117
Universidade Federal do Rio Grande do Norte Centro de Biociências Programa de Pós-Graduação em Psicobiologia Laboratório de Peixes Ornamentais JAQUELINNE PINHEIRO-DA-SILVA EFEITOS DA PRIVAÇÃO DE SONO EM TAREFAS COGNITIVAS Natal RN 2016

Universidade Federal do Rio Grande do Norte Centro de

Embed Size (px)

Citation preview

Page 1: Universidade Federal do Rio Grande do Norte Centro de

Universidade Federal do Rio Grande do Norte

Centro de Biociências

Programa de Pós-Graduação em Psicobiologia

Laboratório de Peixes Ornamentais

JAQUELINNE PINHEIRO-DA-SILVA

EFEITOS DA PRIVAÇÃO DE SONO EM TAREFAS COGNITIVAS

Natal – RN

2016

Page 2: Universidade Federal do Rio Grande do Norte Centro de

JAQUELINNE PINHEIRO-DA-SILVA

EFEITOS DA PRIVAÇÃO DE SONO EM TAREFAS COGNITIVAS

Natal – RN 2016

Dissertação apresentada ao Programa de Pós graduação em Psicobiologia, da Universidade Federal do Rio Grande do Norte para obtenção do título de Mestre em Psicobiologia. Área de concentração: Estudos do Comportamento Orientadora: Prof. Dra. Ana Carolina Luchiari

Page 3: Universidade Federal do Rio Grande do Norte Centro de

Catalogação da Publicação na Fonte. UFRN / Biblioteca Setorial do Centro de Biociências

Pinheiro-da-Silva, Jaquelinne.

Efeitos da privação do sono em tarefas cognitivas / Jaquelinne Pinheiro-da-Silva. – Natal, RN, 2016. 116 f.: il.

Orientadora: Profa. Dra. Ana Carolina Luchiari.

Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte. Centro de Biociências. Programa de Pós-Graduação em Psicobiologia. 1. Sono. – Dissertação. 2. Aprendizagem. – Dissertação. 3. Memória. – Dissertação. I. Luchiari, Ana Carolina. II. Universidade Federal do Rio Grande do Norte. III. Título.

RN/UF/BSE-CB CDU 159.963.2

Page 4: Universidade Federal do Rio Grande do Norte Centro de

Título: Efeitos da privação de sono em tarefas cognitivas

Autor: Jaquelinne Pinheiro-da-Silva

Data da defesa: 01 de março de 2016

Banca Examinadora:

Prof. Dra. Ana Carolina Luchiari Universidade Federal do Rio Grande do Norte, RN

Prof. Dr. Judney Cley Cavalcante Universidade Federal do Rio Grande do Norte, RN

Prof. Dra. Lia Rejane Müller Bevilaqua Instituto do Cérebro - UFRN, RN

Page 5: Universidade Federal do Rio Grande do Norte Centro de

“Aquele que é mestre na arte de viver faz pouca distinção entre o seu trabalho e o seu tempo livre, entre a sua mente e o seu corpo, entre a sua educação e a sua recreação, entre o seu amor e a sua religião. Distingue uma coisa da outra com dificuldade. Almeja, simplesmente, a excelência em qualquer coisa que faça, deixando aos demais a tarefa de decidir se está trabalhando ou se divertindo. Ele acredita que está sempre fazendo as duas coisas ao mesmo tempo”

Domenico de Masi

Page 6: Universidade Federal do Rio Grande do Norte Centro de

AGRADECIMENTOS

Aos meus pais, Ane e Natan, sem os quais nada disso seria possível. Por sempre respeitarem

minhas escolhas e pelo imenso amparo emocional e financeiro sempre presente, mesmo com

os quase 3000km de distância. Vocês são as principais inspirações da minha vontade de

crescer pessoal e profissionalmente.

À minha família que é meu principal equilíbrio psicológico, e mesmo toda espalhada por esse

mundo, sabe como me fazer sentir amada e querida.

À minha orientadora, prof. Ana Carolina Luchiari, por me receber tão bem no seu

laboratório, na sua casa e na sua família. Terá meu eterno agradecimento por toda dedicação,

paciência, orientação e, principalmente, o apoio mais que necessário desde antes do início do

mestrado.

Ao Vinícius, meu melhor amigo e companheiro de vida. Que está ao meu lado diariamente,

acompanhando (sempre com toda paciência possível) desde às pequenas conquistas e alegrias

até as noites mal dormidas e minhas crises. Eu não poderia ter parceria melhor.

Aos meus colegas de trabalho do Luchiari lab, pelas colaborações, trocas de ideias e

sugestões em cada reunião. Principalmente aos nossos estagiários, Adri, Lari, Helô, Rafa,

Elisa, Ian, Jessica, Vanessa e Mix pelas várias vezes que precisei de ajuda durante o percurso,

vocês foram fundamentais para a realização desse trabalho.

À Raíssa Nóbrega e Rômulo Almeida por me cederem espaço nos laboratórios de hormônios

e bioquímica, e pelo paciente auxílio com a homogeneização e análise das amostras.

Ao PPG Psicobiologia, por toda assistência institucional e burocrática e ao CNPq,

pelo financiamento deste projeto.

Page 7: Universidade Federal do Rio Grande do Norte Centro de

RESUMO

Aprendizagem e memória são processos importantes paras as espécies, pois permitem

o reconhecimento coespecífico, rotas e sítios de alimentação. Um dos comportamentos

conhecidos por facilitar à aprendizagem é o sono, fenômeno universal presente na maioria dos

vertebrados e altamente estudado sob vários aspectos. É sabido que a privação de sono altera

processos fisiológicos e comportamentais nos animais, no entanto, sua função no organismo

não é completamente compreendida. As hipóteses do papel do sono variam de conservação de

energia à consolidação de memória, com variadas funções durante a evolução dos animais. O

peixe paulistinha (Danio rerio) surgiu nos últimos anos como vertebrado modelo em genética

e biologia do desenvolvimento, e rapidamente se tornou popular em estudos do

comportamento, assim como aprendizagem e memória. Além de ser um animal de ritmo

circadiano diurno e possuir comportamento de sono bem caracterizado, o peixe paulistinha

ainda apresenta vantagens por seu tamanho pequeno e de baixo custo de manutenção, o que

estabelece essa espécie como modelo interessante para pesquisas sobre sono. No presente

estudo buscou-se analisar os efeitos da privação total ou parcial de sono sobre a aprendizagem,

e ainda os efeitos concomitantes com o uso de álcool e melatonina. Para isso, o projeto foi

dividido em 3 etapas, cada um com um tipo de condicionamento diferente: (1) Reconhecimento

de objetos, (2) Aprendizagem aversiva baseada em punição e (3) Aprendizagem apetitiva

baseada em reforço. Os resultados analisados mostraram que os peixes que foram parcialmente

privados de sono e os totalmente privados de sono + álcool conseguiram realizar as tarefas

igualmente aos grupos controle, no entanto, os peixes totalmente privados de sono e ainda os

totalmente privados + melatonina apresentaram memória e atenção prejudicadas durante os

testes. Por fim, nossos resultados sugerem que apenas uma noite de privação de sono é

suficiente para afetar o desempenho do peixe paulistinha em tarefas cognitivas. Ademais, a

exposição ao álcool na noite anterior ao teste parece suprimir os efeitos negativos da privação

de sono, enquanto a melatonina parece não ser eficiente para promover o estado de sono, ao

menos na metodologia aplicada aqui.

Palavras-chave: sono, aprendizagem, memória, álcool, paulistinha

Page 8: Universidade Federal do Rio Grande do Norte Centro de

ABSTRACT

Learning and memory are important mechanism for species, since its allows to

recognize conspecifics, routes and food place. Sleep is one of behaviors known by facilitate

learning, it is a widespread phenomenon, present in most of vertebrates lives and highly

investigated in many aspects. It is known that sleep deprivation modifies physiologic

behavioral processes in animals, however, sleep function in organism is still debatable.

Hypothesis range from energy conservation to memory consolidation, with different roles in

animal’s evolution. The zebrafish (Danio rerio) emerge in the last years as vertebrate model in

genetics and developmental biology and quickly become popular in behavioral studies, as

learning and memory. Despite the fact that zebrafish is a diurnal animal and have well

characterized sleep behavior, zebrafish fish still has advantages due to its small size and low

cost of maintenance, which establishes this species as interesting model for research on sleep.

In this study we aimed to analyze the effects of partial and total sleep deprivation on learning

acquisition, as well the concomitant administration of alcohol and melatonin. For this, the

research was divided in three phases, each one with a different kind of conditioning: (1) object

Recognition, (2) avoidance conditioning and (3) appetitive conditioning. The results showed

the fish partially sleep deprived and totally sleep deprived + ethanol could perform the tasks

just like the control group, however, fish totally sleep deprived and totally sleep deprived +

melatonin showed impairments in attention and memory during the tests. Our results suggest

that only one night of sleep deprivation is enough to harm the zebrafish performance in

cognitive tasks. In addition, ethanol exposure on the night previously the test seems to suppress

the negative effects of sleep deprivation, while the melatonin treatment seems not to be enough

to promote sleep state, at least on the protocol applied here.

Keywords: sleep, learning, memory, alcohol, zebrafish

Page 9: Universidade Federal do Rio Grande do Norte Centro de

SUMÁRIO

Introdução Geral 10

Objetivos 19

Capítulo 1: Sleep deprivation effects on objects discrimination task in zebrafish 20

1. Introdução 23

2. Material e Métodos 25

3. Resultados 29

4. Discussão 30

5. Referências 34

Figura 1 42

Figura 2 43

Figura 3 44

Legenda das Figuras 45

Material Suplementar

Capítulo 2: Sleep deprivation impairs learning: a matter of fact? 50

1. Introdução 52

2. Material e Métodos 53

3. Resultados 56

4. Discussão 57

5. Agradecimentos 61

6. Referências 62

Figura 1 69

Figura 2 69

Figura 3 70

Figura 4 70

Figura 5 71

Capítulo 3: Good night, sleep tight: the effects of sleep deprivation on spatial

associative learning in zebrafish

72

1. Introdução 74

2. Material e Métodos 76

3. Resultados 80

4. Discussão 83

Page 10: Universidade Federal do Rio Grande do Norte Centro de

5. Agradecimentos 89

6. Referências 89

Figura 1 96

Figura 2 97

Figura 3 98

Figura 4 99

Figura 5 100

Figura 6 101

Figura 7 102

Figura 8 103

Figura 9 104

Legenda das figuras 105

Tabela 1 106

Tabela 2 107

Conclusão Geral 108

Referências 109

Page 11: Universidade Federal do Rio Grande do Norte Centro de

10

INTRODUÇÃO GERAL

Aprendizagem é a modificação adaptativa do comportamento, relativamente

permanente, baseada na experiência do indivíduo (Alcock, 2013; Hilgard, 1948; Kolb &

Whishaw, 1998). A teoria da aprendizagem adaptativa considera cognição e

aprendizagem como o conjunto de habilidades que conferem, aliados à evolução de traços

particulares, vantajoso custo-benefício para espécies em condições ecológicas específicas

(Lefebvre, 1996).

Numa abordagem fisiológica, o processo de aprendizagem e memória é possível

devido às alterações na estrutura física do cérebro, através da criação ou alteração de

conexões sinápticas entre neurônios. Poucos minutos após uma experiência, atividades

neurais produzem mudanças no formato dos dendritos ou no número de conexões entre

os axônios de um neurônio e os dendritos de outro. Tais atividades neurais podem ser

induzidas por estimulação elétrica ou química do cérebro. A estimulação química pode

variar de hormônios a compostos neurotróficos e drogas psicoativas, enquanto que as

estimulações elétricas também podem ocasionar o fortalecimento de sinapses excitatórias,

causando alterações químicas em neurônios pré e pós-sinápticos (Kolb & Whishaw, 2001;

Mazur, 2002). Experiências diferentes levam a alterações em diferentes sistemas neurais

e, consequentemente, essas diferentes memórias podem ser armazenadas em partes

específicas do cérebro ou distribuídas de forma difusa entre várias partes (Thompson,

1991). A habilidade das sinapses fortalecerem ou enfraquecerem a comunicação entre

neurônios como resultado de experiências é chamada de plasticidade neuronal, e é o

mecanismo primordial para a adaptação e sobrevivência (Watson & Buzsáki, 2015).

Hipóteses sobre aprendizagem de tarefas específicas sugerem que a principal

vantagem da plasticidade é poder controlar e prever variações ambientais que são rápidas

demais para serem causadas por mudanças genéticas (Johnston, 1982). Assim, uma única

Page 12: Universidade Federal do Rio Grande do Norte Centro de

11

exposição a determinado estímulo permite a modificação bioquímica do neurônio, em

consequência, na próxima exposição ao estímulo, a resposta neuronal já passa a ser

diferente. Neste sentido, o processo de aprendizagem oferece diversas vantagens para as

espécies uma vez que o indivíduo pode fazer ajustes adaptativos em seu comportamento

para obter benefícios do meio, como adquirir comida ou encontrar coespecífico, e ainda

antecipar ou alterar suas respostas comportamentais frente a presença de predadores ou

situações de risco (Kavaliers & Choleris, 2001; Sison & Gerlai, 2010).

A aprendizagem pode ocorrer por repetição ou por evento único. A habituação

ocorre quando o animal se acostuma a estímulos repetitivos inócuos e deixa de responder

a eles, a nível celular, a habituação de um reflexo ocorre devido à redução passageira da

eficácia de transmissão de informação pelos neurônios. Enquanto que na sensibilização

uma resposta é aumentada quando precedida de um estímulo muito forte, neste caso as

sinapses elevam a eficácia da transmissão, justamente o oposto da habituação. A

aprendizagem adquirida pode ser retida por curto ou longo período, dependendo do tempo

de estimulação.

A aprendizagem adquirida por meio de condicionamento pode ser operante ou

respondente e tem efeito de longo prazo, podendo persistir até por anos se não for

revertida por extinção, inibição latente ou novas associações (Moore, 2004). O

condicionamento clássico (ou respondente) ocorre quando o animal associa um sinal

anteriormente neutro (NS) (tornando-o o estímulo condicionado (CS)) com um estímulo

não condicionado (US) que o leva a apresentar a resposta não condicionada (UCR). O

estímulo não condicionado é, na maioria das vezes, como água ou comida, alteração

brusca de temperatura, dor, náusea, presença de coespecífico ou predador, etc. Após as

associações entre sinal e estímulo, a presença do estímulo neutro passa a desencadear

respostas semelhantes àquelas do estímulo não condicionado, de acordo com o repertório

típico de cada espécie (Moore, 1973).

Page 13: Universidade Federal do Rio Grande do Norte Centro de

12

O condicionamento pode ser dividido em duas categorias, considerando se o

estímulo não condicionado é apetitivo ou aversivo. O condicionamento apetitivo na

maioria das vezes é considerado prazeroso e o organismo tende a buscar o estímulo,

enquanto o condicionamento aversivo é considerado não prazeroso e o organismo

geralmente evita o estímulo, dependendo da operação estabelecedora (Powell, Honey, &

Symbaluk, 2016).

Ao passo que a aprendizagem é a alteração comportamental resultante de experiências, a

memória é a habilidade de recordar ou reconhecer experiências anteriores. A formação

de memória é característica importante em animais que vivem em ambiente estável, na

qual os elementos lembrados, lugares e rotas de experiência trazem vantagens para a

aptidão individual (Johnston, 1982). Além disso, os benefícios da função cognitiva

preditiva podem ser aumentados caso o indivíduo consiga armazenar a memória do que

será aprendido por longos períodos.

Dentre os comportamentos conhecidos por favorecer o processo de aprendizagem e

consolidação de memória, destaca-se o sono (Marshall & Born, 2007; Watson & Buzsáki,

2015). Este comportamento ocupa um terço de nossas vidas e, ainda que a comunidade

científica não tenha esclarecido plenamente o seu propósito ou finalidade, é senso comum

a necessidade básica vital que o estado comportamental do sono tem para a maioria dos

animais. Embora seja um fenômeno bastante difundido, presente em grande parte dos

vertebrados e também em alguns invertebrados, nem todos os animais apresentam o

comportamento de sono da mesma forma (Campbell & Tobler, 1984; Zimmerman,

Naidoo, Raizen, & Pack, 2008). A presença, a qualidade, a intensidade e as funções deste

estado em cada organismo são bem variadas.

O sono é geralmente relacionado com repouso, postura de descanso específica da

espécie, imobilidade reversível e redução da responsividade sensorial à estímulos

externos (Siegel, 2008). É um comportamento regulado tanto pelo relógio circadiano, que

Page 14: Universidade Federal do Rio Grande do Norte Centro de

13

realiza a sincronização, como por mecanismo homeostático, exemplificado pelo aumento

na intensidade e duração do sono após período de privação (Elbaz, Foulkes, Gothilf, &

Appelbaum, 2013). Contudo, nem todos os animais exibem os critérios de definição de

sono integralmente, alguns parecem poder reduzir o tempo de repouso ou até mesmo ficar

sem dormir por longos períodos, como acontece com aves migradoras e mamíferos

marinhos, sem apresentar riscos à saúde (Siegel, 2008).

Alguns estudos sugerem que mesmo um descanso tranquilo, embora consciente,

seria tão eficiente quanto o sono no sentido de recuperação das funções do corpo

(Kavanau, 1998). Além disso, esse tipo de “sono consciente” não apresentaria perigo ao

animal, uma vez que as respostas sensoriais não estariam desativadas para os estímulos

externos, como ocorre quando o animal dorme (Kavanau, 1998; Watson & Buzsáki,

2015). No entanto, do ponto de vista evolutivo, o sono inconsciente deve oferecer

algumas vantagens para o cérebro. Embora a função do sono permaneça desconhecida, as

hipóteses mais aceitas até o momento referem-se aos seus benefícios para as funções

cognitivas, tais como a consolidação de memória, restauração dos níveis de atividade

sináptica, redistribuição de energia e limpeza de metabólitos acumulados durante a vigília

(Herculano-Houzel, 2015; Marshall & Born, 2007; Schmidt, 2014; Stickgold & Walker,

2005; Tononi & Cirelli, 2006; Xie et al., 2013).

Tendo em vista que para a maioria das espécies o sono é um aspecto elementar

para as funções normais dos organismos, a privação deste estado causa grande impacto

em múltiplos processos fisiológicos, afetando parte essencial da vida e do bem-estar do

animal. Os efeitos da privação de sono têm sido relacionados com vários problemas de

saúde, incluindo diabetes, AVC e depressão, além de profundo impacto social e

econômico (Colten & Altevogt, 2006). Na sociedade moderna, o estado de vigília

prolongado é um fenômeno bastante difundido, seja ele alcançado por privação total de

Page 15: Universidade Federal do Rio Grande do Norte Centro de

14

sono aguda ou restrição de sono crônica. Embora o segundo tipo de privação seja a mais

comum no dia a dia, os efeitos da privação total são os mais abordados em pesquisas.

Trabalhos que utilizam neuroimagem, como ressonância magnética funcional

(fMRI) (Drummond et al., 2000) ou tomografia com emissão de pósitrons (PET) (Thomas

et al., 2000; Wu, Gillin, Buchsbaum, & Hershey, 1991) revelaram que a falta de sono

causa variações na ativação cerebral, e que tais alterações estão associadas a mudanças

no desempenho cognitivo. Pode-se considerar que as alterações comportamentais

observadas depois da privação de sono resultam de mudanças na funcionalidade de

neurotransmissores do Sistema Nervoso Central (SNC), como as catecolaminas,

acetilcolina, serotonina e GABA (Farooqui, Brock, & Zhou, 1996; Leibowitz, Lopes,

Andersen, & Kushida, 2006).

Complementando os estudos fisiológicos, análises comportamentais apontam que

a privação de sono causa danos para a atenção, aprendizagem e retenção de memórias

(Guzman-Marin et al., 2005; Leibowitz et al., 2006; Spiegel, 2004; Van Cauter, 2005;

Yu, Tucci, Kishi, & Zhdanova, 2006). A falta de sono por tempo prolongado, além de

prejudicar a aprendizagem, pode provocar estados de irrealidade semelhante ao sono,

perda do controle endócrino e autonômico, levando até mesmo à exaustão e morte (M. L.

Andersen et al., 2008).

Ainda que o primeiro trabalho com privação de sono seja datado de 1894, quando

de Manaceine mostrou que cachorros morrem após poucos dias de privação de sono, as

pesquisas nesta área são consideradas relativamente novas em comparação às outras áreas

da medicina. Além do mais, muitos foram os questionamentos sobre os resultados desses

estudos mais antigos, devido ao método usado para manter os animais continuamente

acordados terem possivelmente causado demasiado estresse e lesionado os indivíduos. O

primeiro estudo com privação de sono em humanos, através de análises psicológicas e

fisiológicas, já registrou prejuízos no tempo de resposta, déficit na habilidade motora e

Page 16: Universidade Federal do Rio Grande do Norte Centro de

15

capacidade de memorização (Patrick & Gilbert, 1896). Contudo, mesmo hoje em dia os

estudos com sono em humanos são muito difíceis de serem realizados, seja devido ao alto

custo, a dificuldade de se encontrar e aplicar testes em voluntários ou aprovações éticas.

Assim, modelos animais translacionais ainda configuram a melhor alternativa para a

pesquisa.

Muitos estudos tem sido realizados em animais envolvendo a privação de sono e

suas consequências (Kushida, 2004; Newman, Paletz, Rattenborg, Obermeyer, & Benca,

2008; Oleksenko, Mukhametov, Polyakova, Supin, & Kovalzon, 1992; Rechtschaffen,

Bergmann, & Bernard M, 2002; Sauer, Herrmann, & Kaiser, 2004). Embora

aprendizagem e memória tenham sido muito bem caracterizadas em espécies de roedores

tradicionais de laboratórios, algumas tarefas cognitivas têm sido empregadas também em

um novo e promissor modelo animal, o peixe paulistinha (Danio rerio).

O peixe paulistinha tem muitas vantagens na pesquisa comportamental visto que,

por ser um vertebrado, possui características organizacionais e funcionais do sistema

fisiológico semelhantes a aves e mamíferos (Miklósi & Andrew, 2006), além disso os

efeitos genéticos no cérebro e desenvolvimento de órgãos sensoriais são muito bem

compreendidos nesta espécie. O desenvolvimento de novos modelos comportamentais

visa, usualmente, focar em um modelo teórico específico que seja aplicável a qualquer

outro modelo animal estudado, levando em consideração os aspectos do repertório

comportamental específico da espécie.

Embora a literatura comportamental referente a estudos de aprendizagem ainda

seja limitada e dispersa para o peixe paulistinha, muitos trabalhos relevantes têm surgido

nas últimas décadas. Abordando, por exemplo, aprendizagem associativa e não-

associativa (Best et al., 2008; Chacon & Luchiari, 2014; Sison & Gerlai, 2011),

aprendizagem de esquiva ativa 16

Page 17: Universidade Federal do Rio Grande do Norte Centro de

16

(Xu, Scott-Scheiern, Kempker, & Simons, 2007), aprendizagem espacial baseada em

reforço (Williams, White, & Messer, 2002), aprendizagem de discriminação visual

(Colwill, Raymond, Ferreira, & Escudero, 2005), tarefa de reconhecimento de objetos

(Lucon-Xiccato & Dadda, 2014; Oliveira, Silveira, Chacon, & Luchiari, 2015) e

aprendizagem social (Engeszer, Ryan, & Parichy, 2004).

Por ser um vertebrado diurno, o peixe paulistinha oferece também muitas

vantagens para os estudos do relógio circadiano e a regulação do sono. Além de ser

favorável a experiências genéticas e comportamentais de alto rendimento, este modelo é

transparente em seus primeiros estágios de desenvolvimento, permitindo captura de

imagens neuronais in vivo (Elbaz et al., 2013). O estado comportamental do sono

caracterizado no peixe paulistinha por Zhdanova, Wang, Leclair, & Danilova (2001)

assemelha-se a outros grupos de vertebrados. Ademais, muitos pesquisadores observaram

que o peixe paulistinha contempla os principais agentes reguladores do sono presentes

em mamíferos, inclusive grupos de células colinérgicas, monoaminérgicas e

hipocretinérgicas, com a vantagem de ser um organismo de fisiologia muito mais simples.

