25
EXERCÍCIOS HIDRODINÂMICA 01- Água escoa em uma tubulação, onde a região 2 situa-se a uma altura h acima da região 1, conforme figura a seguir. É correto afirmar que: a) a pressão cinética é maior na região 1. b) a vazão é a mesma nas duas regiões. c) a pressão estática é maior na região 2. d) a velocidade de escoamento é maior na região 1. e) a pressão em 1 é menor do que a pressão em 2. 02- Em uma cultura irrigada por um cano que tem área de secção reta de 100 cm2, passa água com uma vazão de 7200 litros por hora. A velocidade de escoamento da água nesse cano, em m/s, é O3- Uma piscina, cujas dimensões são 18mx10mx2m, está vazia. O tempo necessáriopara enchê-la é 10 h, através de um conduto de seção A = 25 cm 2 . Calcule velocidade da água, admitida constante, ao sair do conduto, terá módulo igual a: 04- Observe a figura que representa um vaporizador simples.

EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Embed Size (px)

Citation preview

Page 1: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

EXERCÍCIOS HIDRODINÂMICA 01- Água escoa em uma tubulação, onde a região 2 situa-se a uma altura h acima da região 1, conforme figura a seguir. É correto afirmar que:

a) a pressão cinética é maior na região 1. b) a vazão é a mesma nas duas regiões. c) a pressão estática é maior na região 2. d) a velocidade de escoamento é maior na região 1. e) a pressão em 1 é menor do que a pressão em 2. 02- Em uma cultura irrigada por um cano que tem área de secção reta de 100 cm2, passa água com uma vazão de 7200 litros por hora.

A velocidade de escoamento da água nesse cano, em m/s, é

O3- Uma piscina, cujas dimensões são 18mx10mx2m, está vazia. O tempo necessáriopara enchê-la é 10 h, através de um conduto de seção A = 25 cm2. Calcule velocidade da água, admitida constante, ao sair do conduto, terá módulo igual a: 04- Observe a figura que representa um vaporizador simples.

Page 2: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Sabendo que, normalmente, o herbicida líquido é vaporizado sobre a plantação, um jato de ar, passando por A, ocasiona, nesse ponto, um ______ na pressão quando comparado com B, onde o ar está __________. Então, o líquido sobe pelo conduto porque sempre se desloca da __________ pressão. Assinale a alternativa que completa corretamente as lacunas. a) acréscimo – em movimento – menor para a maior b) abaixamento – em movimento – maior para a menor c) acréscimo – praticamente parado – menor para a maior d) acréscimo – em movimento – maior para a menor e) abaixamento – praticamente parado – maior para a menor 05- Vaporizadores semelhantes ao da figura são usados em nebulização.

Ao pressionar a bexiga do vaporizador, o ar no seu interior é projetado com velocidade de módulo VB > 0, enquanto o líquido permanece em repouso em A. A relação entre as pressões em A e B é a) PA = PB b) PA + PB = 0 c) PA > PB d) PA < PB e) PA = PB + 1 atmosfera 06- O sistema de abastecimento de água de uma rua, que possui 10 casas, está ilustrado na figura abaixo. A vazão do tubo principal é de 0,01 m3/s. Supondo que cada casa possui uma caixa d’água de 1500 litros de capacidade e que estão todas inicialmente vazias, em quantos minutos todas as caixas-d’água estarão cheias? Suponha que durante o período de abastecimento nenhuma caixa estará fornecendo água para as suas respectivas casas.

Page 3: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

07- Durante uma tempestade, Maria fecha a janela de seu apartamento e ouve zumbido do vento lá fora.Subitamente o vidro de uma janela se quebra. Considerando que o vento tenha soprado tangencialmente à janela, o acidente pode ser melhor explicado pelo(a):

a) princípio da conservação da massa

b) equação de Bernoulli

c) princípio de Arquimedes

d) princípio de Pascal

e) princípio de Stevin

08- Um fluido ideal percorre um cano cilíndrico em regime permanente. Em um estrangulamento onde o diâmetro do cano fica reduzido à metade, a velocidade do fluido fica:

a) reduzida a 1/4.

b) reduzida à metade.

c) a mesma.

d) duplicada.

e) quadruplicada.

09-(UFPE) Um funil tem área de saída quatro vezes menor que a área de

entrada, como indica a figura.

Page 4: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Se esse funil diminui de uma altura h=9,0cm, num intervalo de tempo de 3s,

determine, em cm/s, a velocidade com que o fluido abandona o funil na saída.

10-(UFSM-RS) A figura representa uma tubulação horizontal em que escoa um

fluido ideal.

A velocidade de escoamento do fluido no ponto 1, em relação à velocidade

verificada no ponto 2, e a pressão no ponto 1, em relação à pressão no ponto

2, são:

a) maior, maior

b) maior, menor

c) menor, maior

d) menor, maior

e) menor, menor

11-(UFMS-MS) Um dos métodos utilizados pelos jardineiros, durante a

irrigação de plantas, é diminuir a secção transversal da mangueira por onde sai

a água para que o jato de água tenha um maior alcance. Geralmente isso é

feito através de esguichos. A figura a seguir mostra a extremidade de uma

mangueira de secção transversal uniforme e na horizontal, conectada a um

esguicho de forma cônica. A mangueira está sendo alimentada por um

reservatório de água com nível constante e aberto. O jato de água sai na

extremidade do esguicho com velocidade horizontal. Considere que as

Page 5: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

superfícies internas da mangueira e do esguicho não ofereçam resistência ao

escoamento e que a água seja um fluido ideal. Com relação ao escoamento da

água nessa extremidade da mangueira e no esguicho, é correto afirmar:

(01) Se, de alguma maneira, for impedida a saída de água pelo esguicho

(tampar a saída), a pressão aumentará em todos os pontos.

