na rota de medição 2 – 6.

AI5.3. Rota da medição: 3 - 7:

80

AI5.4. Rota da medição: 4 - 8:

AI5.5. Rota da medição: 5 - 1:

AI5.6. Rota da medição: 6 - 2

AI5.7. Rota da medição: 7 – 3

81

AI5.8. Rota da medição: 8 - 4

82

Figura AI.6 Gráficos de Resistência à perfuração da espécie Copaifera sp. (copaíba);

velocidade de alimentação: 50 cm/min; velocidade rotação agulha: 3500 r/min; Legenda: em

azul representadas as amplitudes de resistência à penetração e em verde representadas as

amplitudes de rotação da agulha do resistógrafo.

AI6.1.Rota de medição 1 - 5

AI6.2. na rota de medição 2 – 6.

AI6.3. Rota da medição: 3 - 7:

83

AI6.4. Rota da medição: 4 - 8:

AI6.5. Rota da medição: 5 - 1:

AI6.6. Rota da medição: 6 - 2

AI6.7. Rota da medição: 7 – 3

84

AI6.8. Rota da medição: 8 - 4

85

ANEXO II

Tabelas de dados utilizados para geração das imagens de tomografia ultrassônica

86

Tabela AII.1 Valores de coordenadas da localização dos pontos de medição (xi,xf, yi, yf),

tempo de propagação das ondas de ultrassom (µs), comprimento da onda de ultrassom (cm) e

velocidade de propagação das ondas de ultrassom naquele trajeto (m/s). Espécie

Centrolobium sp. (Araribá)

Coordenadas t (µs) L (cm) V (m.s

-¹)

xi yi xf yf

38,5 23,1 34,0 13,5 223,5 10,6 473,8

38,5 23,1 23,1 9,6 274,6 20,5 747,0

38,5 23,1 12,2 13,5 410,0 28,0 682,5

38,5 23,1 7,7 23,1 779,3 30,8 395,2

38,5 23,1 12,2 32,7 335,2 28,0 834,8

38,5 23,1 23,1 36,7 218,6 20,5 938,6

38,5 23,1 34,0 32,7 63,8 10,6 1661,2

34,0 13,5 23,1 9,6 65,1 11,6 1780,4

34,0 13,5 12,2 13,5 211,8 21,8 1028,5

34,0 13,5 7,7 23,1 314,2 28,0 890,5

34,0 13,5 12,2 32,7 631,2 29,0 459,6

34,0 13,5 23,1 36,7 395,3 25,6 646,8

34,0 13,5 34,0 32,7 193,9 19,2 988,5

23,1 9,6 12,2 13,5 73,7 11,6 1573,7

23,1 9,6 7,7 23,1 175,0 20,5 1172,1

23,1 9,6 12,2 32,7 349,8 25,6 730,9

23,1 9,6 23,1 36,7 454,7 27,1 596,1

23,1 9,6 34,0 32,7 323,4 25,6 790,7

12,2 13,5 7,7 23,1 45,6 10,6 2322,4

12,2 13,5 12,2 32,7 166,1 19,2 1154,0

12,2 13,5 23,1 36,7 308,3 25,6 829,4

12,2 13,5 34,0 32,7 537,5 29,0 539,8

7,7 23,1 12,2 32,7 51,6 10,6 2054,3

7,7 23,1 23,1 36,7 115,7 20,5 1772,9

7,7 23,1 34,0 32,7 268,2 28,0 1043,5

12,2 32,7 23,1 36,7 72,6 11,6 1596,4

12,2 32,7 34,0 32,7 182,3 21,8 1194,7

23,1 36,7 34,0 32,7 46,9 11,6 2473,9

87

Tabela AII.2 Valores de coordenadas da localização dos pontos de medição (xi,xf, yi, yf),

tempo de propagação das ondas de ultrassom (us), comprimento da onda de ultrassom (cm) e

velocidade de propagação das ondas de ultrassom naquele trajeto (m/s). Espécie Tabebuia

ochraceae (Ipê Amarelo)