Outra grande vantagem no uso do peixe paulistinha na pesquisa é que, devido a

sua capacidade de equilibrar as concentrações osmóticas em relação ao meio, a aplicação

de algumas drogas é muito mais simples e não-invasiva do que em outros animais. Drogas

solúveis em água podem ser misturadas diretamente no aquário em que o peixe se

encontra, e após cerca de 60 minutos, o animal atinge a mesma concentração do fármaco

no meio externo (Gerlai, Lahav, Guo, & Rosenthal, 2000). Esta característica favorece

também o uso de drogas relacionadas ao estado do sono, como álcool e melatonina.

Segundo Roehrs & Roth (2001), o álcool tem efeito sedativo e altera as

características do sono, o alerta durante a vigília, e ainda funções fisiológicas durante o

sono. A ingestão de álcool antes de dormir diminui a temperatura corporal, no entanto,

Page 18: Universidade Federal do Rio Grande do Norte Centro de

17

devido aos efeitos variados do álcool no organismo, é difícil especificar em que aspectos

o álcool prejudica o estado do sono.

Semelhante a outras drogas de abuso, o álcool interage com os sistema

dopaminérgico, serotonérgico e GABAérgicos em peixes, do mesmo modo que tem sido

mostrado em mamíferos (Kalueff, Stewart, & Gerlai, 2014; Langen, Dietze, & Fink,

2002). No peixe paulistinha, o álcool é a droga mais estudada, sendo descrito em vários

trabalhos por induzir mudanças comportamentais e prejudicar a aprendizagem e memória,

(Luchiari, Salajan, & Gerlai, 2015; Tran & Gerlai, 2013), bem como em humanos e outros

mamíferos (Beveridge, Smith, & Porrino, 2013; Obernier, White, Swartzwelder, &

Crews, 2002). Em pesquisas de desenvolvimento, a transparência deste animal permite

examinar alterações estruturais e anatômicas consequentes da exposição ao álcool no

desenvolvimento embrionário (Bilotta, Saszik, Givin, Hardesty, & Sutherland, 2002;

Carvan, Loucks, Weber, & Williams, 2004), além disso, o peixe paulistinha tem grande

similaridade psicofarmacológica com roedores e humanos (Collier, Khan, Caramillo,

Mohn, & Echevarria, 2014; Gerlai et al., 2000).

Assim como nos mamíferos, melatonina é o principal regulador neural do sistema

circadiano em zebrafish. A melatonina é um hormônio naturalmente produzido pela

glândula pineal, conhecido por promover o comportamento de sono. Em animais diurnos,

este hormônio está presente em baixas quantidades durante o dia e em alta quantidade

durante a noite e, mesmo sem pistas ambientais, a secreção de melatonina continua

apresentando ritmo circadiano (Scheer & Czeisler, 2005). A melatonina exógena tem sido

proposta por promover indiretamente o sono através de avanço de fase no relógio

circadiano (Arendt, 2003) ou por inibir características da vigília (Scheer & Czeisler,

2005). Nos últimos anos, a melatonina tem sido descrita por promover o sono em

vertebrados diurnos incluindo humanos (Brzezinski et al., 2005; Zhdanova, 2005),

primatas não humanos (Zhdanova et al., 2002), gatos domésticos (Goldstein & Pavel,

Page 19: Universidade Federal do Rio Grande do Norte Centro de

18

1981), pássaros (Mintz, Phillips, & Berger, 1998) e peixe paulistinha (Zhdanova et al.,

2001). O comportamento do peixe paulistinha influenciado pela melatonina tem resposta

dose dependente (Wang et al., 2014), podendo ser observadas alterações após 20 minutos

da aplicação do hormônio (Zhdanova et al., 2001).

Embora nos últimos anos alguns estudos tenham utilizado o peixe paulistinha

como modelo para aprofundar conhecimentos sobre o estado comportamental do sono,

até o presente, não temos conhecimento de nenhuma pesquisa com este modelo que

associasse o comportamento de sono com o processo de aprendizagem. Baseado nisso, e

na importância do sono (como regulador de processos fisiológicos e comportamentais) e

da aprendizagem e memória (como elementos críticos que conferem vantagens

adaptativas para a sobrevivência dos indivíduos) este estudo teve como objetivo avaliar

os efeitos da privação de sono aguda (por uma ou poucas noites seguidas) na

aprendizagem e memória do peixe paulistinha, através de diferentes tipos de testes

cognitivos. Ademais, abordamos também como a combinação de álcool e melatonina

(drogas ativas sobre o comportamento de sono) atuam no desempenho comportamental

quando associadas a privação de sono.

Conhecer a estrutura básica envolvida no comportamento do sono pode nos ajudar

a, não apenas compreender melhor esse fenômeno, mas também propor ajustes no período

de sono-vigília com mínimos efeitos na saúde. Desta forma, o peixe paulistinha representa

um potencial modelo para exploração dos mecanismos mais básicos da regulação do sono.

Page 20: Universidade Federal do Rio Grande do Norte Centro de

19

Objetivo Geral

Avaliar os efeitos da privação de sono no desempenho de diferentes tarefas cognitivas,

usando o peixe paulistinha como modelo animal.

Objetivos específicos

Estabelecer modelos experimentais de condicionamentos para o peixe paulistinha;

Testar os efeitos da privação de sono na aprendizagem e memória através da tarefa

de reconhecimento de objetos (Capítulo 1), de aprendizagem aversiva baseada em

punição (Capítulo 2); aprendizagem apetitiva baseada em reforço (Capítulo 3);

Investigar os efeitos do álcool e da melatonina na condição de privação de sono,

em tarefas de condicionamento aversivo e apetitivo.

Page 21: Universidade Federal do Rio Grande do Norte Centro de

20

Capítulo 1

Sleep deprivation effects on objects discrimination task in zebrafish (Danio rerio)

Submetido: Animal Cognition (Qualis: A1, FI: 2,58 – 2014)

RESUMO

Estudos anteriores têm mostrado que o peixe paulistinha é capaz de discriminar objetos

de diferentes cores e formas. À vista disso, utilizamos a tarefa de reconhecimento de

objetos para avaliar os efeitos da privação de sono na memória em peixe paulistinha

(Danio rerio). Quatro tratamentos foram testados: (1) controle, (2) privação parcial de

sono, (3) privação total de sono por pulsos de luz e (4) privação de sono por extensão do

período de luz. Os resultados obtidos mostraram que o grupo controle e o grupo

parcialmente privado de sono, exploraram mais o objeto novo que o objeto já conhecido,

indicando habilidade de discriminação. Contrariamente, ambos os grupos totalmente

privados de sono exploraram os dois objetos de forma similar, independentemente de sua

novidade. Essas respostas sugerem que apenas uma noite de privação de sono é suficiente

para afetar a discriminação de objetos em peixe paulistinha, indicando impactos negativos

em processos cognitivos.

Page 22: Universidade Federal do Rio Grande do Norte Centro de

21

Sleep deprivation effects on objects discrimination task in zebrafish (Danio rerio) 1

2

Jaquelinne Pinheiro-da-Silva, Priscila Fernandes Silva, Marcelo Borges Nogueira, Ana 3

Carolina Luchiari* 4

5

Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande 6

do Norte, Natal, RN, Brazil. 7

*Corresponding Author: Departamento de Fisiologia, Centro de Biociências, 8

Universidade Federal do Rio Grande do Norte, PO BOX 1511, 59078-970 Natal, Rio 9

Grande do Norte, Brazil. Phone: +55 84 32153409, Fax: +55 84 32119206, E-mail: 10

[email protected] 11

12

Abstract 13

Zebrafish is an ideal vertebrate model for neurobehavioral studies with translational 14

relevance to humans. The widespread phenomenon of sleep has been studied in many 15

aspects, but we still do not understand how and why sleep deprivation alters behavioral 16

and physiological processes. There are hypotheses suggesting its role in memory 17

consolidation. In this sense, the aim of this study was to analyze the effects of sleep 18

deprivation on memory in zebrafish (Danio rerio) using an objects discrimination 19

paradigm. Four treatments were tested: Control, Partial Sleep Deprivation, Total Sleep 20

Deprivation by light pulses and Total Sleep Deprivation by extended light. The control 21

group explored longer the new object than the known object, indicating clear 22

discrimination. The partial sleep deprived group explored the new object more than the 23

Page 23: Universidade Federal do Rio Grande do Norte Centro de

22

other object in the discrimination phase, which suggests some discriminative 24

performance. On the contrary, both total sleep deprivation groups equally explored all 25

objects, regardless its novelty. It seems that only a single night of sleep deprivation is 26

enough to affect discriminative response in zebrafish, indicating its negative impact for 27

cognitive processes. We suggest that this study could be a useful screening tool for 28

cognitive dysfunction and better understanding of sleep-wake cycles on cognition. 29

30

Key words: sleep; fish; perception; memory; discrimination. 31

32

33

Acknowledgments 34

The authors would like to thank Mr. and Mrs. Haghverdian for english review and Ms. 35

Nascimento for technical assistance. The authors declare no competing interests. 36

37

Page 24: Universidade Federal do Rio Grande do Norte Centro de

23

Introduction 38

Sleep is a naturally recurring condition characterized by rest, altered state of conscience, 39

and suspension of sensory, perceptual and motor voluntary activities (Schmidt 2014). 40

While it is a universal behavioral and physiological phenomenon present in the majority 41

of vertebrates, sleep state does not present the same characteristics in all animals (Lyamin 42

et al. 2007). The presence, quality, intensity and functions of sleep vary between species 43

and across the lifespan (Siegel 2008). However, it is unknown why exactly animals sleep. 44

Hypotheses range from energy allocation and conservation to synapses remodeling and 45

memory consolidation, with a myriad of possible functions throughout animal’s evolution 46

(Siegel 2005; Tononi and Cirelli 2006; Schmidt 2014; Herculano-Houzel 2015). 47

Regarding the purpose of sleeping, some studies suggest that the REM (rapid eye 48

movements) stage of sleep favors learning in some way, acting on important information 49

consolidation and irrelevant information elimination to avoid unnecessary overhead (Poe 50

et al. 2000; Louie and Wilson 2001; Stickgold and Walker 2005; Stickgold 2005). It is 51

also proposed that brain activity during the REM stage of sleep may facilitate 52

development and maintenance of memories by strengthening already formed circuits and 53

promoting new synapses connections (Roffwarg et al. 1966; Rasch et al. 2009; Blumberg 54

2010; Hobson and Steriade 2011; Schmidt 2014). Other studies also indicate that non-55

REM stage of sleep plays a large role in consolidating memories to brain cortical areas 56

(Euston et al. 2007; Prince and Abel 2013). Learning and memory are critical processes 57

that bring many advantages for the species, such as conspecific and mates recognition, 58

routes and places remembering and feeding time-place identification, which are 59

important treats for the animal’s fitness (Johnston 1982; Sison and Gerlai 2010). 60

Page 25: Universidade Federal do Rio Grande do Norte Centro de

24

While sleep is suggested to have imperative role in the animals’ life, sleep 61

deprivation (SD) has a significant impact in neurological and physiological processes; 62

many studies suggest that SD is adverse to neurogenesis, attention, learning and memory 63

retention (Spiegel 2004; Van Cauter 2005; Guzman-Marin et al. 2005; Leibowitz et al. 64

2006; Yu et al. 2006). Prolonged sleep deprivation causes attention and memory 65

problems, state of unreality similar to sleep, loss of autonomic and endocrine control, and 66

even can lead to exhaustion and death (Andersen et al. 2008). However, to which extent 67

SD could affect learning and memory processes still need to be identified for future 68

genetic or drug screens. 69

Recently, a novel memory paradigm based upon the principles of one-trial learning 70

was developed specifically for the zebrafish (Oliveira et al. 2015). In this paradigm, the 71

fish explored a dyad of objects without any reinforcement, and then it is tested for a new-72

object recognition. Objects discrimination protocols were previously tested in several 73

animals models, such as rats (Bevins and Besheer 2006), pigeons (Koban and Cook 74

2009), and fishes (Siebeck et al. 2009; Schluessel et al. 2012; Schluessel et al. 2014; 75

Lucon-Xiccato and Dadda 2014). The paradigm is simple and requires short time 76

experimentation, thus it is potentially high throughput. However, this paradigm has not 77

been used for behavioral brain research. In the current study, we investigate the effect of 78

sleep deprivation on the behavioral performance of zebrafish in the objects discrimination 79

paradigm. Thus, we tested zebrafish (Danio rerio), a valuable model for sleep research 80

(Zhdanova 2011), to attempt to address the following questions: Is one night of SD 81

enough to alter performance in a one-trial learning task? Does partial SD affect memory 82

in the same way as total SD? 83

Page 26: Universidade Federal do Rio Grande do Norte Centro de

25

84

Material and Methods 85

Stock conditions 86

Adult zebrafish (Danio rerio, ± 3 month of age) obtained from a local fish farm were 87

transferred to a storage system (50 L tanks) at the Ornamental Fish Vivarium, 88

Department of Physiology – UFRN. Each four 50 L-tanks formed a recirculating system 89

with multi-stage filtration including a mechanical filter, a biological filter, an activated 90

carbon filter, and a UV light sterilizing unit. The animals were kept in the tanks (one 91

fish/L), with aerated and filtered water, at a temperature of ± 26.5 °C, and pH (7.1) and 92

oxygen (5-10 mg/L) measured regularly. Photoperiod was set on 12:12 light:dark cycle, 93

with zeitgeber time (ZT) 0 corresponding to lights-on at 7am, and light intensity during 94

the light phase set at 250 lx. Feeding frequency was twice a day, with brine shrimp and 95

flake food diet (60% protein and 15% fat). The Ethical Committee for Animal Use of 96

Federal University of Rio Grande do Norte gave permission for all animal procedures 97

(CEUA 022/2012). 98

99

Experimental Treatments 100

In order to compare the effects of sleep deprivation on the performance of zebrafish in a 101

memory test, 44 fish were divided into four distinct light:dark conditions. 102

Sleep deprivation was achieved by (1) exposing fish to brief light pulses during 103

dark phase or (2) extending the light phase of the cycle. According to Yokogawa et al. 104

(2007), light has powerful suppressive effect on sleep in zebrafish, with no evidence for 105

sleep rebound. Sigurgeirsson et al. (2013) compared extended period of light and 106

Page 27: Universidade Federal do Rio Grande do Norte Centro de

26

electroshock as promoters of sleep deprivation and confirmed that both light and shock 107

are sleep and wakefulness modulators, but light-induced deprivation causes less deviation 108

from normal sleep–wake bouts. Moreover, circadian rhythms are maintained under 109

constant light by regular feeding at lights-on and lights-off (Sigurgeirsson et al. 2013) and 110

it is unlikely that only one night deprivation with lights-on could disrupt the circadian 111

clock (Yokogawa et al. 2007). Therefore, we used light instead of the electroshock 112

protocol to cause one night only deprivation in zebrafish and tested its effects on 113

memory. 114

We applied the following treatments: Control Group (12L:12D; n=11), Partial sleep 115

deprivation (18L:06D; n=11), Total sleep deprivation by light pulses (18L:06D+pulses; 116

n=11) and Total sleep deprivation by extended light (24L:00D; n=11). For pulses of light 117

deprivation, 1 minute of light pulse were administered every 5 min (thus, 4 min light + 1 118

min dark), during the whole 6 h-period of the dark phase, preventing the fish from more 119

than 1 min resting in dark. The above light:dark conditions were imposed only during the 120

night after memorization phase of the task (see below). 121

122

Objects Discrimination Task 123

The task was performed from ZT0-ZT6. For the memory test, we used a one-trial objects 124

discrimination procedure in which fish were not allowed to learn a pattern (more than one 125

trial for association). This procedure was adapted from Siebeck et al. (2009); Schluessel 126

et al. (2014); Lucon-Xiccato and Dadda (2014) and already tested and validated for 127

zebrafish by Oliveira et al. (2015). Thus, the objects discrimination test took place in 128

three phases: (1) acclimation in tank, (2) memorization phase and (3) discrimination 129

Page 28: Universidade Federal do Rio Grande do Norte Centro de

27

phase. During the period between memorization phase (2) and discrimination phase (3), 130

we exposed fish to the light:dark conditions described above. All phases occurred in 15 L 131

tank (40x25x20 cm) with all walls covered in white to avoid external interferences. The 132

objects used were plastic cubes (4x4x4 cm) and, to avoid color preferences, the color of 133

the objects (yellow, green, pink, orange, blue and purple) were totally randomized 134

between animals and treatments. 135

The acclimation phase (1) lasted five days. Fish were allowed to explore the test 136

tank for 15 min per day, without objects, to acclimatize to the new arena and reduce 137

novelty stress. To reduce isolation stress, since the zebrafish is a highly social animal, 11 138

fish explored the test tank together on the first day, half of the group on second day, and 139

so forth, so that on the 5th day each fish explored the tank alone for 15 min. After the 15-140

min period in test tank, fish was transferred to their home tank. 141

Memorization Phase (2) occurred on the 6th day. Two 3D objects (named A and B) 142

with same colors, size and shape, were introduced in the tank, each one positioned next to 143

each smaller wall and around 30 cm away from each other. Fish were individually 144

allowed to explore the tank with the two objects for 15 min. Behavior was recorded from 145

above using a handy cam (Sony Digital Video Camera Recorder; DCR-SX45) (Fig. 1). 146

After that, fish returned to its home tank. In both phases, we considered that animal’s 147

permanence in a 3 cm area around the objects, characterizes exploration behavior 148

(Lucon-Xiccato and Dadda 2014). 149

On the night following the memorization phase, each group was exposed to one of 150

the light:dark conditions: 12L:12D (control group), 18L:06D (partial sleep deprivation), 151

18L:06D+pulses (light pulses deprivation) and 24L:00D (extended light deprivation). 152

Page 29: Universidade Federal do Rio Grande do Norte Centro de

28

On the next day, the Discrimination Phase (3) took place. For this, object B of 153

memorization phase was replaced by a unfamiliar object (named object C), with same 154

size and shape but different color (Fig. 1). Fish were able to explore the objects in the 155

tank for 15 min and behavior was recorded. 156

157

Behavioral Analysis 158

Video frames from each trial were analyzed using a new custom-made multi-target 159

tracking software (named ZebTrack/UFRN) developed in MATLAB (R2014a; 160

MathWorks, Natick, MA). This software was designed by our laboratory as an alternative 161

to other costly existing tracking system, and is able to approach and quantify several 162

swimming path patterns, including speed, distance traveled, and time spent in specific 163

areas of the tank, being more appropriate than a manual recording method. Details of the 164

tracking software are available in the Online Resource. 165

166

Statistical Analysis 167

The parameters analyzed were time spent around each object, average and maximum 168

swimming speed and total distance traveled. The time fish spent around the objects (up to 169

3 cm far away from each side of the objects) was used to estimate exploration (Lucon-170

Xiccato and Dadda 2014), and we compared the objects exploration time on 171

memorization and discrimination phases, and also between the two phases. The time 172

spent close to the objects at memorization and discrimination phase were statistically 173

compared using Student t test. Total distance traveled, Maximum and Average Speed 174

Page 30: Universidade Federal do Rio Grande do Norte Centro de

29

were analyzed by one-way ANOVA followed by post-hoc comparisons using Student-175

Newman-Keuls (SNK). For all comparisons, the significance level was set to p<0.05. 176

177

Results 178

During the objects memorization phase (6th day) neither groups showed statistical 179

differences between objects A and B exploration time (Student t test: control group: 180

t=0.43 p=0.67; partial SD group: t=0.29 p=0.78; total SD with light pulses: t=0.75 181

p=0.47; total SD with extended light: t=-1.92 p=0.08) (Fig. 2). 182

The control, as well the partial SD and total SD with extended light groups showed 183

similar exploration of the object A between the memorization and discrimination phases 184

(6th vs. 7th days; Student t test: control group: t=0.60 p=0.56; partial SD group: t=0.59 185

p=0.56; total SD with extended light: t=-1.79 p=0.10). However, there were differences 186

in exploration time between object A on the 6th and 7th days for the totally deprived group 187

(Student t test: t=-2.94 p=0.01), and this group spent significant more time exploring 188

object A in the memorization phase (6th day). 189

For the control group, there were significant differences in exploration between 190

objects A and C in the discrimination phase (Student t test: t=-3.75 p=0.005) and also 191

between object B on the memorization and C in the discrimination phase (Student t test: 192

t=-2.22 p=0.05), indicating higher exploration of object C (Fig. 2a). 193

The partial SD group showed similar exploration of object B on the 6th day and C 194

on the 7th day (Student t test: t=-1.63 p=0.13). However, fish showed higher exploration 195

of object C than object A on the 7th day (Student t test: t=-2.26 p=0.04) (Fig. 2b). 196

For the total SD with light pulses (18L:6D+pulses) and total SD with extended light 197

Page 31: Universidade Federal do Rio Grande do Norte Centro de

30

(24L:00D) groups, there were no differences between object B exploration in the 198

memorization phase and object C in the discrimination phase (Student t test: SD with 199

light pulses: t=1.15 p=0.28; SD with extended light: t=-1.26 p=0.23). Fish also showed 200

similar exploration of objects A and C in the discrimination phase (Student t test: SD 201

with light pulses: t=-0.09 p=0.93; SD with extended light: t=-1.23 p=0.24) (Fig. 2c and 202

2d). 203

The maximum swimming speed was similar among the four groups in the 204

memorization phase (ANOVA, F=0.44 p=0.72), but fish from the partial and total sleep 205

deprived groups showed higher maximum speed than the control group in the 206

discrimination phase (ANOVA, F=4.73 p=0.008). The comparison between the phases 207

(6th vs. 7th days) for each group showed that the control group and the total SD with 208

extended light had similar maximum speed between the two days (Student t test: Control: 209

t=0.39 p=0.69; SD with extended light: t=0.90 p=0.37), while the other groups increased 210

speed on the 7th day (Student t test: partial SD: t=-2.44 p=0.02; SD with light pulses: t=-211

3.42 p=0.003 t=-3.38 p=0.007) (Fig. 3a). 212

The total distance traveled did not differ among the groups in the memorization 213

phase (ANOVA, F=1.46 p=0.24) or in the discrimination phase (ANOVA, F=1.44 214

p=0.26). Likewise, the comparison between the phases showed none of the groups 215

differed in terms of distance traveled on the 6th and 7th days (Student t test: Control: 216

t=0.13 p=0.90; partial SD: t=-0.33 p=0.74; SD with light pulses: t=-0.3 p=0.77; SD with 217

extended light: t=0.99 p=0.33) (Fig. 3b). 218

219

Discussion 220

Page 32: Universidade Federal do Rio Grande do Norte Centro de

31

In this study, we observed that total sleep deprivation prevents memory of a unique event 221

in zebrafish, while restricted sleep still allows memory formation. Adding to other studies 222

on the sleep role on memory and learning tasks, the current study approached a recently 223

validated protocol on objects discrimination (Oliveira et al. 2015) and showed its 224

relevance for sleep investigations. Our results confirm that zebrafish is able to 225

discriminate visual stimuli based on colors, corroborating other authors’ findings (Fetsko 226

2002; Colwill et al. 2005; Oliveira et al. 2015). Moreover, we show here that animals 227

partially sleep deprived were able to present some discrimination of the objects but only 228

one night of sleep deprivation is sufficient to abolish discriminative response. 229

Exploration is an important behavioral response to environmental changes and its 230

novelties (Kalueff and Zimbardo 2007), and the zebrafish’s behavioral repertoire includes 231

it. Our control group (12 h dark phase) explored both objects equally on the first day of 232

test, but on the following day when a new object was introduced, fish explored the 233

novelty (object C) more than the known object (object A) and also more than the former 234

object (object B on day 6) that was located on the same place (Fig. 2a). On the other 235

hand, even if we were to consider that the partially sleep deprived group explored the 236

new object more and was able to form a memory from the previous day, this group did 237

not show the same exploration pattern observed in the control group (Fig. 2a vs. 2b). It is 238

possible that six hours in the dark, after the SD period, allowed for sleep recovery and did 239

not affect the performance of the subjects in the discrimination task. A longer scheme of 240

restricted sleeping nights (for instance more than 3 days) may promote some cumulative 241

effect and produce higher losses on the cognitive function. 242

Even though SD promotes varied effects, which are widely distinct between 243

Page 33: Universidade Federal do Rio Grande do Norte Centro de

32

species, a common argument among authors is its huge impairment on memory 244

consolidation (McGaugh 2000; Andersen et al. 2008; Killgore 2010; Rasch and Born 245

2013; Watson and Buzsáki 2015). In this study, all groups had the opportunity to interact 246

with the objects on the first testing day, however only the total sleep deprived groups 247

were unable to discriminate the objects on the following day. These fish did not 248

recognize object A from the previous experience (day 6), and responded to both objects 249

as novelties, which indicates impairment on memory formation (Fig. 2c and 2d). Other 250

authors have also shown that sleep loss prevents the consolidation of acquired memory 251