(02) O alcance do jato de água é maior quando se usa o esguicho, porque a

menor secção transversal na saída do esguicho faz aumentar a vazão do jato

de água.

(04) A pressão, no ponto P2 (onde a secção transversal é menor), é maior que

a pressão no ponto P1 (onde a secção transversal é maior).

(08) A pressão, na saída do esguicho, é igual à pressão no nível superior do

reservatório.

(16) A trajetória das partículas de água que saem do esguicho é parabólica

quando se despreza a resistência do ar.

12- A figura a seguir mostra um vaso com água, em cuja boca é soldado um

tubo fino, aberto nas duas extremidades, e que não atinge o fundo do vaso.

Esse sistema também é chamado de Vaso de Mariote. Inicialmente o vaso se

encontra com água até o nível H acima da extremidade inferior do tubo que

está no ponto O. Um registro no fundo do vaso, quando aberto, permite que a

água escoe para fora lentamente. Sejam os pontos A e B, localizados

inicialmente no mesmo nível H, nas superfícies da água que estão no interior

do vaso e no interior do tubo, respectivamente, e os pontos C e D localizados

no interior do vaso e do tubo, respectivamente, e ambos no mesmo nível de O,

veja a figura. Considere a pressão atmosférica igual a Po, e despreze os

efeitos de pressão cinética devido ao escoamento. Com fundamentos na

hidrostática, assinale a(s) proposição(ões) CORRETA(S).

(01) Abrindo o registro para permitir a saída de água do interior do vaso, as

pressões, nos pontos C e D, diminuem.

(02) Abrindo o registro para permitir a saída de água do interior do vaso, as

pressões, nos pontos A e B, diminuem.

Page 6: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

(04) Abrindo o registro para permitir a saída de água do interior do vaso, o nível

do ponto B desce mais rapidamente que o nível do ponto A.

(08) Abrindo o registro para permitir a saída de água do interior do vaso, a

diferença de pressão entre os pontos D e B é sempre maior que a diferença de

pressão entre os pontos C e A.

(16) Antes de abrir o registro, a pressão no ponto A é igual no ponto B, mas a

pressão no ponto C é maior que no ponto D.

13- Um jardineiro dispõe de mangueiras de dois tipos, porém com a mesma

vazão. Na primeira, a água sai com velocidade de módulo V e, na segunda, sai

com velocidade de módulo 2V. A primeira mangueira apresenta:

a) a metade da área transversal da segunda.

b) o dobro da área transversal da segunda.

c) um quarto da área transversal da segunda.

d) o quádruplo da área transversal da segunda.

e) dois quintos da área transversal da segunda.

14- A figura representa uma caixa de água ligada a duas torneiras t1 e T2. A

superfície livre da água na caixa tem área A=0,8m2 e as vazões nas torneiras

são 5 litros/minutos e 3 litros/ minutos, respectivamente.

Pode-se afirmar que o módulo da velocidade V, com que a superfície da água

desce, vale:

15-Um menino deve regar o jardim de sua mãe e pretende fazer isso da

varanda de sua residência, segurando uma mangueira na posição horizontal,

conforme a figura. Durante toda a tarefa, a altura da mangueira, em relação ao

jardim, permanecerá constante. Inicialmente a vazão de água, que pode ser

definida como o volume de água que atravessa a área transversal da

mangueira na unidade de tempo, é Zo. Para que a água da mangueira atinja a

planta mais distante no jardim, ele percebe que o alcance inicial deve ser

quadruplicado. A mangueira tem em sua extremidade um dispositivo com

Page 7: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

orifício circular de raio variável. Para que consiga molhar todas as plantas do

jardim sem molhar o resto do terreno, ele deve:

a) reduzir o raio do orifício em 50% e quadruplicar a vazão de água.

b)manter a vazão constante e diminuir a área do orifício em 50%.

c) manter a vazão constante e diminuir o raio do orifício em 50%.

d) manter constante a área do orifício e dobrar a vazão da água.

e) reduzir o raio do orifício em 50% e dobrar a vazão de água.

16- A artéria aorta de um adulto tem um raio de cerca de 1cm, e o sangue nela

flui com velocidade de 33cm/s.

a) Quantos litros de sangue são transportados pela aorta?

b) Sendo de 5 litros o volume de sangue no organismo, use o resultado anterior

para estimar o tempo médio que o sangue demora a retornar ao coração.

17-Um fazendeiro, para estimar a vazão de água em um canal de irrigação,

cuja seção transversal é aproximadamente semicircular (como na figura),

procede do seguinte modo: faz

duas marcas numa das margens do canal, separadas por quatro passadas

(cada passada vale aproximadamente um metro); coloca na água um ramo

seco e mede um minuto para o mesmo ir de uma marca à outra. Finalmente,

verifica que a largura do canal equivale a uma sua passada. O fazendeiro faz

cálculos e conclui que a vazão procurada vale aproximadamente:

18-Observe as figuras a seguir.

Page 8: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Com base nos esquemas físicos apresentados nas figuras, considere as

afirmativas a seguir.

I – A figura I mostra dois copos contendo suco de laranja à mesma altura.

Independentemente do formato dos copos, a pressão no ponto A é igual à

pressão no ponto B.