Coordenadas t (µs) L (cm) V (m.s

-¹)

xi yi xf yf

35,3 21,2 31,1 11,3 146,4 10,7 728,2

35,3 21,2 21,2 7,3 205,2 19,8 965,1

35,3 21,2 11,2 11,3 249,9 26,0 1040,6

35,3 21,2 7,1 21,2 264,4 28,2 1066,6

35,3 21,2 11,2 31,0 235,3 26,0 1105,0

35,3 21,2 21,2 35,1 174,8 19,8 1132,7

35,3 21,2 31,1 31,0 89,6 10,7 1189,9

31,1 11,3 21,2 7,3 49,9 10,8 2160,4

31,1 11,3 11,2 11,3 182,6 19,9 1092,0

31,1 11,3 7,1 21,2 207,2 26,0 1255,1

31,1 11,3 11,2 31,0 204,4 28,0 1369,9

31,1 11,3 21,2 35,1 196,9 25,7 1307,2

31,1 11,3 31,1 31,0 183,7 19,7 1070,1

21,2 7,3 11,2 11,3 103,9 10,8 1036,5

21,2 7,3 7,1 21,2 208,4 19,8 950,3

21,2 7,3 11,2 31,0 223,8 25,7 1150,1

21,2 7,3 21,2 35,1 219,1 27,8 1269,1

21,2 7,3 31,1 31,0 226,7 25,7 1135,3

11,2 11,3 7,1 21,2 64,3 10,7 1658,0

11,2 11,3 11,2 31,0 161,9 19,7 1214,2

11,2 11,3 21,2 35,1 194,1 25,7 1326,4

11,2 11,3 31,1 31,0 218,6 28,0 1280,9

7,1 21,2 11,2 31,0 99,2 10,7 1074,7

7,1 21,2 21,2 35,1 159,8 19,8 1239,4

7,1 21,2 31,1 31,0 214,9 26,0 1209,8

11,2 31,0 21,2 35,1 71,9 10,8 1497,8

11,2 31,0 31,1 31,0 151,0 19,9 1321,0

21,2 35,1 31,1 31,0 54,3 10,8 1985,1

88

Tabela AII.3 Valores de coordenadas da localização dos pontos de medição (xi,xf, yi, yf),

tempo de propagação das ondas de ultrassom (µs), comprimento da onda de ultrassom (cm) e

velocidade de propagação das ondas de ultrassom naquele trajeto (m/s). Espécie Liquidambar

styraciflua (Liquidambar)

Coordenadas t (µs) L (cm) V (m.s

-¹)

xi yi xf yf

46,6 28,0 41,2 15,8 103,45 13,3 1288,8

46,6 28,0 28,0 10,8 190,25 25,4 1333,5

46,6 28,0 14,8 15,8 192,6 34,1 1769,5

46,6 28,0 9,3 28,0 198,3 37,3 1881,0

46,6 28,0 14,8 40,1 190,4 34,1 1790,0

46,6 28,0 28,0 45,2 160 25,4 1585,7

46,6 28,0 41,2 40,1 89,65 13,3 1487,2

41,2 15,8 28,0 10,8 89,7 14,1 1573,8

41,2 15,8 14,8 15,8 165 26,4 1598,5

41,2 15,8 9,3 28,0 169,7 34,1 2008,3

41,2 15,8 14,8 40,1 172,8 35,9 2076,3

41,2 15,8 28,0 45,2 164,45 32,2 1957,3

41,2 15,8 41,2 40,1 148,55 24,3 1637,5

28,0 10,8 14,8 15,8 301,65 14,1 468,0

28,0 10,8 9,3 28,0 198,5 25,4 1278,1

28,0 10,8 14,8 40,1 196,5 32,2 1638,1

28,0 10,8 28,0 45,2 198,35 34,4 1734,3

28,0 10,8 41,2 40,1 197,25 32,2 1631,8

14,8 15,8 9,3 28,0 96,95 13,3 1375,2

14,8 15,8 14,8 40,1 148 24,3 1643,5

14,8 15,8 28,0 45,2 180,2 32,2 1786,2

14,8 15,8 41,2 40,1 184,55 35,9 1944,2

9,3 28,0 14,8 40,1 74,05 13,3 1800,5

9,3 28,0 28,0 45,2 167,2 25,4 1517,4

9,3 28,0 41,2 40,1 189,25 34,1 1800,9

14,8 40,1 28,0 45,2 75,2 14,1 1877,3

14,8 40,1 41,2 40,1 169,8 26,4 1553,3

28,0 45,2 41,2 40,1 82,6 14,1 1709,1

89

Tabela AII.4 Valores de coordenadas da localização dos pontos de medição (xi,xf, yi, yf),

tempo de propagação das ondas de ultrassom (µs), comprimento da onda de ultrassom (cm) e

velocidade de propagação das ondas de ultrassom naquele trajeto (m/s). Espécie Platanus sp