(Leconte et al. 1974; Linden et al. 1975; Prince and Abel 2013). According to Marshall 252

and Born (2007), memory consolidation seems to occur mostly during periods of sleep or 253

inactivity. Additionally, zebrafish has directly light responsiveness cells (Weger et al. 254

2011) and the use of light as a method to avoid sleep probably reduced the melatonin 255

levels. In this concern, the discrimination impairment in our results are consistent with 256

studies that has shown abnormalities in melatonin rhythms in humans leads to changes in 257

cognition and behavior (Melke et al. 2008). 258

Although the partial sleep deprivation group did not present abnormalities in 259

memory in the discrimination phase of the present study, both the partial and total sleep 260

deprived animals showed higher maximum speed during the second testing day (Fig. 3). 261

It is well known that SD is a stressful condition that causes distinguished agitation and 262

anxiety behavior (Meerlo et al. 2002; Andersen et al. 2004; Mueller et al. 2008; 263

Mashoodh et al. 2008). The hyperactive behavior observed in our study supports this 264

idea. Furthermore, agitation and impairment in working memory and attention were 265

related to prolonged wakefulness (Harrison et al. 2000; Thomas et al. 2000), due to the 266

Page 34: Universidade Federal do Rio Grande do Norte Centro de

33

effect of vulnerability of the cognitive performance in brain after sleep deprivation 267

(Alhola and Polo-Kantola 2007). 268

Our test required memory of a single episode, which is much weaker than the 269

memory based on repetition, and thus, more vulnerable to the restless brain. In addition, 270

visual tasks would be especially susceptible to non-sleepers because iconic memory has a 271

short duration and limited capacity (Raidy and Scharff 2005). Other authors suggest that 272

animals exposed to a to-be-remembered stimulus hold it in memory and present faster 273

response on its reappearance when no stressful situations are imposed (Wilkie 1983; Kim 274

and Diamond 2002; Shettleworth and Westwood 2002). Therefore, the one trial-learning 275

paradigm used here appears to be an easy and effective test, which could be a useful 276

screening tool for cognitive dysfunction and better understanding of sleep deprivation 277

effects. 278

Despite the fact that zebrafish present resembling cognitive performance to 279

mammals and allows translational interpretation, our study still needs others approaches 280

in order to cover some limitations. For instance, in future studies one should investigate 281

chronic sleep deprivation scheme in order to understand how the cumulative effects of 282

restless affect behavior. Binks et al. (1999) report that the effects of sleep loss do not 283

become apparent until about 36-40 hours. While our results clearly show zebrafish 284

memory impairment upon only one night of deprivation, it would be important to test 285

cognition after longer periods. Also, the circadian aspect seems to be related to sleep 286

deprivation feedback (Prince and Abel 2013), which means that the time of day the task 287

is applied may interfere on memory formation. Thus, testing the animals closer to its 288

resting time may improve its performance. 289

Page 35: Universidade Federal do Rio Grande do Norte Centro de

34

Finally, our study has some practical implications. Zebrafish have become an 290

appropriate model to understanding the relationship between sleep deprivation and 291

memory consolidation with reliable translational relevance. On this basis, our cognitive 292

protocol can be later used in sleep deprivation studies focusing on techniques that show 293

changes in the brain (neurotransmitters, proteins, neuroplasticity), as sleep deprivation 294

trials with humans are too expensive, hard to be realized and limited (Alhola and Polo-295

Kantola 2007). While partial sleep deprivation did not cause immediate memory decline, 296

total sleep deprivation for a single night was shown to be highly damaging. Overall, 297

studies focusing on sleep and sleep deprivation are still needed and the zebrafish paves 298

the way for better understanding of sleep disorders and its cognitive relationship. 299

300

Online Resource 301

Supplementary data associated with this article can be found in the online version. 302

303

References 304

Alhola P, Polo-Kantola P (2007) Sleep deprivation: Impact on cognitive performance. 305

Neuropsychiatr Dis Treat 3:553–567. 306

Andersen ML, Antunes IB, Silva a., et al (2008) Effects of sleep loss on sleep 307

architecture in Wistar rats: Gender-specific rebound sleep. Prog Neuro-308

Psychopharmacology Biol Psychiatry 32:975–983. doi: 309

10.1016/j.pnpbp.2008.01.007 310

Andersen ML, Bignotto M, Tufik S (2004) Hormone treatment facilitates penile erection 311

in castrated rats after sleep deprivation and cocaine. J Neuroendocrinol 16:154–159. 312

Page 36: Universidade Federal do Rio Grande do Norte Centro de

35

doi: 10.1111/j.0953-8194.2004.01145.x 313

Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-314

matching-to-sample learning task to study “recognition memory”. Nat Protoc 315

1:1306–1311. 316

Binks PG, Waters WF, Hurry M (1999) Short-term total sleep deprivations does not 317

selectively impair higher cortical functioning. Sleep 22:328–334. 318

Blumberg M (2010) Beyond dreams: do sleep-related movements contribute to brain 319

development? Front Neurol 1:140. doi: 10.3389/fneur.2010.00140 320

Colwill RM, Raymond MP, Ferreira L, Escudero H (2005) Visual discrimination learning 321

in zebrafish (Danio rerio). Behav Processes 70:19–31. doi: 322

10.1016/j.beproc.2005.03.001 323

Euston DR, Tatsuno M, McNaughton BL (2007) Fast-forward playback of recent 324

memory sequences in prefrontal cortex during sleep. Science 318:1147–50. doi: 325

10.1126/science.1148979 326

Fetsko LA (2002) What can be learned from a fish: an analysis of visual discrimination in 327

the zebrafish, Danio Rerio. Temple University 328

Guzman-Marin R, Suntsova N, Methippara M, et al (2005) Sleep deprivation suppresses 329

neurogenesis in the adult hippocampus of rats. Eur J Neurosci 22:2111–6. doi: 330

10.1111/j.1460-9568.2005.04376.x 331

Harrison Y, Horne JA, Rothwell A (2000) Prefrontal neuropsychological effects of sleep 332

deprivation in young adults--a model for healthy aging? Sleep 23:1067–1073. 333

Herculano-Houzel S (2015) Decreasing sleep requirement with increasing numbers of 334

neurons as a driver for bigger brains and bodies in mammalian evolution. Proc R 335

Page 37: Universidade Federal do Rio Grande do Norte Centro de

36

Soc B Biol Sci 282:20151853. doi: 10.1098/rspb.2015.1853 336

Hobson JA, Steriade M (2011) Neuronal Basis of Behavioral State Control. In: 337

Comprehensive Physiology. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 701–338

823 339

Johnston TD (1982) Selective Costs and Benefits in the Evolution of Learning. Adv 340

Study Behav 12:65–106. doi: 10.1016/S0065-3454(08)60046-7 341

Kalueff A V, Zimbardo PG (2007) Behavioral neuroscience, exploration, and K.C. 342

Montgomery’s legacy. Brain Res Rev 53:328–31. doi: 343

10.1016/j.brainresrev.2006.09.003 344

Killgore WDS (2010) Effects of sleep deprivation on cognition. In: Progress in Brain 345

Research. Prog Brain Res., pp 105–129 346

Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost 347

memories. Nat Rev Neurosci 3:453–462. doi: 10.1038/nrn849 348

Koban A, Cook R (2009) Rotational object discrimination by pigeons. J Exp Psychol 349

Anim Behav Process 35:250. 350

Leconte P, Hennevin E, Bloch V (1974) Duration of paradoxical sleep necessary for the 351

acquisition of conditioned avoidance in the rat. Physiol Behav 13:675–681. doi: 352

10.1016/0031-9384(74)90239-X 353

Leibowitz SM, Lopes M-CC, Andersen ML, Kushida CA (2006) Sleep deprivation and 354

sleepiness caused by sleep loss. Sleep Med Clin 1:31–45. doi: 355

10.1016/j.jsmc.2005.11.010 356

Linden ER, Bern D, Fishbein W (1975) Retrograde amnesia: prolonging the fixation 357

phase of memory consolidation by paradoxical sleep deprivation. Physiol Behav 358

Page 38: Universidade Federal do Rio Grande do Norte Centro de

37

14:409–412. doi: 10.1016/0031-9384(75)90004-9 359

Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal 360

ensemble activity during rapid eye movement sleep. Neuron 29:145–156. doi: 361

10.1016/S0896-6273(01)00186-6 362

Lucon-Xiccato T, Dadda M (2014) Assessing memory in zebrafish using the one-trial 363

test. Behav Processes 106:1–4. doi: 10.1016/j.beproc.2014.03.010 364

Lyamin O, Pryaslova J, Kosenko P, Siegel J (2007) Behavioral aspects of sleep in 365

bottlenose dolphin mothers and their calves. Physiol Behav 92:725–733. doi: 366

10.1016/j.physbeh.2007.05.064 367

Marshall L, Born J (2007) The contribution of sleep to hippocampus-dependent memory 368

consolidation. Trends Cogn Sci 11:442–450. doi: 10.1016/j.tics.2007.09.001 369

Mashoodh R, Stamp JA, Wilkinson M, et al (2008) Lack of estradiol modulation of sleep 370

deprivation-induced c-Fos in the rat brain. Physiol Behav 95:562–569. doi: 371

10.1016/j.physbeh.2008.08.001 372

McGaugh JL (2000) Memory--a century of consolidation. Science (80- ) 287:248–251. 373

doi: 10.1126/science.287.5451.248 374

Meerlo P, Koehl M, Van Der Borght K, Turek FW (2002) Sleep restriction alters the 375

hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol 14:397–402. 376

doi: 10.1046/j.0007-1331.2002.00790.x 377

Melke J, Botros HG, Chaste P, et al (2008) Abnormal melatonin synthesis in autism 378

spectrum disorders. Mol Psychiatry 13:90–98. 379

Mueller AD, Pollock MS, Lieblich SE, et al (2008) Sleep deprivation can inhibit adult 380

hippocampal neurogenesis independent of adrenal stress hormones. Am J Physiol 381

Page 39: Universidade Federal do Rio Grande do Norte Centro de

38

Regul Integr Comp Physiol 294:R1693–R1703. doi: 10.1152/ajpregu.00858.2007 382

Oliveira J, Silveira M, Chacon D, Luchiari A (2015) The Zebrafish World of Colors and 383

Shapes: Preference and Discrimination. Zebrafish 12:166–173. doi: 384

10.1089/zeb.2014.1019 385

Poe GR, Nitz DA, McNaughton BL, Barnes CA (2000) Experience-dependent phase-386

reversal of hippocampal neuron firing during REM sleep. Brain Res 855:176–180. 387

Prince T-M, Abel T (2013) The impact of sleep loss on hippocampal function. Learn 388

Mem 20:558–69. doi: 10.1101/lm.031674.113 389

Raidy DJ, Scharff LF V (2005) Effects of sleep deprivation on auditory and visual 390

memory tasks. Percept Mot Skills 101:451–467. 391

Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93:681–766. doi: 392

10.1152/physrev.00032.2012 393

Rasch B, Pommer J, Diekelmann S, Born J (2009) Pharmacological REM sleep 394

suppression paradoxically improves rather than impairs skill memory. Nat Neurosci 395

12:396–397. 396

Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human 397

sleep-dream cycle. Science (80- ) 152:604–619. doi: 398

http://dx.doi.org/10.1126/science.152.3722.604 399

Schluessel V, Fricke G, Bleckmann H (2012) Visual discrimination and object 400

categorization in the cichlid Pseudotropheus sp. Anim Cogn 15:525–537. doi: 401

10.1007/s10071-012-0480-3 402

Schluessel V, Kraniotakes H, Bleckmann H (2014) Visual discrimination of rotated 3D 403

objects in Malawi cichlids (Pseudotropheus sp.): A first indication for form 404

Page 40: Universidade Federal do Rio Grande do Norte Centro de

39

constancy in fishes. Anim Cogn 17:359–371. doi: 10.1007/s10071-013-0667-2 405

Schmidt MH (2014) The energy allocation function of sleep: a unifying theory of sleep, 406

torpor, and continuous wakefulness. Neurosci Biobehav Rev 47:122–153. doi: 407

10.1016/j.neubiorev.2014.08.001 408

Shettleworth SJ, Westwood RP (2002) Divided attention, memory, and spatial 409

discrimination in food-storing and nonstoring birds, black-capped chickadees 410

(Poecile atricapilla) and dark-eyed juncos (Junco hyemalis). J Exp Psychol Anim 411

Behav Process 28:227–241. doi: 10.1037/0097-7403.28.3.227 412

Siebeck UE, Litherland L, Wallis GM (2009) Shape learning and discrimination in reef 413

fish. J Exp Biol 212:2113–2119. doi: 10.1242/jeb.028936 414

Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264–1271. 415

doi: 10.1038/nature04285 416

Siegel JM (2008) Do all animals sleep? Trends Neurosci 31:208–213. doi: 417

10.1016/j.tins.2008.02.001 418

Sigurgeirsson B, Thornorsteinsson H, Sigmundsdóttir S, et al (2013) Sleep-wake 419

dynamics under extended light and extended dark conditions in adult zebrafish. 420

Behav Brain Res 256:377–90. doi: 10.1016/j.bbr.2013.08.032 421

Sison M, Gerlai R (2010) Associative learning in zebrafish (Danio rerio) in the plus 422

maze. Behav Brain Res 207:99–104. doi: 10.1016/j.bbr.2009.09.043 423

Spiegel K (2004) Brief communication: Sleep curtailment in healthy young men is 424

associated with decreased leptin levels, elevated ghrelin levels, and increased hunger 425

and appetite. Ann Intern Med 141:846. doi: 10.7326/0003-4819-141-11-200412070-426

00008 427

Page 41: Universidade Federal do Rio Grande do Norte Centro de

40

Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437:1272–1278. doi: 428

10.1038/nature04286 429

Stickgold R, Walker MP (2005) Memory consolidation and reconsolidation: what is the 430

role of sleep? Trends Neurosci 28:408–415. 431

Thomas M, Sing H, Belenky G, et al (2000) Neural basis of alertness and cognitive 432

performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation 433

on waking human regional brain activity. J Sleep Res 9:335–352. doi: 434

10.1046/j.1365-2869.2000.00225.x 435

Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med. Rev. 436

10:49–62. 437

Van Cauter E (2005) Endocrine Physiology. In: Principles and Practice of Sleep 438

Medicine. Elsevier, pp 266–282 439

Watson BO, Buzsáki G (2015) Sleep, Memory & Brain Rhythms. Daedalus 144:67–82. 440

doi: 10.1162/DAED_a_00318 441

Weger BD, Sahinbas M, Otto GW, et al (2011) The Light Responsive Transcriptome of 442

the Zebrafish: Function and Regulation. PLoS One 6:e17080. doi: 443

10.1371/journal.pone.0017080 444

Wilkie DM (1983) Pigeon’s spatial memory: III. Effect of distractors on delayed 445

matching of key location. J Exp Anal Behav 40:143–151. 446

Yokogawa T, Marin W, Faraco J, et al (2007) Characterization of sleep in zebrafish and 447

insomnia in hypocretin receptor mutants. PLoS Biol 5:e277. doi: 448

10.1371/journal.pbio.0050277 449

Yu L, Tucci V, Kishi S, Zhdanova I V. (2006) Cognitive aging in zebrafish. PLoS One 450

Page 42: Universidade Federal do Rio Grande do Norte Centro de

41

1:e14. doi: 10.1371/journal.pone.0000014 451

Zhdanova I V (2011) Sleep and its regulation in zebrafish. Rev Neurosci 22:27–36. doi: 452

10.1515/RNS.2011.005 453

454

Page 43: Universidade Federal do Rio Grande do Norte Centro de

42

Figure 1

20 cm

40 cm

Memorization Phase Discrimination Phase

Top-view camera

Page 44: Universidade Federal do Rio Grande do Norte Centro de

43

Figure 2

0

30

60

90

120

150

A B A C

Memorization phase Discrimination phase

Tim

e (

s)

(a) Control

**

*

A B A C

Memorization phase Discrimination phase

(b) Partial SD *

0

30

60

90

120

150

A B A C

Memorization phase Discrimination phase

Tim

e (

s)

(c) Total SD (light pulses)

A B A C

Memorization phase Discrimination phase

(d) Total SD (extended light)

Page 45: Universidade Federal do Rio Grande do Norte Centro de

44

Figure 3

0

20

40

60

80

100

120

140

Control Partial SD Total SD(Pulses)

Total SD (Light)

Maxim

um

sp

eed

(cm

/s)

memorization phase

discrimination phase

a)

0

2

4

6

8

10

12

14

16

Control Partial SD Total SD(Pulses)

Total SD (Light)

Av

era

ge

sp

eed

(cm

/s)

b)

0

50

100

150

200

250

300

Control Partial SD Total SD(Pulses)

Total SD(Light)

To

tal d

ista

nce t

rav

elled

(cm

)

c)

a

ab

a

b

a

b ab ab

*

Page 46: Universidade Federal do Rio Grande do Norte Centro de

45

Figure Captions

Fig. 1 Schematic view of the one-trial objects discrimination paradigm (40x25x20 cm3) at

memorization phase (with objects A and B in same colors) and discrimination phase (with

object C in different color). The tank was all covered in white self-adhesive plastic film. The

objects colors were randomized among all animals and treatments. For both phases, fish were

able to explore the objects for 15 min and behavior was registered with a top-view camera

Fig. 2 Sleep deprivation impairs objects discrimination in zebrafish. Zebrafish preference

for objects A x B, or A x C for the four groups: (a) Control, (b) Partial SD, (c) Total SD with

light pulses and (d) Total SD with extended light (n=11/each group). Bars means exploration

time in each object, in memorization and discrimination phases. Fish were observed for 15

min and analyzed using video-tracking software (ZebTrack).

(*) indicates statistical difference between fish exploration in each object (Student t Test, p <

0.05)

Fig. 3 Behavioral analysis during memorization phase and discrimination phase of a

one-trial learning paradigm. One-way ANOVA applied to compare (a) maximum speed

swimming + SD, (b) mean speed swimming + SD and total distance traveled by the fish +

SD, between the four groups: Control, Partial SD, Total SD with light pulses and Total SD

with extended light. Data corresponds to 15 min of behavioral observation during the test,

both in memorization phase as discrimination phase, analyzed using video-tracking software

(ZebTrack).

Different letters indicate statistical difference between fish maximum speed (One-way

ANOVA, p < 0.05)

Page 47: Universidade Federal do Rio Grande do Norte Centro de

Supplementary Material: Sleep

deprivation e�ects on objects

discrimination task in zebra�sh (Danio

rerio)

ZebTrack Software

The data used in this paper was generated by the software Zebtrack, shown inFigure 1, which was developed in Matlab with the help of its Image ProcessingToolbox. ZebTrack was created to track �sh, especially the Zebra�sh, howeverit can be used to track any other animal. It is capable of tracking one ormore animals (the user must specify how many animals it wants to track),producing data such as position and velocities. The produced data can bemanipulated, afterwards, in Matlab environment, or exported to Excel format.For now, ZebTrack does not work at real time. A video of the experiment mustbe previously recorded and then given as input to the software. The softwareallows the de�nition of polygonal areas such as a processing area (movementsoutside this area are ignored), excluding areas (movements inside this area areignored) and areas of interest (at the end of the experiment user will receivedata regarding each one of these areas, such as number of times each animalentered the area, time spent inside the area, etc... ).

The tracking algorithm is based on background subtraction (Piccardi 2004).We use the background subtraction method presented in (Wren et al. 1997),which computes temporal statistics of individual pixels . This method consistsof creating a background model, IBG, associated with its variance Iσ2 (eachpixel at position (x, y) of the background model will have a value, IBG(x, y),and an associated variance Iσ2(x, y)). After this, by comparing the backgroundmodel and the current frame we can determine foreground objects. ZebTrackcan work with colored or gray-scale images.

Often it is not possible to record the environment without any animals be-fore the experiment starts (as this would stress the animal), the backgroundis created using footage of the experiment itself. In order to do so, the userchooses an initial and �nal instant, and a sample period. By averaging the nsampled frames fs of the video in the chosen interval, it is possible to computethe background image along with its variance, as shown in Equations 1 and 2(Kaehler & Bradski 2015). If the image is colored, this is done for each color

1

Page 48: Universidade Federal do Rio Grande do Norte Centro de

2

Fig. 1: ZebTrack software. ZebTrack user interface showing starting and end-ing frames (top left), estimated background model (bottom left), andprocessing area - green - and areas of interest - blue - (right).

channel, generating a background and variance matrix for each channel. It isimportant that the user chooses a high number of frames n to average, as wellas a part of the video and sample period such that the animals do not stay inthe same position for several sampled frames, as this would cause the animal tobecame part of the background. By inspecting the background created the usercan check if it was successfully created.

IBG(x, y) =1

n

∑fs(x, y) (1)

Iσ2(x, y) =1

n

∑fs(x, y)2 − IBG(x, y) (2)

It is also possible to use a dynamic background, as presented in (Kolleret al. 1994). In this case, the background is updated using only the regions of thecurrent frame that are not classi�ed as foreground. We also tried the backgroundsubtraction method proposed by (Stau�er & Grimson 1999), however, besidesbeing computationally more costly, it did not improve the results.

The segmentation process consists of subtracting the background image fromthe current frame fk, and thresholding the resulting image, as shown in Equation3 (V is 255 for an 8 bit image). This results in a black and white image, dstk,where white regions represent foreground candidates. The threshold value, T ,can be determined by the user or can be computed automatically (more on thislater). Once again, if the image is colored, this is done for each color channel,and the �nal result dstk is obtained by taking an OR of each channel result.

dstk(x, y) =

{V if |IBG(x, y)− fk(x, y)| > T

√Iσ2(x, y)

0 otherwise(3)

Page 49: Universidade Federal do Rio Grande do Norte Centro de

3

The next step is to remove small noises (small white regions) by applyingmorphological operations on the image. First we apply an erosion followed by adilation, using the same structuring element for both operations. After this, weclassify connected regions (blobs), computing for each one its area and center ofmass. After discarding blobs below a certain minimum area and above a certainmaximum area (both values are user de�ned), we will have two possibilities:1) more (or equal) valid blobs than the number of animals we are currentlytracking or; 2) the opposite. In the �rst case, we will associate each animal tothe blob which is closest to its last tracking position (or next predicted position,depending on the kind of �lter being used, as will be commented later), ignoringthe remaining blobs. In the second case, we associate each blob to the closestanimal last tracking position (or next predicted position). Notice that this willcause some animals not being associated with a blob. In this case, we considerthe animals to be stationary or following a predicted trajectory (once again thiswill depend on the kind of �lter being used). As said before, the thresholdvalue T can be computed automatically if the user chooses so. This is done bycomparing the number of valid blobs, b, found, and the number of animals, a,selected by the user. During the tracking process, if b < a then the value of Tis decremented, if b > a, it is incremented.

To perform the �ltering of the tracking information the user can choose twotypes of �lters: moving average or Kalman Filter. For slow and predictableswimming style �sh, such as the Siamese �ghting �sh, the Kalman �lter givesgood results. However, for fast swimming and turning �sh, such as the Zebra�sh,the moving average is recommended. When using the Kalman �lter, the statevector X, at time instant k, of each tracked animal i, is composed of Xi[k] =[xi yi xi yi]

T , where (xi, yi) represents the 2D position, in pixels, of the animal,and (xi, yi) represents its 2D velocity in pixels/s. The system is modeled asusual (Kalman 1960) : Xi[k + 1] = AXi[k], where the state transition modelmatrix A is given by

A =

1 0 ∆t 00 1 0 ∆t0 0 Bx 00 0 0 By

, (4)

where ∆t is the time di�erence, in seconds, between the current frame beingprocessed and the last one processed by the software. The terms Bx < 1 andBy < 1 are slowdown factors for the velocity of the animal. They were usedso that the animals would come to a gentle stop while using the predictedstate estimate after a few iterations, avoiding the animal to leave (or come toa sudden stop at the edge of) the processing area. The measurement model,Zi[k] = HXi[k], consist of two-dimensional pixel measurement of the center ofmass of each animal i, hence H = [1 0 0 0; 0 1 0 0].