II – A figura II mostra um tubo em forma de ―U‖ contendo dois líquidos que não

se misturam. No ramo da esquerda, tem-se óleo de soja e, no da direita, água.

A pressão no ponto A é igual à pressão no ponto B.

III – A figura III mostra dois líquidos de viscosidades diferentes escorrendo

através de um capilar: o suco de laranja, menos viscoso, escorre em A, ao

passo que o xarope de milho, mais viscoso, escorre em B.

IV – A figura IV mostra um liquido em escoamento no sentido do ponto A para o

ponto B. Apesar de a velocidade de escoamento no ponto A ser maior do que a

velocidade de escoamento no ponto B, a pressão no ponto A é menor que a

pressão no ponto B.

Assinale a alternativa CORRETA.

a) Somente as afirmativas I e II são corretas.

b) Somente as afirmativas I e III são corretas.

c) Somente as afirmativas II e IV são corretas.

d) Somente as afirmativas I, III e IV são corretas.

e) Somente as afirmativas II, III e IV são corretas.

19-Considere duas regiões distintas do leito de um rio: uma larga A, com 200

m2 de área de secção transversal, onde a velocidade escalar média da água é

de 1,0 m/s e outra estreita B, com 40 m2 de área de secção transversal.

Calcule:

a) a vazão volumétrica do rio.

b) a velocidade escalar média da água do rio na região estreita B.

20- Uma caixa-d’água com volume de 150 litros coleta água da chuva à razão

de 10 litros por hora.

a) por quanto tempo deverá chover para encher completamente essa caixa-

d’água?

b) admitindo-se que a área da base da caixa é 0,50 m2, com que velocidade

subirá o nível da água na caixa, enquanto durar a chuva?

Page 9: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

21-A velocidade do sangue na artéria aorta de um adulto, que possui em média

5,4 litros de sangue, tem módulo igual a aproximadamente 30 cm/s. A área

transversal da artéria é de aproximadamente 2,5 cm2. Qual o intervalo de

tempo, em segundos, necessário para a aorta transportar o volume de sangue

de um adulto?

22- A figura ilustra um reservatório contendo água. A 5 m abaixo da superfície

livre

existe um pequeno orifício de área igual a 3 cm². Admitindo g = 10 m/s²,

podemos afirmar que a vazão instantânea através desse orifício é:

23- Através de uma tubulação horizontal de seção reta variável, escoa água,

cuja densidade é 1,0.103kg/m3. Numa seção da tubulação, a pressão estática e

o módulo da velocidade valem, respectivamente, 1,5.105N/m2 e 2,0m/s. A

pressão estática em outra seção da tubulação, onde o módulo da velocidade

vale 8,0m/s, é, em N/m2;

24- Álcool, cuja densidade de massa é de 0,80 g/cm3 está passando através

de um tubo como mostra a figura.

A secção reta do tubo em A é 2 vezes maior do que em B. Em A a velocidade é

de vA = 5,0 m/s, a altura hA= 10,0m e a pressão PA= 7,0 x 103 N/m2. Se a

altura em B é hB= 1,0m, calcule a velocidade e a pressão em B.

25- ―Tornado destrói telhado do ginásio da Unicamp‖. Um tornado com ventos

de 180km/h destruiu o telhado do ginásio de esportes da Unicamp …Segundo

engenheiros da Unicamp, a estrutura destruída pesa aproximadamente 250

toneladas. ―Folha de São Paulo, 29/11/95‖

Uma possível explicação para o fenômeno seria considerar uma diminuição da

pressão atmosférica , devida ao vento, na parte superior do telhado. Para um

escoamento de ar ideal, essa redução de pressão é dada por ρv2/2, em que

Page 10: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

ρ=1,2kg/m3 é a densidade do ar e v a velocidade do vento. Considere que o

telhado do ginásio tem 5.400m2 de área e que estava apoiado nas paredes.

(dado g=10m/s2).

a) Calcule a variação da pressão externa devido ao vento.

b) Quantas toneladas poderiam ser levantadas pela força devida a esse vento?

c) Qual a menor velocidade do vento(em km/h) que levantaria o telhado?

26- Um líquido ideal preenche um recipiente até certa altura. A 5 metros abaixo

da

superfície livre, esse recipiente apresenta um orifício com 2.10-4 m2 de área,

por onde o líquido escoa. Considerando g=10m/s2 e não alterando o nível da

superfície livre, a vazão através do orifício, em m3/s, vale:

27- A água entra em uma casa através de um tubo com diâmetro interno de 2,0

cm, com uma pressão absoluta igual a 4,0 x 105 Pa (cerca de 4 atm). Um tubo

com diâmetro interno de 1,0 cm se liga ao banheiro do segundo andar a 5,0 m

de altura conforme a figura abaixo.

Sabendo que no tubo de entrada a velocidade é igual a 1,5 m/s, calcule:

(densidade da água d=1,0.103kg/m3)

a) a velocidade do escoamento

b) a pressão no banheiro

c) a vazão volumétrica no banheiro

Page 11: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

28- Animais como coelhos e toupeiras constroem suas tocas com mais de uma

abertura, cada abertura localizada a uma altura diferente, conforme ilustrado na

figura I abaixo.Nas proximidades do solo, o módulo da velocidade do vento

aumenta com a altitude,conforme ilustra a figura II a seguir.

A análise do principio de Bernoulli permite afirmar que, em regiões onde a

velocidade do ar é alta, a pressão é baixa, e onde a velocidade é baixa, a

pressão é alta.