(plátano)

coordenadas t (µs) L (cm) V (m.s

-¹)

xi yi xf yf

49,5 29,7 43,7 19,1 97,1 12,1 1248,8

49,5 29,7 29,7 14,7 208,2 24,9 1194,8

49,5 29,7 15,7 19,1 329,1 35,4 1076,9

49,5 29,7 9,9 29,7 405,6 39,6 976,5

49,5 29,7 15,7 40,3 305,5 35,4 1160,1

49,5 29,7 29,7 44,8 189,7 24,9 1311,0

49,5 29,7 43,7 40,3 62,1 12,1 1951,6

43,7 19,1 29,7 14,7 78,1 14,7 1879,4

43,7 19,1 15,7 19,1 291,7 28,0 959,9

43,7 19,1 9,9 29,7 410,3 35,4 863,8

43,7 19,1 15,7 40,3 403,4 35,2 871,9

43,7 19,1 29,7 44,8 234,2 29,3 1249,6

43,7 19,1 43,7 40,3 125,1 21,3 1701,4

29,7 14,7 15,7 19,1 63,1 14,7 2326,2

29,7 14,7 9,9 29,7 182,8 24,9 1360,5

29,7 14,7 15,7 40,3 287,1 29,3 1019,3

29,7 14,7 29,7 44,8 314,2 30,1 958,0

29,7 14,7 43,7 40,3 273,0 29,3 1072,0

15,7 19,1 9,9 29,7 67,8 12,1 1788,9

15,7 19,1 15,7 40,3 167,6 21,3 1269,9

15,7 19,1 29,7 44,8 215,4 29,3 1358,4

15,7 19,1 43,7 40,3 304,8 35,2 1153,9

9,9 29,7 15,7 40,3 63,3 12,1 1914,6

9,9 29,7 29,7 44,8 210,5 24,9 1181,8

9,9 29,7 43,7 40,3 324,2 35,4 1093,0

15,7 40,3 29,7 44,8 73,1 14,7 2008,0

15,7 40,3 43,7 40,3 196,0 28,0 1428,6

29,7 44,8 43,7 40,3 78,1 14,7 1879,4

90

Tabela AII.5 Valores de coordenadas da localização dos pontos de medição (xi,xf, yi, yf),

tempo de propagação das ondas de ultrassom (µs), comprimento da onda de ultrassom (cm) e

velocidade de propagação das ondas de ultrassom naquele trajeto (m/s). Espécie Poencianella

pluviosa (sibipiruna)

coordenadas t (µs) L (cm)