In order to validate the software developed, we compared it with EthoVision,a well known and widely used tracking software. We compared the resultsobtained in a 2 minute experiment with a single �sh, and they were nearlyidentical, as shown in Figure 2. Also, ZebTrack has been used successfully in

Page 50: Universidade Federal do Rio Grande do Norte Centro de

4

Fig. 2: Validation of the software. Comparison of the results obtained by Zeb-Track (on the left) with the results of EthoVision (on the right) of anexperiment with a single �sh observed for 2 minutes. The camera is lo-cated as the top of the aquarium. Notice that the tracked trajectories ofboth softwares look nearly identical.

dozens of experiments.

References

Kaehler, A. & Bradski, G. (2015), Learning OpenCV: Computer Vision in C++

with the OpenCV Library, second edition edition edn, O'Reilly Media, Farn-ham.

Kalman, R. E. (1960), `A new approach to linear �ltering and prediction prob-lems', Transactions of the ASME�Journal of Basic Engineering 82(SeriesD), 35�45.

Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B. & Russell,S. (1994), Towards robust automatic tra�c scene analysis in real-time, in `,Proceedings of the 33rd IEEE Conference on Decision and Control, 1994',Vol. 4, pp. 3776�3781 vol.4.

Piccardi, M. (2004), Background subtraction techniques: a review, in `2004IEEE International Conference on Systems, Man and Cybernetics', Vol. 4,pp. 3099�3104 vol.4.

Stau�er, C. & Grimson, W. (1999), Adaptive background mixture models forreal-time tracking, in `Computer Vision and Pattern Recognition, 1999. IEEEComputer Society Conference on.', Vol. 2, pp. �252 Vol. 2.

Wren, C., Azarbayejani, A., Darrell, T. & Pentland, A. (1997), `P�nder: real-time tracking of the human body', IEEE Transactions on Pattern Analysis

and Machine Intelligence 19(7), 780�785.

Page 51: Universidade Federal do Rio Grande do Norte Centro de

50

Capítulo 2

Sleep deprivation impairs cognitive performance: a matter of fact?

A ser submetido: Zebrafish Journal (Qualis: B1, FI: 1,94 – 2014)

RESUMO

Neste capítulo, nós testamos os efeitos da privação de sono no peixe paulistinha através

de um paradigma de condicionamento aversivo. Além disso, acrescentamos duas drogas

que possuem respostas comportamentais já estudadas nesta espécie (álcool e melatonina)

e são conhecidas por alterar padrões do estado de sono. Para isso, nós dividimos os

animais em 5 tratamentos de sono diferentes: controle (12C:12E), privação parcial de

sono: (18C:06E), privação total de sono (18C:06E+ pulsos de luz), privação total de sono

+ álcool e privação total de sono + melatonina. Os resultados sugerem que a privação

parcial de sono não prejudicou a performance do animal. Por outro lado, a privação total

de sono prejudicou a habilidade cognitiva em peixe paulistinha, enquanto os peixes que

receberam álcool na noite anterior ao teste, ainda que privados de sono, responderam ao

estímulo como o grupo controle. Tratamento com melatonina parece não induzir o estado

de sono, ao menos no protocolo aplicado aqui.

Page 52: Universidade Federal do Rio Grande do Norte Centro de

51

Sleep deprivation impairs cognitive performance: a matter of fact? 1

Jaquelinne Pinheiro-da-Silva1, Steven Tran2 and Ana Carolina Luchiari1* 2

1Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, 3

Brazil 4

2University of Toronto, Department of Cell and Systems Biology, Canada 5

6

Abstract 7

The zebrafish (Danio rerio) has become a valuable organism for behavioral studies 8

examining learning and memory. The diurnal circadian rhythm in addition to sleep-like state 9

characteristics of zebrafish similar to mammals, has established this small vertebrate as a 10

translational model for sleep research too. Despite sleep being an evolutionarily conserved 11

phenomenon, its functions in the body are still debatable. The lack of sleep is commonly 12

associated with decreased attention, changes in responsiveness, locomotor activity and 13

impaired performance on cognitive tasks. In the current study, we examined the effect of 14

sleep deprivation on zebrafish learning performance in an avoidance conditioning paradigm. 15

In addition, we also examined the effects of two drugs known to alter sleep (alcohol and 16

melatonin), which have already been well characterized in this species. We divided the 17

animals into 5 different sleep treatment groups: control (12L:12D), partial sleep deprivation 18

(18L:06D), total sleep deprivation (12L:18D+light pulses), total sleep deprivation + ethanol 19

and total sleep deprivation + melatonin. Our results suggest that partial sleep deprivation did 20

not alter learning performance. In contrast, total sleep deprivation impaired learning 21

performance in zebrafish. However, fish that received a 1 hour acute exposure to alcohol on 22

the night before the learning task, performed similarly to the control group. Melatonin 23

treatment did not improve learning performance. 24

25

Key words: zebrafish, sleep deprivation, learning, memory 26

Page 53: Universidade Federal do Rio Grande do Norte Centro de

52

1. Introduction 27

The zebrafish (Danio rerio) has emerged as a vertebrate model in genetics and 28

developmental biology over the past several decades, and is rapidly becoming popular for 29

behavioral studies examining learning and memory.1,2 This small fish has a well 30

characterized sleep-like state distinguished by circadian regulation, periods of inactivity, 31

resting place preference and rebound homeostasis.3,4 These features summed with the 32

zebrafish diurnal circadian rhythm5 has establish this species as a relevant and translational 33

model for sleep research. 34

Sleeping behavior characteristics, intensity and function varies over the lifetime of a 35

given animal6 despite it being a worldwide physiological phenomenon present in most 36

vertebrates.7,8 Although the function of sleep is still unknown, it is clearly important for 37

learning and memory consolidadtion.9–15Although the specific function of sleep remains 38

unclear, it is a common biological need. The deficits associated with altered sleep behavior 39

such as loss of attention and health-related problems have been demonstrated both clinical 40

and experimentally.16–20 It is estimated that in the United States, 50 to 70 million people 41

suffer from sleep disorders with the majority not being properly diagnosed or treated.21 42

Sleep deprivation (SD) has a negative impact on the quality of life and regular 43

physiological functions.11 Research on the learning process has already demonstrated that 44

sleep deprivation impairs memory consolidation13–15,18,22,23, as memory seems to be 45

particularly sensitive to SD when it takes place during acquisition. Sleep stages affect 46

memory consolidation in different ways. For example, hippocampus-dependent memories 47

such as declarative and spatial memories are supported by slow-wave sleep and are severely 48

affected by SD.9,12 Zhdanova et al.24 also showed deficits in associative learning behavior 49

after SD in zebrafish. However, in this paper we focused on investigating SD from a different 50

perspective, that is, the effects of SD prior to learning a new task. 51

Page 54: Universidade Federal do Rio Grande do Norte Centro de

53

The conditioning process is highly dependent with the nature of the stimuli utilized. In 52

classical conditioning protocols, animals learn to associate a conditioned stimulus (CS) with 53

an unconditioned stimulus (US), independent of its appetitive or aversive properties. In a 54

situation where the unconditioned stimulus causes an instinctive avoidance reaction 55

(unconditioned response), the animal responds by escaping the aversive stimulus, thereby 56

preserving its safety.25,26 Learned responses using this specific type of conditioning are 57

valuable due to its profound adaptive value. It is known that stressful situations including 58

avoidance conditioning affect the quality of sleep27 as well as subsequent reactions to 59

unpleasant stimuli in zebrafish.28 However, the extent to which SD prior to training affects 60

learning performance remains unknown. 61

To examine the basic mechanisms of learning and memory in zebrafish, we used the 62

avoidance conditioning paradigm similar to previous studies.29–32 In this experiment, we 63

examined the effects of SD on associative learning using an aversive stimulus. Whereas 64

studies on exogenous agents that enhance or reduce sleep-like behavior in both fish and 65

mammals have been examined33–38, the effects of sleep altering drugs (e.g. alcohol and 66

melatonin) on sleep deprived fish remain unknown. Therefore, we hypothesized that SD 67

impairs learning behavioral performance in an aversive conditioning paradigm, whereas sleep 68

promoting drugs will enhance performance. 69

70

2. Materials and Methods 71

2.1. Animals and Stock Conditions 72

This study used adult wild-type zebrafish (Danio rerio, months old, mixed sexes) 73

obtained from a local fish farm and transferred to a storage system (50L tanks) at the 74

Ornamental Fish Vivarium, Department of Physiology – UFRN. Four 50-L tanks formed a 75

stock unit in a closed recirculation system with mechanical, biological, and chemical 76

Page 55: Universidade Federal do Rio Grande do Norte Centro de

54

filtration and UV disinfection. Animals were housed (one fish/L) with aerated and filtered 77

water, and temperature (28°C), pH (7.1) and oxygen measured regularly. Fish were kept on a 78

12h light-dark cycle, with zeitgeber time (ZT) 0 corresponding to lights on time (07am – 79

19pm), light intensity was 250lx. Zebrafish were fed twice a day with brine shrimp and a 80

commercial diet (60% protein and 15% fat, Nutricom Pet). Experiments were performed in 81

accordance with the Ethics Committee for Animal Use of the Federal University of Rio 82

Grande do Norte (application number: CEUA 022/2012). 83

2.2. Sleeping conditions and drug treatments 84

Light suppresses sleep in zebrafish with no evidence for rebound during the light 85

phase3, thus, we used two different light:dark cycles to induced SD. The sleep deprivation 86

was achieved by extending the light phase of the cycle and by exposing fish to light pulses 87

during the dark phase. The partial sleep deprivation consisted of 18h of light followed by 88

only 6h of dark (18L:06D), while the total sleep deprivation was achieved by 18h of light 89

followed by 6h of light pulses (4-min light and 1-min dark). The pulses of light were 90

presented to prevent fish from resting for more than 1 min in the dark. The control, partial 91

and total sleep deprivation protocols were conducted for 3 consecutive days prior to the 92

learning test. 93

Two sleep altering drugs were used concomitantly with the total sleep deprivation 94

condition, one expected to suppress the deleterious effects of sleep deprivation: melatonin, 95

and the other expected to exacerbate the negative effects deprivation: alcohol.35 Melatonin 96

was administered directly to the housing tank water at a final concentration of 100nM. 97

Melatonin was administered once a day, with 30% of the tank water being replaced daily for 98

10 consecutive days prior to the learning test, adapted from Zhdanova et al.24 Note that since 99

the melatonin treatment lasted 10 days, the sleep deprivation protocol was inducted on day 8 100

(the last 3 days of treatment). On the last night od sleep deprivation, zebrafish were exposed 101

Page 56: Universidade Federal do Rio Grande do Norte Centro de

55

to 0.5% alcohol for 1 hour before the beginning of the dark phase in a 30 L tank, and then 102

returned to their housing tank.39 103

Therefore, the treatments used in the present study were: Partial Sleep Deprivation 104

(18L:06D, n=32), Total Sleep Deprivation(18L:06D+pulses, n=30), Total Sleep Deprivation 105

+ 0.5% Ethanol (Eth 18L:06D+pulses, n=26), Total Sleep Deprivation +Melatonin (Mel 106

18L:06D+pulses, n=28), and Control (12L:12D, n=24). 107

2.3. Aversive Learning Task 108

An aversive conditioning protocol modified from Blank et al.32 and Xu et al.31was 109

administered to each group described above and was performed during the daytime (ZT1 – 110

ZT8). Zebrafish were individually trained in a 15L shuttle box tank (40x25x20cm) divided by 111

an opaque wall with a 2cm opening at the bottom allowing the fish to swim to both sides. The 112

walls of the tank were completely covered with opaque plastic self-adhesive white films but 113

different visual cues were present on the bottom of each side of the tank (Fig. 1) (white 114

background vs. back and white checkered pattern). 115

In the current study, we used an electroshock apparatus which has been successfully 116

utilized for cognitive avoidance tasks29 to demonstrate learning31 and memory retention32 in 117

zebrafish. The electroshock apparatus consisted of 2 manual shock machines, one for each 118

compartment of the shuttle box, which delivered an electroshock to serve as an aversive 119

stimulus. Each machine had two electrodes positioned through the wall and placed on each 120

side of the tank. The electroshock (6V) was administered: (a) consistently on one side of the 121

tank (either the white or checkered pattern side) or (b) on random sides. Animals were tested 122

individually in the shuttle box. After 2 minutes of habituation to the tank, the fish received a 123

2 second electroshock followed by 60 seconds without shocks, this was repeated for a total of 124

20 trials. Behavior responses were recorded during the 20 minutes following habituation and 125

analyzed using an automated video tracking software, ZebTrack. The video tracking software 126

Page 57: Universidade Federal do Rio Grande do Norte Centro de

56

has been previously validated by Pinheiro-da-Silva et al. ( unpublished data), capable of 127

quantifying swimming patterns, including speed, distance travelled, and time spent in 128

predefined areas. To evaluate learning performance in zebrafish, we quantified the time that 129

fish spent on each side of the tank, their average speed, maximum speed, freezing and total 130

distance traveled during each trial. The data was analyzed using paired Student’s t test to 131

compare time spent on each side of the tank and One-Way Analysis of Variance (ANOVA) 132

with Tukey’s Honest Significant Difference (HSD) tests to compare average speed, 133

maximum speed, total distance traveled, and freezing. The data was tested and shown to be 134

normally distributed and different groups exhibited equal variance. Significance was reported 135

at p < 0.05. 136

3. Results 137

During the test, groups that received electroshocks on random sides showed no 138

significant differences in the time spent on each side of the shuttle box (Fig. 2) (Student t test: 139

Control group: t(24) = 0.99 p =0.33; Partial SD group: t(20) = -0.81 p= 0.42; Total SD group: 140

t(26) = -1.37 p = 0.18; Total SD + Ethanol: t(28) = -1.49 p= 0.15; Total SD + Melatonin: 141

t(20) = 0.71 p= 0.48). When fish received shocks consistently on one side of the tank, the 142

Control, Partial SD and Total SD + Ethanol groups spent more time on the side without the 143

shock (Student t test: Control group: t(22) = -2.05 p= 0.05; Partial SD group: t(30) = -3.03 p 144

= 0.005; Total SD + Ethanol: t(23) = -4.19 p= <0.001). However, there were no significant 145

differences in the time spent on each side of the tank for the Total SD and Total SD + 146

Melatonin groups (Student t test: Total SD: t(28) = -1.13 p= 0.27; Total SD + Melatonin: 147

t(26) = -0.62 p= 0.54) (Fig. 3). 148

While not quantified, visual observation during the test suggested that all animals 149

showed normal swimming behavior. One-Way ANOVA did not detect significant differences 150

in the average speed among the five treatment groups (F(4,65)= 0.27 p= 0.89) (Fig.4a), but 151

Page 58: Universidade Federal do Rio Grande do Norte Centro de

57

the Control group exhibited a higher maximum speed in comparison to the Total SD + 152

Melatonin group (F(4,70)= 3.18 p = 0.019) (Tukey’s HSD test, p<0.05). However, the 153

maximum speed of the all other groups was not significantly different from each other (p> 154

0.05) (Fig.4b). 155

We also observed some episodes of freezing behavior, as expected due to the aversive 156

nature of the stimulus. Fish from the control group spent the most time freezing, while fish 157

from the Total SD + Melatonin group spent the least (One-Way ANOVA, F(4, 66)=3.34 158

p=0.015). Differences in freezing among the other groups were non-significant (p> 0.05) 159

(Fig. 5a). The total distance fish travelled during the test was also analyzed. Using One-way 160

ANOVA and Tukey’s HSD test, we found that the Total SD group travelled a significantly 161

shorter distance compared to all other groups (One-Way ANOVA, F(4, 70) =14.97 p<0.001) 162

(Fig. 5b). 163

164

4. Discussion 165

In the current study, we found that total sleep deprivation (SD) impaired avoidance 166

learning in zebrafish, D. rerio, while acute alcohol exposure on the last night of SD increased 167

performance in the learning task. Sleep is an important behavioral state associated with 168

energy allocation and conservation, synapses remodeling and memory consolidation.8,40,41 It 169

should also be noted that sleep deprivation induces sleep rebound, which occurs in the dark 170

phase during the first few days of SD or even during the light phase following prolonged 171

SD.8,42 Sleep rebound is related to a homeostatic sleep response, which is a process through 172

which partially sleep deprived fish can recover during the dark phase43,44 and may explain 173

why these fish were able to perform well on the learning task. 174

As with most animals, zebrafish exhibit a natural tendency to explore new 175

environments in search of food, mates or shelter.45–47 Considering that associating an aversive 176

Page 59: Universidade Federal do Rio Grande do Norte Centro de

58

unconditioned stimulus with the environment that it is paired with is an important cognitive 177

ability that can increase an animal’s chances for survival24,48, we expected zebrafish to avoid 178

the compartment associated with the electroshock even after three nights of SD. However, 179

fish in the total sleep deprivation condition did not learn to avoid the aversive stimulus, 180

whereas an acute dose of alcohol increased learning performance while melatonin treatment 181

did not. Our findings are in accordance with previous studies examining the deleterious 182

effects of sleep deprivation on cognition.18,20,49 183

In our study, fish exposed to electroshocks on only one side of the tank learned to avoid 184

the stimulus when they were not sleep deprived. These results are in line with previous 185

studies on avoidance learning29,31,32,50 and corroborates the ability of zebrafish to learn and 186

respond to an aversive stimulus. Likewise, partially sleep deprived fish also learned the 187

association similar to controls. The performance of partially sleep deprived fish may be 188

attributed to sleep rebound during the shortened dark phase. According to Yokogawa et al.3, 189

sleep rebound is a common homeostatic process that follows a sleep deprivation period. 190

Thus, although partial sleep deprivation reduced maximum speed and there was a trend 191

towards decreased freezing behavior, 6 hours of darkness may have been enough to allow 192

zebrafish to recover and perform well in the aversive conditioning paradigm (Fig. 3). 193

Conversely, totally sleep deprived fish receiving electroshocks consistently on one side 194

of the tank did not learn to avoid the compartment associated with the shock and spent an 195

equal amount of time on both sides of the shuttle box (Fig.3). Studies examining rodent and 196

human behavior following sleep deprivation have highlighted the resistance of emotional 197

memory to the effects of SD51,52. However, negative stimuli have been shown to be more 198

reinforcing than positive stimuli for associative learning tasks.53 In a previous study, our 199

group has observed that sleep deprivation impairs the discrimination of a novel object 200

(unpublished data). Therefore, the inability to avoid electroshocks after three nights of total 201

Page 60: Universidade Federal do Rio Grande do Norte Centro de

59

SD is in accordance with previous studies examining the effects of sleep deprivation on 202

learning and memory. 203

Although we showed that sleep deprivation impaired learning performance in zebrafish, 204

one could argue that SD may have impaired general locomotor activity and zebrafish simply 205

spent more time on the same side of the tank, independent of the stimulus. Alternatively, fish 206

may have exhibited a place preference and simply avoided the non-preferred compartment. 207

To test these alternative possibilities, fish from each treatment group also received 208

electroshocks on random sides of the tank (Fig 2). As expected, fish receiving electroshocks 209

on random sides of the tank spent an equal amount of time on both sides of tank, showing 210

that zebrafish did not exhibit a place preference. 211

Behavioral parameters including average and maximum swimming speed, freezing 212

behavior and total distance traveled were also analyzed. Although the average speed did not 213

differ between groups, the control group showed a higher maximum speed compared to all 214

other groups. However, totally sleep deprived fish exhibited the lowest total distance 215

traveled. This finding is in accordance with a study by Zhdanova et al.44, which showed that 216

sleep deprivation decreases daytime locomotor activity in zebrafish. Examination of freezing 217

behavior revealed that the control group froze for a longer period of time compared to all 218

other groups which may be related to changes in the light:dark cycle. Other studies have also 219

shown that sleep deprivation reduces response time and impairs sustained attention.18,54 Thus, 220

sleep deprivation in our study may have affected the fish’s ability to properly respond to the 221

stimulus. Freezing behavior is a complete suspension of movement resulting from increased 222

stress/anxiety and may reflect submissive behavior.55 In this study, we expected to observe 223

freezing behavior elicited by the avoidance conditioning paradigm. 224

Alcohol is one of the most studied pharmacological agent in zebrafish research and has 225

been shown to alter behavioral responses as well as impair learning.2,56,57 This substance 226

Page 61: Universidade Federal do Rio Grande do Norte Centro de

60

when added to the water can easily be absorbed by the fish with blood alcohol levels quickly 227

reaching equilibrium with the external alcohol concentration.58 In this study, fish were 228

exposed to an acute alcohol dose (0.5%) on the last night of sleep deprivation and 229

subsequently tested for avoidance learning on the following day. The sleep deprivation plus 230

alcohol group was able to acquire the association between the US and CS similar to the 231

control group, suggesting unimpaired learning performance. 232

Alcohol consumption is most often associated with sleep disruptions.37,59 However, the 233

effect of alcohol is dose-dependent with stimulant and sedative effects.37,57,60,61 Based on our 234

results, alcohol exposure seems to have increased learning performance in sleep deprived 235

fish. Alcohol’s sedative effects may have promoted sleep onset similar to a previous a study 236

by Roehrs and Roth,35 which reported that alcohol has sedative and sleep-promoting effects. 237

In addition, studies have found that alcohol increases the time spent in slow waves sleep 238

(SWS).62,63 A similar pattern was also observed in sleep deprived elderly subjects; elderly 239

people showed an increase in SWS during the recovery night following sleep deprivation 240

after consuming an alcohol beverage.64Alcohol is known to reduce core body temperature, 241

contribute to the entrainment of sleep,65 and low doses have been reported to be beneficial for 242

treating insomnia.66 However, the development of alcohol tolerance/dependence should be 243

taken into consideration. For example, tolerance to alcohol’s sedative effects can be 244

established after only a few days of consumption.67Moreover, the use of alcohol to improve 245

sleep may lead to excessive intake. Thus, the relationship between alcohol and sleep requires 246

greater attention, with a focus on identifying the physiological/neural mechanisms underlying 247

alcohol’s sleep-promoting properties. 248

In contrast to alcohol’s effect on avoidance learning following sleep deprivation, 249

exposure to melatonin did not alter learning performance. Melatonin is the main sleep-250

promoting hormone in zebrafish and is produced in the pineal gland.71 Administration of 251

Page 62: Universidade Federal do Rio Grande do Norte Centro de

61

melatonin has been shown to increase sleep under light:dark conditions44 and has dose 252

dependent effects on locomotor behavior72 which can be observed within 20 minutes of drug 253

exposure.44 In the current study, melatonin administration did not increase learning 254

performance in sleep deprived fish, and this could be related to the exposure regimen. 255

Moreover, our sleep deprivation protocol (light pulses) may have inhibited melatonin’s action 256

in the brain. For example, sleep disorders cannot be properly treated with melatonin if users 257

does not have the proper conditions for sleep induction.73,74 Additionally, Rawashdeh et al.73 258

reported that melatonin’s action in zebrafish is inhibited under constant light in an active-259

avoidance conditioning paradigm. These authors showed that pinealectomy or interfering 260

with melatonin signaling improved memory consolidation, suggesting a role for melatonin in 261

memory formation at night. 262

Finally, our results reinforce the zebrafish as a valuable model organism for high 263

throughput screening of sleep-related drugs. Sleep is an essential behavioral phenomenon and 264

our data support the negative effects of sleep deprivation on cognition. We found a 265

significant learning impairment in zebrafish following total sleep deprivation. Although 266

melatonin did not alter learning performance, acute alcohol exposure improved learning 267

performance in sleep deprived fish. The simplicity of this protocol due to the lack of a time-268

consuming training phase will make it a useful tool for future behavioral and brain tissue 269

analyses. It will also allow investigators to examine how sleep deprivation affects cognitive 270

function and whether different drugs can be used for the treatment of sleep disorders. 271

272

5. Acknowledgments 273

The authors are grateful to Ms. Adrielly Nascimento and Mr. Rômulo Almeida for their 274

assistance with data collection, and Mrs. Priscila Fernandes for her valuable suggestions and 275

insights. 276

Page 63: Universidade Federal do Rio Grande do Norte Centro de

62

277

6. References 278

1. Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the 279

zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008). 280

2. Luchiari, A. C., Salajan, D. C. & Gerlai, R. Acute and chronic alcohol administration: 281

Effects on performance of zebrafish in a latent learning task. Behav. Brain Res. 282, 282

76–83 (2015). 283

3. Yokogawa, T. et al. Characterization of sleep in zebrafish and insomnia in hypocretin 284

receptor mutants. PLoS Biol. 5, e277 (2007). 285

4. Zhdanova, I. V. Sleep in zebrafish. Zebrafish 3, 215–226 (2006). 286

5. del Pozo, A., Sánchez-Férez, J. A. & Sánchez-Vázquez, F. J. Circadian rhythms of 287

self-feeding and locomotor activity in zebrafish (Danio rerio). Chronobiol. Int. 28, 39–288