Com base nas afirmações acima, julgue os itens a seguir.

a) Uma toca com duas aberturas no mesmo nível terá melhor ventilação que a

apresentada na figura I, sob as mesmas condições de vento.

b) Se um arbusto crescer nas proximidades da abertura 1, de forma a dificultar

a passagem do vento, sem bloquear a abertura, então a ventilação na toca

será melhorada.

c) ΔP = P1 – P2 é diretamente proporcional à diferença dos módulos das

velocidades v1 e v2.

d) A circulação de ar no interior da toca mostrada na figura I ocorre da abertura

1 para a abertura 2.

29- Num edifício, deseja-se instalar uma bomba hidráulica capaz de elevar

500L de água até uma caixa de água vazia situada a 20m de altura acima

desta bomba, em 1 minuto e 40 segundos.

Essa caixa de água tem a forma de um paralelepípedo cuja base mede 2m2.

O rendimento de um sistema hidráulico é definido pela razão entre o trabalho

Page 12: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

fornecido a ele e o trabalho por ele realizado. Espera-se que o rendimento

mínimo desse sistema seja de 50%. Calcule:

a) a potência mínima que deverá ter o motor dessa bomba.

b) a pressão, em N/m2, que os 500L de água exercerão sobre o fundo da caixa

de água.

30- Na tubulação horizontal indicada na figura, o líquido escoa com vazão de

400 cm3.s-1 e atinge a altura de 0,5 m no tubo vertical. A massa específica do

líquido (suposto ideal) é 1 g.cm-3. Adotar g = 10 m .s-2 e supor o escoamento

permanente e irrotacional. A pressão efetiva no ponto 1, em N.m-2, é:

31-Diversos edifícios de nossa cidade usam água potável obtida mediante

poços profundos. Um dos processos consiste em colocar a bomba no lençol

profundo (150m). Noutro, um compressor bombeia ar no lençol para aumentar

a pressão e possibilitar a chegada da água no nível do piso onde, então, uma

bomba ―recalca‖ a água até a caixa de água superior (100m).

Considerando a densidade da água de 1.000kg/m3 e uma vazão de 0,03m3/s,

em relação a esses dois processos de bombeamento, o que podemos

estabelecer, sabendo-se que 1 hp=750 W?

Assinale V ou F:

0) Usando um compressor, a potência da bomba que deverá ser de 75 hp com

um rendimento de 80%.

1) A potência da bomba instalada no lençol será de 100 hp se o rendimento for

100%.

Page 13: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

2) A potência do motor deverá ser de 75 hp com um rendimento de 80%.

3) É teoricamente possível bombear até a caixa d’agua superior, usando

apenas o compressor. Nesse caso, a potência será de 125 hp com um

rendimento de 80%.

4) Usando o compressor, a potência da bomba deverá ser de 50 hp com um

rendimento de 80%.

32-Com uma bomba hidráulica de potência útil 0,5cv, retira-se água de um

poço de 15m de profundidade e preenche-se um reservatório de 500L,

localizado no solo. Desprezando-se as perdas, adotando g=10m/s2, a

densidade da água igual a 1 g/cm3 e 1cv=750W, o tempo gasto para encher o

reservatório é de:

33- Observe as figuras a seguir.

Com base nos esquemas físicos apresentados nas figuras, considere as

afirmativas a seguir.

I – A figura I mostra dois copos contendo suco de laranja à mesma altura.

Independentemente do formato dos copos, a pressão no ponto A é igual à

pressão no ponto B.

II – A figura II mostra um tubo em forma de ―U‖ contendo dois líquidos que não

se misturam. No ramo da esquerda, tem-se óleo de soja e, no da direita, água.

A pressão no ponto A é igual à pressão no ponto B.

III – A figura III mostra dois líquidos de viscosidades diferentes escorrendo

através de um capilar: o suco de laranja, menos viscoso, escorre em A, ao

passo que o xarope de milho, mais viscoso, escorre em B.

Page 14: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

IV – A figura IV mostra um liquido em escoamento no sentido do ponto A para o

ponto B. Apesar de a velocidade de escoamento no ponto A ser maior do que a

velocidade de escoamento no ponto B, a pressão no ponto A é menor que a

pressão no ponto B.

Assinale a alternativa CORRETA.

a) Somente as afirmativas I e II são corretas.

b) Somente as afirmativas I e III são corretas.

c) Somente as afirmativas II e IV são corretas.

d) Somente as afirmativas I, III e IV são corretas.

e) Somente as afirmativas II, III e IV são corretas.

34- O coração bombeia o sangue para os demais órgãos do corpo por meio de

tubos chamados artérias.Quando o sangue é bombeado, ele é ―empurrado‖

contra a parede dos vasos sanguíneos. Essa tensão gerada na parede das

artérias é denominada pressão arterial.

A hipertensão arterial ou ―pressão alta‖ é a elevação da pressão arterial para

números acima dos valores considerados normais (120/80 mmHg). Essa

elevação anormal pode causar lesões em diferentes órgãos do corpo humano,

tais como cérebro, coração, rins e olhos.

Quando a pressão arterial é medida, dois números são registrados, tais como

120/80. O maior número, chamado pressão arterial sistólica, é a pressão do

sangue nos vasos, quando o coração se contrai, ou bombeia, para impulsionar

o sangue para o resto do corpo. O menor número, chamado pressão diastólica,

é a pressão do sangue nos vasos quando o coração encontra-se na fase de

relaxamento (diástole).