V (m.s-

¹) xi yi xf yf

47,4 28,4 41,8 16,5 84,8 13,1 1546,2

47,4 28,4 28,4 11,6 136,7 25,3 1853,3

47,4 28,4 15,0 16,5 222,9 34,5 1546,4

47,4 28,4 9,5 28,4 252,3 37,9 1502,2

47,4 28,4 15,0 40,3 226,7 34,5 1520,5

47,4 28,4 28,4 45,2 124,2 25,3 2039,9

47,4 28,4 41,8 40,3 69,4 13,1 1890,7

41,8 16,5 28,4 11,6 65,7 14,3 2174,3

41,8 16,5 15,0 16,5 114,6 26,8 2338,5

41,8 16,5 9,5 28,4 198,6 34,5 1735,2

41,8 16,5 15,0 40,3 194,5 35,8 1841,8

41,8 16,5 28,4 45,2 216,6 31,7 1461,5

41,8 16,5 41,8 40,3 117,4 23,8 2023,7

28,4 11,6 15,0 16,5 71,5 14,3 1997,8

28,4 11,6 9,5 28,4 124,2 25,3 2039,9

28,4 11,6 15,0 40,3 163,6 31,7 1934,9

28,4 11,6 28,4 45,2 192,7 33,6 1744,1

28,4 11,6 41,8 40,3 166,1 31,7 1905,8

15,0 16,5 9,5 28,4 60,6 13,1 2163,7

15,0 16,5 15,0 40,3 107,2 23,8 2217,3

15,0 16,5 28,4 45,2 148,0 31,7 2139,6

15,0 16,5 41,8 40,3 210,9 35,8 1698,2

9,5 28,4 15,0 40,3 64,9 13,1 2021,9

9,5 28,4 28,4 45,2 118,0 25,3 2146,2

9,5 28,4 41,8 40,3 194,1 34,5 1775,9

15,0 40,3 28,4 45,2 70,2 14,3 2034,9

15,0 40,3 41,8 40,3 139,2 26,8 1925,2

28,4 45,2 41,8 40,3 66,8 14,3 2136,9

91

Tabela AII.6 Valores de coordenadas da localização dos pontos de medição (xi,xf, yi, yf),

tempo de propagação das ondas de ultrassom (µs), comprimento da onda de ultrassom (cm) e

velocidade de propagação das ondas de ultrassom naquele trajeto (m/s). Espécie Copaifera

sp.(copaíba)

coordenadas t (µs) L (cm)

V (m.s-

¹) xi yi xf yf

27,5 16,5 24,3 9,4 48,5 7,8 1602,2

27,5 16,5 16,5 6,5 465,6 14,9 319,3

27,5 16,5 8,7 9,4 271,45 20,1 739,2

27,5 16,5 5,5 16,5 417 22,0 527,6

27,5 16,5 8,7 23,6 356,7 20,1 562,5

27,5 16,5 16,5 26,5 106,75 14,9 1392,6

27,5 16,5 24,3 23,6 69,3 7,8 1121,3

24,3 9,4 16,5 6,5 520,1 8,3 159,8

24,3 9,4 8,7 9,4 224,45 15,6 693,1

24,3 9,4 5,5 16,5 301,65 20,1 665,2

24,3 9,4 8,7 23,6 460,75 21,0 456,3

24,3 9,4 16,5 26,5 156,45 18,8 1199,1

24,3 9,4 24,3 23,6 118,3 14,1 1195,4

16,5 6,5 8,7 9,4 100 8,3 831,1

16,5 6,5 5,5 16,5 186,4 14,9 797,5

16,5 6,5 8,7 23,6 426,45 18,8 439,9

16,5 6,5 16,5 26,5 572,6 20,0 349,3

16,5 6,5 24,3 23,6 394,55 18,8 475,5

8,7 9,4 5,5 16,5 41,05 7,8 1892,9

8,7 9,4 8,7 23,6 128,5 14,1 1100,6

8,7 9,4 16,5 26,5 240 18,8 781,6

8,7 9,4 24,3 23,6 284,5 21,0 739,0

5,5 16,5 8,7 23,6 50,3 7,8 1544,8

5,5 16,5 16,5 26,5 148,4 14,9 1001,8

5,5 16,5 24,3 23,6 336,95 20,1 595,5

8,7 23,6 16,5 26,5 59,3 8,3 1401,6

8,7 23,6 24,3 23,6 163,1 15,6 953,8

16,5 26,5 24,3 23,6 64,7 8,3 1284,6

92

ANEXO III

Imagens Tomográficas dos toretes ensaiados

93

Figura AIII.1 Tomografia ultrassônica do torete de Centrolobium sp. (Araribá)

Figura AIII.2 Tomografia ultrassônica do torete de Tabebuia ochracea (ipê amarelo)

94

Figura AIII.3 Tomografia ultrassônica do torete de Liquidambar styraciflua (liquidambar)

Figura AIII.4 Tomografia ultrassônica do torete de Platanus sp. (plátano)

95

Figura AIII.5 Tomografia ultrassônica do torete de Poencianella pluviosa (sibipiruna)

Figura AIII.6 Tomografia ultrassônica do torete de Copaifera sp.(copaíba)