47 (2011). 289

6. Siegel, J. M. Do all animals sleep? Trends Neurosci. 31, 208–213 (2008). 290

7. Zhdanova, I. V. Sleep and its regulation in zebrafish. Rev. Neurosci. 22, 27–36 (2011). 291

8. Schmidt, M. H. The energy allocation function of sleep: a unifying theory of sleep, 292

torpor, and continuous wakefulness. Neurosci. Biobehav. Rev. 47, 122–153 (2014). 293

9. Graves, L. A., Heller, E. A., Pack, A. I. & Abel, T. Sleep Deprivation Selectively 294

Impairs Memory Consolidation for Contextual Fear Conditioning. Learn. Mem. 10, 295

168–176 (2003). 296

10. Jenkins, J. G. & Dallenbach, K. M. Obliviscence during sleep and waking. Am. J. 297

Psychol. 605–612 (1924). 298

11. Leibowitz, S. M., Lopes, M.-C. C., Andersen, M. L. & Kushida, C. A. Sleep 299

deprivation and sleepiness caused by sleep loss. Sleep Med. Clin. 1, 31–45 (2006). 300

12. Marshall, L. & Born, J. The contribution of sleep to hippocampus-dependent memory 301

Page 64: Universidade Federal do Rio Grande do Norte Centro de

63

consolidation. Trends Cogn. Sci. 11, 442–450 (2007). 302

13. Rasch, B. & Born, J. About sleep’s role in memory. Physiol. Rev. 93, 681–766 (2013). 303

14. Stickgold, R. & Walker, M. P. Sleep-dependent memory triage: evolving 304

generalization through selective processing. Nat. Neurosci. 16, 139–145 (2013). 305

15. Watson, B. O. & Buzsáki, G. Sleep, Memory & Brain Rhythms. Daedalus 144, 67–82 306

(2015). 307

16. Van Cauter, E., Spiegel, K., Tasali, E. & Leproult, R. Metabolic consequences of sleep 308

and sleep loss. Sleep Med. 9, S23–S28 (2008). 309

17. Van Dongen, H. P. A., Bender, A. M. & Dinges, D. F. Systematic individual 310

differences in sleep homeostatic and circadian rhythm contributions to neurobehavioral 311

impairment during sleep deprivation. Accid. Anal. Prev. 45, Supple, 11–16 (2012). 312

18. Killgore, W. D. S. in Progress in Brain Research 185, 105–129 (Prog Brain Res., 313

2010). 314

19. Raidy, D. J. & Scharff, L. F. V. Effects of sleep deprivation on auditory and visual 315

memory tasks. Percept. Mot. Skills 101, 451–467 (2005). 316

20. Alhola, P. & Polo-Kantola, P. Sleep deprivation: Impact on cognitive performance. 317

Neuropsychiatr. Dis. Treat. 3, 553–567 (2007). 318

21. Colten, H. R. & Altevogt, B. M. Sleep disorders and sleep deprivation: an unmet 319

public health problem. Institute of Medicine. (2006). 320

22. Andersen, M. L. et al. Effects of sleep loss on sleep architecture in Wistar rats: 321

Gender-specific rebound sleep. Prog. Neuro-Psychopharmacology Biol. Psychiatry 32, 322

975–983 (2008). 323

23. McGaugh, J. L. Memory--a century of consolidation. Science (80-. ). 287, 248–251 324

(2000). 325

24. Zhdanova, I. V. et al. Aging of the circadian system in zebrafish and the effects of 326

Page 65: Universidade Federal do Rio Grande do Norte Centro de

64

melatonin on sleep and cognitive performance. Brain Res Bull 275, 433–441 (2008). 327

25. Moore, B. R. The evolution of learning. Biol. Rev. Camb. Philos. Soc. 79, 301–335 328

(2004). 329

26. Moore, B. R. The role of directed Pavlovian reactions in simple instrumental learning 330

in the pigeon. (1973). 331

27. Machida, M., Yang, L., Wellman, L. L. & Sanford, L. D. Effects of Stressor 332

Predictability on Escape Learning and Sleep in Mice. Sleep 36, 421–430 (2013). 333

28. Champagne, D. L., Hoefnagels, C. C. M., de Kloet, R. E. & Richardson, M. K. 334

Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress 335

research. Behav. Brain Res. 214, 332–42 (2010). 336

29. Manuel, R. et al. Inhibitory Avoidance Learning in Zebrafish (Danio Rerio): Effects of 337

Shock Intensity and Unraveling Differences in Task Performance. Zebrafish 11, 341–338

352 (2014). 339

30. Pradel, G., Schmidt, R. & Schachner, M. Inhibition of memory consolidation by 340

antibodies against the HNK-1 carbohydrate after active avoidance conditioning in 341

zebrafish. J. Neurochem. 66, S19–S19 (1996). 342

31. Xu, X., Scott-Scheiern, T., Kempker, L. & Simons, K. Active avoidance conditioning 343

in zebrafish (Danio rerio). Neurobiol. Learn. Mem. 87, 72–77 (2007). 344

32. Blank, M., Guerim, L. D., Cordeiro, R. F. & Vianna, M. R. M. A one-trial inhibitory 345

avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term 346

memory. Neurobiol. Learn. Mem. 92, 529–534 (2009). 347

33. Zhdanova, I. V et al. Melatonin promotes sleep in three species of diurnal nonhuman 348

primates. Physiol. Behav. 75, 523–529 (2002). 349

34. Brzezinski, A. et al. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep 350

Med. Rev. 9, 41–50 (2005). 351

Page 66: Universidade Federal do Rio Grande do Norte Centro de

65

35. Roehrs, T. & Roth, T. Sleep, sleepiness, sleep disorders and alcohol use and abuse. 352

Sleep Med. Rev. 5, 287–297 (2001). 353

36. Brower, K. J. Insomnia, alcoholism and relapse. Sleep Med. Rev. 7, 523–539 (2003). 354

37. Stein, M. D. & Friedmann, P. D. Disturbed sleep and its relationship to alcohol use. 355

Subst. Abus. 26, 1–13 (2005). 356

38. Fairclough, S. H. & Graham, R. Impairment of driving performance caused by sleep 357

deprivation or alcohol: a comparative study. Hum. Factors 41, 118–128 (1999). 358

39. Gerlai, R., Lahav, M., Guo, S. & Rosenthal, a. Drinks like a fish: zebra fish (Danio 359

rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. 360

Behav. 67, 773–82 (2000). 361

40. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Medicine 362

Reviews 10, 49–62 (2006). 363

41. Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 364

(2005). 365

42. Elbaz, I., Foulkes, N. S., Gothilf, Y. & Appelbaum, L. Circadian clocks, rhythmic 366

synaptic plasticity and the sleep-wake cycle in zebrafish. Front. Neural Circuits 7, 9 367

(2013). 368

43. Sigurgeirsson, B. et al. Sleep-wake dynamics under extended light and extended dark 369

conditions in adult zebrafish. Behav. Brain Res. 256, 377–90 (2013). 370

44. Zhdanova, I. V, Wang, S. Y., Leclair, O. U. & Danilova, N. P. Melatonin promotes 371

sleep-like state in zebrafish. Brain Res. 903, 263–268 (2001). 372

45. Oliveira, J., Silveira, M., Chacon, D. & Luchiari, A. The Zebrafish World of Colors 373

and Shapes: Preference and Discrimination. Zebrafish 12, 166–173 (2015). 374

46. von Krogh, K., Sørensen, C., Nilsson, G. E. & Øverli, Ø. Forebrain cell proliferation, 375

behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren 376

Page 67: Universidade Federal do Rio Grande do Norte Centro de

66

environments. Physiol. Behav. 101, 32–39 (2010). 377

47. Avdesh, A. et al. Evaluation of color preference in zebrafish for learning and memory. 378

J. Alzheimer’s Dis. 28, 459 (2012). 379

48. Serra, E. L., Medalha, C. C. & Mattioli, R. Natural preference of zebrafish (Danio 380

rerio) for a dark environment. Brazilian J. Med. Biol. Res. 32, 1551–1553 (1999). 381

49. Prince, T.-M. & Abel, T. The impact of sleep loss on hippocampal function. Learn. 382

Mem. 20, 558–69 (2013). 383

50. Bueno, O. F. et al. Dissociated paradoxical sleep deprivation effects on inhibitory 384

avoidance and conditioned fear. Physiol. Behav. 56, 775–779 (1994). 385

51. Phelps, E. A. Human emotion and memory: interactions of the amygdala and 386

hippocampal complex. Curr. Opin. Neurobiol. 14, 198–202 (2004). 387

52. Ruskin, D. N., Liu, C., Dunn, K. E., Bazan, N. G. & LaHoste, G. J. Sleep deprivation 388

impairs hippocampus‐mediated contextual learning but not amygdala‐mediated cued 389

learning in rats. Eur. J. Neurosci. 19, 3121–3124 (2004). 390

53. Walker, M. P. & Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol. 57, 391

139–166 (2006). 392

54. Binks, P. G., Waters, W. F. & Hurry, M. Short-term total sleep deprivations does not 393

selectively impair higher cortical functioning. Sleep 22, 328–334 (1999). 394

55. Kalueff, A. V et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and 395

beyond. Zebrafish 10, 70–86 (2013). 396

56. Obernier, J. A., White, A. M., Swartzwelder, H. S. & Crews, F. T. Cognitive deficits 397

and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol. Biochem. 398

Behav. 72, 521–532 (2002). 399

57. Tran, S. & Gerlai, R. Time-course of behavioural changes induced by ethanol in 400

zebrafish (Danio rerio). Behav. Brain Res. 252, 204–213 (2013). 401

Page 68: Universidade Federal do Rio Grande do Norte Centro de

67

58. Ryback, R., Percarpio, B. & Vitale, J. Equilibration and Metabolism of Ethanol in the 402

Goldfish. Nature 222, 1068–1070 (1969). 403

59. Dawson, D. & Reid, K. Fatigue, alcohol and performance impairment. Nature 388, 404

235 (1997). 405

60. Martin, C. S., Earleywine, M., Musty, R. E., Perrine, M. W. & Swift, R. M. 406

Development and Validation of the Biphasic Alcohol Effects Scale. Alcohol. Clin. 407

Exp. Res. 17, 140–146 (1993). 408

61. Earleywine, M. & Martin, C. S. Anticipated Stimulant and Sedative Effects of Alcohol 409

Vary with Dosage and Limb of the Blood Alcohol Curve. Alcohol. Clin. Exp. Res. 17, 410

135–139 (1993). 411

62. Williams, H. L. & Salamy, A. in The biology of alcoholism 435–483 (Springer, 1972). 412

63. Swift, R. & Davidson, D. Alcohol hangover. Alcohol Heal. Res World 22, 54–60 413

(1998). 414

64. Prinz, P. N., Roehrs, T. A., Vitaliano, P. P., Linnoila, M. & Weitzman, E. D. Effect of 415

Alcohol on Sleep and Nighttime Plasma Growth Hormone and Cortisol 416

Concentrations*. J. Clin. Endocrinol. Metab. 51, 759–764 (1980). 417

65. Kleitman, N. Sleep and Wakefulness as Alternating Phases in the Cycle of Existence. 418

(1939). 419

66. Roehrs, T., Papineau, K., Rosenthal, L. & Roth, T. Ethanol as a hypnotic in 420

insomniacs: self administration and effects on sleep and mood. 421

Neuropsychopharmacology 20, 279–286 (1999). 422

67. Turner, R. T. Skeletal response to alcohol. Alcohol. Clin. Exp. Res. 24, 1693–1701 423

(2000). 424

68. Oliveira, T. A. et al. Alcohol Impairs Predation Risk Response and Communication in 425

Zebrafish. PLoS One 8, e75780 (2013). 426

Page 69: Universidade Federal do Rio Grande do Norte Centro de

68

69. Ramsay, J. M. et al. Whole-body cortisol response of zebrafish to acute net handling 427

stress. Aquaculture 297, 157–162 (2009). 428

70. Cachat, J. M. et al. in Neuromethods 52, 73–88 (Springer, 2011). 429

71. Lima-Cabello, E. et al. A review of the melatonin functions in zebrafish physiology. J. 430

Pineal Res. 1–9 (2014). doi:10.1111/jpi.12149 431

72. Wang, J. et al. Circadian Clock Mediates Light/Dark Preference in Zebrafish (Danio 432

Rerio). Zebrafish 11, 1–7 (2014). 433

73. Rawashdeh, O., de Borsetti, N. H., Roman, G. & Cahill, G. M. Melatonin suppresses 434

nighttime memory formation in zebrafish. Science 318, 1144–1146 (2007). 435

74. Buscemi, N. et al. Melatonin for treatment of sleep disorders. Evidence 436

Report/Technology Assessment (2004). at 437

<http://www.ncbi.nlm.nih.gov/books/NBK37431/> 438

439

Page 70: Universidade Federal do Rio Grande do Norte Centro de

69

Fig. 1

Fig.1: Schematic view of the avoidance conditioning paradigm. Tanks (15L, 40x25x20 cm)

divided by an opaque wall with a 2cm opening at the bottom allowing the fish to swim to

both sides. The walls of the tank were completely covered with opaque plastic self-adhesive

white films but different visual cues were present on the bottom of each side of the tank

(white background vs. black and white checkered pattern).

Fig. 2

Fig. 2: Adults zebrafish performance in Avoidance Conditioning following 3 nights of partial

sleep deprivation, total sleep deprivation and total SD + Ethanol or + Melatonin

administration. Electroshock (12mV, 0.2sec, every 1 min) administered in random sides. n =

24-32 fish/group, *p<0.05.

0

200

400

600

800

1000

b/w white b/w white b/w white b/w white b/w white

Control Partial SD Total SD Total SD + EtOH Total SD + Mel

Tim

e sp

ent

in e

ach

sid

e (s

)

Page 71: Universidade Federal do Rio Grande do Norte Centro de

70

Fig. 3

Fig.3: Adults zebrafish performance in Avoidance Conditioning following 3 nights of partial

sleep deprivation, total sleep deprivation and total SD + Ethanol or + Melatonin administration.

Electroshock (12mV, 0.2sec, every 1 min) administered in one side only (white side or

black/white side). n = 24-32 fish/group, *p<0.05.

Fig. 4

Fig.4: We applied one-Way ANOVA to compare (a) average speed and (b) maximum speed

during the avoidance conditioning test, among the five groups: Control, Partial SD, Total SD,

Total SD + Ethanol, Total SD + Melatonin. Data corresponds to 20 min of behavior recorded

during the test and analyzed using video-tracking software (ZebTrack). n = 11-16 fish/group,

(*) indicates statistical difference between groups, p<0.05.

0

200

400

600

800

1000

Shock Blank Shock Blank Shock Blank Shock Blank Shock Blank

Control Partial SD Total SD Total SD + EtOH Total SD + Mel

Tim

e sp

ent

in e

ach

sid

e (s

)

* * *

0

50

100

150

200

250

300

Control Partial SD Total SD Total SD +EtOH

Total SD +Mel

Ma

xim

um

Sp

eed

(cm

/s)

0

1

2

3

4

5

6

Control Partial SD Total SD Total SD +EtOH

Total SD +Mel

Av

era

ge

Sp

eed

(cm

/s) *

a) b)

Page 72: Universidade Federal do Rio Grande do Norte Centro de

71

Fig.5

Fig. 3

Fig.5: We applied one-Way ANOVA applied to compare (a) freezing behavior and (b) total

distance the animal traveled during the avoidance learning experiment, for the five groups:

Control, Partial SD, Total SD, Total SD + Ethanol, Total SD + Melatonin. Fish were observed

for 20 min and analyzed using video-tracking software (ZebTrack). Different letters and (*)

indicates statistical differences between the groups. n = 11-16 fish/group, p<0.05.

0

100

200

300

400

500

600

Control Partial SD Total SD Total SD +EtOH

Total SD +Mel

0

1000

2000

3000

4000

5000

6000

Control Partial SD Total SD Total SD +EtOH

Total SD +Mel

To

tal

dis

tan

ce t

rav

eled

(cm

)

*

a

ab ab

b b

Fre

ezin

g (

s)

a) b)

Page 73: Universidade Federal do Rio Grande do Norte Centro de

72

Capítulo 3

Good night, sleep tight: the effects of sleep deprivation on spatial associative

learning in zebrafish

À ser submetido: Behavioural Brain Research (Qualis: A1, FI: 3,02 – 2014)

RESUMO

Utilizamos um teste simples de aprendizagem especial associativa para investigar os

efeitos da privação de sono em peixe paulistinha, utilizando um cardume da mesma

espécie como estímulo positivo. Os animais testados após noite de sono normal

rapidamente aprenderam à associar o estímulo ao local apresentado no aquário,

reforçando o peixe paulistinha como modelo válido e confiável para tarefas de

condicionamento. Embora a privação parcial de sono não tenha sido suficiente para

prejudicar a habilidade cognitiva, a privação total de sono afetou a performance do peixe

em todas as condições de apresentação do estímulo. Nossos resultados sugerem que o

sono é elemento importante para a memória, prejudicando a aquisição da aprendizagem

em performance associativa.

Page 74: Universidade Federal do Rio Grande do Norte Centro de

73

Good night, sleep tight: the effects of sleep deprivation on spatial associative learning in 1

zebrafish 2

3

Jaquelinne Pinheiro-da-Silvaa, Steven Tranb, Priscila Fernandes Silvaa, Ana Carolina 4

Luchiaria,* 5 a Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do 6

Norte, Natal, Brazil. 7 b University of Toronto, Department of Cell and Systems Biology, Canada 8

*[email protected] 9

10

Abstract 11

Learning and memory processes confer important advantages to an animal’s survival. A 12

number of endogenous and exogenous factors can interfere with cognitive ability. Sleep 13

is a worldwide physiological phenomenon known to contribute to the consolidation of 14

learning and memory. The zebrafish has emerged as a powerful model organism, sharing 15

organizational and functional characteristics with other vertebrates, providing great 16

translational relevance. In this paper, a simple spatial associative learning test was used to 17

investigate the effects of sleep deprivation on learning performance in zebrafish, using a 18

conspecific shoal as a positive stimulus. Control animals on a regular light:dark cycle 19

were able to learned the association between the unconditioned stimulus and the 20

conditioned stimulus, reinforcing zebrafish as valid and reliable model for appetitive 21

conditioning tasks. Although partial sleep deprivation was not enough to impair cognitive 22

ability, total sleep deprivation significantly impaired zebrafish learning performance in 23

all conditions. Our results suggest that sleep is important for learning and memory and 24

that the effects of sleep deprivation can be investigated using zebrafish. 25

Keywords: learning, memory, associative learning task, sleep 26

Page 75: Universidade Federal do Rio Grande do Norte Centro de

74

27

1. Introduction 28

Learning is an important process that allows for the acquisition of new skills or 29

concepts from past experiences [1–4]. The ability to modify behavioral patterns based on 30

past experiences confers several advantages such as finding food and mates [5], as well 31

as avoiding predators [6]. Moreover, the benefits associated with the predictive nature of 32

learning may be enhanced when individuals retain long-term memories. However, a 33

number of endogenous and exogenous factors can enhance and/or impair learning [7–9]. 34

Among the number of factors that favor learning and memory consolidation, sleep is 35

one of the most studied. Sleep behavior is defined as a resting state in which 36

consciousness is partially or completely lost, and there is a decreased response to external 37

stimuli as well as voluntary motor activities[10,11]. During sleep, the brain exhibits two 38

types of electrical activity: 1) slow wave activity (NREM sleep, non-rapid eye 39

movement) divided into four stages, and 2) desynchronized brain wave activity (REM 40

sleep, rapid eye movement) represented by muscle atonia and wake-like brain activity 41

[12,13]. While only endothermic animals exhibit REM sleep, ectothermic vertebrates also 42

show sleep-like behavior that confers adaptive advantages[11,13]. 43

Even though the specific function of sleep in animals is still unknown, the cumulative 44

effects of sleep deprivation have been associated with negative health consequences 45

including obesity, diabetes, stroke, and depression, along with a profound economic and 46

societal impact[14]. Research on sleep and sleep disorders have been increasing, 47

however, diagnoses and treatments are still limited. Current research on sleep requires an 48

interdisciplinary approach to thoroughly understand how sleep affects human health. 49

Page 76: Universidade Federal do Rio Grande do Norte Centro de

75

Research on the effects of sleep on learning and memory has been a focus of 50

numerous studies in the field of behavioral neuroscience and psychobiology. Research in 51

this area of study have focused on rodents and primates[15–19]. However, research on 52

phylogenetically distant animals may identify evolutionarily conserved mechanisms 53

regulating sleep behavior and the development of learning and memory. Zebrafish have 54

been a focus of attention because it is a tractable genetic model that shares organizational 55

and functional characteristics with other vertebrates[20–23]. The main neurotransmitter 56

systems regulating sleep in mammals are widely conserved in zebrafish, including 57

monoaminergic, cholinergic and hypocretinergic cell groups[24–32]. A sleep-like state 58

has been characterized in zebrafish by Zhdanova[33,34] and is similar to other 59

vertebrates including mammals. One of the major advantages of the zebrafish model is 60

the non-invasive nature of drug administration. Water soluble drugs can be added directly 61

to the water which is then taken up by the immersed by through its skin and gills. This 62

property allows us to test the effects of drugs that are known to alter sleep-like behavior 63

such as alcohol and melatonin, substances with known sedative and sleep promoting 64

effects [35–38]. 65

Although zebrafish have been increasingly used in learning and memory studies [39–66

44], the effects of sleep deprivation on learning performance is unclear. In the present 67

study, we determined the effects of partial and total sleep deprivation and administration 68

of alcohol or melatonin in sleep deprived fish on learning performance in an appetitive 69

conditioning task. To examine learning and memory, we used a spatial associative 70

learning paradigm, with a conspecific image as a reward due to the highly social nature of 71

this species [45,46]. 72

Page 77: Universidade Federal do Rio Grande do Norte Centro de

76

73

2. Material and methods 74

2.1.Animals and housing 75

Zebrafish (Danio rerio) were obtained from a local fish farm (Natal, Rio Grande do 76

Norte, Brazil) and acclimatized for one month before the behavioral experiments. Adult 77

zebrafish (3 months, mixed sexes) were transferred to 50 L tanks in a recirculating 78

system with multistage filtration, including a mechanical filter, a biological filter, an 79

activated carbon filter and a UV light sterilizing unit. Temperature, pH, and oxygen were 80

measured regularly with fish density maintained at one animal/liter. 81

Fish were kept on a light:dark cycle of 12L:12D (12 hours light:12 hours dark), with a 82

light intensity of 250 lx. They were fed twice daily with brine shrimp and a commercial 83

diet. Protocols were reviewed and approved by the Ethical Committee for Animal Use of 84

Federal University of Rio Grande do Norte (CEUA 022/2012). 85

86

2.2. Sleep deprivation and drug treatments 87

To determine the effect of sleep deprivation (SD) on learning performance, 210 88

zebrafish were randomly assigned to five different experimental groups. To induce sleep 89

deprivation, we altered the light:dark cycles which consisted of extending the light phase 90

and exposing fish to pulses of light during the dark phase. 91

The (1) Control group was kept on a 12L:12D cycle (n=30). The (2) Partial sleep 92

deprivation group was kept on a 18L:06D cycle (n=45), which is 18h of light and only 6h 93

of dark. The (3) Total sleep deprivation group was also maintained on 18h of light and 94

06h of dark, however, during the dark phase, light pulses were applied for 1 min every 4 95

Page 78: Universidade Federal do Rio Grande do Norte Centro de

77

min (n=45). Two other groups were also maintained under total sleep deprivation 96

conditions and received additional drug treatments: (4) Total sleep deprivation + Ethanol 97

group (acute dose of 0.5% alcohol, for 1 hour exposure; n=45) and (5) Total sleep 98

deprivation + Melatonin group (10 days of chronic exposure to 100nM melatonin; n=45). 99

The light:dark cycle manipulations were maintained for 72h prior to the learning test. 100

The ethanol concentration was achieved by diluting ethanol (99,8% P.A– ACS, 101

Dinâmica) in the tank water to a final concentration of 0.5% in a 15L tank, a dose 102

previously shown to be stimulatory [47]. Ethanol exposure took place 1-hour prior to the 103

onset of the dark phase. Melatonin (cat#M5250, Sigma-Aldrich) was also diluted directly 104

in the tank water at a final concentration of 100nM. The melatonin treatment continued 105

for 10 continuous days, 24h per day, with the tank water and drug concentration being 106

replaced every day(adapted from Zhdanova et al. [48]). 107

108

2.3.Conditioning test 109

The appetitive conditioning protocol was modified from a study by Pather and Gerlai 110