Considere o texto para assinalar a alternativa correta:

a) Pode-se afirmar que, no processo de sístole e diástole, a pressão arterial e o

volume de sangue no coração são diretamente proporcionais.

b) O sangue exerce uma força sobre as artérias e as artérias sobre o sangue;

portanto, essas forças se anulam.

c) A diferença de pressão entre dois pontos distantes 10 cm da aorta vale 2,5

Pa, o que significa dizer que é exercida uma força de 2,5 N em 1 cm2.

d) Quando o calibre da artéria fica reduzido, aumenta-se a resistência à

passagem do sangue e, consequentemente, eleva-se a pressão diastólica

(mínima).

Page 15: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

e) O valor da pressão sistólica no SI é 1,6. 105 Pa.

35-O uso da água do subsolo requer o bombeamento para um reservatório

elevado. A capacidade de bombeamento (litros/hora) de uma bomba hidráulica

depende da pressão máxima de bombeio, conhecida como altura manométrica

H (em metros), do comprimento L da tubulação que se estende da bomba até o

reservatório (em metros), da altura de bombeio h (em metros) e do

desempenho da bomba (exemplificado no gráfico).

De acordo com os dados a seguir, obtidos de um fabricante de bombas, para

se determinar a quantidade de litros bombeados por hora para o reservatório

com uma determinada bomba, deve-se:

1 — Escolher a linha apropriada na tabela correspondente à altura (h), em

metros, da entrada da água na bomba até o reservatório.

2 — Escolher a coluna apropriada, correspondente ao comprimento total da

tubulação (L), em metros, da bomba até o reservatório.

3 — Ler a altura manométrica (H) correspondente ao cruzamento das

respectivas linha e coluna na tabela.

4 — Usar a altura manométrica no gráfico de desempenho para ler a vazão

correspondente.

Page 16: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Considere que se deseja usar uma bomba, cujo desempenho é descrito pelos

dados acima, para encher um reservatório de 1.200 L que se encontra 30 m

acima da entrada da bomba. Para fazer a tubulação entre a bomba e o

reservatório seriam usados 200 m de cano. Nessa situação, é de se esperar

que a bomba consiga encher o reservatório

a) entre 30 e 40 minutos.

b) em menos de 30 minutos.

c) em mais de 1 h e 40 minutos.

d) entre 40 minutos e 1 h e 10 minutos.

e) entre 1 h e 10 minutos e 1 h e 40 minutos.

36- Preocupado com as notícias sobre a escassez da água potável no planeta

devido ao mau gerenciamento desseimportante recurso natural, Marcelo,

tentando fazer a sua parte para reverter esse processo, tem procurado adotar

atitudes ecopráticas, por isso resolveu verificar quanto gasta de água em um

banho.

Ele, com a ajuda de seu irmão que cronometrou o tempo e anotou os

resultados, procedeu da seguinte forma:

• ligou o chuveiro apenas quando já estava despido e pronto para o início do

banho;

• para se molhar, Marcelo deu um quarto de volta no registro do chuveiro que

ficou aberto por 1 min 18 s;

• ensaboou-se, com o chuveiro fechado, por 3 min 36 s;

• para se enxaguar, abriu totalmente o registro do chuveiro;

• finalmente, fechou o registro do chuveiro, encerrando o banho que durou 6

min 54 s.

Mais tarde, consultando o site da Sabesp, Marcelo obteve os seguintes dados:

Page 17: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Analisando a situação apresentada, conclui-se que a quantidade total de água

que Marcelo utilizou nesse banho foi, em litros,

37- Preocupado com as notícias sobre a escassez da água potável no planeta

devido ao mau gerenciamento desse importante recurso natural, Marcelo,

tentando fazer a sua parte para reverter esse processo, tem procurado adotar

atitudes ecopráticas, por isso resolveu verificar quanto gasta e água em um

banho. Ele, com a ajuda de seu irmão que cronometrou o tempo e anotou os

resultados, procedeu da seguinte forma:

• ligou o chuveiro apenas quando já estava despido e pronto para o início do

banho;

• para se molhar, Marcelo deu um quarto de volta no registro do chuveiro que

ficou aberto por 1 min 18 s;

• ensaboou-se, com o chuveiro fechado, por 3 min 36 s;

• para se enxaguar, abriu totalmente o registro do chuveiro;

• finalmente, fechou o registro do chuveiro, encerrando o banho que durou 6

min 54 s.

Mais tarde, consultando o site da Sabesp, Marcelo obteve os seguintes dados:

Assinale a alternativa que melhor representa o gráfico da quantidade de água

consumida, em litros, em função do tempo, em minutos, durante o banho de

Marcelo.

38-(UFG-GO)

Page 18: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

No sistema circulatório humano, o sangue é levado do coração aos demais

órgãos do corpo por vasos sanguíneos de diferentes

características. Na tabela a seguir estão relacionados dois vasos, I e II, com

valores médios de algumas de suas características.

O sangue, que pode ser tratado como um fluido ideal e incompressível possui

velocidade média de 30 cm/s no vaso I. O nome do vaso I e a velocidade

média do sangue em cm/s no vaso II são, respectivamente,

(A) cava e 3,0.

(B) aorta e 3,0.

(C) aorta e 0,03.

(D) arteríola e 0,03.

(E) arteríola e 300,0.