[43]. Zebrafish from each group described above were transferred from their home tank 111

to a testing tank (40 x 25 x 20 cm, width x depth x height) and tested once individually. 112

The testing tank was divided in half by a white partition with a 2cm opening at the 113

bottom which allowed the fish to swim from one side to the other (Fig. 1). Two monitors 114

(LG-Flatron E2011P-BN, 20”) were placed on opposite sides of the testing tank on the 115

outside. The monitors were connected to a desktop computer (Intel Pentium G3220 116

3.00GHZ) that ran a software application that presented animated zebrafish images at 117

varying intervals on each monitor. Zebrafish are a highly social species and prefer to stay 118

Page 79: Universidade Federal do Rio Grande do Norte Centro de

78

in close proximity to their conspecifics both in nature and in the laboratory[45]. Zebrafish 119

also respond in a similar manner to computer-animated conspecific images as to they do 120

to live conspecifics [46,49]. Ruhl and McRobert [50] have shown differences in sex and 121

body size preferences during shoal formation in zebrafish, thus, we used an image of six 122

zebrafish of mixed sexes and similar body sizes compared to the experimental fish to 123

simulate naturally occurring shoals of zebrafish. 124

The animated conspecific image was presented on: (a) one side only, (b) alternating 125

sides, and (c) random sides. 15 fish from each of the 4 groups were presented images as 126

described above (random side presentations were not applied to the control group). For 127

the one side only presentations, half of the experimental fish received the stimulus on the 128

left side and half on the right side of the tank. We expected that when images were 129

presented only on one side, zebrafish would prefer to stay on the stimulus side. In 130

contrast, when images were presented on alternating sides, zebrafish were expected to 131

learn to shuttle back and forth due to the rewarding nature of the stimulus, allowing the 132

quantification of learning performance. 133

After being introduced to the testing tank, experimental fish were shown a blank 134

screen for 2 min (habituation). An image of conspecifics was presented for 30s always 135

starting on the left side of the tank followed by an interval of 60s without the stimulus 136

(both screens blank) this was repeated 20 times, with additional images presented either 137

on the same side, alternating sides, or random sides. Therefore, we had 20 stimulus 138

presentations and 20 inter stimulus intervals (ISI). Fish were tested individually and their 139

behavior was recorded using a handycam (Sony Digital Video Camera Recorder; DCR-140

Page 80: Universidade Federal do Rio Grande do Norte Centro de

79

SX45) positioned 1.5 m away in front of the testing tank. The tests were conducted 141

between 9am and 4pm. 142

143

2.4.Behavioral analysis 144

The video recordings were analyzed using ZebTrack, a video tracking software 145

developed in MatLab, previously described by Pinheiro-da-Silva et al. (Unpublished 146

results). We quantified the amount of time zebrafish spent on each side of the tank during 147

the 30s of stimulus presentation and during the 60s of inter stimulus interval (ISI) for all 148

20 sessions. We also analyzed other behavioral parameters such as average and 149

maximum speed, total distance traveled and freezing. 150

151

2.5.Statistics 152

To apply inferential statistics, we first evaluated the data by an exploratory 153

analysis due to potential problems with outliers, homogeneity, normality, zero 154

trouble, collinearity and variables independency, as suggested by Zuur et al. [51]. 155

The average time zebrafish spent on the stimulus side was averaged into separate 156

blocks consisting of 5 stimulus trials and were compared by Repeated Measures 157

Analysis of Variance (RM ANOVA) for each group depending on whether the 158

stimulus was presented on one side only, alternating sides or random sides. The time 159

fish spent on the stimulus to-be side during the 20 ISI was also averaged into blocks 160

(every four ISI) and different groups were compared using RM ANOVA depending 161

on the presentation scheme. 162

Page 81: Universidade Federal do Rio Grande do Norte Centro de

80

Average and maximum speed, freezing and distance travelled were also compared 163

between the groups after pooling data from the 3 different presentation schemes using 164

One-way ANOVA. For all comparison, the probability level considered for 165

significance was p≤0.05. 166

To develop a model for the time spent on the correct side of the tank (response 167

variable) and the explanatory variable (stimulus or ISI trials and treatments), we used 168

a mixed effects model analysis for longitudinal data. The term longitudinal is related 169

to repeated measures of the response variable through time [51]. The mixed models 170

presented random effect factors (represented by the variation within our zebrafish 171

behavior), fixed effect factors (represented by the influence of the explicative 172

variables: stimulus trials and treatments) and error. 173

To develop the mixed model, we used the glmmPQL command from the MASS 174

package [52] of the R program [53]. We decided to use this algorithm on the 175

glmmPQL command due to the abnormal distribution and overdispersed 176

characteristics presented by the residuals of the response variable during the 177

exploratory analysis. Moreover, the response variable was discrete quantitative data 178

that varied between 0 and 30 (stimulus trials) or 0 and 60 (ISI), which may present a 179

binomial distribution error with logit link function (according to Zurr et al. [51]). The 180

glmmPQL command was effective because it presents mixed generalized models with 181

a ‘quasi’ distribution, suggesting the data was overdispersed. 182

183

3. Results 184

Page 82: Universidade Federal do Rio Grande do Norte Centro de

81

Here we analyzed two types of behavior: (1) response to the stimulus, and (2) 185

learning performance. 186

For the groups that received 20 trials of stimulus on only one side of the tank, the 187

mixed models comparison showed that the total SD group differed from all other groups 188

in the amount of time spent on the stimulus side of the tank (Table 1). Comparing the 189

means of 5 stimulus trials (blocks) by RM ANOVA revealed significant differences in 190

the time spent near the stimulus between different groups. The control and the total SD + 191

Eth groups spent more time on the stimulus side starting from the 6th stimulus 192

presentation (Control group: F=6.725 p=0.007, Fig. 2b; total SD + Eth: F=3.379 p=0.054, 193

Fig. 2h). The partial SD and the total SD + Mel groups spent more time near the stimulus 194

side by the second half of the stimulus presentations (RM Anova: partial SD group: 195

F=5.842 p<0.011, Fig. 2d; total SD + Mel: F=5.48 p=0.013, Fig. 2j). The total SD group 196

did not show a significant difference in the time spent on the stimulus side of the tank 197

even after 20 stimulus presentations (RM Anova: total SD group: F=2.988 p=0.073, Fig. 198

2f). 199

When the group image was presented on opposite sides, the mixed models 200

comparison showed there were no differences in the time spent on the stimulus side 201

between the control group and any of the other groups (Table 1). The RM ANOVA for 202

the blocks of each 4 stimulus trial showed significant differences for the control, partial 203

SD and total SD + Eth groups (Control group: F=6.649 p=0.023, Fig. 3b; partial SD 204

group: F= 3.89 p=0.037, Fig. 3d; total SD + Eth: F=4.451 p=0.0477, Fig. 3h). Both the 205

total SD and total SD + Mel groups did not show differences between the different blocks 206

Page 83: Universidade Federal do Rio Grande do Norte Centro de

82

(RM Anova, total SD group: F=2.308 p=0.128, Fig. 3f; total SD + Mel: F=1.006 207

p=0.424, Fig. 3j). 208

When the stimulus was presented on random sides, the mixed models did not show 209

any significant differences in the time spent on the stimulus side (Table 1). RM ANOVA 210

for the blocks (5 stimulus trials) did not show any differences between any groups (RM 211

Anova, partial SD group: F=3.601 p=0.046, Fig. 4b; total SD group: F=0.573 p=0.644, 212

Fig. 4d; total SD + Eth: F=1.201 p=0.351, Fig. 4f; total SD + Mel: F=0.711 p=0.564, Fig. 213

4h). 214

Figures 5, 6 and 7 showed that the time spent next to the stimulus presentation side 215

during the ISI for the groups that received the stimulus presentation scheme on one side 216

only, opposite sides and random sides, respectively. In Fig. 5, when the conspecific 217

image was presented on the same side only, zebrafish in the control, partial SD, and SD + 218

Eth groups increased the time spent on the side where the stimulus would appear next 219

(stimulus-to-be side) over time. However, no such increase was observed in the total SD 220

and total SD + Mel groups. Fig. 6 shows the amount of time zebrafish spent on the 221

stimulus-to-be side during the ISI when the conspecific image was presented on 222

alternating sides. Zebrafish in the control, partial SD and total SD + Eth groups spent 223

more time on the stimulus-to-be side during the ISI near the end of the testing session. 224

Fig. 7 shows that when the conspecific image was presented on random sides of the tank, 225

zebrafish did not spend more time on the stimulus-to-be side over time. 226

A comparison of time spent on the stimulus-to-be side across the 20 ISI using the 227

mixed model is shown in Table 2. We found that when conspecific images were 228

presented on one side only or on alternating sides, the total sleep deprived group differed 229

Page 84: Universidade Federal do Rio Grande do Norte Centro de

83

from the control group, and the total SD group differed from the partial SD group when 230

conspecific images were presented on random sides. When we compared the mean time 231

spent in the stimulus-to-be side for each 4 ISI blocks, RM ANOVA indicated that in the 232

one side only presentation condition, only the total SD and total SD + Mel group showed 233

no differences between trials (RM ANOVA, control: F=12.669 p<0.001; partial SD 234

group: F=11.756 p<0.001; total SD group: F=0.258 p=0.899; total SD + Eth: F=26.682 235

p<0.001; total SD + Mel: F=0.371 p=0.825, Fig. 8). Fig. 8b shows that the control, partial 236

SD and total SD + Eth groups increased the time spent on the stimulus-to-be side across 237

trials during the ISI (RM ANOVA, control: F=12.196 p<0.001; partial SD group: F= 238

4.468 p=0.019; total SD group: 0.080 p=0.987; total SD + Eth: F=4.406 p=0.02; total SD 239

+ Mel: F=0.503 p=0.734). When conspecific images were presented on random sides, 240

only the partial SD group showed significant differences between blocks (RM Anova, 241

partial SD group: F=3.755 p=0.033; total SD group: F=2.383 p=0.11; total SD + ethanol: 242

F=2.584 p=0.091; total SD + melatonin: F=0.176 p=0.947, Fig. 8c). 243

Analysis of locomotor parameters revealed that maximum speed was the highest for 244

the partial SD group (One way ANOVA, F= 11.28 p<0.001, Fig. 9a), while average 245

speed was higher for partial SD and total SD + Eth and lower for the control group (One 246

way Anova, F=12.31 p<0.001, Fig. 9b). One way ANOVA found no significant 247

differences in freezing between the different groups (F=1.85 p=0.12, Fig. 9c). The total 248

distance travelled was higher for the control, partial SD and total SD + Eth and lower for 249

total SD and total SD + Mel groups (One way Anova, F=11.71 p<0.001, Fig. 9d). 250

251

4. Discussion 252

Page 85: Universidade Federal do Rio Grande do Norte Centro de

84

In the current study, we demonstrate that sleep deprivation impairs learning 253

performance in a spatial associative learning task in zebrafish (Danio rerio). Sleep 254

deprivation for 72 consecutive hours was shown to interfere with stimuli perception, as 255

well as impair fish’s performance in the learning task. While partial sleep deprivation did 256

not impair learning performance, total sleep deprivation combined with ethanol exposure 257

increased learning performance, whereas total sleep deprivation combined with melatonin 258

did not. 259

Our findings confirm previous studies where zebrafish (controlled sleep and absence 260

of drugs) showed appetitive reinforcement-based learning in a spatial alternation task 261

[40,43]and also in other associative learning tasks [54–63]. We also show here that sleep 262

deprived animals were unable to properly respond to the stimuli, even when receiving 263

melatonin treatment (commonly referred to as a ‘sleep hormone’). However, fish that 264

were sleep deprived and exposed to alcohol responded to the stimulus in a similar manner 265

as the control group. 266

The stimulus we used in the learning task proposed herein was a computer animated 267

zebrafish group image. Qin et al.[49]have previously shown that live conspecifics (inside 268

or outside the tank) or computer images (2D or 3D) are equally effective to induce robust 269

shoaling behavior in zebrafish. The zebrafish is a highly social species that prefers 270

swimming in groups [64], as other shoaling fish species [65,66]. Zebrafish can recognize 271

conspecifics and exhibit preference for groups with similar characteristics. Shoaling may 272

reduce predation risks, facilitate foraging and boost reproductive success [46,67]. 273

However, a recurrent lack of sleep leads to a sleep debt that has physical and 274

psychological implications: simple mental tasks may become more difficult and 275

Page 86: Universidade Federal do Rio Grande do Norte Centro de

85

perception, attention and vigilance may become distorted [68]. 276

While there is a general agreement that an inadequate amount of sleep results in a 277

slower reaction time, there is little consensus on the effects of sleep deprivation on higher 278

cognitive abilities [55,68–71], including learning and memory. In this study, when the 279

stimulus was presented on only one side of the tank or on alternating sides, it was 280

expected to attract the experimental fish to the specific side where the conspecifics image 281

was shown (random sides was used as a control for possible place preference response). 282

Although there was a more robust shoaling response when the stimulus was presented on 283

one side only compared to when the stimulus was presented on alternating sides, our 284

results show that fish from the control (12L:12D), partial SD and total SD+Eth groups 285

responded to the stimulus in a similar manner and exhibited a preference for the stimulus 286

presentation (Fig.2 and Fig.3). In contrast, the total SD and total SD+Mel groups did not 287

exhibit a preference for the stimulus, at least within the 30 s of stimulus presentation. 288

Although sleep deprivation impaired behavioral responses to conspecific images 289

(Fig.2 and Fig.3), this may be due to the effect of sleep deprivation on locomotion. 290

However, this is unlikely the case since average and maximum swimming speeds were 291

not significantly different between the total SD and the control group (Figs. 9a and Fig. 292

9b). Similar findings have been reported by Yokogawa et al. [32] who found that several 293

hours of sleep deprivation reduced activity levels in adult zebrafish. 294

The spatial associative task in this study consisted of a 30 s stimulus presentation 295

followed by a 60 s inter stimulus interval (ISI). Despite the fact that zebrafish spent time 296

near the conspecific image during the presentation period, we expected zebrafish to learn 297

the pattern of presentation and anticipate the next side where the stimulus would appear, 298

Page 87: Universidade Federal do Rio Grande do Norte Centro de

86

and respond by moving to that place during the next ISI. When the stimulus was 299

presented on one side only, our results indicate that the control, partial SD and total 300

SD+Eth groups increased the time on the stimulus presentation side, even when the 301

stimulus was not there (Figs. 5a, b, d and 8a), whereas total SD and total SD+Mel groups 302

did not exhibit this response (Figs. 5c, e and 8a). 303

By presenting the stimulus on alternating sides, we examined the fish’s ability to 304

learn a slightly more complex presentation pattern. Due to the task design, the animals 305

had to choose between right or left side of the tank, thus, it was expected that by random 306

chance, 50% of choices during all trials would be correct. Fig. 6 shows that animals were 307

making random choices in the first half of the trials during the ISI, but significantly 308

increased the time on stimulus-to-be side by the second half of the trials, indicating that 309

the control, partial SD and total SD+Eth groups learned to wait for the presentation of the 310

stimulus on the correct side of the tank (Fig. 6a, b, d and 8b) while the total SD and total 311

SD+Mel groups did not (Fig. 6c, e and 8b). 312

By presenting the stimulus on random sides, we confirmed that zebrafish did not 313

simply exhibit a side bias. As expected, since the unpredictable presentation of the 314

stimulus does not predict the location of the next stimulus presentation, none of the 315

groups exhibited a preference during the ISI (Fig. 7 and 8c). 316

Overall, our results are in line with Pather and Gerlai [43], which suggests associative 317

learning performance in this task is driven by an animal's motivation to join groups. 318

However, the total SD group did not exhibit a preference for the stimulus suggesting this 319

group may not perceive the conspecific image as rewarding. In this case, the stimulus 320

may not have been rewarding enough to reinforce learning. Moreover, we observed that 321

Page 88: Universidade Federal do Rio Grande do Norte Centro de

87

SD decreased locomotor behavior in zebrafish, as shown in Fig. 9, similar to the effects 322

of SD effects on rest-activity rhythm [72]. Sleep deprivation was also shown to cause 323

changes in daytime locomotor activity as well as enhance arousal thresholds on the 324

following day [36]. 325

In addition to the negative effects of SD on learning performance, we also examined 326

the effects of two drugs known to affect sleep: ethanol and melatonin. Ethanol has been 327

shown to induced behavioral changes in zebrafish [73], impaired coordination and 328

swimming, as well as alter fear and anxiety responses [47]. Melatonin is a pineal-329

produced hormone shown to promote sleep and entrain circadian rhythmicity [36,74]. 330

In our tests, the total SD+Eth group exhibited a preference for the stimulus and 331

learned to anticipate the presentation of the stimulus when it presented on one side only 332

and on alternating sides similar to the control group. Ethanol is classified as a depressant 333

[75] with sedative effects [76] and exposure on the last night of sleep deprivation may 334

have promoted sleep-like behavior. This hypothesis is supported by Roehrs and Roth 335

[77] and Williams and Salamy [35] who found that ethanol changes sleep structure, in 336

addition to its sedative and sleep-promoting effects. 337

Studies in humans have shown that an ethanol dose of 0.16% reduced sleep latency 338

and increased sleep time [77,78]. While zebrafish and humans are phylogenetically 339

distant, it is worth exploring potential links between sleep and ethanol consumption 340

However, we should take into account that ethanol is still a drug and (1) may cause 341

tolerance and dependence [59,79,80], (2) under uncontrolled use results in the disruption 342

of sleep architecture and continuity [81], (3) chronic heavy consumption leads to neural 343

damage [59], (4) there is no effective treatment for alcoholism [82] and (5) sleep 344

Page 89: Universidade Federal do Rio Grande do Norte Centro de

88

disorders may persist even after the cessation of ethanol consumption [83]. Therefore, 345

even though we have found improved learning performance in the total SD + Eth group, 346

additional research still needs to be conducted. 347

Another sleep deprived group in our study was treated with melatonin for 10 days 348

before the test (total SD+Mel). Although this group showed a slightly different response 349

pattern, we noticed that fish responded to the stimulus presentation when images were 350

presented on one side only (Fig. 2j). However, learning performance was impaired for 351

this group compared to controls. Studies have already shown that exogenous melatonin 352

facilitates daytime and nighttime sleep, without changing sleep structure and duration 353

[37,84–86]. Our findings suggest that exogenous melatonin administration may have 354

promoted sleep in fish in the total SD condition which may have contributed to the 355

perception of the conspecific stimulus when presented on one side only (Fig. 2d), but not 356

when images were presented on alternating sides (Fig. 3d). 357

In contrast, behavioral parameters such as average speed, freezing and total distance 358

traveled were similar between total SD and total SD + Mel groups (Fig. 9), suggesting 359

that melatonin treatment was not effective in altering these behavioral measures. Light is 360

the most important environmental factor influencing melatonin levels [87], which favors 361

sleep behavior in appropriate sleeping conditions (silence, dim light or dark)[88,89]. 362

Rawashdeh et al. [90] have shown that melatonin suppresses memory formation and 363

associated melatonin with poor performance in diurnal animals during nocturnal learning 364

tasks which may explain our results. 365

Although zebrafish have recently been used as an effective model in learning and 366

memory tests, data the effect of sleep deprivation on cognitive task performance has not 367

Page 90: Universidade Federal do Rio Grande do Norte Centro de

89

been published to date. In this paper we utilized a previously validated protocol to test the 368

effects of SD on a spatial associative learning task. We found that sleep deprived animals 369

exhibited poor cognitive performance. 370

Behavioral studies represent an important method to identify neuropathology. The 371

finding that SD impairs learning performance implies that sleep deprivation affects brain 372

function in fish, as previously seen in mammals [91–93]. Therefore, the zebrafish 373

represents a useful vertebrate model to investigate the molecular mechanisms regulating 374

sleep, learning, and their interaction. Although research on the effect of sleep deprivation 375

on cognitive function using zebrafish is still in its infancy, we presented robust results 376

showing the negative effects of SD on a simple and complex learning task, with alcohol 377

exposure increasing learning performance in sleep deprived fish. Furthermore, our results 378

reinforce the utility of zebrafish as an appropriate model for the proposed analysis. 379

380

5. Acknowledgements 381

We would like to thank Mr Rafael Revorêdo, Ms Heloysa Araújo and Ms Maria 382

Elisa Leite for skillful technical assistance. The authors declare no competing 383

interests. 384

385

6. References 386

[1] B. Kolb, I.Q. Whishaw, Brain plasticity and behavior, Annu. Rev. Psychol. 49 387

(1998) 43–64. 388

[2] J. Grafman, Conceptualizing functional neuroplasticity, J. Commun. Disord. 33 389

(2000) 345–356. doi:10.1016/S0021-9924(00)00030-7. 390

[3] I. Amrein, Adult hippocampal neurogenesis in natural populations of mammals, 391

Cold Spring Harb. Perspect. Biol. 7 (2015) a021295. 392

[4] E. Gould, A.J. Reeves, M.S.A. Graziano, C.G. Gross, Neurogenesis in the 393

Page 91: Universidade Federal do Rio Grande do Norte Centro de

90

neocortex of adult primates, Science (80-. ). 286 (1999) 548–552. 394

doi:10.1126/science.286.5439.548. 395

[5] M. Sison, R. Gerlai, Associative learning in zebrafish (Danio rerio) in the plus 396

maze, Behav. Brain Res. 207 (2010) 99–104. doi:10.1016/j.bbr.2009.09.043. 397

[6] T.D. Johnston, Selective costs and benefits in the evolution of learning, Adv. Study 398

Behav. 12 (1982) 65. 399

[7] A.C. Luchiari, D.C. Salajan, R. Gerlai, Acute and chronic alcohol administration: 400

Effects on performance of zebrafish in a latent learning task, Behav. Brain Res. 401

282 (2015) 76–83. doi:10.1016/j.bbr.2014.12.013. 402

[8] N. Sasson, N. Tsuchiya, R. Hurley, S.M. Couture, D.L. Penn, R. Adolphs, et al., 403

Orienting to social stimuli differentiates social cognitive impairment in autism and 404

schizophrenia, Neuropsychologia. 45 (2007) 2580–2588. 405

[9] E.D. Levin, F.J. McClernon, A.H. Rezvani, Nicotinic effects on cognitive 406

function: behavioral characterization, pharmacological specification, and anatomic 407

localization, Psychopharmacology (Berl). 184 (2006) 523–539. 408

[10] M.H. Schmidt, The energy allocation function of sleep: a unifying theory of sleep, 409

torpor, and continuous wakefulness, Neurosci. Biobehav. Rev. 47 (2014) 122–153. 410

doi:10.1016/j.neubiorev.2014.08.001. 411

[11] J.M. Siegel, Do all animals sleep?, Trends Neurosci. 31 (2008) 208–213. 412

doi:10.1016/j.tins.2008.02.001. 413

[12] R. Lent, Cem bilhões de neurônios: conceitos fundamentais de neurociência, 414

Atheneu, 2004. 415

[13] N.R. Carlson, Physiology of behavior ., Allyn & Bacon, 1986. 416

[14] H.R. Colten, B.M. Altevogt, Sleep disorders and sleep deprivation: an unmet 417

public health problem. Institute of Medicine, (2006). 418

[15] O.I. Lyamin, P.R. Manger, S.H. Ridgway, L.M. Mukhametov, J.M. Siegel, 419

Cetacean sleep: an unusual form of mammalian sleep, Neurosci. Biobehav. Rev. 420

32 (2008) 1451–1484. 421

[16] J.M. Siegel, Clues to the functions of mammalian sleep, Nature. 437 (2005) 1264–422

1271. doi:10.1038/nature04285. 423

[17] E. Kelemen, M. Bahrendt, J. Born, M. Inostroza, Hippocampal corticosterone 424

impairs memory consolidation during sleep but improves consolidation in the 425

wake state, Hippocampus. 24 (2014) 510–515. doi:10.1002/hipo.22266. 426

[18] M. Inostroza, S. Binder, J. Born, Sleep-dependency of episodic-like memory 427

consolidation in rats, Behav. Brain Res. 237 (2013) 15–22. 428

doi:10.1016/j.bbr.2012.09.011. 429

[19] C.-C. Lo, T. Chou, T. Penzel, T.E. Scammell, R.E. Strecker, H.E. Stanley, et al., 430

Common scale-invariant patterns of sleep-wake transitions across mammalian 431

species., Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 17545–8. 432

doi:10.1073/pnas.0408242101. 433

[20] A. V. Kalueff, A.M. Stewart, R. Gerlai, Zebrafish as an emerging model for 434

Page 92: Universidade Federal do Rio Grande do Norte Centro de

91

studying complex brain disorders, Trends Pharmacol. Sci. 35 (2014) 63–75. 435

doi:10.1016/j.tips.2013.12.002. 436

[21] A. Miklósi, R.J. Andrew, The zebrafish as a model for behavioral studies., 437

Zebrafish. 3 (2006) 227–234. doi:10.1089/zeb.2006.3.227. 438

[22] P. Panula, Hypocretin/orexin in fish physiology with emphasis on zebrafish., Acta 439

Physiol. (Oxf). 198 (2010) 381–6. doi:10.1111/j.1748-1716.2009.02038.x. 440

[23] R. Gerlai, Editorial: A small fish with a big future: Zebrafish in behavioral 441

neuroscience: Rev. Neurosci., Rev. Neurosci. 22 (2011) 3–4. 442

doi:10.1515/RNS.2011.002. 443

[24] J. Kaslin, P. Panula, Comparative anatomy of the histaminergic and other 444

aminergic systems in zebrafish (Danio rerio), J. Comp. Neurol. 440 (2001) 342–445

377. 446

[25] J. Holzschuh, S. Ryu, F. Aberger, W. Driever, Dopamine transporter expression 447

distinguishes dopaminergic neurons from other catecholaminergic neurons in the 448

developing zebrafish embryo, Mech. Dev. 101 (2001) 237–243. 449

doi:10.1016/S0925-4773(01)00287-8. 450

[26] H. Teraoka, C. Russell, J. Regan, A. Chandrasekhar, M.L. Concha, R. Yokoyama, 451

et al., Hedgehog and Fgf signaling pathways regulate the development of tphR-452

expressing serotonergic raphe neurons in zebrafish embryos, J. Neurobiol. 60 453

(2004) 275. 454

[27] J. Kaslin, J.M. Nystedt, M. Ostergård, N. Peitsaro, P. Panula, The 455

orexin/hypocretin system in zebrafish is connected to the aminergic and 456

cholinergic systems., J. Neurosci. 24 (2004) 2678–89. 457

doi:10.1523/JNEUROSCI.4908-03.2004. 458

[28] D.L. McLean, J.R. Fetcho, Ontogeny and innervation patterns of dopaminergic, 459

noradrenergic, and serotonergic neurons in larval zebrafish., J. Comp. Neurol. 480 460

(2004) 38–56. doi:10.1002/cne.20280. 461

[29] T. Mueller, P. Vernier, M.F. Wullimann, The adult central nervous cholinergic 462

system of a neurogenetic model animal, the zebrafish Danio rerio., Brain Res. 463

1011 (2004) 156–69. doi:10.1016/j.brainres.2004.02.073. 464

[30] J.H. Faraco, L. Appelbaum, W. Marin, S.E. Gaus, P. Mourrain, E. Mignot, 465

Regulation of hypocretin (orexin) expression in embryonic zebrafish., J. Biol. 466

Chem. 281 (2006) 29753–61. doi:10.1074/jbc.M605811200. 467

[31] D.A. Prober, J. Rihel, A.A. Onah, R.-J. Sung, A.F. Schier, Hypocretin/orexin 468

overexpression induces an insomnia-like phenotype in zebrafish., J. Neurosci. 26 469

(2006) 13400–10. doi:10.1523/JNEUROSCI.4332-06.2006. 470

[32] T. Yokogawa, W. Marin, J. Faraco, G. Pézeron, L. Appelbaum, J. Zhang, et al., 471

Characterization of sleep in zebrafish and insomnia in hypocretin receptor 472

mutants., PLoS Biol. 5 (2007) e277. doi:10.1371/journal.pbio.0050277. 473

[33] I. V Zhdanova, Sleep in zebrafish., Zebrafish. 3 (2006) 215–226. 474

doi:10.1089/zeb.2006.3.215. 475

Page 93: Universidade Federal do Rio Grande do Norte Centro de

92

[34] I. V Zhdanova, Sleep and its regulation in zebrafish, Rev. Neurosci. 22 (2011) 27–476

36. doi:10.1515/RNS.2011.005. 477

[35] H.L. Williams, A. Salamy, Alcohol and sleep, in: Biol. Alcohol., Springer, 1972: 478

pp. 435–483. 479

[36] I. V Zhdanova, S.Y. Wang, O.U. Leclair, N.P. Danilova, Melatonin promotes 480

sleep-like state in zebrafish, Brain Res. 903 (2001) 263–268. doi:10.1016/S0006-481

8993(01)02444-1. 482

[37] A.V. Gandhi, E. a. Mosser, G. Oikonomou, D.A. Prober, Melatonin Is Required 483

for the Circadian Regulation of Sleep, Neuron. (2015) 1–7. 484

doi:10.1016/j.neuron.2015.02.016. 485

[38] M. Earleywine, C.S. Martin, Anticipated Stimulant and Sedative Effects of 486

Alcohol Vary with Dosage and Limb of the Blood Alcohol Curve, Alcohol. Clin. 487

Exp. Res. 17 (1993) 135–139. doi:10.1111/j.1530-0277.1993.tb00738.x. 488

[39] D. Arthur, E.D. Levin, Spatial and non-spatial visual discrimination learning in 489

zebrafish (danio rerio), Anim. Cogn. 4 (2001) 125–131. 490

doi:10.1007/s100710100111. 491

[40] F.E. Williams, D. White, W.S. Messer, A simple spatial alternation task for 492

assessing memory function in zebrafish, Behav. Processes. 58 (2002) 125–132. 493

doi:10.1016/S0376-6357(02)00025-6. 494

[41] M. Sison, R. Gerlai, Associative learning performance is impaired in zebrafish 495

(Danio rerio) by the NMDA-R antagonist MK-801, Neurobiol. Learn. Mem. 96 496

(2011) 230–237. doi:10.1016/j.nlm.2011.04.016. 497

[42] T. Lucon-Xiccato, M. Dadda, Assessing memory in zebrafish using the one-trial 498

test., Behav. Processes. 106 (2014) 1–4. doi:10.1016/j.beproc.2014.03.010. 499

[43] S. Pather, R. Gerlai, Shuttle box learning in zebrafish (Danio rerio), Behav. Brain 500

Res. 196 (2009) 323–327. doi:10.1016/j.bbr.2008.09.013. 501

[44] J. Bilotta, M.L. Risner, E.C. Davis, S.J. Haggbloom, Assessing appetitive choice 502

discrimination learning in zebrafish., Zebrafish. 2 (2005) 259–268. 503

doi:10.1089/zeb.2005.2.259. 504

[45] R.E. Engeszer, L.A. Da Barbiano, M.J. Ryan, D.M. Parichy, Timing and plasticity 505

of shoaling behaviour in the zebrafish, Danio rerio, Anim. Behav. 74 (2007) 1269–506

1275. 507

[46] C. Saverino, R. Gerlai, The social zebrafish: Behavioral responses to conspecific, 508

heterospecific, and computer animated fish, Behav. Brain Res. 191 (2008) 77–87. 509

doi:10.1016/j.bbr.2008.03.013. 510

[47] R. Gerlai, M. Lahav, S. Guo, a Rosenthal, Drinks like a fish: zebra fish (Danio 511

rerio) as a behavior genetic model to study alcohol effects., Pharmacol. Biochem. 512

Behav. 67 (2000) 773–82. http://www.ncbi.nlm.nih.gov/pubmed/11166068. 513

[48] I.V. Zhdanova, L. Yu, M. Lopez-Patino, E. Shang, S. Kishi, E. Guelin, Aging of 514

the circadian system in zebrafish and the effects of melatonin on sleep and 515

cognitive performance, Brain Res Bull. 275 (2008) 433–441. 516

Page 94: Universidade Federal do Rio Grande do Norte Centro de

93

doi:10.1016/j.biotechadv.2011.08.021.Secreted. 517

[49] M. Qin, A. Wong, D. Seguin, R. Gerlai, Induction of social behavior in zebrafish: 518

live versus computer animated fish as stimuli, Zebrafish. 11 (2014) 185–197. 519

doi:10.1089/zeb.2013.0969. 520

[50] N. Ruhl, S.P. McRobert, The effect of sex and shoal size on shoaling behaviour in 521

Danio rerio, J. Fish Biol. 67 (2005) 1318–1326. doi:10.1111/j.0022-522

1112.2005.00826.x. 523

[51] A.F. Zuur, E.N. Ieno, C.S. Elphick, A protocol for data exploration to avoid 524

common statistical problems, Methods Ecol. Evol. 1 (2010) 3–14. 525

[52] W.N. Venables, B.D. Ripley, Modern Applied Statistics with S, (2003). 526

[53] R.C. Team, R: A Language and environment for statistical computing (R 527

foundation for statistical computing, Vienna, 2012), URL Http// Www. R-Project. 528

Org. (2015). 529

[54] R.M. Colwill, M.P. Raymond, L. Ferreira, H. Escudero, Visual discrimination 530

learning in zebrafish (Danio rerio), Behav. Processes. 70 (2005) 19–31. 531

doi:10.1016/j.beproc.2005.03.001. 532

[55] L. Yu, V. Tucci, S. Kishi, I. V. Zhdanova, Cognitive aging in zebrafish, PLoS 533

One. 1 (2006) e14. doi:10.1371/journal.pone.0000014. 534

[56] J.T. Pittman, C.S. Lott, Startle response memory and hippocampal changes in adult 535

zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors, 536

Physiol. Behav. 123 (2014) 174–179. doi:10.1016/j.physbeh.2013.10.023. 537

[57] L. Al-Imari, R. Gerlai, Sight of conspecifics as reward in associative learning in 538

zebrafish (Danio rerio)., Behav. Brain Res. 189 (2008) 216–9. 539

doi:10.1016/j.bbr.2007.12.007. 540

[58] A.C. Luchiari, D.M.M. Chacon, Physical exercise improves learning in zebrafish, 541

Danio rerio, Behav. Processes. (2013). doi:10.1016/j.beproc.2013.07.020. 542

[59] D.M. Chacon, A.C. Luchiari, A dose for the wiser is enough: The alcohol benefits 543

for associative learning in zebrafish, Prog. Neuro-Psychopharmacology Biol. 544

Psychiatry. 53 (2014) 109–115. doi:10.1016/j.pnpbp.2014.03.009. 545

[60] O.R. Braubach, H.-D. Wood, S. Gadbois, A. Fine, R.P. Croll, Olfactory 546

conditioning in the zebrafish (Danio rerio), Behav. Brain Res. 198 (2009) 190–547

198. 548

[61] L.M. Gómez-Laplaza, R. Gerlai, Latent learning in zebrafish (Danio rerio), Behav. 549

Brain Res. 208 (2010) 509–515. 550

[62] I. Karnik, R. Gerlai, Can zebrafish learn spatial tasks? An empirical analysis of 551

place and single CS–US associative learning, Behav. Brain Res. 233 (2012) 415–552

421. 553

[63] L.C. Santos, J.R. Oliveira, J.J. Oliveira, P.F. Silva, A.C. Luchiari, Irish coffee: 554

Effects of alcohol and caffeine on object discrimination in zebrafish, Pharmacol. 555

Biochem. Behav. (n.d.). doi:10.1016/j.pbb.2016.01.013. 556

[64] T.J. Pitcher, Heuristic definitions of fish shoaling behaviour, Anim. Behav. 31 557

Page 95: Universidade Federal do Rio Grande do Norte Centro de

94

(1983) 611–613. 558

[65] J. Krause, J. Godin, D. Brown, Size‐assortativeness in multi‐species fish shoals, J. 559

Fish Biol. 49 (1996) 221–225. 560

[66] M.S. Pollock, R.J. Pollock, D.P. Chivers, Social context influences the 561

antipredator behaviour of fathead minnows to chemical alarm cues, Ethology. 112 562

(2006) 801–806. 563

[67] M. Sison, R. Gerlai, Behavioral performance altering effects of MK-801 in 564

zebrafish (Danio rerio), Behav. Brain Res. 220 (2011) 331–337. 565

doi:10.1016/j.bbr.2011.02.019. 566

[68] W.D.S. Killgore, Effects of sleep deprivation on cognition, in: Prog. Brain Res., 567

Prog Brain Res., 2010: pp. 105–129. doi:10.1016/B978-0-444-53702-7.00007-5. 568

[69] P. Alhola, P. Polo-Kantola, Sleep deprivation: Impact on cognitive performance, 569

Neuropsychiatr. Dis. Treat. 3 (2007) 553–567. 570

[70] D.J. Raidy, L.F. V Scharff, Effects of sleep deprivation on auditory and visual 571

memory tasks., Percept. Mot. Skills. 101 (2005) 451–467. 572

[71] T.-M. Prince, T. Abel, The impact of sleep loss on hippocampal function., Learn. 573

Mem. 20 (2013) 558–69. doi:10.1101/lm.031674.113. 574

[72] I. Tobler, M. Herrmann, H.M. Cooper, J. Negroni, E. Nevo, P. Achermann, Rest-575

activity rhythm of the blind mole rat Spalax ehrenbergi under different lighting 576

conditions, Behav. Brain Res. 96 (1998) 173–183. doi:10.1016/S0166-577

4328(98)00012-6. 578

[73] S. Tran, M. Nowicki, D. Chatterjee, R. Gerlai, Acute and chronic ethanol exposure 579

differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in 580

the zebrafish liver, Prog. Neuro-Psychopharmacology Biol. Psychiatry. 56 (2015) 581

221–226. doi:10.1016/j.pnpbp.2014.09.011. 582

[74] A. Brzezinski, M.G. Vangel, R.J. Wurtman, G. Norrie, I. Zhdanova, A. Ben-583

Shushan, et al., Effects of exogenous melatonin on sleep: a meta-analysis, Sleep 584

Med. Rev. 9 (2005) 41–50. 585

[75] M.E. Charness, R.P. Simon, D.A. Greenberg, Ethanol and the nervous system, N. 586

Engl. J. Med. 321 (1989) 442–454. 587

[76] T. Roehrs, K. Papineau, L. Rosenthal, T. Roth, Ethanol as a hypnotic in 588

insomniacs: self administration and effects on sleep and mood, 589

Neuropsychopharmacology. 20 (1999) 279–286. 590

[77] T. Roehrs, T. Roth, Sleep, sleepiness, and alcohol use, Alcohol Res. Heal. 25 591

(2001) 101–109. 592

[78] B. Stone, Sleep and low doses of, Electroencephalogr Clin Neurophysiol. (1980) 593

706–709. 594

[79] D.E. Ford, D.B. Kamerow, Epidemiologic study of sleep disturbances and 595

psychiatric disorders: an opportunity for prevention?, Jama. 262 (1989) 1479–596

1484. 597

[80] M.M. Weissman, S. Greenwald, G. Niño-Murcia, W.C. Dement, The morbidity of 598

Page 96: Universidade Federal do Rio Grande do Norte Centro de

95

insomnia uncomplicated by psychiatric disorders, Gen. Hosp. Psychiatry. 19 599

(1997) 245–250. 600

[81] K.J. Brower, Insomnia, alcoholism and relapse, Sleep Med. Rev. 7 (2003) 523–601

539. doi:10.1016/S1087-0792(03)90005-0. 602

[82] V. Vengeliene, A. Bilbao, A. Molander, R. Spanagel, Neuropharmacology of 603

alcohol addiction, Br. J. Pharmacol. 154 (2008) 299–315. 604

doi:10.1038/bjp.2008.30. 605

[83] S. Drummond, J.C. Gillin, T.L. Smith, A. DeModena, The sleep of abstinent pure 606

primary alcoholic patients: natural course and relationship to relapse, Alcohol. 607

Clin. Exp. Res. 22 (1998) 1796–1802. 608

[84] J. Arendt, D.J. Skene, Melatonin as a chronobiotic, Sleep Med. Rev. 9 (2005) 25–609

39. doi:10.1016/j.smrv.2004.05.002. 610

[85] S.M.W. Rajaratnam, B. Middleton, B.M. Stone, J. Arendt, D.-J. Dijk, Melatonin 611

advances the circadian timing of EEG sleep and directly facilitates sleep without 612

altering its duration in extended sleep opportunities in humans., J. Physiol. 561 613

(2004) 339–51. doi:10.1113/jphysiol.2004.073742. 614

[86] B.M. Stone, C. Turner, S.L. Mills, A.N. Nicholson, Hypnotic activity of 615

melatonin., Sleep. 23 (2000) 663–669. 616

[87] F. a J.L. Scheer, C. a. Czeisler, Melatonin, sleep, and circadian rhythms, Sleep 617

Med. Rev. 9 (2005) 5–9. doi:10.1016/j.smrv.2004.11.004. 618

[88] D.E. Bunnell, S.P. Treiber, N.H. Phillips, R.J. Berger, Effects of evening bright 619

light exposure on melatonin, body temperature and sleep, J. Sleep Res. 1 (1992) 620

17–23. 621

[89] P. Lavie, Sleep-wake as a biological rhythm, Annu. Rev. Psychol. 52 (2001) 277–622

303. 623

[90] O. Rawashdeh, N.H. de Borsetti, G. Roman, G.M. Cahill, Melatonin suppresses 624

nighttime memory formation in zebrafish., Science. 318 (2007) 1144–1146. 625

doi:10.1126/science.1148564. 626

[91] D.N. Ruskin, C. Liu, K.E. Dunn, N.G. Bazan, G.J. LaHoste, Sleep deprivation 627

impairs hippocampus‐mediated contextual learning but not amygdala‐mediated 628

cued learning in rats, Eur. J. Neurosci. 19 (2004) 3121–3124. 629

[92] B. Rasch, J. Born, About sleep’s role in memory, Physiol. Rev. 93 (2013) 681–630

766. doi:10.1152/physrev.00032.2012. 631

[93] L.A. Graves, E.A. Heller, A.I. Pack, T. Abel, Sleep Deprivation Selectively 632

Impairs Memory Consolidation for Contextual Fear Conditioning, Learn. Mem. 10 633

(2003) 168–176. doi:10.1101/lm.48803. 634

635

Page 97: Universidade Federal do Rio Grande do Norte Centro de

96

Figure 1

Page 98: Universidade Federal do Rio Grande do Norte Centro de

97

Figure 2 One side only presentation

0

5

10

15

20

25

30

Tim

e in

eac

h si

de (s

)

Stimulus sideOpposite side

(a) Control (12L:12D)

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(b) Control

*

05

1015202530

Tim

e in

each

side

(s)

(c) Partial SD (18L:06D)

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(d) Partial SD

aab

bb

05

1015202530

Tim

e in

eac

h si

de (s

)

(e) Total SD (18L:06P)

0

5

10

15

20

25

30Ti

me

in th

e sti

mul

us s

ide

(s)

(f) Total SD

05

1015202530

Tim

e in

each

side

(s)

(g) Total SD +Eth

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(h) Total SD + Eth

*

0

510

152025

30

2 4 6 8 10 12 14 16 18 20

Tim

e in

eac

h si

de (s

)

Stimulus trials

(i) Total SD +Mel

0

5

10

15

20

25

30

1to5 6to10 11to15 16to20

Tim

e in

the

stim

ulus

sid

e (s

)

Stimulus trials

(j) Total SD + Mel

b

aab

ab

Page 99: Universidade Federal do Rio Grande do Norte Centro de

98

Figure 3 Opposite side presentation

0

5

10

15

20

25

30Ti

me

in e

ach

side

(s)

Stimulus sideOpposite side

(a) Control (12L:12D)

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(b) Control

a ab

ab

0

5

10

15

20

25

30

Tim

e in

eac

h sid

e (s

)

(c) Partial SD (18L:06D)

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(d) Partial SD

a abbab

05

1015202530

Tim

e in

eac

h sid

e (s

)

(e) Total SD (18L:06P)

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(f) Total SD

0

5

10

15

20

25

30

Tim

e in

eac

h sid

e (s

)

(g) Total SD +Eth

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(h) Total SD + Eth

aa

bb

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

Tim

e in

eac

h sid

e (s

)

Stimulus trials

(i) Total SD +Mel

0

5

10

15

20

25

30

1to5 6to10 11to15 16to20

Tim

e in

the

stim

ulus

sid

e (s

)

Stimuli trials

(j) Total SD + Mel

Page 100: Universidade Federal do Rio Grande do Norte Centro de

99

Figure 4

Random sides presentation

0

5

10

15

20

25

30

Tim

e in

eac

h sid

e (s

)

Stimulus side

Opposite side(a) Partial SD (18L:06D)

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(b) Partial SD

a

bab

ab

05

1015202530

Tim

e in

eac

h sid

e (s

)

(c) Total SD (18L:06P)

0

5

10

15

20

25

30

Tim

e in

the

stim

ulus

sid

e (s

)

(d) Total SD

05

1015202530

Tim

e in

eac

h sid

e (s

)

(e) Total SD +Eth

0

5

10

15

20

25

30Ti

me

in th

e sti

mul

us s

ide

(s)

(f) Total SD + Eth

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18

Tim

e in

eac

h sid

e (s

)

Stimulus trials

(g) Total SD +Mel

0

5

10

15

20

25

30

1to5 6to10 11to15 16to20

Tim

e in

the

stim

ulus

sid

e (s

)

Stimuli trials

(h) Total SD + Mel

Page 101: Universidade Federal do Rio Grande do Norte Centro de

100

Figure 5

One side only presentation

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(a) Control (12L:12D)

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(b) Partial SD (18L:06D)

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(c) Total SD (18L:06P)

0102030405060

Tim

e in

the

stim

ulus

to-b

e sid

e (s

)

(d) Total SD + Eth

0102030405060

2 4 6 8 10 12 14 16 18 20Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

Inter stimulus interval (ISI)

(e) Total SD + Mel

Page 102: Universidade Federal do Rio Grande do Norte Centro de

101

Figure 6

Opposite sides presentation

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(a) Control (12L:12D)

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(b) Partial SD (18L:06D)

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(c) Total SD (18L:06P)

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(d) Total SD + Eth

0102030405060

2 4 6 8 10 12 14 16 18 20Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

Inter stimulus interval (ISI)

(e) Total SD + Mel

Page 103: Universidade Federal do Rio Grande do Norte Centro de

102

Figure 7

Random sides presentation

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(a) Partial SD (18L:06D)

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(b) Total SD (18L:06P)

0102030405060

Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

(c) Total SD + Eth

0102030405060

2 4 6 8 10 12 14 16 18 20Tim

e in

the

stim

ulus

-to-b

e sid

e (s

)

Inter stimulus interval (ISI)

(d) Total SD + Mel

Page 104: Universidade Federal do Rio Grande do Norte Centro de

103

Figure 8

0

10

20

30

40

50

60

Control (12L:12D) Partial SD (18L:06D) Total SD (18L:06P) Total SD + Eth Total SD + Mel

Tim

e in

the

stim

ulus

-to-b

e sid

e du

ring

the

ISI (

s)a) One side only 1 to 4

5 to 89 to 1213 to 1617 to 20

a

b

aaa

b

a

b

ab

aa

a

abab

ab

0

10

20

30

40

50

60

Control (12L:12D) Partial SD (18L:06D) Total SD (18L:06P) Total SD + Eth Total SD + Mel

Tim

e in

the

stim

ulus

-to-b

e sid

e du

ring

the

ISI (

s)

b) Opposite sides

b

ab

abab

ab

bb

a a

aaa

aaa

0

10

20

30

40

50

60

Control (12L:12D) Partial SD (18L:06D) Total SD (18L:06P) Total SD + Eth Total SD + Mel

Tim

e in

the

stim

ulus

-to-b

e sid

e du

ring

the

ISI (

s)

c) Random sides

a a

bab

ab

Page 105: Universidade Federal do Rio Grande do Norte Centro de

104

Figure 9

0

20

40

60

80

100

120

Control Partial SD Total SD Total SD +Eth

Total SD +Mel

a) Maximum speed (cm/s)

*

0

1

2

3

4

5

6

Control Partial SD Total SD Total SD +Eth

Total SD +Mel

b) Average speed (cm/s)

b

a

abab

b

0

100

200

300

400

500

Control Partial SD Total SD Total SD +Eth

Total SD +Mel

c) Freezing (s)

0

2.000

4.000

6.000

8.000

10.000

Control Partial SD Total SD Total SD +Eth

Total SD +Mel

d) Total distance traveled (cm)

bb

aa

b

Page 106: Universidade Federal do Rio Grande do Norte Centro de

105

Figure captions

Fig. 1.Schematic view of the spatial associative task. Two monitors presented the stimulus

image placed flush against the two sidewalls of the experimental tank (40x25x20 cm).