Page 19: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Resolução comentada dos exercícios de vestibulares sobre Equação da Continuidade – Teorema de Bernoulli 01- A vazão é a mesma – regime estacionário — R- B 02- S=100cm2=102.10-4 — S=10-2m3 — Z=7.200L/h=7.200/3.600L/s=2.L/s — Z=2.10-3m3/s — Z=S.v — 2.10-3= 10-2v — v=2.10-3/10-2 — v=0,2m/s — R- C 03- ΔV=18.10.2=360m3 — Δt=10h — S=25.10-4m2 — Z=ΔV/Δt=360/10 — Z=36m3/h — Z=S.v — 36=25.10-4.v — v=36/25.104 — v=14.400m/h — v=14.400/3.600=4m/s — R- D 04- O jato de ar que se move com velocidade v, paralelamente ao extremo (A) de um tubo que está imerso em um líquido, faz com que a pressão aí diminua em relação ao extremo inferior (ponto B) do tubo. A diferença de pressão entre os pontos A e B empurra o fluido para cima. O ar rápido também divide o fluido em pequenas gotas, que são empurradas e se espalham para a frente — R- E 05- R- C — veja exercício anterior 06- Vazão — Z=0,01m3/s=10-2m3/s — volume total — ΔV=10×1.500=15.000L=15.103.10-3 — ΔV=15m3 — Z= ΔV/ Δt — 10-2=15/ Δt — Δt=1.500s=25min — R- C 07- R- B — veja teoria 08- Veja a figura abaixo:

d2=2d1 — r2=2r1 — S1v1=S2v2 — π(r1)2.v1=π(r2)2.v2 — (r1)2.v1=(2r1)2.v2 — (r1)2.v1=4(r1)2.v2 — v1=4v2 — R- E 09-

v1=Δh/Δt=9/3 — v1=3cm/s — S1=4S2 — S1.v1=S2.v2 — 4S2v1=S2.v2 — 4.3=v2 — v2=12cm/s 10- Maior área de seção transversal (1), menor velocidade, maior pressão — R- C 11- (01) correta – ―os acréscimos de pressão sofridos por um ponto de um líquido em equilíbrio são transmitidos integralmente a todos os pontos do líquido e das paredes do recipiente que o contém‖ — Princípio de Pascal.

Page 20: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

(02) Falsa, a vazão é a mesma, quem aumenta é a velocidade de saída da água. (04) Falsa — Observe na equação P + d.v2/2=constante que a pressão P é inversamente proporcional à velocidade v, ou seja, quanto menor a área, maior a velocidade e menor a pressão. (08) Correta – é a pressão atmosférica – Veja (01) (16) Correta – a partir da saída, as partículas de água ficam sujeitas à força peso, desprezando-se a resistência do ar, e descrevem um arco de parábola. ( 01 + 08 + 16) = 25 12- (01) Correta – P=dgh (teorema de Stevin) — como h diminui, com d e g constantes, a pressão P também diminui. (02) Falsa, é a pressão atmosférica. (04) Correta – a pressão no ponto B (pressão atmosférica) é maior que a pressão no ponto A. (08) Correta – veja (04) (16) Falsa — PA=PB e PC=PD — mesmo nível horizontal – teorema de Stevin (01 + 04 + 08) = 13 13- Zconstante=SA.vA = SB.vB — SA.v=SB.2v — SA=2SB — R- B 14- A vazão total das duas torneiras é Z=5L/min + 3L/min=8L/min — Z=8.10-3m3/min — Z=S.v — 8.10-3=0,8.v — v=10-2m/min — v=1cm/min — R- C 15- A vazão é sempre a mesma independente da espessura da mangueira — no lançamento horizontal a velocidade v é a mesma e trata-se de um movimento uniforme de equação — S=So + vt — S=v.t — se o alcance S é quadruplicado, a velocidade v também é quadruplicada — S1.v1=S2.v2 — π.(R1)2.v=π.(R2)2.4v — (R2)2/(R1)2=1/4 — R2=R1/2 — R- C 16- a) Z=S.v=πR2.v=3,14.12.33 — Z=104cm3/s — Z=0,104L/s (transporta 0,104 litros em cada 1 segundo) b) Z=ΔV/Δt — 0,104=5/Δt — Δt=48s 17- Comprimento da canal — s=4m — tempo de percurso — t=1min=60s — velocidade da água

— v=s/t=4/60 —V=1/15m/s — área de seção transversal do canal — R=1m — S=πR2/2=π.(1/2)2/2 — S=π/8 — vazão — Z=S.v=(π/8).(1/15) — Z=π/120m3/s (m3.s-1) — R- E 18- I- Correta – Teorema de Stevin (P=d.g.h) – todos os pontos de um mesmo líquido (mesma densidade) localizados num mesmo nível horizontal (no caso,mesma altura), suportam a mesma pressão. II- Falso – estão em alturas diferentes — PB<PA III- Correta – viscosidade é definida como a resistência que um fluido oferece ao seu próprio movimento. Quanto maior for a sua viscosidade, menor será a

Page 21: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

sua capacidade de escoar (fluir) e maior será a força de atrito entre o fluido e as paredes do recipiente onde ele está escoando IV- Correta – correta – veja teoria R- D 19- a) Z=S.v=200.1 — Z=200m3/s b) Z=S.v — 200=40.v — v=5,0m/s 20- a) 10L -1h — 150L – t h — t=15h b) Z=ΔV/Δt=10.10-3m3/1h — Z=10-2m3/h — Z=S.v — 10-2=5.10-1.v — v=2,0.10-2m/h 21- Vazão — Z=S.v=2,5.30 — Z=75cm3/s — Z=ΔV/Δt — 75=5,4.103/Δt — Δt=5,4.103/75=0,072.103 — Δt=72s 22- Z=v.S=√(2gh).S=√(2.10.5).3.10-4=10.3.10-4=3.10-3m3s — Z=3L/s — R- B 23- Equação de Bernoulli — tubulação horizontal – h=0 — só tem energia cinética — P1+ dv12/2=P2 + dv22/2 — 1,5.105 + 103.(2)2/2=P2 + 103.(8)2/2 — 152.103=P2 + 32.103 — P2=152.103 – 32.103 — P2=120.103=1,2.105N/m2 — R- A 24- SA=2SB — SA.VA=SB.VB — 2SB.5=SB.VB — VB=10m/s — teorema de Bernoulli — PA + d.g.hA + d.(VA)2/2 = PB + d.g.hB + d.(VB)2/2 — 7.103 + 8.102.10.10 + 8.102.(5)2/2=PB + 8.102.10.1 + 8.102.(10)2/2 — 7.103 + 80.103 + 10.103=PB + 8.103 + 40.103 — 97.103=PB + 48.103 — PB=49.103=4,9.104N/m2 25- a) v=180km/h/3,6=50 — v=50m/s — redução da pressão — ΔP=ρv2/2=1,2.(50)2/2 — ΔP=1,5.103N/m2 b) variação de pressão=força/área — ΔP=peso/S — 1,5.103=m.10/5.400 — m=81.104kg — m=8,1.102t c) ρv2/2=ΔP=peso/área — 1,2.v2/2=m.g/5.400 — 1,2.v2/2=250.103.10/5.400 — v=√771,6 — v=27,77m/sx3,6 — v=100km/h 26- Z=v.S=√(2gh).S=√(2.10.5).2.10-4 — Z=√100.2.10-4 — Z=2.10-3m3/s 27- a) entrada — PA=4.105N/m2 — RA=2/1=1cm=10-2m — hA=0 — vA=1,5m/s — segundo andar — PB — RB=1/2=0,5.10-2=5.10-3m — hB=5m — SA.vA=SB.vB — π.(RA)2.vA=π.(RB)2.vB — (10-2)2.1,5=(5.10-3)2.vB — 1,5.10-4=25.10-6.vB — vB=1,5.10-4/25.10-6 — vB=0,06.102 — vB=6m/s b) Bernoulli — PA + d(vA)2/2 + d.g.hB = PB + d(vB)2/2 + d.g.hB — 4.105 + 103.(1,5)2/2 + 10.10.0 = PB + 103(6)2/2 + 103.10.5 — 40.104 + 0,1125.104 + 0 = PB + 1,8.104 + 5.104 — PB=40,1125.104 – 6,8.104 — PB=33,3.104=3,3.105Pa c) vazão — Z=SB.vB=π.(RB)2.6=3,14.(5.10-3)2.6 — Z=471.10-6=4,71.10-4 — Z=4,71.10-4m3/s ou Z=0,471L/s 28- a) Falsa – se as alturas estivessem no mesmo nível, as velocidades do vento em cada uma delas seriam iguais e, assim não haveria diferença de pressão para empurrar o ar, não havendo ventilação dentro da toca. b) Correta – o arbusto diminui a velocidade do vento na abertura 1 aumentando, nela, a pressão. Assim, a diferença de pressão entre as aberturas será aumentada, favorecendo a ventilação. c) Como as alturas são constantes, a diferença de energia potencial gravitacional também é constante — P1 + dv12/2= P2 + dv22/2 — ΔP= P1 –

Page 22: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

P2=d/2(v22 – v12) — ΔP é diretamente proporcional à diferença do módulo do quadrado das velocidades — Falsa. d) Correta – ocorre da abertura de menor velocidade do vento, maior pressão (abertura 1) para a abertura de maior velocidade do vento, menor pressão (abertura 2) 29- a) Δt=1min e 40s=60 + 40 — Δt=100s — ΔS=20m — v=ΔS/Δt=100/20 — v=5m/s — vazão — Z=ΔV/Δt =500.10-3/100 — Z=5.10-3m3/s — energia utilizada para elevar a água a uma altura h=20m num local onde g=10m/s2 — ΔW=dgh=103.10.20 — ΔW=2.105J — Poútil=ΔW.Z=2.105.5.10-3 — Poútil=1.000W (J/s) — rendimento (η=Poútil/Pototal) — 0.5=1.000/Pototal — Pototal=2.000W b) V=S.h — 5.10-1=2.h — h=0,25m — P=dgh=103.10.0,25 — P=2,5.103N/m2 30- Z=400cm3s=4.102.10-6 — Z=4.10-4m3s — S1=2.10-4m2 — S2=10-4m2 — Z — constante — Z=S1.v1 — 4.10-4=2.10-4.v1 — v1=2m/s — Z=S2.v2 — 4.10-4=10-4v2 — v2=4m/s — Stevin em 2 — P2=d.g.h=103.10.0,5 — P2=5.103N/m2 — h=o — dgh=0 — Bernoulli — P1 + d(v1)2/2=P2+ d(v2)2/2 — P1 + 103.4/2=5.103 + 103.16/2 — P1=13.103 – 2.103 — P1=11.103N/m2 (N.m-2) — R- A 31- Veja a figura abaixo — BL — bomba no lençol — BS — bomba no solo — trabalho (energia)