Fig. 2.Time spent on each side of the test tank (graphs on the left) and on the stimulus side

(graphs on the right), during the 20 trials when the stimulus was presented on one side only.

Five groups were tested: Control (a,b), Partial SD (c, d), Total SD (e, f), Total SD + Eth (g, h)

and Total SD + Mel (i, j). Behavior was analyzed using a tracking software (ZebTrack). Means+

SEM are shown for blocks of 5min. (*) and different letters indicates statistical significance at p

< 0.05.

Fig. 3.Time spent on each side of the test tank (graphs on the left) and on the stimulus side

(graphs on the right), during the 20 trials when the stimulus was presented on alternating sides.

Five groups were tested: Control (a, b), Partial SD (c, d), Total SD (e, f), Total SD + Eth (g, h)

and Total SD + Mel (i, j). Behavior was analyzed using a tracking software (ZebTrack). Means

+ SEM are shown for blocks of 5 min. Different letters indicate statistical significance at p <

0.05.

Fig. 4.Time spent on each side of the test tank (graphs on the left) and on the stimulus side

(graphs on the right), during the 20 trials when the stimulus was presented on random sides.

Four groups were tested: Partial SD (a, b), Total SD (c, d),Total SD + Eth (e, f) and Total SD +

Mel (g, h). Behavior was analyzed using a tracking software (ZebTrack). Means + SEM are

shown for blocks of 5 min. Different letters indicate statistical significance at p < 0.05.

Fig. 5.Analysis of zebrafish response during the 20 ISI when the stimulus was presented on one

side only. The (a) control, (b) partial SD and (d) total SD + Eth groups increased the time spent

on the stimulus-to-be side, while the total SD and total SD + Mel groups spent a similar amount

of time on both sides of the tank. Means± SEM are shown.

Fig. 6.Analysis of zebrafish response during the 20 ISI when the stimulus was presented on

alternating sides. The (a) control, (b) partial SD and (d) total SD + Eth groups spent more time

on the stimulus-to-be side, while the total SD and total SD + Mel groups spent a similar amount

of time on both sides of the tank. Means ± SEM are shown.

Fig. 7.Analysis of zebrafish responses during the 20 ISI when the stimulus was presented on

random sides. None of the groups showed a side preference, spending a similar amount of time

on both sides of the tank. Means ± SEM are shown.

Fig. 8.Comparison of time spent on the stimulus to-be side, for the types of stimulus

presentation: (a) One side only, (b) Alternating sides, (c) Random sides. Trials were divided in 5

blocks and analyzed for the five groups: control, partial SD, total SD, total SD + Eth and total

SD + Mel. Means + SEM are shown. Different letters indicate statistical significance at p <

0.05.

Fig. 9.Behavioral parameters analyzed for (a) maximum speed swimming, (b) average

speed swimming, (c) freezing behavior and (d) total distance traveled by the fish,

between the five groups: control, partial SD, total SD, total SD + Eth and total SD +

Mel. Data corresponds to 30 min of testing, analyzed by tracking software (ZebTrack).

(*) and different letters indicate statistical significance at p< 0.05).

Page 107: Universidade Federal do Rio Grande do Norte Centro de

106

Table 1: Estimates of mixed effect model for time spent in the stimulus side during the stimulus presentation. Stimulus presentation scheme

One side only Opposite sides Random sides

Fixed effects Value±sem t-value p-value Value±sem t-value p-value Value ±sem t-value p-value

Intercept 0.16±0.16 -1.02 0.30 -0.76±0.06 -12.91 0.00* -0.97±0.14 -6.91 0.00* Stimulus trials 0.04±0.01 5.45 0.00* 0.02±0.003 4.84 0.00* 0.01±0.006 1.76 0.07

Control 1 1 -

Partial SD -0.30±0.18 -1.63 0.11 -0.07±0.06 -1.10 0.27 1

Total SD 0.39±0.18 -2.15 0.03* -0.10±0.06 -1.68 0.09 -0.33±0.17 -1.95 0.06 Total SD + Eth -0.03±0.18 -0.16 0.87 -0.10±0.06 -1.60 0.11 0.10±0.18 0.58 0.56

Total SD + Mel -0.26±0.18 -1.41 0.16 -0.002±0.07 -0.04 0.97 0.05±0.17 0.27 0.79

Random effects Variance St Dev Variance St Dev Variance St Dev

Intercept 0.39 0.63 5.95 2.44 0.26 0.51 Stimuli 0.00009 0.03 1.17 1.08 0.0004 0.02

Residual 14.52 3.81 5.90 2.43 6.71 2.59 SD: sleep deprivation, sem: Standard error of the mean, St Dev: Standard Deviation.

Page 108: Universidade Federal do Rio Grande do Norte Centro de

107

Table 2: Estimates of mixed effect model for time spent in the stimulus-to-be side during the inter stimulus interval (ISI).

SD: sleep deprivation, sem: Standard error of the mean, St Dev: Standard Deviation.

Stimulus presentation scheme

One side only Opposite sides Random sides

Fixed effects Value±sem t-value p-value Value±sem t-value p-value Value ±sem t-value p-value

Intercept -1.01±0.09 -10.85 0.00* -0.69±0.05 -13.22 0.00* -0.95±0.12 -7.41 0.00*

Stimulus trials 0.03±0.004 6.25 0.00* 0.01±0.00 5.56 0.00* 0.01±0.00 2.08 0.03*

Control 1 1 -

Partial SD 0.00±0.09 0.01 0.98 -0.05±0.05 -1.01 0.31 1 Total SD -0.33±0.09 -3.57 0.00* -0.23±0.05 -4.19 0.00* -0.37±0.14 -2.5 0.01*

Total SD + Eth 0.13±0.08 1.50 0.13 -0.09±0.05 -1.74 0.08 0.14±0.15 0.95 0.34

Total SD + Mel -0.13±0.09 -1.47 0.14 -0.10±0.06 -1.69 0.09 0.04±0.14 0.31 0.75

Random effects Variance St Dev Variance St Dev Variance St Dev

Intercept 0.26 0.51 2.99 1.73 0.28 0.53

Stimuli 0.0004 0.02 3.46 1.86 0.0004 0.02

Residual 8.82 2.97 9.61 3.10 10.56 3.25

Page 109: Universidade Federal do Rio Grande do Norte Centro de

108

CONCLUSÃO GERAL

O sono é um fenômeno biológico e fisiológico de grande importância no

organismo, porém insuficientemente entendido. Pesquisas sobre o comportamento de

sono em humanos são de difícil aplicabilidade devido ao alto custo, e a dificuldade em

encontrar voluntários e controlar experimentos em laboratórios. Nesse sentido, o peixe

paulistinha aparece como vantajoso modelo animal, pois apresenta controle do sono por

ciclo circadiano, alteração comportamental em condição de privação de sono e

responsividade a drogas relacionadas à indução/privação de sono, além de seu relevante

aspecto translacional em pesquisas com mamíferos.

Em termos de desempenho cognitivo, nosso estudo apresentou resultados

significativos do peixe paulistinha nos três paradigmas testados: discriminação de

objetos, aprendizagem aversiva baseada em punição e aprendizagem apetitiva baseada

em reforço. Nas três tarefas aplicadas, a privação parcial de sono não prejudicou a

performance dos animais, no entanto, a privação total de sono afetou negativamente a

percepção do estimulo, a aprendizagem e a formação/resgate de memória. Além disso, a

exposição ao álcool na noite anterior ao teste parece favorecer o descanso do animal, que

responde ao teste cognitivo posterior com boa performance. Ademais, a melatonina

exógena não melhorou o desempenho do animal nas tarefas cognitivas, seja porque não

permitiu o sono ou porque interferiu diretamente na aprendizagem.

Page 110: Universidade Federal do Rio Grande do Norte Centro de

109

Referências

Alcock, J. (2013). Animal Behavior: An Evolutionary Approach. Retrieved from

http://books.google.com/books?id=gtspnwEACAAJ&dq=intitle:Animal+Behavior+An+ev

olutionary+approach&hl=&cd=2&source=gbs_api\npapers2://publication/uuid/E2F0CAD

1-9DB8-4F1D-B9D0-05EEC905682D

Andersen, M. L., Antunes, I. B., Silva, a., Alvarenga, T. a F., Baracat, E. C., & Tufik, S. (2008).

Effects of sleep loss on sleep architecture in Wistar rats: Gender-specific rebound sleep.

Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(4), 975–983.

http://doi.org/10.1016/j.pnpbp.2008.01.007

Andersen, M. L., Perry, J. C., & Tufik, S. (2005). Acute cocaine effects in paradoxical sleep

deprived male rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry,

29(2), 245–251.

Arendt, J. (2003). Importance and relevance of melatonin to human biological rhythms. Journal

of Neuroendocrinology, 15(4), 427–431.

Best, J. D., Berghmans, S., Hunt, J. J. F. G., Clarke, S. C., Fleming, A., Goldsmith, P., & Roach,

A. G. (2008). Non-associative learning in larval zebrafish. Neuropsychopharmacology,

33(5), 1206–1215.

Beveridge, T. J. R., Smith, H. R., & Porrino, L. J. (2013). Differential development of tolerance

to the functional and behavioral effects of repeated baclofen treatment in rats. Pharmacology

Biochemistry and Behavior, 106, 27–32.

Bilotta, J., Saszik, S., Givin, C. M., Hardesty, H. R., & Sutherland, S. E. (2002). Effects of

embryonic exposure to ethanol on zebrafish visual function. Neurotoxicology and

Teratology, 24(6), 759–766.

Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., &

Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Medicine

Reviews, 9(1), 41–50.

Page 111: Universidade Federal do Rio Grande do Norte Centro de

110

Campbell, S. S., & Tobler, I. (1984). Animal sleep: a review of sleep duration across phylogeny.

Neuroscience and Biobehavioral Reviews, 8(3), 269–300. http://doi.org/10.1016/0149-

7634(84)90054-X

Carvan, M. J., Loucks, E., Weber, D. N., & Williams, F. E. (2004). Ethanol effects on the

developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicology and

Teratology, 26(6), 757–768.

Chacon, D. M., & Luchiari, A. C. (2014). A dose for the wiser is enough: The alcohol benefits

for associative learning in zebrafish. Progress in Neuro-Psychopharmacology and

Biological Psychiatry, 53, 109–115. http://doi.org/10.1016/j.pnpbp.2014.03.009

Collier, A. D., Khan, K. M., Caramillo, E. M., Mohn, R. S., & Echevarria, D. J. (2014). Zebrafish

and conditioned place preference: A translational model of drug addiction. Progress in

Neuro-Psychopharmacology & Biological Psychiatry, 55, 16–25.

http://doi.org/10.1016/j.pnpbp.2014.05.014

Colten, H. R., & Altevogt, B. M. (2006). Sleep disorders and sleep deprivation: an unmet public

health problem. Institute of Medicine. National Academies Press, Washington.

Colwill, R. M., Raymond, M. P., Ferreira, L., & Escudero, H. (2005). Visual discrimination

learning in zebrafish (Danio rerio). Behavioural Processes, 70(1), 19–31.

http://doi.org/10.1016/j.beproc.2005.03.001

de Manaceine, M. (1894). Quelques observations experimentales sur l’influence de l’insomnie

absolue. Archives Italiennes de Biologie, 21, 322–325.

Drummond, S. P. A., Brown, G. G., Gillin, J. C., Stricker, J. L., Wong, E. C., & Buxton, R. B.

(2000). Altered brain response to verbal learning following sleep deprivation. Nature,

403(6770), 655–657.

Elbaz, I., Foulkes, N. S., Gothilf, Y., & Appelbaum, L. (2013). Circadian clocks, rhythmic

synaptic plasticity and the sleep-wake cycle in zebrafish. Frontiers in Neural Circuits,

7(February), 9. http://doi.org/10.3389/fncir.2013.00009

Engeszer, R. E., Ryan, M. J., & Parichy, D. M. (2004). Learned social preference in zebrafish.

Current Biology, 14(10), 881–884. http://doi.org/10.1016/j.cub.2004.04.042

Page 112: Universidade Federal do Rio Grande do Norte Centro de

111

Farooqui, S. M., Brock, J. W., & Zhou, J. (1996). Changes in monoamines and their metabolite

concentrations in REM sleep-deprived rat forebrain nuclei. Pharmacology Biochemistry and

Behavior, 54(2), 385–391.

Frussa-Filho, R., Gonçalves, M. T. M., Andersen, M. L., de Araujo, N. P., Chinen, C. C., & Tufik,

S. (2004). Paradoxical sleep deprivation potentiates amphetamine-induced behavioural

sensitization by increasing its conditioned component. Brain Research, 1003(1), 188–193.

Gerlai, R., Lahav, M., Guo, S., & Rosenthal, a. (2000). Drinks like a fish: zebra fish (Danio rerio)

as a behavior genetic model to study alcohol effects. Pharmacology, Biochemistry, and

Behavior, 67(4), 773–82. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11166068

Goldstein, R., & Pavel, S. (1981). REM sleep suppression in cats by melatonin. Brain Research

Bulletin, 7(6), 723–724.

Guzman-Marin, R., Suntsova, N., Methippara, M., Greiffenstein, R., Szymusiak, R., & McGinty,

D. (2005). Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. The

European Journal of Neuroscience, 22(8), 2111–6. http://doi.org/10.1111/j.1460-

9568.2005.04376.x

Herculano-Houzel, S. (2015). Decreasing sleep requirement with increasing numbers of neurons

as a driver for bigger brains and bodies in mammalian evolution. Proceedings of the Royal

Society B: Biological Sciences, 282(1816), 20151853.

http://doi.org/10.1098/rspb.2015.1853

Hilgard, E. R. (1948). Theories of learning.

Johnston, T. D. (1982). Selective Costs and Benefits in the Evolution of Learning. Advances in

the Study of Behavior, 12(65), 65–106. http://doi.org/10.1016/S0065-3454(08)60046-7

Kalueff, A. V., Stewart, A. M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying

complex brain disorders. Trends in Pharmacological Sciences, 35(2), 63–75.

http://doi.org/10.1016/j.tips.2013.12.002

Kavaliers, M., & Choleris, E. (2001). Antipredator responses and defensive behavior: ecological

and ethological approaches for the neurosciences. Neuroscience & Biobehavioral Reviews,

25(7), 577–586.

Page 113: Universidade Federal do Rio Grande do Norte Centro de

112

Kavanau, J. L. (1998). Vertebrates that never sleep: Implications for sleep’s basic function. Brain

Research Bulletin, 46(4), 269–279. http://doi.org/10.1016/S0361-9230(98)00018-5

Kolb, B., & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annual Review of Psychology,

49(1), 43–64.

Kolb, B., & Whishaw, I. Q. (2001). An introduction to brain and behavior. Worth Publishers.

Kushida, C. A. (2004). Sleep deprivation: basic science, physiology and behavior. CRC Press.

Langen, B., Dietze, S., & Fink, H. (2002). Acute effect of ethanol on anxiety and 5-HT in the

prefrontal cortex of rats. Alcohol, 27(2), 135–141.

Lefebvre, L. (1996). Ecological correlates of social learning : problems and solutions for the

comparative method. Behavioural Processes, 5, 163–171.

Leibowitz, S. M., Lopes, M.-C. C., Andersen, M. L., & Kushida, C. A. (2006). Sleep deprivation

and sleepiness caused by sleep loss. Sleep Medicine Clinics, 1(1), 31–45.

http://doi.org/10.1016/j.jsmc.2005.11.010

Luchiari, A. C., Salajan, D. C., & Gerlai, R. (2015). Acute and chronic alcohol administration:

Effects on performance of zebrafish in a latent learning task. Behavioural Brain Research,

282, 76–83. http://doi.org/10.1016/j.bbr.2014.12.013

Lucon-Xiccato, T., & Dadda, M. (2014). Assessing memory in zebrafish using the one-trial test.

Behavioural Processes, 106, 1–4. http://doi.org/10.1016/j.beproc.2014.03.010

Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory

consolidation. Trends in Cognitive Sciences, 11(10), 442–450.

http://doi.org/10.1016/j.tics.2007.09.001

Mazur, J. E. (2002). Learning and behavior (3rd ed.). New Jersey: Prentice-Hall.

Miklósi, A., & Andrew, R. J. (2006). The zebrafish as a model for behavioral studies. Zebrafish,

3(2), 227–234. http://doi.org/10.1089/zeb.2006.3.227

Mintz, E. M., Phillips, N. H., & Berger, R. J. (1998). Daytime melatonin infusions induce sleep

in pigeons without altering subsequent amounts of nocturnal sleep. Neuroscience Letters,

258(2), 61–64. http://doi.org/10.1016/S0304-3940(98)00849-0

Moore, B. R. (1973). The role of directed Pavlovian reactions in simple instrumental learning in

Page 114: Universidade Federal do Rio Grande do Norte Centro de

113

the pigeon.

Moore, B. R. (2004). The evolution of learning. Biological Reviews of the Cambridge

Philosophical Society, 79(2), 301–335. http://doi.org/10.1017/S1464793103006225

Newman, S. M., Paletz, E. M., Rattenborg, N. C., Obermeyer, W. H., & Benca, R. M. (2008).

Sleep deprivation in the pigeon using the Disk-Over-Water method. Physiology & Behavior,

93(1), 50–58.

Obernier, J. A., White, A. M., Swartzwelder, H. S., & Crews, F. T. (2002). Cognitive deficits and

CNS damage after a 4-day binge ethanol exposure in rats. Pharmacology Biochemistry and

Behavior, 72(3), 521–532. http://doi.org/http://dx.doi.org/10.1016/S0091-3057(02)00715-3

Oleksenko, A. I., Mukhametov, L. M., Polyakova, I. G., Supin, A. Y., & Kovalzon, V. M. (1992).

Unihemispheric sleep deprivation in bottlenose dolphins. J Sleep Res, 1(1), 40–44.

Oliveira, J., Silveira, M., Chacon, D., & Luchiari, A. (2015). The zebrafish world of colors and

shapes: preference and discrimination. Zebrafish, 12(2), 166–173.

http://doi.org/10.1089/zeb.2014.1019

Patrick, G. T. W., & Gilbert, J. A. (1896). Studies from the psychological laboratory of the

University of Iowa: On the effects of loss of sleep. Psychological Review, 3(5), 469.

Powell, R., Honey, P., & Symbaluk, D. (2016). Introduction to learning and behavior. Cengage

Learning.

Rechtschaffen, A., Bergmann, & Bernard M. (2002). Sleep deprivation in the rat: an update of

the 1989 paper. Sleep, 25(1), 18–24.

Roehrs, T., & Roth, T. (2001). Sleep, sleepiness, sleep disorders and alcohol use and abuse. Sleep

Medicine Reviews, 5(4), 287–297. http://doi.org/10.1053/smrv.2001.0162

Sauer, S., Herrmann, E., & Kaiser, W. (2004). Sleep deprivation in honey bees. Journal of Sleep

Research, 13(2), 145–152.

Scheer, F. a J. L., & Czeisler, C. a. (2005). Melatonin, sleep, and circadian rhythms. Sleep

Medicine Reviews, 9, 5–9. http://doi.org/10.1016/j.smrv.2004.11.004

Schmidt, M. H. (2014). The energy allocation function of sleep: a unifying theory of sleep, torpor,

and continuous wakefulness. Neuroscience & Biobehavioral Reviews, 47, 122–153.

Page 115: Universidade Federal do Rio Grande do Norte Centro de

114

http://doi.org/10.1016/j.neubiorev.2014.08.001

Siegel, J. M. (2008). Do all animals sleep? Trends in Neurosciences, 31(4), 208–213.

http://doi.org/10.1016/j.tins.2008.02.001

Sison, M., & Gerlai, R. (2010). Associative learning in zebrafish (Danio rerio) in the plus maze.

Behavioural Brain Research, 207(1), 99–104. http://doi.org/10.1016/j.bbr.2009.09.043

Sison, M., & Gerlai, R. (2011). Associative learning performance is impaired in zebrafish (Danio

rerio) by the NMDA-R antagonist MK-801. Neurobiology of Learning and Memory, 96(2),

230–237. http://doi.org/10.1016/j.nlm.2011.04.016

Spiegel, K. (2004). Brief Communication: Sleep curtailment in healthy young men is associated

with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite.

Annals of Internal Medicine, 141(11), 846. http://doi.org/10.7326/0003-4819-141-11-

200412070-00008

Stickgold, R., & Walker, M. P. (2005). Memory consolidation and reconsolidation: what is the

role of sleep? Trends in Neurosciences, 28(8), 408–415.

Thomas, M., Sing, H., Belenky, G., Holcomb, H., Mayberg, H., Dannals, R., … Redmond, D.

(2000). Neural basis of alertness and cognitive performance impairments during sleepiness.

I. Effects of 24 h of sleep deprivation on waking human regional brain activity. Journal of

Sleep Research, 9(4), 335–352. http://doi.org/10.1046/j.1365-2869.2000.00225.x

Thompson, R. F. (1991). Are memory traces localized or distributed? Neuropsychologia, 29(6),

571–582.

Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine

Reviews. Elsevier. http://doi.org/10.1016/j.smrv.2005.05.002

Tran, S., & Gerlai, R. (2013). Time-course of behavioural changes induced by ethanol in

zebrafish (Danio rerio). Behavioural Brain Research, 252, 204–213.

http://doi.org/10.1016/j.bbr.2013.05.065

Van Cauter, E. (2005). Endocrine Physiology. In Principles and Practice of Sleep

Medicine (pp. 266–282). Elsevier. http://doi.org/10.1016/B0-72-160797-7/50029-X

Page 116: Universidade Federal do Rio Grande do Norte Centro de

115

Wang, J., Liu, C., Ma, F., Chen, W., Liu, J., Hu, B., & Zheng, L. (2014). Circadian Clock

Mediates Light/Dark Preference in Zebrafish (Danio Rerio). Zebrafish, 11(2), 1–7.

http://doi.org/10.1089/zeb.2013.0929

Watson, B. O., & Buzsáki, G. (2015). Sleep, Memory & Brain Rhythms. Daedalus,

144(1), 67–82. http://doi.org/10.1162/DAED_a_00318

Williams, F. E., White, D., & Messer, W. S. (2002). A simple spatial alternation task for

assessing memory function in zebrafish. Behavioural Processes, 58(3), 125–132.

http://doi.org/10.1016/S0376-6357(02)00025-6

Wu, J. C., Gillin, J. C., Buchsbaum, M. S., & Hershey, T. (1991). The effect of sleep

deprivation on cerebral glucose metabolic rate in normal humans assessed with

positron emission tomography. Sleep: Journal of Sleep Research & Sleep Medicine.

Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., Nedergaard, M.

(2013). Sleep drives metabolite clearance from the adult brain. Science (New York,

N.Y.), 342(6156), 373–7. http://doi.org/10.1126/science.1241224

Xu, X., Scott-Scheiern, T., Kempker, L., & Simons, K. (2007). Active avoidance

conditioning in zebrafish (Danio rerio). Neurobiology of Learning and Memory,

87(1), 72–77. http://doi.org/10.1016/j.nlm.2006.06.002

Yu, L., Tucci, V., Kishi, S., & Zhdanova, I. V. (2006). Cognitive aging in zebrafish. PLoS

ONE, 1(1), e14. http://doi.org/10.1371/journal.pone.0000014

Zhdanova, I. V. (2005). Melatonin as a hypnotic: pro. Sleep Medicine Reviews, 9(1), 51–

65.

Zhdanova, I. V. (2006). Sleep in zebrafish. Zebrafish, 3(2), 215–226.

http://doi.org/10.1089/zeb.2006.3.215

Zhdanova, I. V, Geiger, D. A., Schwagerl, A. L., Leclair, O. U., Killiany, R., Taylor, J.

A., Madras, B. K. (2002). Melatonin promotes sleep in three species of diurnal

Page 117: Universidade Federal do Rio Grande do Norte Centro de

116

nonhuman primates. Physiology & Behavior, 75(4), 523–529.

Zhdanova, I. V, Wang, S. Y., Leclair, O. U., & Danilova, N. P. (2001). Melatonin

promotes sleep-like state in zebrafish. Brain Research, 903(1-2), 263–268.

http://doi.org/10.1016/S0006-8993(01)02444-1

Zimmerman, J. E., Naidoo, N., Raizen, D. M., & Pack, A. I. (2008). Conservation of

sleep: insights from non-mammalian model systems. Trends in Neurosciences,

31(7), 371–376.