para elevar a água a uma altura h — W=d.g.h — potência útil — Pu=W.Z — Pu=d.g.h.Z — BS – PuS=103.10.100.0,03 =3.104= =3.104.1/750 — PuS=40 hp — rendimento de 80% — η=Pu/Pt — 0,8=40/Pt — PtS=50 hp — BL — bomba no lençol — PuL=d.g.h.Z=103.10.250.0,03 — PuL=100 hp — η= PuL/PtL — 0,8=100/PtL — PtL=125 hp — utilizando o compressor — hcompressor=1,5hBS — Pucompressor=1,5.PuBS — Pucompressor=1,5.40 — Pucompressor=65 hp — η=Pucompressor/Ptcompressor — Ptcompressor=75 hp — 0) Falsa — deverá ser de 125 hp — 1) verdadeira — 2) verdadeira — 3) verdadeira — 4) verdadeira 32- P=d.g.h.Z=d.g.h.ΔV/Δt — P=0,5cv=0,5.750 — P=375W — 375=103.10.15.500.10-3/Δt — Δt=75.000/375=200s — R- B 33- Apenas a afirmação II é incorreta, pois os pontos A e B estão no mesmo líquido, mas em alturas distintas e logo pela Lei de Stevin estão sob pressões diferentes. R- D — veja teoria 34- Você pode chegar à opção correta sem apelar para equações ou leis da Física, mas apenas se baseando em fatos do cotidiano — quando você joga água no jardim ou lava o carro com uma mangueira convencional, você coloca

Page 23: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

o polegar na extremidade de saída da água para diminuirmos a área de fluxo — isso, consequentemente, provoca um aumento de pressão e um aumento na velocidade, lançando a água à maior distância — fisicamente você pode usar a equação da continuidade e a equação de Bernoulli — sendo Q a vazão, v a velocidade do fluxo e A a área da secção transversal, a equação da continuidade — Q = v A. (I) — a equação de Bernoulli relaciona o acréscimo de pressão (p) com a altura de bombeamento (h) e com a velocidade de fluxo (v) — considerando o sangue um fluido incompressível de densidade d e que seja bombeado a partir do repouso, desprezando perdas nas paredes — p=mV2/2 + mgh (II) — observando a equação (I) você conclui que, se a vazão é constante, diminuindo-se a área de fluxo a velocidade aumenta — na equação (II), se a velocidade aumenta, a pressão também aumenta. Analisando as opções: a) Falsa — pelo exposto acima. b) Falsa — as forças mencionadas formam um par ação-reação.Essas forças nunca se anulam, pois agem em corpos diferentes. c) Falsa — a pressão de 2,5 Pa significa que é exercida uma força de 2,5 N em 1 m2. d) Correta. e) Falsa — considerando a densidade do mercúrio, dHg = 13,6 g/cm3 = 13,6.103 kg/m3 (não fornecida no enunciado), a pressão sistólica de 120 mmHg = 0,12 mHg, pode ser calculada no Sistema Internacional pelo teorema de Stevin: p = dHg g h = 13,6.103.10.0,12 — p = 1,6.103 Pa — R- D 35- Dados: V = 1.200 L; h = 30 m; L = 200 m — seguindo as instruções do fabricante, entremos com os dados na tabela para obtermos o valor de H.

Como mostrado, obtemos H = 45 m — analisando o gráfico dado, temos os valores mostrados: H = 45 m — Q = 900 L/h.

Page 24: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

Calculando o tempo para encher o reservatório — Q=V/t — 900=1.200/t — t=1.200/900 — t=4/3h — t=80min — t=1h e 20min — R- E 36- Tempo total do banho — Δtt = 6 min e 54 s = 414 s = 6,9 min — tempo com um quarto de volta — Δt1 = 1 min e 18 s = 78 s = 1,3 min — tempo com o registro fechado — Δt2 = 3 min e 36 s = 216 s = 3,6 min — tempo com vazão total — Δt3 = ? — soma dos tempos — Δtt = Δtt + Δt2 + Δt3 — 6,9 = 1,3 + 3,6 + Δt3 — Δt3=2 min — cálculo do consumo de água, usando os dados da tabela — Cágua = 1,3×1,5 + 2×10,8 = 1,95 + 21,6 — Cágua = 23,55 L — R- B 37- Cálculos feitos na questão anterior — o chuveiro ficou ligado durante um curto intervalo de 78 s, despejando 1,95 L — a seguir, ficou fechado durante 216 s e, finalmente, com vazão total durante 120 s, despejando 21,6 L — fazendo essas comparações — R- C 38- Artérias: são vasos de maior calibre que os demais, de parede espessa que saem do coração levando sangue para os órgãos e

tecidos do corpo — capilares sangüíneos: são vasos de pequeno calibre que ligam as extremidades das artérias às veias — as veias levam o sangue vindo do corpo, ao coração e suas paredes são mais finas que as das artérias — a artéria Aorta é a maior do corpo humano, pois além de ser a maior em extensão, ela é a de maior (espessura, diâmetro) calibre — observe que o vaso I possui maior área (espessura, diâmetro) que o de cada vaso II, então ele só pode ser a artéria aorta — o fluxo de sangue no corpo humano é constante, ou seja, em cada vaso, o volume que circula no mesmo intervalo de tempo é o mesmo — φI = φII —

Page 25: EXERCÍCIOS HIDRODINÂMICA acima da região 1, …lucas.maia/cursos/fmt/2016/lista_hidrodinamica.pdf · A mangueira tem em sua extremidade um dispositivo com . orifício circular

VolI/∆t = VolII/∆t — (S1.lI)/ ∆t = SII.lII/∆t (1) — a velocidade do sangue no interior de cada vaso é diferente e vale — V1=lI/∆t (2) — V1I=lII/∆t (3) — comparando (1) com (2) e com (3) — SI.VI = SII.VII — 240.30 = 240000V2 — V2=2700/240000 — V2=0,03cm/s — R- C